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Abstract

We show a connection between the semidefinite relax
ation of unique games and their behavior under parallel
repetition. Specifically, denoting hal(G) the value of a
two-prover unique game G, and bkypval(G) the value of
a natural semidefinite program to approximaia(G), we
prove that for every € N, if sdpval(G) > 1 - §, then
val(G’) > 1 - Vsl6 . Here, G denotes the-fold paral-
lel repetition of G, and s= O(log(¥/s)), where k denotes the

alphabet size of the game. For the special case where G is

an XOR game (i.e., k 2), we obtain the same bound but
with s as an absolute constant. Our bounds on s are optimal
up to a factor of @og(Yys)).

For games with a significant gap between the quantities
val(G) andsdpval(G), our result implies thaval(G’) may
be much larger thaval(G)¢, giving a counterexample to
the strong parallel repetition conjecture. In a recent brea

through, Raz (FOCS '08) has shown such an example using
the max-cut game on odd cycles. Our results are based on

a generalization of his techniques.
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1. Introduction

. In a two-prover gamge a referee interacts with two
provers, whose joint goal is to maximize the probabilityttha
the referee outputs “accept”. The provers may decide in
advance on an arbitrary strategy, and they may use shared
randomness, but they cannot communicate with one another
during the interaction, which proceeds as follows:

1. The referee samples a pair of querigs) from a dis-
tribution G specified by the game.

2. The referee sendsto the first prover, and obtains an
answeli, wherei € [k] for some integek that is called

thealphabet sizef the game.

3. The referee sendgo the second prover and obtains an
answerj € [K].

4. The referee applies a predicate specified by the game
to (u,v,1, j) and decides accordingly whether to accept

or to reject.

The game is callediniqueif the predicate consists of
checking whethelj = ny(i) wherer,, is a permutation
of [K]. A unique game with alphabet size 2 is called an
XOR game Thevalue of the gameG, denoted byal(G),
is the maximum probability of success that the provers can
achieve (the provers succeed if the referee accepts their an
swers).

Two-prover games have turned out to be useful in several
contexts, including hardness of approximation and quan-
tum mechanics (se€l?, 3, 8]). In many of these appli-
cations, it is important to understand how the value of
the game decreases undmrallel repetition For ¢ € N,
the ¢-fold parallel repetition of G denoted byG!, is
the game in which the referee samplepairs of ques-
tions (U, v1),...,(Usve) independently fromg, sending
(Ug, ..., U, to the first prover andu(,...,v,) to the sec-
ond prover. The provers then respond with (. .,i,) and
(j1,-.--» Je), respectively. The referee accepts if and only if
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each of the tuplesug, vy, i, j1),..., (Us g, g, jo) IS accept-  Hence, games withal(G) = sdpval(G) have perfect paral-
able. lel repetition,val(GY) = val(G). However, there are known
Clearly the two provers fo&’ can run the optimal strat- examples with a larggap betweenval(G) and sdpval(G)
egy for the one-shot game in each instance independentlyand for such games the value @f was not known. Our
and thusval(GY) > val(G)‘. Understanding the true value results imply that ag grows, the value oG tends not to
of val(GY) is a fundamental question. The first dramatic val(G)‘ but rather tosdpval(G)‘. This has strong negative
progress was made by Ra24] who proved that for every  consequences fof['s intended application of using strong

gameG of alphabet siz& with val(G) = 1 — ¢, parallel repetition to show hardness of approximation, be-
cause for such applications the interesting games are those
val(G’) < (1 - &5 | (1) whereval(G) is hard to approximate and hence is far from

sdpval(G). We show that in all these cases strong parallel
where herec = 32 ands = logk. Raz’'s argument was repetition fails to hold. (In fact, our results combinedwit
subsequently simplified by Holensteiid, who also im-  [10]imply that the unique games where strong parallel repe-
proved the boundl) to getc = 3. This was followed by tition fails are exactly those with a large gap betweai(G)
a work of Rao R3] showing that in the case gdrojection andsdpval(G).)
games(which are a generalization of unique games), the
bound can be improved o= 2 ands = 1. 1.1. Our Results

It remained open whether the bourid ¢ould be further

improved to yieldc = 1, and the conjecture that this holds Our main result is the following:
is known as thestrong parallel repetitionconjecture. As
shown by Feige et al9], this conjecture would have had in-
teresting applications to hardness of approximation tesul

Theorem 1.1. For everyl € N and every unique game G
with sdpval(G) > 1 - ¢ and alphabet size k,

moreover some of these applications wguld hold even if val(G') > 1 - O(+/¢s1og(k/d)) .
the conjecture was only true for the special case of unique
games. For the special case of XOR games, we can prove a

In a recent breakthrough' Raza] disproved the Conjec- Stronger bound that avoids the |Ogarithmic factor.

ture by giving an example of a gan@of value 1- & for  Thegrem 1.2. For every? € N and every XOR game G with
whichval(G") > 1 — O(V¢¢), which can be seen to imply sdpval(G) > 1 - 6, we haveral(G’) > 1 - 475 .

