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Abstract

We show a connection between the semidefinite relax-
ation of unique games and their behavior under parallel
repetition. Specifically, denoting byval(G) the value of a
two-prover unique game G, and bysdpval(G) the value of
a natural semidefinite program to approximateval(G), we
prove that for everyℓ ∈ N, if sdpval(G) > 1 − δ, then
val(Gℓ) > 1 −

√
sℓδ . Here, Gℓ denotes theℓ-fold paral-

lel repetition of G, and s= O(log(k/δ)), where k denotes the
alphabet size of the game. For the special case where G is
an XOR game (i.e., k= 2), we obtain the same bound but
with s as an absolute constant. Our bounds on s are optimal
up to a factor of O(log(1/δ)).

For games with a significant gap between the quantities
val(G) and sdpval(G), our result implies thatval(Gℓ) may
be much larger thanval(G)ℓ, giving a counterexample to
the strong parallel repetition conjecture. In a recent break-
through, Raz (FOCS ’08) has shown such an example using
the max-cut game on odd cycles. Our results are based on
a generalization of his techniques.

∗Department of Computer Science, Princeton University,
boaz@cs.princeton.edu. Supported by NSF grants CNS-0627526
and CCF-0426582, US-Israel BSF grant 2004288 and Packard and Sloan
fellowships.
†Department of Computer Science, Princeton University,

mhardt@cs.princeton.edu.
‡School of Computer Science, Tel Aviv University, Tel Aviv, Israel.

Supported by the Binational Science Foundation, and by the Israel Science
Foundation.
§School of Mathematics, Institute for Advanced Study,arao@ias.edu.

Supported in part by NSF Grant No. CCR-0324906.
¶School of Computer Science, Tel Aviv University, Tel Aviv, Israel.

Supported by the Binational Science Foundation, by the Israel Science
Foundation, by the European Commission under the Integrated Project
QAP funded by the IST directorate as Contract Number 015848,and by
a European Research Council (ERC) Starting Grant.
‖Department of Computer Science, Princeton University. Supported by

NSF grants MSPA-MCS 0528414, and ITR 0205594.

1. Introduction

In a two-prover game, a referee interacts with two
provers, whose joint goal is to maximize the probability that
the referee outputs “accept”. The provers may decide in
advance on an arbitrary strategy, and they may use shared
randomness, but they cannot communicate with one another
during the interaction, which proceeds as follows:

1. The referee samples a pair of queries (u, v) from a dis-
tributionG specified by the game.

2. The referee sendsu to the first prover, and obtains an
answeri, wherei ∈ [k] for some integerk that is called
thealphabet sizeof the game.

3. The referee sendsv to the second prover and obtains an
answerj ∈ [k].

4. The referee applies a predicate specified by the game
to (u, v, i, j) and decides accordingly whether to accept
or to reject.

The game is calledunique if the predicate consists of
checking whetherj = πuv(i) whereπuv is a permutation
of [k]. A unique game with alphabet size 2 is called an
XOR game. Thevalueof the gameG, denoted byval(G),
is the maximum probability of success that the provers can
achieve (the provers succeed if the referee accepts their an-
swers).

Two-prover games have turned out to be useful in several
contexts, including hardness of approximation and quan-
tum mechanics (see [12, 3, 8]). In many of these appli-
cations, it is important to understand how the value of
the game decreases underparallel repetition. For ℓ ∈ N,
the ℓ-fold parallel repetition of G, denoted byGℓ, is
the game in which the referee samplesℓ pairs of ques-
tions (u1, v1), . . . , (uℓ, vℓ) independently fromG, sending
(u1, . . . , uℓ) to the first prover and (v1, . . . , vℓ) to the sec-
ond prover. The provers then respond with (i1, . . . , iℓ) and
( j1, . . . , jℓ), respectively. The referee accepts if and only if
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each of the tuples (u1, v1, i1, j1), . . . , (uℓ, vℓ, iℓ, jℓ) is accept-
able.

Clearly the two provers forGℓ can run the optimal strat-
egy for the one-shot game in each instance independently,
and thusval(Gℓ) > val(G)ℓ. Understanding the true value
of val(Gℓ) is a fundamental question. The first dramatic
progress was made by Raz [24] who proved that for every
gameG of alphabet sizek with val(G) = 1− ε,

val(Gℓ) 6 (1− εc)Ω(ℓ/s) , (1)

where herec = 32 ands = logk. Raz’s argument was
subsequently simplified by Holenstein [13], who also im-
proved the bound (1) to getc = 3. This was followed by
a work of Rao [23] showing that in the case ofprojection
games(which are a generalization of unique games), the
bound can be improved toc = 2 ands= 1.

It remained open whether the bound (1) could be further
improved to yieldc = 1, and the conjecture that this holds
is known as thestrong parallel repetitionconjecture. As
shown by Feige et al. [9], this conjecture would have had in-
teresting applications to hardness of approximation results;
moreover some of these applications would hold even if
the conjecture was only true for the special case of unique
games.

In a recent breakthrough, Raz [25] disproved the conjec-
ture by giving an example of a gameG of value 1− ε for
which val(Gℓ) > 1 − O(

√
ℓ ε), which can be seen to imply

that forℓ > 1/ε2, val(Gℓ) > (1− ε2)O(ℓ). In addition, Raz’s
game is an XOR game (and a very simple one at that—the
max-cut game on an odd cycle, see Section2), and hence
Raz disproved the strong parallel repetition conjecture even
for this case. In this paper, we generalize Raz’s results and
techniques to show that a wide class of unique games yields
such a counterexample. In fact, we determine asymptoti-
cally the value of the repeated version ofanyunique game,
up to logarithmic factors in the exponent.

Semidefinite relaxation of games. While computing (or
even approximating) the value of a two-prover game isNP-
hard in general, Feige and Lovász [10] showed a non-trivial
upper bound on this value by an efficiently computable
parameter using semidefinite programming (SDP). For ev-
ery gameG, the problem of computingval(G) (i.e., maxi-
mizing the acceptance probability) can be formalized as a
quadratic programming problem, and [10] studied a natu-
ral semidefinite relaxation of this program (see Figure1).1

Letting sdpval(G) be the optimum value of this program,
it always holds thatsdpval(G) > val(G). Using duality it
can be shownsdpval(Gℓ) = sdpval(G)ℓ [10] (see also [21]).

