

On the Functions Realized by
Stochastic Computing Circuits

Armin Alaghi and John P. Hayes
Advanced Computer Architecture Laboratory

Department of Electrical Engineering and Computer Science
University of Michigan, Ann Arbor, MI, 48109, USA

{alaghi, jhayes}@eecs.umich.edu

ABSTRACT
Stochastic computing (SC) employs conventional logic circuits to
implement analog-style arithmetic functions acting on digital bit-
streams. It exploits the advantages of analog computation powerful
basic operations, high operating speed, and error tolerancein
important applications such as sensory image processing and
neuromorphic systems. At the same time, SC exhibits the analog
drawbacks of low precision and complex underlying behavior.
Although studied since the 1960s, many of SC’s fundamental
properties are not well known or well understood. This paper
presents, in a uniform manner and notation, what is known about the
relations between the logical and stochastic behavior of stochastic
circuits. It also considers how correlation among input bit-streams
and the presence of memory elements influences stochastic behavior.
Some related research challenges posed by SC are also discussed.

Categories and Subject Descriptors
B.2.1 [Arithmetic and Logic Structures]: Design styles.

General Terms
Algorithms, design, theory.

Keywords
Stochastic computing, Boolean functions, logic design.

1. INTRODUCTION
Computing hardware has traditionally been partitioned into two broad
classes: analog acting on continuous data and digital acting on
discrete data, with real and integer arithmetic being the corresponding
mathematical methods. In the digital case where the fundamental data
units are the bits 0 and 1, Boolean algebra plays a key role. Analog
computing was eclipsed by digital in the mid-twentieth century due to
the latter’s greater generality, higher precision, and ease of use [19].
Nevertheless, analog computing continues to be found in applications
that can exploit its performance advantages (high speed, complex
basic operations, and error insensitivity) while tolerating its
disadvantages. Of interest here are hybrid systems that combine
analog and digital features. These include biological systems, in
which digital neural signals control analog functions like motion, and
a class of artificial computing systems called stochastic [1] [12],
which are the topic of this paper. Stochastic computing (SC) is so
called because it computes with analog probabilities, but represents
them by digital bit-streams and processes them with conventional
logic circuits.

Figure 1 shows a typical stochastic circuit with bit-streams of
length N = 12. It comprises an OR gate, an XOR gate, and a
multiplexer (MUX). On one level, this is just a simple logic circuit
realizing the Boolean function

 𝑧(𝑥1, 𝑥2, 𝑟1, 𝑟2, 𝑟3) = (𝑥1 𝑟̅1  𝑥2 𝑟1)  (𝑟2𝑟3) (1)

On another level, it is a relatively powerful stochastic circuit realizing
the arithmetic function

 𝑍(𝑋1, 𝑋2) = −0.25(𝑋1 + 𝑋2) (2)

Here, X1, X2 and Z denote stochastic numbers (SNs) implemented by
(pseudo) random bit-streams applied to lines x1, x2 and z,
respectively.

An N-bit SN X containing N1 1s and N  N1 0s has the (unipolar)
value pX = N1/N. For example, the SN on output line z of Figure 1 has
the value pZ = 5/12. Since pX always lies in the real-number interval
[0,1], it can be seen as the probability of observing 1 in any randomly
selected position of X. The value pX is also referred to as signal
intensity, pulse rate, or frequency in different contexts. In
neurobiology, for instance, a neural spike train can be modeled by a
bit-stream X and its intensity can be represented by pX [8].

The foregoing probabilistic interpretation along with the
randomness of SNs are at the heart of SC, and effectively convert
logic gates into analog-style arithmetic components operating on
probabilities. For example, a MUX serves as a scaled adder
computing the function 0.5(𝑝𝑋1

+ 𝑝𝑋2
). With suitable off-line scaling

and value approximation, stochastic circuits can be applied to
numbers over various ranges. For example, to handle signed
numbers, we map pX to 2pX  l, which changes the SN range from
[0,1] to [1,1]. This is the bipolar format and is the interpretation
needed for Figure 1 to implement Eq. (2). The output bit-stream Z of
Figure 1 then represents 2(5/12) – 1 = –2/12. Figure 1’s XOR gate
computes (2 𝑝𝑌1

  l)(2 𝑝𝑌2
  l) and so contributes both

multiplication and negation to Eq. (2). This circuit implements a
fairly complex arithmetic operation using just a handful of logic
gates. A conventional implementation operating on ordinary binary
numbers requires many more gates to implement Eq. (2). The
hardware simplicity illustrated by Figure 1 is SC’s chief attraction.

The three SNs R1, R2 and R3 appearing on inputs r1, r2 and r3,
respectively, of Figure 1 are examples of stochastic constants. They
are typically seen as auxiliary inputs and have the unipolar value 0.5.
This value requires an SN with equal numbers of 0s and 1s, which is
easily generated by (pseudo) random sources. It can be transformed

x1 0

1

101110110111

110110010101

011000101011

011001011100

101100010011

110110010101

111101011111
001011001010MUX

x2

r1

r2

r3

z

y1

y2

Figure 1. Stochastic circuit implementing the arithmetic function
𝑍 = −0.25(𝑋1 + 𝑋2) using bipolar format.

