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Abstract

A sunflower is a family of sets that have the same pairwise intersections. We simplify a
recent result of Alweiss, Lovett, Wu and Zhang that gives an upper bound on the size of every
family of sets of size k that does not contain a sunflower. We show how to use the converse of
Shannon’s noiseless coding theorem to give a cleaner proof of a similar bound.

1 Introduction

A p-sunflower is a family of p sets whose pairwise intersections are identical. How large can a family
of sets of size k be if the family does not contain a p-sunflower? Erdős and Rado [ER60] were the
first to pose and answer this question. They showed that any family with more than (p−1)k ·k! sets
of size k must contain a p-sunflower. This fundamental fact has many applications in mathematics
and computer science [ES92, Raz85, FMS97, GM07, GMR13, Ros14, RR18, LZ19, LSZ19].

After nearly 60 years, the correct answer to this question is still not known. There is a family of
(p−1)k sets of size k that does not contain a p-sunflower, and Erdős and Rado conjectured that their
lemma could be improved to show that this is essentially the extremal example. Recently, Alweiss,
Lovett, Wu and Zhang [ALWZ19] made substantial progress towards resolving the conjecture.
They showed that (log k)k · (p log log k)O(k) sets ensure the presence of a p-sunflower. Subsequently,
Frankton, Kahn, Narayanan and Park [FKNP19] improved the counting methods developed by
[ALWZ19] to prove a conjecture of Talagrand [Tal10] regarding monotone set systems.

In this work, we give simpler proofs for these results. Our proofs rely on an encoding argument
inspired by a similar encoding argument used in [ALWZ19, FKNP19]. The main novelty is our
use of Shannon’s noiseless coding theorem [Sha48, Kra49] to reason about the efficiency of the
encoding, which turns out to avoid complications that show up when using vanilla counting. We
show1:

Theorem 1. There is a universal constant α > 1 such that every family of more than (αp log(pk))k

sets of size k must contain a p-sunflower.

Let r(p, k) denote the quantity αp log(pk). We say2 that a sequence3 of sets S1, . . . , S` ⊂ [`] of
size k is r-spread if for every non-empty set Z ⊂ [n], the number of elements of the sequence that

1In this paper, all logarithms are computed base 2.
2A similar concept was first used by Talagrand [Tal10].
3Here we state the results for sequences of sets because some applications require the ability to reason about

sequences that may repeat sets.
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contain Z is at most rk−|Z|. We prove that for an appropriate choice of α, the following lemma
holds:

Lemma 2. If a sequence of more than r(p, k)k sets of size k is r(p, k)-spread, then the sequence
must contain p disjoint sets.

As far as we know, it is possible that Lemma 2 holds even when r(p, k) = O(p). Such a
strengthening of Lemma 2 would imply the sunflower conjecture of Erdős and Rado. Lemma 2
easily implies Theorem 1: we proceed by induction on k. When k = 1, the theorem holds, since
the family contains p distinct sets of size 1. For k > 1, if the sets are not r-spread, then there
is a non-empty set Z such that more than rk−|Z| of the sets contain Z. By induction, and since
r(p, k) can only increase with k, the family of sets contains a p-sunflower. Otherwise, if the sets
are r(p, k)-spread, Lemma 2 guarantees the presence of a p-sunflower.

It only remains to prove Lemma 2. In fact, we prove something much stronger: a small random
set is very likely to contain some set of an r-spread family of sets.

2 Random sets and r-spread families

To prove Lemma 2, we need to understand the extent to which a small random set W ⊆ [n]
contains some set of a large family of sets of size k. To that end, it is convenient to use the
following definition:

Definition 3. Given S1, . . . , S` ⊆ [n], for x ∈ [`] and W ⊆ [n], let χ(x,W ) be equal to Sy \W ,
where y ∈ [`] is chosen to minimize |Sy \W | among all choices with Sy ⊆ Sx ∪W . If there are
multiple choices for y that minimize |Sy \W |, let y be the smallest one.

Observe that the definition makes sense even if S1, . . . , S` are not all distinct. When U ⊆ W ,
we have |χ(x, U)| ≥ |χ(x,W )|. Moreover, χ(x,W ) = ∅ if and only if there is an index y for which
Sy ⊆W . Our main technical lemma shows that if a long sequence of sets is r-spread, then |χ(X,W )|
is likely to be small for a random X and a random small set W :

Lemma 4. There is a universal constant β > 1 such that the following holds. Let 0 < γ, ε < 1/2.
If r = r(k, γ, ε) = β · (1/γ) · log(k/ε), and S1, . . . , S` ⊆ [n] is an r-spread sequence of at least rk sets
of size k, X ∈ [`] is uniformly random, and W ⊆ [n] is a uniformly random set of size at least γn
independent of X, then E [|χ(X,W )|] < ε. In particular, PrW [∃y, Sy ⊆W ] > 1− ε.

This lemma is of independent interest — it is relevant to several applications in theoretical
computer science [Ros14, LSZ19]. Before we prove Lemma 4, let us see how to use it to prove
Lemma 2.