1The SDP of [10] had some additional constraints above those of the
SDP of Figure1, but for our purposes they are still essentially equivalent.
For details see the full version of the paper.

Hence, games withval(G) = sdpval(G) have perfect paral-
lel repetition,val(Gℓ) = val(G)ℓ. However, there are known
examples with a largegap betweenval(G) andsdpval(G)
and for such games the value ofGℓ was not known. Our
results imply that asℓ grows, the value ofGℓ tends not to
val(G)ℓ but rather tosdpval(G)ℓ. This has strong negative
consequences for [9]’s intended application of using strong
parallel repetition to show hardness of approximation, be-
cause for such applications the interesting games are those
whereval(G) is hard to approximate and hence is far from
sdpval(G). We show that in all these cases strong parallel
repetition fails to hold. (In fact, our results combined with
[10] imply that the unique games where strong parallel repe-
tition fails are exactly those with a large gap betweenval(G)
andsdpval(G).)

1.1. Our Results

Our main result is the following:

Theorem 1.1. For everyℓ ∈ N and every unique game G
with sdpval(G) > 1− δ and alphabet size k,

val(Gℓ) > 1−O(
√

ℓδ log(k/δ)) .

For the special case of XOR games, we can prove a
stronger bound that avoids the logarithmic factor.

Theorem 1.2. For everyℓ ∈ N and every XOR game G with
sdpval(G) > 1− δ, we haveval(Gℓ) > 1− 4

√
ℓδ .

When the number of repetitionsℓ tends to infinity,
we obtain the following stronger bound. Here we use
val(G) to denote theasymptotic value of G, defined as
limℓ→∞ (val(Gℓ))1/ℓ.

Theorem 1.3. For every XOR game G withsdpval(G) >
1− δ, we haveval(G) > 1− 2δ .

The proofs of Theorem1.1 and Theorem1.2 are pre-
sented in Section4.4. For details about Theorem1.3, see
the full version of the paper.

For everyℓ and everym that dividesℓ, two provers
playing the gameGℓ can always achieve acceptance prob-
ability at leastval(Gm)ℓ/m by using the optimal strategy
on each block ofm repetitions independently. Combining
this observation with Feige and Lovász’s [10] result that
val(Gℓ) 6 sdpval(G)ℓ, we obtain the following corollary to
Theorems1.1and1.2:

Corollary 1.4. For every unique two-prover game G with
sdpval(G) = 1− δ and for everyℓ > 1/δ,

val(Gℓ) = (1− δ)Θ̃(ℓ) , (2)

where theΘ̃ notation hides factors logarithmic in1/δ and
the alphabet size of G. Moreover, if G is an XOR game then
we can replace the right-hand side of (2) with (1− δ)Θ(ℓ).



The dependence on logk in our bound is inherent, as
can be seen by combining the Khot–Vishnoi [17] integral-
ity gap example with Rao’s parallel repetition theorem for
unique games [23]: the results in [17] and [16] allow to
construct a unique gameG for which sdpval(G) = 1 − δ
but val(G) 6 1 − O(

√

δ logk) (for details of this construc-
tion, see the full version of the paper); Rao’s parallel rep-
etition theorem [23] implies that for this gameval(Gℓ) 6
(1− δ logk)Ω(ℓ) = (1− δ)Ω(ℓ logk). Hence, the dependence on
logk in Theorem1.1 is optimal. In contrast, we conjecture
that the dependence on log(1/δ) in Theorem1.1is not inher-
ent and is an artifact of our specific construction. Indeed,
for the case of unique games with linear constraints we can
remove the dependence on log(1/δ), albeit at the cost of a
worse dependence onk (for details, see Section4.3and the
full version of the paper).

Previous rounding algorithms. It is instructive to com-
pare our results with the best known rounding algorithm for
unique games in this parameter regime, namely the CMM
algorithm of Charikar, Makarychev and Makarychev [5].
That algorithm shows that ifsdpval(G) > 1 − δ then
val(G) > 1 − O(

√

δ logk), wherek is G’s alphabet size.
Since the alphabet size ofGℓ is kℓ and sdpval(Gℓ) =
sdpval(G)ℓ ∼ 1 − ℓδ in the range where this bound is non-
trivial, the CMM algorithm onGℓ simply shows that

val(Gℓ) > 1−O(
√

ℓδℓ logk) = 1−O(ℓ
√

δ logk) . (3)

Hence the CMM algorithm does not give any better guaran-
tee on a repeated game than can be given by applying the
algorithm on each coordinate separately (which is not sur-
prising, as otherwise they would have already refuted the
strong parallel repetition conjecture). In contrast, our Theo-
rem1.1gives a bound of 1−O(

√

ℓδ(logk+ log(1/δ)) which
could be significantly better (i.e., closer to 1) than the right-
hand side of (3) if log(1/δ) ≪ ℓ (typically we think ofℓ ∼ 1/δ

in which case log(1/δ) ∼ logℓ).

Games with entanglement. There are several known ex-
amples of games (often unique) in which provers who
share quantum entanglement can achieve success probabil-
ity higher than that achievable by provers without entan-
glement. Such games are used in the context of quan-
tum information theory as experiments that validate some
of the predictions of quantum mechanics. Kempe, Regev,
and Toner [14] recently showed that the success probabil-
ity achievable by entangled provers in unique games can
be closely approximated by an SDP. Their proof involves a
rounding strategy that produces strategies for provers with
entanglement. Since it is known that the value achievable by
entangled provers is always upper bounded bysdpval(G),
our results show that as the number of repetitionsℓ grows,

theℓth root of the success probability that classical provers
can achieve approaches (up to logarithmic factors) theℓth

root of the success probability that quantum provers can
achieve. Thus to a certain extent the gap between quantum
and classical provers in unique games can “shrink” with the
number of repetitions.