that for£ > 1/£2, val(G’) > (1 - %Y. In addition, Raz’s

game is an XOR game (and a very simple one at that—the When the number of repetitions tends to infinity,
max-cut game on an odd Cyc|e, see Secﬂhmnd hence VLe obtain the fOIIOWing Stronger bound. Here we use
Raz disproved the strong parallel repetition conjectusmev  val(G) to denote theasymptotic value of Gdefined as
for this case. In this paper, we generalize Raz's results andiM -« (val(G))"".

techniques to show that a wide class of unique games yieldsrhaorem 1.3. For every XOR game G withdpval(G) >
such a counterexample. In fact, we determine asymptoti- _ 5, we haveral(G) > 1 - 25.

cally the value of the repeated versionaofy unique game,
up to |Ogarithmic factors in the exponent_ The prOOfS of Theoren.1 and Theoreml.2 are pre-

sented in Sectiod.4 For details about Theoremh3 see
the full version of the paper.

For every¢ and everym that divides¢, two provers
: - , o playing the gamés’ can always achieve acceptance prob-
hard in general, Feige and Lovadf] showed a non-trivial ability at leastval(G™)/™ by using the optimal strategy

Upper bound.on this.(\j/a]!.ue_z by arﬁieient_ly computable on each block ofn repetitions independently. Combining
parameter using semidefinite programming (SDP). For ®this observation with Feige and LovaszH0[ result that

ery .gameG, the problem of computingaI(G) (e maxi- val(GY) < sdpval(G)’, we obtain the following corollary to
mizing the acceptance probability) can be formalized as aTheoremd.1and1.2

guadratic programming problem, antiJ] studied a natu- _ _
ral semidefinite relaxation of this program (see Figliré Corollary 1.4. For every unique two-prover game G with
Letting sdpval(G) be the optimum value of this program, sdpval(G) = 1 - ¢ and for everyt > 1/,

it always holds thasdpval(G) > val(G). Using duality it [ ()

can be showsdpval(G’) = sdpval(G)’ [10] (see also21]). val(G') = (1-6)", (2)

Semidefinite relaxation of games. While computing (or
even approximating) the value of a two-prover gami s

1The SDP of L0 had some additional constraints above those of the where the® n(.)tatlon hides factor§ Iogarlthmlc iffs and
SDP of Figurel, but for our purposes they are still essentially equivalent th€ alphabet size of G Moreovgr, if G IS an XOR game then
For details see the full version of the paper. we can replace the right-hand side @) ith (1 — 6)©®.



The dependence on légin our bound is inherent, as the " root of the success probability that classical provers

can be seen by combining the Khot-Vishnd¥] integral- can achieve approaches (up to logarithmic factors)/the

ity gap example with Rao’s parallel repetition theorem for root of the success probability that quantum provers can
uniqgue gamesZ3: the results in 17] and [16] allow to achieve. Thus to a certain extent the gap between quantum
construct a unique gant@ for which sdpval(G) = 1 -6 and classical provers in unique games can “shrink” with the

butval(G) < 1 - O(+/§logk) (for details of this construc- number of repetitions.
tion, see the full version of the paper); Rao’s parallel rep-

etition theorem 23] implies that for this gameal(G’) < .
(1-5logk)20 = (1 - §)2109K_ Hence, the dependence on Bounds for particular games. Our methods can be used

logk in Theoreml.1is optimal. In contrast, we conjecture to derlye improved lower bounqs on the amortlzed vaIu.e
that the dependence on lag] in Theoreml.1is not inher- of particular games. An especially mterestln_g example is
ent and is an artifact of our specific construction. Indeed,the XOR game _known as the_ CHSH game, introduced by

Clauser et al.g] in 1969. In this game the referee sends a

for the case of unique games with linear constraints we can™~"¢ . .
remove the dependence on lgg) albeit at the cost of a uniform and independent bit to each prover, and each prover
responds with a value frorf+-1,1}. The constraint is an

worse dependence d(for details, see Sectich3and the ) X o ) )
inequality constraint if and only if both questions are 1. By

full version of the paper). ) T -

always answering 1, the provers can win with probability
_ _ _ o _ 3/, and it is easy to see that this is the best possible strategy.

Previous rounding algorithms. It is instructive to com- |t is well-known that the SDP value of this game equals

pare our resultg With the best known rounding algorithm for Y8 ~ 0.8535. Itis somewhat surprising that the asymptotic

unique games in this parameter regime, namely the CMM y3)yeval(CHSH) is not known. Aaronson pointed out that

algorithm of Charikar, Makarychev and Makarychdl.[  this value is at leastT94 ~ 0.7906 by considering CHSH

That algorithm shows that idpval(G) > 1 -6 then  (see [, 2]). In the full version of this paper, we show that

val(@) > 1 - O(ydlogk), wherek is G's alphabet size.  this asymptotic value is at least cgsf = Ya(1 + V5) ~
Since the alphabet size &’ is k’ and sdpval(G’) = 0.809.

sdpval(G)Y ~ 1 — ¢6 in the range where this bound is non-
trivial, the CMM algorithm orG’ simply shows that

val(G) > 1- O(4/tstlogk) = 1 - O(¢+/slogk).  (3)
Our techniques are a natural generalization of Raz's