Proof of Lemma 2. Set γ = 1/(2p), ε = 1/p. Then r = r(k, γ, ε) = r(p, k). Let W1, . . . ,Wp be a
uniformly random partition of [n] into sets of size at least bn/pc. So, each set Wi is of size at least
bn/pc ≥ γn. By symmetry and linearity of expectation, we can apply Lemma 4 to conclude that

E
X,W1,...,Wp

[|χ(X,W1)|+ · · ·+ |χ(X,Wp)|] = E
X,W1

[|χ(X,W1)|] + · · ·+ E
X,Wp

[|χ(X,Wp)|] < εp = 1.

Since |χ(X,W1)|+ · · ·+ |χ(X,Wp)| is a non-negative integer, there must be some fixed partition
W1, . . . ,Wp for which

E
X

[|χ(X,W1)|+ · · ·+ |χ(X,Wp)|] = 0.
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This can happen only if the family contains p disjoint sets.

Next, we briefly describe a technical tool from information theory, before turning to prove
Lemma 4.

3 Prefix-free encodings

A prefix-free encoding is a map E : [t]→ {0, 1}∗ into the set of all binary strings, such that if i 6= j,
E(i) is not a prefix of E(j). Another way to view such an encoding is as a map from the set [t] to
the vertices of the infinite binary tree. The encoding is prefix-free if E(i) is never an ancestor of
E(j) in the tree.

Shannon [Sha48] proved that one can always find a prefix-free encoding such that the expected
length of the encoding of a random variable X ∈ [t] exceeds the entropy of X by at most 1.
Conversely, every encoding must have average length that is at least as large as the entropy. For
our purposes, we only need the converse under the uniform distribution. The proof is short, so we
include it here. All logarithms are taken base 2.

Lemma 5. Let E : [t] → {0, 1}∗ be any prefix-free encoding, and `i be the length of E(i). Then
(1/t) ·

∑t
i=1 `i ≥ log t.

Proof. We have

log t− (1/t) ·
t∑
i=1

`i = (1/t) ·
t∑
i=1

log(t · 2−`i) ≤ log
( t∑
i=1

2−`i
)
,

where the inequality follows from the concavity of the logarithm function. The fact that this last
quantity is at most 0 is known as Kraft’s inequality [Kra49]. Consider picking a uniformly random
binary string longer than all the encodings. Because the encodings are prefix-free, the probability
that this random string contains the encoding of some element of [t] as a prefix is exactly

∑t
i=t 2−`i .

So, this number is at most 1, and the above expression is at most 0.

4 Proof of Lemma 4

We shall prove that there is a constant κ such that the following holds. For each integer m with 0 ≤
m ≤ rγ/κ, if W is a uniformly random set of size at least κmn/r, then E [|χ(X,W )|] ≤ k(12/13)m.
By the choice of r(k, γ, ε), setting m = brγ/κc, we get that when W is a set of size at least γn,

E [|χ(X,W )|] ≤ k(12/13)α log(k/ε)/κ < ε for α chosen large enough.
We prove the bound by induction on m. When m = 0, the bound holds trivially. When m > 0,

sample W = U ∪ V , where U, V are uniformly random disjoint sets, |U | = u = dκ(m− 1)n/re, and
|V | = v ≥ κn/r − 1 ≥ κnr/2. Note that we always have κ/2 ≤ (rv/n) ≤ 2κ.

It is enough to prove that for all fixed choices of U ,

13 · E
V,X

[|χ(X,W )|] ≤ 12 · E
X

[|χ(X,U)|] .

So, fix U . If χ(x, U) is empty for any x, then we have EV,X [|χ(X,W )|] = EX [|χ(X,U)|] = 0, so
there is nothing to prove. Otherwise, we must have EX [|χ(X,U)|] ≥ 1, since |χ(x, U)| ≥ 1 for all
x. The number of possible pairs (V,X) is at least rk ·

(
n−u
v

)
. Our bound will follow from using

Lemma 5. We give a prefix-free encoding of (V,X) as follows:
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1. For each A ⊆ χ(X,U), with |A| = |χ(X,W )|, define

τ(A,X, V ) = {y ∈ [`] : A ⊆ χ(y, U) ⊆W ∪ χ(X,U), |χ(y, U)| = |χ(X,U)|},

and define
φ(X,V ) = rk · (32v/n)|χ(X,U)| · (vr/n)−|χ(X,W )|.

The first case is that for all A, |τ(A,X, V )| ≤ φ(X,V ). In this case, the first bit of the
encoding is set to 0, and we proceed to encode (V,X) like this:

(a) Encode |χ(X,U)|. It suffices to use a trivial encoding of this integer: we encode it with
the string 0|χ(X,U)|1, which has length |χ(X,U)|+ 1.

(b) Encode W ∪ χ(X,U). Since U has been fixed, there are(
n− u
v

)
+ · · ·+

(
n− u

v + |χ(X,U)|

)
≤
(
n− u+ |χ(X,U)|
v + |χ(X,U)|

)
≤
(
n− u
v

)
· (n/v)|χ(X,U)|

choices for this set. So, the encoding has length at most

log
((n− u

v

)
· (n/v)|χ(X,U)|

)
+ 1.