Bounds for particular games. Our methods can be used
to derive improved lower bounds on the amortized value
of particular games. An especially interesting example is
the XOR game known as the CHSH game, introduced by
Clauser et al. [8] in 1969. In this game the referee sends a
uniform and independent bit to each prover, and each prover
responds with a value from{−1, 1}. The constraint is an
inequality constraint if and only if both questions are 1. By
always answering 1, the provers can win with probability
3/4, and it is easy to see that this is the best possible strategy.
It is well-known that the SDP value of this game equals1/2+
1/
√

8 ≈ 0.8535. It is somewhat surprising that the asymptotic
valueval(CHSH) is not known. Aaronson pointed out that
this value is at least

√
10/4 ≈ 0.7906 by considering CHSH2

(see [1, 2]). In the full version of this paper, we show that
this asymptotic value is at least cos(π/5) = 1/4(1 +

√
5) ≈

0.809.

2. Techniques

Our techniques are a natural generalization of Raz’s
work [25], and so it is instructive to start with a high level
overview of his approach. Raz’s counterexample used the
following simple XOR game. In themax-cutgame on a
graphG the referee selects a random edge{u, v} of G, sets
x = u, then with probability1/2 setsy = u and with prob-
ability 1/2 setsy = v. The referee sendsx, y to the provers
and receives two bitsa, b from them respectively. Ifx = y
then it accepts ifa = b, and if x , y then it accepts ifa , b.
The game is called themax-cutgame since (as can be eas-
ily seen) if the maximum cut inG cuts a 1− ε fraction of
the edges, then the value of the game is 1− ε/2. In par-
ticular, if G is then vertex cycle for some oddn, then the
value of the corresponding game (which we denote also by
G) is 1−1/(2n). Raz achieved his counterexample by show-
ing that in this case, for everyℓ the value ofGℓ is at least
1−O(

√
ℓ/n).

Interestingly, a central tool used by Raz is acorrelated
samplinglemma that Holenstein [13] used toprovethe par-
allel repetition theorem (for general games and withc = 3).
We will give the formal statement of the correlated sam-
pling lemma below (Lemma4.1) but roughly speaking, it
says that if the two provers are given a pair of distributions
D,D′ with statistical distance at mostε, then even without
communicating, each prover can sample a random element



according to his distribution such that with probability 1−2ε
both provers output thesameelement.

Raz used the correlated sampling lemma in the follow-
ing way. He defined for every vertexu in the odd cycle a
distributionDu over cuts in the graph, such that the proba-
bility that a cut selected fromDu does not cut one of the two
edges touchingu is very small (i.e.,O(1/n2)). The provers’
strategy on inputu is to sample a cut (S,T) according toDu

and output either 1 or 0 according to whether or notu ∈ S.
Now if it happened to be the case that the cut sampled by
the first prover on inputu is the same cut as the one sam-
pled by the second prover on inputv, it would mean that
if u = v then they answer the same value and if (u, v) is
an edge then with high probability they answer a different
value. Using the correlated sampling lemma, one can en-
sure that as long as the statistical distance∆(Du,Dv) of Du

andDv is at mostε for every neighboringu, v in the graph,
Raz’s strategy will achieve success probability 1−O(ε) (we
are neglecting here the small probability that the cut misses
the edge (u, v)). It can then be shown that the question of
the value of the game under parallel repetition reduces to
the question of the distance of many independent samples
from these distributions.

Hellinger distance and independent samples. For two
distributionsD1,D2 of statistical distanceε, the statistical
distance ofDℓ1 andDℓ2 (where this denotes concatenatingℓ
independent samples) depends quite a bit on the shape of
the underlying distributionsD1 andD2. For example, ifD1

is constantly 1 andD2 is the biased coin with Pr[D2 = 1] =
1− ε, then∆(D1,D2) = ε and∆(Dℓ1,D

ℓ
2) = 1− (1− ε)ℓ ≈ ℓε

for smallℓ. On the other hand, ifD1 andD2 are coins such
that Pr[D1 = 1] = 1/2 + ε/2 and Pr[D2 = 1] = 1/2 − ε/2 then
∆(D1,D2) is also equal toε, but ∆(Dℓ1,D

ℓ
2) = O(

√
ℓ ε).2

Raz uses in his paper a specific example of distributionsD1

andD2 (that could be used for his provers’ strategy) such
that∆(D1,D2) = Θ(1/n) but∆(Dℓ1,D

ℓ
2) = O(

√
ℓ/n). In this

paper, we note that the behavior of the statistical distance
of product of distributions is determined by a different dis-
tance measure called theHellinger distance(see Section3).
This distance measure has a geometric interpretation, which
we use to relate it to the vector solution of the semidefinite
program.

More concretely, we use Raz’s approach in the context
of roundingalgorithms for unique games. Such algorithms
transform a solution to the semidefinite program into a valid
strategy for the original game. The rounding algorithms
we use involve the provers selecting a random high dimen-

2The best distinguisher betweenDℓ1 and Dℓ2 will simply see whether
the sum of theℓ samples is larger thanℓ/2. The difference in expectation
between these two cases isεℓ, which is equal toΘ(εℓ/

√
ℓ) = Θ(ε

√
ℓ)

standard deviations.

sional vector for every input they receive from the verifier.3

Specifically, we will define for every inputu a distribution
Du on vectors such that if the two provers on input ofu
and v sample from the distributionsDu and Dv using the
correlated sampling lemma, then the result is very likely to
satisfy the predicate of the referee. The success probability
of the provers depends crucially on the statistical distance
between the distributionsDu andDv. But in order to bound
the statistical distance we will actually derive a bound on the
Hellinger distance between the two distributions. This has
the advantage that the bound carries over nicely to theparal-
lel repeatedgame using simple properties of the Hellinger
distance. We then use the quadratic relation between the
Hellinger distance and the statistical distance to obtain a
two-prover strategy for the repeated game. Finally, we show
how solutions to the semidefinite programming relaxation
give rise to distributions with small Hellinger distance and
hence a good two-prover strategy for the repeated game. Of
course this high level description is glossing over some very
important details, (including the choice of distributionsand
rounding algorithms) and these are covered in the following
sections.

3. Preliminaries

We use boldface to denote vectors. We will often use
collections of vectors that are indexed by elements of some
setV. In this case, we writeu for the vector indexed by the
elementu ∈ V.