Hence the CMM algorithm does not give any better guaran-yqk [25], and so it is instructive to start with a high level
tee on a repeated game than can be given by applying theyyerview of his approach. Raz’s counterexample used the
algqnthm on each.coordlnate separately (which is not SUrfsllowing simple XOR game. In thenax-cutgame on a
prising, as otherW|s§. they vvpuld have already refuted thegrath the referee selects a random edgg)} of G, sets
strong pa_lrallel repetition conjecture). In contrast, oh_eb"— x = u, then with probability/2 setsy = u and with prob-
rem1.1gives a bound of  O(y(5(logk +log(¥/s)) which - gpijivy 1/, setsy = v. The referee sends y to the provers
could b_e S|gn|f|_cantly better (|.e.,_ closer to 1_) thanthéiig  5nd receives two bita, b from them respectively. Ik = y
hand side of) if log(%/s) < £ (typically we think off ~ /s then it accepts it = b, and ifx # y then it accepts if # b.
in which case lod{s) ~ log ). The game is called thmax-cutgame since (as can be eas-
ily seen) if the maximum cut is cuts a 1- ¢ fraction of
Games with entanglement. There are several known ex- the edges, then the value of the game is 4/2. In par-
amples of games (often unique) in which provers who ticular, if G is then vertex cycle for some odd, then the
share quantum entanglement can achieve success probabylalue of the corresponding game (which we denote also by
ity higher than that achievable by provers without entan-G) is 1-1/(2n). Raz achieved his counterexample by show-
glement. Such games are used in the context of quaning that in this case, for ever§the value ofG’ is at least
tum information theory as experiments that validate somel — O( Ve/n).
of the predictions of quantum mechanics. Kempe, Regev, Interestingly, a central tool used by Raz is@related
and Toner 14] recently showed that the success probabil- samplinglemma that Holensteirl3] used toprovethe par-
ity achievable by entangled provers in unique games canallel repetition theorem (for general games and with 3).
be closely approximated by an SDP. Their proof involves a We will give the formal statement of the correlated sam-
rounding strategy that produces strategies for provets wit pling lemma below (Lemmd.1) but roughly speaking, it
entanglement. Since it is known that the value achievable bysays that if the two provers are given a pair of distributions
entangled provers is always upper boundedsthyval(G), D, D’ with statistical distance at most then even without
our results show that as the number of repetitibigsows, communicating, each prover can sample a random element

2. Techniques



according to his distribution such that with probabilityZs sional vector for every input they receive from the verifier.
both provers output theameelement. Specifically, we will define for every input a distribution
Raz used the correlated sampling lemma in the follow- Dy on vectors such that if the two provers on inputwof
ing way. He defined for every vertexin the odd cycle a  andv sample from the distribution®, and D, using the
distributionDy, over cuts in the graph, such that the proba- correlated sampling lemma, then the result is very likely to
bility that a cut selected frorB, does not cut one of the two ~ satisfy the predicate of the referee. The success protyabili
edges touching is very small (i.e.O(1/n?)). The provers’  of the provers depends crucially on the statistical distanc
strategy on inputi is to sample a cutg, T) according taD, between the distributior®, andD,. But in order to bound
and output either 1 or 0 according to whether or mat S. the statistical distance we will actually derive a boundtan t
Now if it happened to be the case that the cut sampled byHellinger distance between the two distributions. This has
the first prover on input is the same cut as the one sam- the advantage that the bound carries over nicely tpénal-
pled by the second prover on inputit would mean that  lel repeatedgame using simple properties of the Hellinger
if u = v then they answer the same value anduifvf is distance. We then use the quadratic relation between the
an edge then with high probability they answer fatient Hellinger distance and the statistical distance to obtain a
value. Using the correlated sampling lemma, one can eniwo-prover strategy for the repeated game. Finally, we show
sure that as long as the statistical distan¢®,, D,) of Dy how solutions to the semidefinite programming relaxation
andD, is at moste for every neighboringi, v in the graph,  give rise to distributions with small Hellinger distancedan
Raz’s strategy will achieve success probability@(e) (wve ~ hence a good two-prover strategy for the repeated game. Of
are neglecting here the small probability that the cut nsisse course this high level description is glossing over somg ver
the edge , v)). It can then be shown that the question of important details, (including the choice of distributicarsd
the value of the game under parallel repetition reduces torounding algorithms) and these are covered in the following
the question of the distance of many independent samplessections.
from these distributions.