(c) Let j be such that χ(j, U) ⊆W∪χ(X,U), and |χ(j, U)| is minimized. If there are multiple
choices for j that achieve the minimum, let j be the smallest one. X is a potential
candidate for j, so we must have |χ(j, U)| ≤ |χ(X,U)|. Encode χ(X,U)∩χ(j, U). Since
j is determined, this takes at most |χ(X,U)| bits.

(d) We have already encoded χ(j, U)∩χ(X,U) ⊆ SX . We claim that this set must have size
at least |χ(X,W )|. Indeed, χ(j, U) = Sh \ U for some set Sh of the r-spread sequence.
We have

Sh \ U = χ(j, U) ⊆ χ(X,U) ∪W,
so

Sh ⊆ χ(X,U) ∪W ⊆ SX ∪W.
By the definition of χ(X,W ), this implies that

|χ(X,W )| ≤ |Sh \W | = |Sh \W ∩ χ(X,U) \W | ≤ |χ(j, U) ∩ χ(X,U)|,

as claimed. Now, since |τ(A,X, V )| ≤ φ(X,V ) for all A of size |χ(X,W )|, we can encode
X using a binary string of length at most

log
(
rk · (32v/n)|χ(X,U)| · (vr/n)−|χ(X,W )|

)
+ 1.

(e) BecauseX has been encoded, χ(X,U) is also determined. EncodeW∩χ(X,U). Together
with W ∪ χ(X,U), this determines W , and so V . This last step takes |χ(X,U)| bits.

Combining all of the above steps, and using the fact that |χ(X,U)| ≥ 1 and vr/n ≥ κ/2, the
total length of the encoding in this case is at most

log
(
rk ·

(
n− u
v

))
+ 8 · |χ(X,U)| − log(vr/n) · |χ(X,W )|+ 4

≤ log
(
rk ·

(
n− u
v

))
+ 12 · |χ(X,U)| − 13 · |χ(X,W )|,

for κ chosen large enough.
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2. In the second case there is a set A ⊆ χ(X,U) of size χ(X,W ) such that |τ(A,X, V )| > φ.
Then the first bit of the encoding is set to 1, and we proceed like this:

(a) Encode X. This takes at most log rk + 1 bits.

(b) Now χ(X,U) is determined. Encode the set A promised above. This takes at most
|χ(X,U)| bits.

(c) We claim that at this point, the number of candidates for V is at most
(
n−u
v

)
·16−|χ(X,U)|.

Indeed, consider the following random experiment. Choose a set B uniformly at random
from the collection of sets satisfying A ⊆ B ⊆ χ(X,U), and then sample V ⊆ [n] \ U
uniformly at random. Consider the collection of y ∈ τ(A,X, V ) for which B = χ(y, U)∩
χ(X,U). Define N(A,B,X, V ) = |{y ∈ [`] : B = χ(y, U) ∩ χ(X,U)} ∩ τ(A,X, V )|. We
have

E
B,V

[N(A,B,X, V )] ≤ E
B

[
rk−|B| ·

( v

n− u− k

)|χ(X,U)|−|B|
]
.

This is because there are at most rk−|B| sets of size |χ(X,U)| containing B, and for each
one, the probability that it is included in V is at most (v/(n − u − k))|χ(X,U)|−|B|. By
the choice of u, we have n− u− k ≥ n/3. So, we continue to bound:

≤ E
B

[
rk−|B| ·

(3v

n

)|χ(X,U)|−|B|
]
≤ rk · (3v/n)|χ(X,U)| · (vr/n)−|χ(X,W )|.

The last inequality holds because |B| ≥ |χ(X,W )|. On the other hand, we have

Pr[|τ(A,X, V )| > φ(X,V )] · 2−|χ(X,U)| · φ(X,V ) ≤ E
B,V

[N(A,B,X, V )] ,

since B takes each value with probability at least 2−|χ(X,U)|. By the definition of φ,

Pr[|τ(A,X, V )| > φ(X,V )] ≤ 16−|χ(X,U)|.

So, we can encode V at a cost of

log

(
n− u
v

)
− 4 · |χ(X,U)|+ 1.

Overall, the cost of carrying out the encoding in the second case is at most (by adding
13 · (|χ(X,U)| − |χ(X,W )|)):

log
(
rk
(
n− u
v

))
− 3 · |χ(X,U)|+ 2 ≤ log

(
rk
(
n− u
v

))
+ 12|χ(X,U)| − 13|χ(X,W )|.

Note that this last bound is exactly the same as the bound we obtained in the case that
τ(A,X, V ) ≤ φ(X,V ).

Now, it only remains to apply Lemma 5. The expected length of the encoding cannot be less

than log
(
rk
(
n−u
v

))
. This implies that 13E [|χ(X,W )|] ≤ 12E [|χ(X,U)|], as required.
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