Statistical distance. Let X andY be two probability dis-
tributions over a domainΩ (e.g., [0, 1] or Rd). AssumeX
andY have density functions with respect to some measure
µ (e.g., the Lebesgue measure), and letf andg denote these
density functions.4 We define theirstatistical distance(also
known astotal variation distance) by

∆(X,Y)
def
= 1

2

∫

Ω

| f − g| dµ .

Notice that for anyX andY, ∆(X,Y) ∈ [0, 1].

Hellinger distance. For X and Y as above, one defines
theirHellinger distanceH(X,Y) as the square root of

H2(X,Y)
def
= 1

2

∫

Ω

(√

f − √g
)2

dµ = 1−
∫

Ω

√

fg dµ .

3We note that this is in contrast to standard rounding algorithms for
semidefinite programs that typically select some global vectors to use in
all cases; our case is different since the distribution of vectors we choose
depends on the input query (i.e., vertex in the case of games on graphs).

4In more precise terms, we requireX andY to be absolutely continuous
with respect toµ, and we letf andg be their Radon-Nikodym derivatives
with respect toµ.



In other words, the Hellinger distance is the Euclidean dis-
tance between the unit vectors obtained from the density
functions by taking the square root. We will mostly work
with the square of the Hellinger distance, H2(X,Y). Notice
that for anyX andY, H2(X,Y) ∈ [0, 1].

We will use the following known facts about the
Hellinger distance. The first lemma relates the Hellinger
distance to the total variation distance. In the second lemma,
we see how the Hellinger distance of product distributions
behaves.

Lemma 3.1([20, 22]). For any two distributions X and Y,

H2(X,Y) 6 ∆(X,Y) 6
√

H2(X,Y)(2− H2(X,Y))

6

√
2 H(X,Y) .

Lemma 3.2. Let {X1, . . . ,Xℓ} and{Y1, . . . ,Yℓ} be two fami-
lies of distributions. Then,

H2(X1 ⊗ · · · ⊗ Xℓ,Y1 ⊗ · · · ⊗ Yℓ)

= 1−
ℓ
∏

i=1

(1− H2(Xi ,Yi)) 6
ℓ
∑

i=1

H2(Xi,Yi) .

Here,X1⊗· · ·⊗Xℓ denotes the product of the distributions
X1, . . . ,Xℓ, i.e., the distribution obtained by taking indepen-
dent samples ofX1, . . . ,Xℓ.

Note that as a corollary of these two lemmas we ob-
tain that for any two distributionsD1 andD2, ∆(Dℓ1,D

ℓ
2) =

O(
√
ℓH(D1,D2)).

The Hellinger distance defines a metric on distributions.

Lemma 3.3. For any three distributions X, Y, and Z,

H(X,Y) 6 H(X,Z) + H(Z,Y) .

Finally, we state a useful lemma about the Hellinger dis-
tance between convex combinations.

Lemma 3.4. Let X be a convex combination of the distribu-
tions{X1, . . . ,Xℓ} with coefficientsαi and let Y be a convex
combination of{Y1, . . . ,Yℓ} with coefficientsβi . Then,

H2(X,Y) 6
∑

i
√
αiβi H2(Xi ,Yi) + H2(α, β).

We omit the (simple) proofs of these lemmas from this
extended abstract (see the survey [11] and the references
therein).

3.1. Unique Games and Semidefinite Relaxation

We represent aunique game Gas a distribution over
triples (u, v, π) whereu andv arequeriesandπ is a permu-
tation of thealphabet[k] of G. This representation differs
slightly from the one used in earlier work, but it turns out

Maximize E
(u,v,π)∼G

∑

i∈[k]〈ui , uπ(i)〉 (4)

Subject to
∑

i∈[k]‖ui‖22 = 1 (u ∈ V) (5)

〈ui , u j〉 = 0 (u ∈ V, i, j ∈ [k]) (6)

Figure 1. A semidefinite programming formulation of a
unique gameG. The variables are vectorsui for every query
u and everyi ∈ [k]. Notice that the objective function can
be equivalently written as 1− 1

2 E(u,v,π)∼G
∑

i∈[k]‖ui − uπ(i)‖22.

to be very convenient, especially when dealing with paral-
lel repetition. We say that a game is a two-prover game
if the supports of the first and second component are dis-
joint. Our results all hold for general (not necessary two-
prover) unique games, but note that essentially all known
upper bounds on the value of repeated unique games are
known to hold only in the two-prover case [10, 24, 13, 23].

We denote byV the set of possible queries, i.e., the sup-
port of the first and second components of the distribution
G. A solution(also calledstrategy) for the gameG is a col-
lection{lu}u∈V of labelsin [k]. Thevalueof such a solution
is the probability

Pr
(u,v,π)∼G

[π(lu) = lv] . (7)

The maximum of (7) over all possible solutions is denoted
by val(G).

The semidefinite program given in Figure1 is a natural
relaxation of the value of a game. Letsdpval(G) denote the
optimum of this program. To see whysdpval(G) > val(G)
for any gameG, notice that any solution{lu}u∈V of G can be
converted into a feasible solution of the SDP by setting for
eachu ∈ V the vectorulu corresponding to the labellu to
some globally fixed unit vector, and all otherk − 1 vectors
to zero.

Theℓ-fold repetitionof a game corresponds to theℓ-fold
product of the distributionG. We use the notationsu =
(u(1), . . . , u(ℓ)) andπ = (π(1), . . . , π(ℓ)) to denote the queries and
permutations ofGℓ, respectively. IfG is a two-prover game,
then following an approach of Feige and Lovász [10] one
can show thatsdpval(Gℓ) = sdpval(G)ℓ [21, 14].

4. Correlated Distributions, Repeated Unique
Games, and Hellinger Distances

In this section we give our main “meta lemma”
(Lemma4.5) that allows to derive strategies for two-prover
unique games from families of distributions with bounded
Hellinger distance. Our results for XOR and general unique



games will be derived by “plugging in” suitable distribu-
tions into this lemma. (Raz’s result [25] can also be viewed
in this framework.) The main tool we use is thecorrelated
sampling lemma.