3. Preliminaries

Hellinger distance and independent samples. For two
distributionsD1, D, of statistical distance, the statistical
distance ofD‘l’ and Dg (where this denotes concatenatifhg
independent samples) depends quite a bit on the shape
the underlying distribution®; andD,. For example, iD;

is constantly 1 an@; is the biased coin with PE, = 1] = o ) o
1—¢&, thenA(Dy, Dy) = & andA(D!, Dé) —1-(1-e) ~ le Statistical distance. Let X andY be two probability dis-

for small£. On the other hand, ib; andD; are coins such  tributions over a domaig (e.g., [Q1] or RY). AssumeX
that PrD; = 1] = Y2+ ¢/2 and PrP; = 1] = Y2 — ¢/2 then andY have density functions with respect to some measure

A(Ds, D) is also equal tes, but A(DS, DY) = O(Vie)2 u (e.g., the Lgbesgue me_asure)! and_‘lapdg Qenote these
Raz uses in his paper a specific example of distributidns density funct|on§._V\/_e def_lne theistatistical distancéalso
and D (that could be used for his provers’ strategy) such known astotal variation distancgby

thatA(D1, D) = ©(1/n) but A(D{, D5) = O(VE/n). In this ot

paper, we note that the behavior of the statistical distance A(X)Y) = %f If —g| du.

of product of distributions is determined by &fdrent dis- @

tance measure called thiellinger distancesee SectioR). Notice that for anyX andY, A(X, Y) € [0, 1].

This distance measure has a geometric interpretationhwhic
we use to relate it to the vector solution of the semidefinite
program.

More concretely, we use Raz’s approach in the context
of roundingalgorithms for unique games. Such algorithms def 2
galg que g : N 2 [ (V- 8) da=1- [ VTad

We use boldface to denote vectors. We will often use
collections of vectors that are indexed by elements of some
0?etfv. In this case, we write for the vector indexed by the
elementu € V.

Hellinger distance. For X andY as above, one defines
their Hellinger distanceH(X, Y) as the square root of

transform a solution to the semidefinite program into a valid
strategy for the original game. The rounding algorithms

we use involve the provers selecting a random high dimen-__~We note that this is in contrast to standard rounding algorit for
semidefinite programs that typically select some globatoracto use in

all cases; our case isftérent since the distribution of vectors we choose
°The best distinguisher betwe@{ and Dg will simply see whether depends on the input query (i.e., vertex in the case of gamgsaphs).

the sum of the” samples is larger thafy2. The diference in expectation 4In more precise terms, we requiXeandY to be absolutely continuous

between these two casesdé, which is equal to®(sf/ V) = (s VI) with respect tqi, and we letf andg be their Radon-Nikodym derivatives

standard deviations. with respect tqu.




In other words, the Hellinger distance is the Euclidean dis-

tance between the unit vectors obtained from the density Maximize E  Dierg{Ui» va(i)) 4)
functions by taking the square root. We will mostly work (tom)~G

with the square of the Hellinger distance?(i, Y). Notice Subjectto Tigglluilz =1 (UeV) )
that for anyX andY, H?(X,Y) € [0, 1]. (uj,uj) =0 eV, i+jel[k) (6)

We will use the following known facts about the
Hellinger distance. The first lemma relates the Hellinger
distance to the total variation distance. In the second lamm
we see how the Hellinger distance of product distributions
behaves.

Figure 1. A semidefinite programming formulation of a
unique gamé&. The variables are vectousfor every query
u and evenyi € [k]. Notice that the objective function can
be equivalently written as 4 % E(uen)~6 QiegllUi = v,r(i)||§.

Lemma 3.1([20, 22]). For any two distributions X and Y,

2 2 _H2
HA(XY) < AKX Y) < VHA(X V)2 - (X Y)) to be very convenient, especially when dealing with paral-

< V2H(XY). lel repetition. We say that a game is a two-prover game

if the supports of the first and second component are dis-

Lemma 3.2. Let{Xy,..., X} and{Ys,..., Y.} be two fami-  joint. Our results all hold for general (not necessary two-

lies of distributions. Then, prover) unique games, but note that essentially all known
) upper bounds on the value of repeated unique games are

H (X1®- - ® X, Y1®- - ®Y) known to hold only in the two-prover casg( 24, 13, 23.
¢ 4 We denote byV the set of possible queries, i.e., the sup-
=1- ]_[(1 — H*(X, ) < Z H?(%, Yi) . port of the first and second components of the distribution
i=1 i=1

G. A solution(also calledstrategy for the games is a col-
Here,X1®- - -®X, denotes the product of the distributions lection{l } e Of labelsin [K]. Thevalueof such a solution

X1,..., X, i.e., the distribution obtained by taking indepen- IS the probability
dent samples oXy, ..., X,.

Note that as a corollary of these two lemmas we ob- (U,U,F,),{NG[”GU) =] (@)
tain that for any two distribution®; andDz, A(D¢, D) =
O(VCH(Dy, Dy)). The maximum of {) over all possible solutions is denoted

The Hellinger distance defines a metric on distributions. by val(G).
The semidefinite program given in Figutas a natural

Lemma 3.3. For any three distributions X, Y, and Z, relaxation of the value of a game. Lstpval(G) denote the
optimum of this program. To see whsgpval(G) > val(G)
HX.Y) <H(X.2) + H(Z.Y). for any games, notice that any solutiofi,},.y 0f G can be

converted into a feasible solution of the SDP by setting for
eachu € V the vectoru, corresponding to the labg| to
some globally fixed unit vector, and all othler 1 vectors

Lemma 3.4. Let X be a convex combination of the distribu- t0 zero.