4.1. The Correlated Sampling Lemma

Consider two computationally unbounded provers that
share a source of randomnessZ but cannot communicate
with each other. Assume we have some finite family of dis-
tributions{Ru}u∈V over a domainΩ. The first prover is given
an indexu ∈ V, the second prover is givenv ∈ V and they
want to sample an elementru(Z) and rv(Z) from distribu-
tions Ru andRv, respectively. The next lemma shows that
using shared randomness, the provers can correlate their
samples such that providedRu andRv are statistically close,
they end up with the same sample (i.e.,ru(Z) = rv(Z)) with
high probability.

Lemma 4.1. Let {Ru}u∈V be a family of distributions over
some domainΩ. Then, there exists a family of functions
{ru : [0, 1] → Ω}u∈V such that if Z is a random variable
uniformly distributed in[0, 1], then for every u∈ V, ru(Z)
is distributed according to Ru, and for every u, v ∈ V,

Pr[ru(Z) = rv(Z)] =
1− ∆(Ru,Rv)
1+ ∆(Ru,Rv)

> 1− 2∆(Ru,Rv).

In this paper we actually use a continuous version of the
lemma, but it can be easily reduced to the discrete lemma
by using a sufficiently fine discretization of the domain. (We
omit the details in this extended abstract.)

The proof of the lemma uses a technique that has been
used in several instances in computer science. Broder [4]
used this technique for sketching sets, while the (discrete
version of the) correlated sampling lemma was first proven
by Kleinberg and Tardos [19] in the context of rounding
algorithms for linear programs (see also [6, Sec 4.1]). It was
rediscovered and used in the proof of the parallel repetition
theorem by Holenstein [13].

The idea of the proof is simplest to describe in the case
that every distributionRu is uniform over some setSu from
a finite universe, and the setsSu all have the same cardi-
nality. In this case the provers can simply interpret the
shared randomness as a random ordering of the universe
and each prover outputs on inputu the elementru(Z) that is
the minimal element inSu according to this order. Clearly,
ru(Z) is distributed uniformly inSu. On the other hand,
Pr[ru(Z) = rv(Z)] = |Su ∩ Sv|/|Su ∪ Sv|, which is equal to
(1−∆(Ru,Rv))/(1+∆(Ru,Rv)). For an arbitrary distribution
R, we can emulate the previous approach by duplicating ev-
ery elementr in the support ofR a number of times that is
proportional to Pr[R= r].

4.2. From Correlated Distributions to Strategies for
Unique Games

Definition 4.2. A family {Xu}u∈V of distributions of the
form Xu = (Ru, Lu) supported onΩ × [k] is called adis-
tributional strategyif for every u ∈ V, Lu is a function of
Ru, i.e., for everyu ∈ V and everyr in the support ofRu,
there is exactly onei ∈ [k] such that the pair (r, i) is in the
support of the distributionXu. Equivalently, we can say that
for everyu ∈ V and everyi , j ∈ [k], the supports of the
conditional distributions

[

Ru | Lu = i
]

and
[

Ru | Lu = j
]

are
disjoint.

We can think of the random variableRu as arandom seed
that determines alabel Lu for the queryu ∈ V.

If a unique gameG has value at least 1− ε, it is easy to
construct a distributional strategy{Xu}u∈V such that

E
(u,v,π)∼G

∆(π.Xu,Xv) 6 ε , (8)

whereπ.Xu denotes the distribution obtained fromXu =

(Ru, Lu) by applyingπ to the second component, that is,

π.Xu
def
= (Ru, π(Lu)).

For instance, takeΩ = {1} to be a singleton, and set eachXu

to be constantly (1, lu) wherelu ∈ [k] is the label given tou.
On the other hand, the next lemma shows that if a distri-

butional strategy satisfies (8) for a gameG, thenG has value
at least 1− 2ε.

Lemma 4.3. Suppose{Xu}u∈V is a distributional strategy
for a unique game G. Then,

val(G) > 1− 2 E
(u,v,π)∼G

∆(π.Xu,Xv) . (9)

The proof relies on the correlated sampling lemma
(Lemma4.1). A distributional strategy{Xu}u∈V is rounded
to a solution{lu}u∈V as follows: We apply Lemma4.1to ob-
tain functionsru : [0, 1] → Ω. Then, we choose a random
numberZ uniformly from [0, 1]. Now, for everyu ∈ V, we
can uniquely determine a labellu such that (ru(Z), lu) is in
the support ofXu. These labels{lu}u∈V form our solution.
For the detailed proof, see AppendixA.1.

Remark 4.4. The above lemma is implicit in the analysis of
an approximation algorithm for unique games by Chlamtac,
Makarychev, and Makarychev [7]. Their algorithm obtains
strategies for unique games from certain embeddings into
L1-space. It is easy to construct such an embedding from
a distributional strategy. For details, see the full version of
the paper.

Lemma 4.5. Let G be a unique game. Suppose there exists
a distributional strategy{Xu}u∈V such that

E
(u,v,π)∼G

H2(π.Xu,Xv) 6 δ . (10)



Then, for everyℓ ∈ N, theℓ-fold repetition of G has value

val(Gℓ) > 1− 2
√

2ℓδ .

Proof. For u = (u(1), . . . , u(ℓ)) ∈ Vℓ, let Xu denote the prod-
uct distributionXu(1) ⊗ · · · ⊗ Xu(ℓ) . Note that{Xu}u∈Vℓ is a
distributional strategy for theℓ-fold repeated gameGℓ. By
Lemma3.2 (subadditivity of H2 for product distributions),
the bound (10) implies that

E
(u,v,π)∼Gℓ

H2(π.Xu,Xv)

6 E
(u,v,π)∼Gℓ

H2(π(1).Xu(1),Xv(1)) + · · · + H2(π(ℓ).Xu(ℓ) ,Xv(ℓ)) 6 ℓδ .

Hence, by Lemma3.1and the concavity of the square root
function,

E
(u,v,π)∼Gℓ

∆(π.Xu,Xv) 6
√

2ℓδ ,

which implies by Lemma4.3thatval(Gℓ) > 1−2
√

2ℓδ. �

It is crucial for our results that the above lemma is based
on the square of the Hellinger distance, and not on the to-
tal variation distance, since the former can be quadratically
smaller than the latter. Moreover, as we shall see next, the
square of the Hellinger distance can be related to the objec-
tive function of the semidefinite relaxation.