Finally, we state a useful lemma about the Hellinger dis-
tance between convex combinations.

tions{Xu, . .., X,} with cogficientse; and let Y be a convex The(-fold repetitionof a game corresponds to tfiéold
combination of Y1, ..., Y} with cogficientss;. Then, product of the distributiors. We use the notationg =
(u®,...,u” andr = (=%, ..., 7“) to denote the queries and
H2(X,Y) < 3 VaiBi H2(X,, Y;) + H?(a, B). permutations o6, respectively. |G is a two-prover game,

then following an approach of Feige and Lovasg|[one
We omit the (simple) proofs of these lemmas from this can show thasdpval(G¢) = sdpval(G) [21, 14).
extended abstract (see the survé&f][and the references

therein). s .
) 4. Correlated Distributions, Repeated Unique
3.1. Unique Games and Semidefinite Relaxation Games, and Hellinger Distances
We represent ainique game Gas a distribution over In this section we give our main “meta lemma”

triples (U, v, 7) whereu andv arequeriesandrn is a permu-  (Lemmad4.5) that allows to derive strategies for two-prover
tation of thealphabet[k] of G. This representation fiers unigue games from families of distributions with bounded
slightly from the one used in earlier work, but it turns out Hellinger distance. Our results for XOR and general unique



games will be derived by “plugging in” suitable distribu- 4.2. From Correlated Distributions to Strategies for

tions into this lemma. (Raz’s resullf] can also be viewed Unique Games

in this framework.) The main tool we use is tberrelated

sampling lemma Definition 4.2. A family {X,}uey of distributions of the
form X, = (Ry, Ly) supported o2 x [K] is called adis-

4.1. The Correlated Sampling Lemma tributional strategyif for everyu € <V, L, is a function of

Ry, i.e., for everyu € <V and every in the support oR,,
there is exactly one € [K] such that the pairr(i) is in the

Consider two computationally unbounded provers that g, nnort of the distributio,,. Equivalently, we can say that
share a source of randomnesdut cannot communicate for everyu € V and evenyi # j € [K], the supports of the

w.ith gach other. Assume we _have some finite far_nily of dis- -onditional distribution$Ry | Ly = i] and[Ry | Ly = ] are

tributions{R}u Over a domaif2. The first proveris given disjoint.

an indexu € V, the second prover is givene V and they

want to sample an element(Z) andr,(Z) from distribu- We can think of the random variabiRy as arandom seed
tionsR, andR,, respectively. The next lemma shows that that determines kbel L, for the queryu € V.

using shared randomness, the provers can correlate their If @ unique gamés has value at least 1 ¢, it is easy to
samples such that provid&] andR, are statistically close, ~construct a distributional strate¢)}.. such that

they end up with the same sample (irg(Z2) = r,(2)) with

high probability. 6 A X X)) <&, (8)

where . X, denotes the distribution obtained froky, =

Lemma 4.1. Let {R,}uey be a family of distributions over (R, L) by applyingr to the second component, that is,

some domaif2. Then, there exists a family of functions

{ru: [0,1] —» Q}uy such that if Z is a random variable X, def (R, 7(Ly)).
uniformly distributed inf0, 1], then for every ue V, ry(Z)
is distributed according to R and for every w € V, For instance, tak@ = {1} to be a singleton, and set eaxf
|- ARWR) to be constantly (1,) wherel, € [K] is the label given tau.
- ARy, On the other hand, the next lemma shows that if a distri-
Priru(2) = r(2)] = 1+ AR, R) > 1- 28R R). butional strategy satisfie8)(for a games, thenG has value
at least 1- 2¢.

In this paper we actually use a continuous version of the , o
lemma, but it can be easily reduced to the discrete lemma-€MMa 4.3. SUPPOSE Xy}, is @ distributional strategy

by using a sfficiently fine discretization of the domain. (We for a unique game G. Then,

omit the details in this extended abstract.) val(G)>1-2 E A(mXuX). (9)
The proof of the lemma uses a technique that has been (G

used in several instances in computer science. Bratjer [ The proof relies on the correlated sampling lemma

used this technique for sketching sets, while the (discrete(Lemma4.1). A distributional strategyXu},. is rounded

version of the) correlated sampling lemma was first proven to a solution{l,} . as follows: We apply Lemmad.1to ob-

by Kleinberg and TardoslB] in the context of rounding  tain functionsr,: [0,1] — Q. Then, we choose a random

algorithms for linear programs (see al§p$ec 4.1]). Itwas  numberZ uniformly from [0, 1]. Now, for everyu € <V, we

rediscovered and used in the proof of the parallel repetitio can uniquely determine a labkl such that (y(2), 1) is in

theorem by Holensteiri). the support ofX,. These labelsl } ., form our solution.
The idea of the proof is simplest to describe in the case For the detailed proof, see Appendixi.

that every distributiorR, is uniform over some s&, from

a finite universe, and the se®, all have the same cardi-

nality. In this case the provers can simply interpret the

shared randomness as a random ordering of the univers

and each prover outputs on inputhe element,(Z) that is

Remark 4.4. The above lemma s implicit in the analysis of
an approximation algorithm for unique games by Chlamtac,
é\/lakarychev, and MakarycheV][ Their algorithm obtains
strategies for unique games from certain embeddings into

the minimal element irs, according to this order. Clearly, Ll‘?'p"’%ce-. Itis easy to construct .SUCh an embeddmg from
ru(2) is distributed uniformly inS,. On the other hand, a distributional strategy. For details, see the full versid
Prlry(2) = r,(2)] = I1Su N S,l/ISu U S,|, which is equal to the paper.

(1-A(Ru, R))/(1+ A(Ry, R))). For an arbitrary distribution  Lemma 4.5. Let G be a unique game. Suppose there exists
R, we can emulate the previous approach by duplicating ev-a distributional strategy{X} . such that

ery element in the support oR a number of times that is )
proportional to PIR = r]. (u,u,E)~G H (. Xy, X)) < 6. (10)



Then, for every € N, the¢-fold repetition of G has value
val(G') » 1-2V205.

Proof. Foru = (u®,...,u®) € V*, let X, denote the prod-
uct distributionX,m ® - -+ ® Xyo. Note that{Xy}yeyr is a
distributional strategy for thé-fold repeated gamé&’. By
Lemma3.2 (subadditivity of H for product distributions),
the bound 10) implies that

E  H(mXu %)
0)~Gt - - -

e

,U>

N

E

s o Hz(ﬂ(l).xu(l), Xw) + -+ Hz(ﬂ([).xu(z), X,0) < 6.
U,v, 1)~

Hence, by Lemm&.1 and the concavity of the square root
function,
E  A@Xy X,) < V265,
Upm)~G* -7

which implies by Lemmd.3thatval(G’) > 1-2+v265. ©

It is crucial for our results that the above lemma is based

games that use only-shifts are known anear gamesor
I'-Max2Lin(K) instancede.g., [L4, 16]). For such games,
the additive ternk - 27t in (11) can be avoided at the cost of
a worse multiplicative dependency &n

Lemma 4.8. Let{ui} ey e be a feasible SDP solution and
letT be as above. Then there exists a distributional strategy
{Xu}uey Such that for every tripléu, v, 7) with 7 a T'-shift,

H2(7r. X, X,) < G+ Tieqq 31Ui — vxyl 2, (12)

where g is a factor depending only on k.

Remark 4.9. In order to illustrate the basic idea of the con-
struction of distributional strategies from SDP solutides

us consider the following special case. SUpPOSRcy e[k

is a feasible SDP solution such that every veator R has
only nonnegativeoordinates (with respect to the canonical
basis ofRY). Then, let{X,},y be the distributional strategy
such that

PriXy = ()] = ui(r)?, (13)

on the square of the Hellinger distance, and not on the tofor r € [d] andi € [K] whereu;(r) denotes the'™ coordi-

tal variation distance, since the former can be quadréical

nate ofu;. The above equation specifies probability distri-

smaller than the latter. Moreover, as we shall see next, thebutions over ] x [K], because)icq rei PriXu = (r.i)] =
square of the Hellinger distance can be related to the objecYipq [IUill* = 1. The nonnegativity and orthogonality af

tive function of the semidefinite relaxation.

4.3. From SDP Solutions to Correlated Distribu-
tions

In this section, we state three results that will allow us to
relate the left-hand side ofL() to one minus the value of
an optimal solution of the semidefinite program in Figlire
We present proofs for the first two lemmata in Sectton
The proof for the third lemma is deferred to the full version
of the paper.

Lemma 4.6. Lett > 1 and let{ui},cyeq be a feasible
solution of the SDP in Figur&. Then, there exists a distri-
butional strategy{X,}.e such that for every tripléu, v, rr),

H2(7. X0, Xo) < O(t) - Tieqy 3lIUi —vxpl + k- 271 (11)
For the casé& = 2, a stronger upper bound holds.

Lemma 4.7. Let k = 2 and let{ui},cy g b€ a feasible
solution of the SDP in Figur&. Then, there exists a distri-
butional strategyf X}y such that for every tripléu, v, ),

H2(m. Xu, %) < 2 Tieqiq 311Ui = veyl1?.

LetI" be some Abelian group of ordkr(e.g.,Zx) whose
elements are identified witl] in some fixed arbitrary way.
We say that a permutationonT is al-shiftif there exists
ans € I' such that for alla € T, 7(a) = a+ s. Unique

anduj imply that the conditional distributions], | L, = i]

and R, | Ly = j] have disjoint support. Henc@Xy}yey IS
indeed a distributional strategy. On the other hand, we have
for every triple (, v, 7).

H2(. Xy, X,) = Z i = va)lI° -

ikl

(14)

If the vectors{ui},y e have negative entries, the right
hand side of 14) is still an upper bound on #r. X, X,).
However, the family of distribution$X,},y constructed
in (13) will in general fail to be a distributional strategy if
the solution vectors have negative entries.

4.4, Putting it Together

Combining Lemma.3and the Lemmatd.6-4.8 we get
the following theorem which implies Theoreinl (round-
ing parallel repetitions of general unique games) and Theo-
rem1.2(rounding parallel repetitions of XOR games).

Theorem 4.10. For everyf € N and every unique game G
with sdpval(G) > 1 - ¢, we haveval(G’) > 1 - 2v2sl5 ,
where

— s= O(log(¥ys)) if G is a unique game with alphabjd],
— s=2ifGisan XOR game (i.e., ¥ 2),

— s= ¢ if G is an instance of™-Max2Lin(K).