4.3. From SDP Solutions to Correlated Distribu-
tions

In this section, we state three results that will allow us to
relate the left-hand side of (10) to one minus the value of
an optimal solution of the semidefinite program in Figure1.
We present proofs for the first two lemmata in Section5.
The proof for the third lemma is deferred to the full version
of the paper.

Lemma 4.6. Let t > 1 and let {ui}u∈V,i∈[k] be a feasible
solution of the SDP in Figure1. Then, there exists a distri-
butional strategy{Xu}u∈V such that for every triple(u, v, π),

H2(π.Xu,Xv) 6 O(t) ·
∑

i∈[k]
1
2‖ui − uπ(i)‖2 + k · 2−t . (11)

For the casek = 2, a stronger upper bound holds.

Lemma 4.7. Let k = 2 and let {ui}u∈V,i∈[k] be a feasible
solution of the SDP in Figure1. Then, there exists a distri-
butional strategy{Xu}u∈V such that for every triple(u, v, π),

H2(π.Xu,Xv) 6 2 ·
∑

i∈[k]
1
2‖ui − uπ(i)‖2 .

Let Γ be some Abelian group of orderk (e.g.,Zk) whose
elements are identified with [k] in some fixed arbitrary way.
We say that a permutationπ onΓ is aΓ-shift if there exists
an s ∈ Γ such that for alla ∈ Γ, π(a) = a + s. Unique

games that use onlyΓ-shifts are known aslinear gamesor
Γ-M2L(k) instances(e.g., [14, 16]). For such games,
the additive termk · 2−t in (11) can be avoided at the cost of
a worse multiplicative dependency onk.

Lemma 4.8. Let{ui}u∈V,i∈[k] be a feasible SDP solution and
let Γ be as above. Then there exists a distributional strategy
{Xu}u∈V such that for every triple(u, v, π) with π a Γ-shift,

H2(π.Xu,Xv) 6 ck ·
∑

i∈[k]
1
2‖ui − uπ(i)‖2 , (12)

where ck is a factor depending only on k.

Remark 4.9. In order to illustrate the basic idea of the con-
struction of distributional strategies from SDP solutions, let
us consider the following special case. Suppose{ui}u∈V,i∈[k]

is a feasible SDP solution such that every vectorui ∈ Rd has
only nonnegativecoordinates (with respect to the canonical
basis ofRd). Then, let{Xu}u∈V be the distributional strategy
such that

Pr[Xu = (r, i)] = ui(r)
2 , (13)

for r ∈ [d] and i ∈ [k] whereui(r) denotes ther th coordi-
nate ofui . The above equation specifies probability distri-
butions over [d] × [k], because

∑

i∈[k],r∈[d] Pr[Xu = (r, i)] =
∑

i∈[k] ‖ui‖2 = 1. The nonnegativity and orthogonality ofui

andu j imply that the conditional distributions [Ru | Lu = i]
and [Ru | Lu = j] have disjoint support. Hence,{Xu}u∈V is
indeed a distributional strategy. On the other hand, we have
for every triple (u, v, π).

H2(π.Xu,Xv) =
∑

i∈[k]

1
2‖ui − uπ(i)‖2 . (14)

If the vectors{ui}u∈V,i∈[k] have negative entries, the right
hand side of (14) is still an upper bound on H2(π.Xu,Xv).
However, the family of distributions{Xu}u∈V constructed
in (13) will in general fail to be a distributional strategy if
the solution vectors have negative entries.

4.4. Putting it Together

Combining Lemma4.3and the Lemmata4.6–4.8, we get
the following theorem which implies Theorem1.1 (round-
ing parallel repetitions of general unique games) and Theo-
rem1.2(rounding parallel repetitions of XOR games).

Theorem 4.10. For everyℓ ∈ N and every unique game G
with sdpval(G) > 1 − δ, we haveval(Gℓ) > 1 − 2

√
2sℓδ ,

where

– s= O(log(k/δ)) if G is a unique game with alphabet[k],

– s= 2 if G is an XOR game (i.e., k= 2),

– s= ck if G is an instance ofΓ-M2L(k).



Proof. SupposeG is a unique game on alphabet [k] with
sdpval(G) > 1− δ. Let {ui}u∈V,i∈[k] be an optimal SDP solu-
tion for G. Note that

E
(u,v,π)∼G

1
2‖ui − uπ(i)‖2 = 1− E

(u,v,π)∼G
〈ui , uπ(i)〉 6 δ .

We apply Lemma4.6 for t = log(k/δ) to obtain a distribu-
tional strategy that satisfies

E
(u,v,π)∼G

H2(π.Xu,Xv) 6 O(t) · δ + k · 2−t = O(δ log(k/δ)) .

Now Lemma4.5implies thatval(Gℓ) > 1−O(
√

ℓδ log(k/δ))
for any ℓ ∈ N. The proof for the case thatG is an XOR
game or an instance ofΓ-M2L(k) is the same; the only
change is that instead of Lemma4.6 we apply Lemma4.7
or Lemma4.8to obtain a distributional strategy. �

5. Constructions of Correlated Distributions
from SDP Solutions

5.1. Proof of Lemma4.7

Lemma 4.7 (Restated). Let k = 2 and let{ui}u∈V,i∈[k] be a
feasible solution of the SDP in Figure1. Then, there exists
a distributional strategy{Xu}u∈V such that for every triple
(u, v, π),

H2(π.Xu,Xv) 6 2 ·
∑

i∈[k]
1
2‖ui − uπ(i)‖2 .

Let {ui}u∈V,i∈[k] be a feasible SDP solution withui ∈ Rd.
For eachu ∈ V, let u denote the unit vectoru1 − u2 ∈ Rd.
We consider the distributional strategy{Xu}u∈V defined by

Pr[Xu = (r, i)] =















u(r)2 if signu(r) = (−1)i,

0 otherwise.

Hereu(r) denotes ther th coordinate ofu. In other words,
we chooser according to the probability distribution given
by u(1)2, . . . , u(d)2 and then seti to be 1 or 2 depending on
the sign ofu(r).