Proof. SupposeG is a unique game on alphabdd jwith
sdpval(G) > 1-6. Let{Uj}ycy icqq b€ an optimal SDP solu-
tion for G. Note that

E 3l —ol* =1

i ) <oO.
(u,v,m)~G (u,u,En)~G<u| B vn(|)> )

We apply Lemmad.6 for t = log(¥/s) to obtain a distribu-
tional strategy that satisfies
( E) . H2(. Xy, X,) < O(t) - 6 + k- 27" = O(510g(¥s)) .
U,0,7m)~
Now Lemma4.5implies thatval(G’) > 1 — O(+/€510g(¥/s))
for any ¢ € N. The proof for the case th& is an XOR
game or an instance 6fMax2Lin(K) is the same; the only
change is that instead of Lemma we apply Lemmat.7
or Lemma4.8to obtain a distributional strategy. O

5. Constructions of Correlated Distributions
from SDP Solutions

5.1. Proof of Lemma4.7

Lemma 4.7 (Restated) Let k = 2 and let{u;}ycy ey be @
feasible solution of the SDP in Figufie Then, there exists
a distributional strategy{Xu}uev such that for every triple
(u,v, ),

H2(7r. X0, Xo) < 2+ Tiepig 31U — v)12-

Let {Ui}ueyicpq be a feasible SDP solution with € RY.
For eachu € <V, letu denote the unit vectar; — u, € RY.
We consider the distributional strate@¥}, defined by

u(r)? ifsignu(r) = (1),
0 otherwise.

PriXy = (r,1)] = {

Hereu(r) denotes the™ coordinate ofu. In other words,
we choose according to the probability distribution given
by u(1)?,...,u(d)? and then seitto be 1 or 2 depending on
the sign ofu(r).

Let us first consider the case thais the identity permu-
tation. The square of the Hellinger distanceXgfand X,
can be upper bounded by

2
H2(Xe, %) =3 > (UM o) +3 > u()?+o(r)?
re[nl, refn],
signu(r)=signu(r) signu(r)#signo(r)

< 3lu—ol® = 3li(uy — v1) — (U2 - v2)I1%.

The triangle inequality implies Xy, X,) < %(llul -0y +
luz = v2l)? < [lug —o1]? + |juz — v2|l%, as desired. lfr is
the permutatiomr(i) = 3 — i, then the same calculation as
before shows P{r.X,, X,) < 3|lu +v][%. Again, the triangle
inequality implies H(r. Xy, X,) < [luy — v2]|? + |Juz — v4]]°.
Since there are no other permutationsker 2, the proof is
complete. O

5.2. Proof of Lemma4.6

Lemma 4.6 (Restated) Let t > 1 and let{ui}ycy cqq be @
feasible solution of the SDP in Figute Then, there exists a
distributional strategy{ Xy}, such that for everyu, v, ),

H2(7r. Xy, X,) < O(t) - Sicpig 3lUi — vapll> + k- 271, (15)

Let {Ui}yericpq e a feasible SDP solution with € RY.
The distributional strategiyX,} 1 We construct will consist
of distributionsX, = (Ry, L,) overQ x [k] with Q = RY.

The basic building blocks of our constructions are distri-
butions of the following kind: Fow € RY, let D, denote
the distribution oveR® whose density at € RY is equal to

Vo) € s - exp(-3 2 0x - w]}).

Hereo is a parameter that we choosevas 1/c vt for some
large enough consta@ > 0. The distributionD,, is the
standardd-dimensional Gaussian distribution translated by
the vectomw and scaled by the factor.

Foru € V andi € [K], we define a distributiorX{ =
(RO, LY) overRY x [K] as follows. The first componei®)
is distributed according t®y,, where we denote by the
unit vectorﬁw in directionw. The second componehy
is equal to the index € [K] for which the projection oR{)
onuj is largest. Formally, the density functidrof X{ is

F(x. ]) = Yoa(X) i (X, Tj) > maxepqg\gji<X, Tn),
’ 0 otherwise.

Finally, we define the distributioX, as the convex com-
bination of the distributionX{’, ..., X¥ with coeficients
lualf?, ... lludf®.

The following claim shows that we can upper bound the
Hellinger distance oD, andD, in terms of the Euclidean
distance ofu ando.

Claim 5.1. For any two vectorsi, v € RY,

H*(Dy. D,) < Zllu —o]/*. (16)

Proof. For anyx € RY, one gets

_LnLoc 2= (x=v)|[2
V?’o-,u(x) : )’(r,v(x) = (gn)nl/zo._n -e allz CoUIP=5 17 (<=l

_ 1yl _ 2_11Ly=p)2
_ W'e L2 @x—~(uro)IP- 112 -l

exp(—3l12 (U = )I) - ¥ 30y ()
> (1= Zlu=oP) - Yo 10im(®), (17)

where the second equality follows by the parallelogram law,
llall> + IIbl?> = 3lla+ bl|? + 3|la- b||?, and the last step fol-
lows from the fact that & x < € for all x € R.