Let us first consider the case thatπ is the identity permu-
tation. The square of the Hellinger distance ofXu and Xv
can be upper bounded by

H2(Xu,Xv) = 1
2

∑

r∈[n],
signu(r)=signu(r)

(

u(r) − u(r)
)2
+ 1

2

∑

r∈[n],
signu(r),signu(r)

u(r)2 + u(r)2

6
1
2‖u − u‖

2 = 1
2‖(u1 − u1) − (u2 − u2)‖2 .

The triangle inequality implies H2(Xu,Xv) 6 1
2(‖u1 − u1‖ +

‖u2 − u2‖)2
6 ‖u1 − u1‖2 + ‖u2 − u2‖2, as desired. Ifπ is

the permutationπ(i) = 3 − i, then the same calculation as
before shows H2(π.Xu,Xv) 6 1

2‖u + u‖
2. Again, the triangle

inequality implies H2(π.Xu,Xv) 6 ‖u1 − u2‖2 + ‖u2 − u1‖2.
Since there are no other permutations fork = 2, the proof is
complete. �

5.2. Proof of Lemma4.6

Lemma 4.6 (Restated). Let t > 1 and let{ui}u∈V,i∈[k] be a
feasible solution of the SDP in Figure1. Then, there exists a
distributional strategy{Xu}u∈V such that for every(u, v, π),

H2(π.Xu,Xv) 6 O(t) ·
∑

i∈[k]
1
2‖ui − uπ(i)‖2 + k · 2−t . (15)

Let {ui}u∈V,i∈[k] be a feasible SDP solution withui ∈ Rd.
The distributional strategy{Xu}u∈V we construct will consist
of distributionsXu = (Ru, Lu) overΩ × [k] with Ω = Rd.

The basic building blocks of our constructions are distri-
butions of the following kind: Forw ∈ Rd, let Dw denote
the distribution overRd whose density atx ∈ Rd is equal to

γσ,w(x)
def
= 1

(2π)n/2σn · exp
(

− 1
2

∥

∥

∥

1
σ

(x − w)
∥

∥

∥

2

2

)

.

Hereσ is a parameter that we choose asσ = 1/C
√

t for some
large enough constantC > 0. The distributionDw is the
standardd-dimensional Gaussian distribution translated by
the vectorw and scaled by the factorσ.

For u ∈ V and i ∈ [k], we define a distributionX(i)
u =

(R(i)
u , L

(i)
u ) overRd × [k] as follows. The first componentR(i)

u

is distributed according toDũi , where we denote by ˜w the
unit vector 1

‖w‖w in directionw. The second componentL(i)
u

is equal to the indexj ∈ [k] for which the projection ofR(i)
u

on ũ j is largest. Formally, the density functionf of X(i)
u is

f (x, j) =















γσ,ũi (x) if 〈x, ũ j〉 > maxh∈[k]\{ j}〈x, ũh〉,
0 otherwise.

Finally, we define the distributionXu as the convex com-
bination of the distributionsX(1)

u , . . . ,X
(k)
u with coefficients

‖u1‖2, . . . , ‖uk‖2.
The following claim shows that we can upper bound the

Hellinger distance ofDu andDu in terms of the Euclidean
distance ofu andu.

Claim 5.1. For any two vectorsu, u ∈ Rd,

H2(Du,Du) 6 1
σ2 ‖u − u‖2 . (16)

Proof. For anyx ∈ Rd, one gets

√

γσ,u(x) · γσ,u(x) = 1
(2π)n/2σn · e−

1
4 ‖

1
σ

(x−u)‖2− 1
4 ‖

1
σ

(x−u)‖2

= 1
(2π)n/2σn · e−

1
8 ‖

1
σ

(2x−(u+u))‖2− 1
8 ‖

1
σ

(u−u)‖2

= exp
(

− 1
8‖

1
σ

(u − u)‖2
)

· γσ, 12 (u+u)(x)

> (1− 1
σ2 ‖u − u‖2) · γσ, 12 (u+u)(x) , (17)

where the second equality follows by the parallelogram law,
‖a‖2 + ‖b‖2 = 1

2‖a + b‖2 + 1
2‖a − b‖2, and the last step fol-

lows from the fact that 1+ x 6 ex for all x ∈ R.



Thus, the Hellinger distance ofDu andDu satisfies

H2(Du,Du) = 1−
∫

√
γσ,uγσ,u

(17)
6 1− (1− 1

σ2 ‖u − u‖2)
∫

γσ, 12 (u+u) =
1
σ2 ‖u − u‖2.

�

Using standard tail bounds for the Gaussian distribution,
we can derive a bound similar to (16) for the Hellinger dis-
tance ofπ.X(i)

u andX(π(i))
v .

Claim 5.2. For every i∈ [k] and every permutationπ of [k],

H2(π.X(i)
u ,X

(π(i))
v ) 6 O(t) · ‖ũi − ũπ(i)‖2 + k · 2−t .

Proof. Let j = π(i). By the triangle inequality for the
Hellinger distance (Lemma3.3) and the inequality (a+ b+
c)2
6 3(a2 + b2 + c2), we have

H2(π.X(i)
u ,X

( j)
v ) 6 3

(

H2(π.X(i)
u , (R

(i)
u , j)
)

+H2((R(i)
u , j), (R

( j)
v , j)
)

+ H2((R( j)
v , j),X

( j)
v

)

)

. (18)

Claim5.1implies for the second term on the rhs of (18),

H2((R(i)
u , j), (R

( j)
v , j)
)

= H2(Dũi ,Dũ j ) 6 O(t) · ‖ũi − ũ j‖2 .

We bound the first term on the rhs of (18) by the correspond-
ing statistical distance,

H2(π.X(i)
u , (R

(i)
u , j)
)

6 ∆
(

π.X(i)
u , (R

(i)
u , j)
)

= Pr[π(L(i)
u ) , j]

=
∑

h∈[k]\{i}
Pr[L(i)

u = h] 6
∑

h∈[k]\{i}
Pr

x∼Dũi

[〈x, ũh〉 > 〈x, ũi〉] .