Thus, the Hellinger distance &f, andD, satisfies

HZ(DUa Dv) =1- f\l'}/(r,u'}/(r,v

)
< 1-(1- Slu-olP) f i) = F2llu -l

O

Using standard tail bounds for the Gaussian distribution,

we can derive a bound similar t&®) for the Hellinger dis-
tance ofr. X and X*®,

Claim 5.2. For every i€ [K] and every permutatiom of [K],
H2(. X9, X)) < O(t) - I8 — Brpll? + k- 27
Proof. Let | = x(i). By the triangle inequality for the
Hellinger distance (Lemma.3) and the inequalityg + b +
0)? < 3(a% + b? + ¢?), we have
H2 (. X(, X0) < 3(H2(e.XY, (RY, ) +HA(RY, 1), (RY, §)
+HA((R). ). X)) (18)
Claim5.1implies for the second term on the rhs &8J,
HA((RY. J). (R, 1)) = H*(Da,. D5 ) < O() - IITi — 517

We bound the first term on the rhs dfg) by the correspond-
ing statistical distance,

H2(2. X9, (RY, ) < A X2, (RY, j)) = Prix(LY) # j]

= ) Py =hl< Pr [(x. On) > (x, G)].
helk\ (i) heliviy <8

We can writex asui + og, whereg is a standard Gaussian
vector. Hence, the event{, 0y) > (X, G;)] = [{g, Gn — Gj) >
Ys]. The inner producty, Uy — Gj) has a Gaussian distri-
bution with mean 0 and standard deviatigf2. Therefore,

(lull = Ilol))? < |lu —o||? (triangle inequality). On the other
hand, Clainb.2allows us to bound the first sum ih9) by

D il ol - (OCt) - 13 = By > + k- 27

ikl
<O D luill - loayll - 116 = Bryl? + k- 27
=]
<O > lui — vnl? + k27,
ic[k]

where we used in the first step that;{q I|uill - ||v,r(i)||)2 <
Siepiq IUil2 - Siepq lox@l® = 1 (Cauchy-Schwarz) and in
the second stejuil| - [vxg)ll - [ITi — Bl = 2l[uill - lloxq)ll —
20Ui, Ur(iy) < NIUI% + [y 12— 2€Ui, D)) = llUi — 0|12 (AM—
GM inequality).The proof of Lemmd.6is complete. 0O

6. Conclusions and Open Problems

Our results show that for unique games, the value that
the semidefinite program really captures is not the inte-
gral value of the game but rather the amortized value un-
der many parallel repetitions, i.e., the valvel(G) =
lim /. val(G)Y!. If Khot’s unique game conjecturd’ is
true then this means that the amortized value can be much
easier to approximate than the original value of the game.
We find this quite surprising, as in general computing the
amortized value of even very simple finite games is consid-
ered a very hard problem.

Can one get rid of the logf) term in Theoreni.1? We
conjecture that this should be possible by using a more care-
ful construction of the distribution®,, although some sub-
tleties seem to arise. Another interesting open question is
whether strong parallel repetition holds for unique games
with entanglement. Although the authors disagree on the
answer to this question, it seems that some important in-
sight on it can be obtained by combining our techniques
with those of [L4]. A more general question is to find more

tion, the probability of this eventis at maasts? . Thus, the
first term on the right-hand side of§) contributes at most
3k e w2 < Y2-k- 27t The same is true for the third term
in (18). The claim follows. O

tistical distance. One such application was recently found
by Kindler et al. L8 who used Raz’s ideas to construct
more dficient foams irRY.

A further consequence of our work is that Khot's unique
games conjecturd pl is equivalent to the following, a priori

Using the previous two claims, we can now show the syonger hypothesis: for every> 0, there exists an alpha-

bound (L5) on the squared Hellinger distancé(i Xy, X,).

bet sizek such that given a unique gan® it is NP-hard

Since n.X, and X, are convex combinations of the dis- g distinguish between the case thatya)G) > 1 - & and

tributions 7. X, ..., 7. XY and X, ..., X¥, respectively,
Lemma3.4implies that H(r.X,, X,) is at most

D Uil llog 1-H2 e X5, X0)+ 3 (uill=loxg )2 (29)

ikl ikl

The second sum in 10) contributes at most
Yiepiq Ui = v,r(i)||2, because for any two vectotsy € RS,

(2) for every distributional strategyXy},y, the expected
squared Hellinger distandgy, »)-c H?(r. Xy, X,) > 1 -&.
We refer to the full version of the paper for further details
on this connection to the unique games conjecture.
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where we use in the last stepQA(R,, R) < A(m. Xy, X,).
Hence, the value db is at least

val(©) > & PriL(2) = (lu(2))]

(221) 1- E 2A@ X, X)=1-2n. O

(u,v,7)~G
Remark A.1. The above lower boundl(G) > 1 - 27 is
non-trivial only forn < 1/2. Using a more precise version of
the correlated sampling lemma, one can improve the lower
bound toval(G) > 1-7/1+;. This bound gives a non-trivial
guarantee whenevgr< 1. Details will be presented in the
full version of the paper.
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