We can writex asũi + σg, whereg is a standard Gaussian
vector. Hence, the event [〈x, ũh〉 > 〈x, ũi〉] = [〈g, ũh − ũi〉 >
1/σ]. The inner product〈g, ũh − ũi〉 has a Gaussian distri-
bution with mean 0 and standard deviation

√
2. Therefore,

by standard estimates of the tail of the Gaussian distribu-

tion, the probability of this event is at moste−
1

16σ2 . Thus, the
first term on the right-hand side of (18) contributes at most

3k · e−
1

16σ2 6 1/2 · k · 2−t. The same is true for the third term
in (18). The claim follows. �

Using the previous two claims, we can now show the
bound (15) on the squared Hellinger distance H2(π.Xu,Xv).
Since π.Xu and Xv are convex combinations of the dis-
tributions π.X(1)

u , . . . , π.X
(k)
u and X(1)

v , . . . ,X
(k)
v , respectively,

Lemma3.4implies that H2(π.Xu,Xv) is at most
∑

i∈[k]

‖ui‖·‖uπ(i)‖·H2(π.X(i)
u ,X

(π(i))
v )+ 1

2

∑

i∈[k]

(‖ui‖−‖uπ(i)‖)2. (19)

The second sum in (19) contributes at most
∑

i∈[k] ‖ui − uπ(i)‖2, because for any two vectorsu, u ∈ Rd,

(‖u‖ − ‖u‖)2
6 ‖u − u‖2 (triangle inequality). On the other

hand, Claim5.2allows us to bound the first sum in (19) by
∑

i∈[k]

‖ui‖ · ‖uπ(i)‖ ·
(

O(t) · ‖ũi − ũπ(i)‖2 + k · 2−t
)

6 O(t)
∑

i∈[k]

‖ui‖ · ‖uπ(i)‖ · ‖ũi − ũπ(i)‖2 + k · 2−t

6 O(t)
∑

i∈[k]

‖ui − uπ(i)‖2 + k · 2−t ,

where we used in the first step that (
∑

i∈[k] ‖ui‖ · ‖uπ(i)‖)2
6

∑

i∈[k] ‖ui‖2 ·
∑

i∈[k] ‖uπ(i)‖2 = 1 (Cauchy–Schwarz) and in
the second step‖ui‖ · ‖uπ(i)‖ · ‖ũi − ũπ(i)‖2 = 2‖ui‖ · ‖uπ(i)‖ −
2〈ui , uπ(i)〉 6 ‖ui‖2+‖uπ(i)‖2−2〈ui , uπ(i)〉 = ‖ui − uπ(i)‖2 (AM–
GM inequality).The proof of Lemma4.6is complete. �

6. Conclusions and Open Problems

Our results show that for unique games, the value that
the semidefinite program really captures is not the inte-
gral value of the game but rather the amortized value un-
der many parallel repetitions, i.e., the valueval(G) =
limℓ→∞ val(Gℓ)1/ℓ. If Khot’s unique game conjecture [15] is
true then this means that the amortized value can be much
easier to approximate than the original value of the game.
We find this quite surprising, as in general computing the
amortized value of even very simple finite games is consid-
ered a very hard problem.

Can one get rid of the log(1/δ) term in Theorem1.1? We
conjecture that this should be possible by using a more care-
ful construction of the distributionsRu, although some sub-
tleties seem to arise. Another interesting open question is
whether strong parallel repetition holds for unique games
with entanglement. Although the authors disagree on the
answer to this question, it seems that some important in-
sight on it can be obtained by combining our techniques
with those of [14]. A more general question is to find more
applications of the interplay between the Hellinger and sta-
tistical distance. One such application was recently found
by Kindler et al. [18] who used Raz’s ideas to construct
more efficient foams inRd.

A further consequence of our work is that Khot’s unique
games conjecture [15] is equivalent to the following, a priori
stronger hypothesis: for everyε > 0, there exists an alpha-
bet sizek such that given a unique gameG, it is NP-hard
to distinguish between the case that (1)val(G) > 1− ε and
(2) for every distributional strategy{Xu}u∈V, the expected
squared Hellinger distanceE(u,v,π)∼G H2(π.Xu,Xv) > 1 − ε.
We refer to the full version of the paper for further details
on this connection to the unique games conjecture.
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A Further Proofs

A.1 Proof of Lemma 4.3

Let {Xu}u∈V be a distributional strategy with
Xu = (Ru, Lu) distributed overΩ × [k] such that
E(u,v,π)∼G∆(π.Xu,Xv) = η. Our goal is to show
val(G) > 1 − 2η. Let hu : Ω → [k] be the function
such thatLu = hu(Ru). An easy calculation shows that for
every triple (u, v, π) there are two disjoint setsB1, B2 ⊆ Ω
such thathv(r) , π(hu(r)) if and only if r ∈ B1 ∪ B2, and

∆(π.Xu,Xv) = ∆(Ru,Rv)+Pr[Ru ∈ B1] +Pr[Rv ∈ B2] . (20)

Let Z be a random variable uniformly distributed in [0, 1].
The correlated sampling lemma yields a collection of func-
tions {ru : [0, 1]→ Ω}u∈V such thatru(Z) is distributed ac-
cording to Ru and Pr[ru(Z) , rv(Z)] = 2∆(Ru,Rv)/(1 +
∆(Ru,Rv)). Define lu : [0, 1] → [k] as lu(Z) = hu(ru(Z)).
To derive a lower bound on the value ofG, we estimate the
probability

Pr[lv(Z) , π(lu(Z))]

6 Pr[ru(Z) , rv(Z)] + Pr[ru(Z) ∈ B1] + Pr[rv(Z) ∈ B2]

(20)
=

2∆(Ru,Rv)
1+ ∆(Ru,Rv)

+ ∆(π.Xu,Xv) − ∆(Ru,Rv)

6 2∆(π.Xu,Xv) , (21)
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where we use in the last step 06 ∆(Ru,Rv) 6 ∆(π.Xu,Xv).
Hence, the value ofG is at least

val(G) > E
(u,v,π)∼G

Pr[lv(Z) = π(lu(Z))]

(21)
> 1− E

(u,v,π)∼G
2∆(π.Xu,Xv) = 1− 2η . �

Remark A.1. The above lower boundval(G) > 1 − 2η is
non-trivial only forη < 1/2. Using a more precise version of
the correlated sampling lemma, one can improve the lower
bound toval(G) > 1−η/1+η. This bound gives a non-trivial
guarantee wheneverη < 1. Details will be presented in the
full version of the paper.
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