Permission to make digital or hard copies of all or part of this work for personal

or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice

and the full citation on the first page. Copyrights for components of this work

owned by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee. Request permissions

from Permissions@acm.org.
GLSVLSI '15, May 20 - 22, 2015, Pittsburgh, PA, USA

Copyright 2015 ACM 978-1-4503-3474-7/15/05…$15.00

http://dx.doi.org/10.1145/2742060.2743758

to other constant values via suitable logic circuits [24]. For instance,
the OR gate of Figure 1 generates the constant 𝑝𝑅2

+ 𝑝𝑅3
− 𝑝𝑅2

𝑝𝑅3
 =

0.75 (unipolar) = 0.5 (bipolar), which combined with R1, gives the
0.25 coefficient required by Eq. (2).

Two other key factors affecting stochastic circuit behavior are the
length N and the randomness of the bit-streams. SN formats are

highly redundant since pX = N1/N is represented by (
𝑁
𝑁1

) different bit

patterns. This skewed distribution implies low arithmetic precision.
To represent pX with a precision of n bits, requires X to have length N
 2n. Consequently, stochastic circuits tend to have low precision
and/or very large N. This can offset the speed advantage of SC’s
relatively simple arithmetic components. Moreover, such basic
questions as What should N be to guarantee that results are correct
to k bits?are surprisingly hard to answer. Figure 2 shows how pX

fluctuates as N increases for SNs of nominal value p = 1/2 generated
by a typical stochastic number generator (SNG). SNs that rapidly
converge to p are said to have (good) progressive precision.

Yet another basic problem in SC is that interacting bit-streams are
usually required to be independent or uncorrelated, otherwise the
results can be unacceptably inaccurate. For example, if two identical
(maximally correlated) copies of a bipolar SN X are applied to an
XOR gate, the result will be the all-0 bit-stream instead of the
expected bipolar product X2. Ensuring that SNs are sufficiently long
and uncorrelated can require an excessive number of SNGs and
become the major cost factor in SC [25].

Compensating somewhat for these drawbacks is the fact that long
SNs are inherently far less sensitive than ordinary binary numbers to
errors caused by environmental noise or hardware faults. Not only do
bit-flips occurring in SN X have a small effect on pX, but two bit-flips
in opposite directions cancel one another. Progressive precision can
be exploited to speed-up applications where variable degrees of
precision are acceptable [2]. Correlation may also be less of a
problem than it seems at first sight. While the XOR multiplier is
sensitive to correlation among its inputs, the MUX adder is
insensitive to input correlations. Moreover, correlation can sometimes
be deliberately used to increase the functional range of stochastic
circuits and reduce their complexity [4], as will be discussed in Sec.
3. Figure 3 summarizes the advantages and disadvantages of
stochastic computing.

Stochastic computing can be traced back to the pioneering ideas of
Gaines and Poppelbaum in the 1960s [12] [23]. Since then, it has
found its major applications in control systems [29] and artificial
neural networks [7] [26]. More recently, new applications have
appeared that involve probabilistic or error-tolerance issues for which
SC is well suited, such as image processing [2] [17], simulation of
probabilistic systems [9] [21], data recognition and mining [11], and
decoders for channel codes ranging from LDPC to polar
codes [13] [28]. Furthermore, novel physical technologies are
emerging such as memristors that have native stochastic
features [16]. Despite these successes, many gaps exist in our
understanding of SC and its potential applications.

The goal of this paper is review and unify recent results on the
behavioral or functional properties of stochastic circuits. Section 2
defines stochastic behavior formally, and examines the links between
a circuit’s logical and stochastic properties, as exemplified by Eqs.
(1) and (2). Correlation is examined in Sec. 3, while Sec. 4 addresses
sequential design issues. Section 5 draws some conclusions and
discusses challenges for future SC research.

2. STOCHASTIC FUNCTIONS
In this section, we discuss the links between combinational logic
circuits and their stochastic functions (SFs). We show that that the
SFs are functions over the real numbers, which can be expressed in
many forms. Later, we will see how factors like correlation and the
presence of memory elements can change the SFs.

Suppose some n-input single-output combinational circuit C
realizes the Boolean function (BF) 𝑧(𝑥1, 𝑥2, … , 𝑥𝑛). This function
has the canonical sum-of-minterms form

𝑧(𝑥1, 𝑥2 … , 𝑥𝑛) = ⋁ 𝑐𝑖𝑚𝑖
2𝑛−1
𝑖=0 (3)

where the ci’s are 0-1 constants. The mi’s are minterms of the form
𝑥̃𝑖,1 𝑥̃𝑖,2⋯ 𝑥̃𝑖,𝑛 where 𝑥̃𝑖,𝑗 is either 𝑥𝑖,𝑗 or 𝑥̅𝑖,𝑗 . For example, the

sum-of-minterms representation of the XOR function 𝑧XOR(𝑥1, 𝑥2) is
𝑚2 ∨ 𝑚3 = (𝑥1  𝑥̅2)(𝑥̅1  𝑥2).

Now suppose n SNs are applied to the inputs of C. If Xi is the
(unipolar) probability value of the SN on xi, i.e., Xi = 𝑝𝑋𝑖

, then 𝑥̅𝑖.has

the probability value 1  Xi. The following theorem gives C’s output
probability Z, and so defines its stochastic function (SF).

Theorem 1: Let 𝑧(𝑥1, 𝑥2 … , 𝑥𝑛) be a Boolean function defined
by Eq. (3). The stochastic function 𝑍(𝑋1, 𝑋2 … , 𝑋𝑛) implemented by
z, assuming all input SNs are independent, is

 𝑍(𝑋1, 𝑋2 … , 𝑋𝑛) = ∑ 𝑐𝑖𝑀𝑖
2𝑛−1
𝑖=0 (4)

where 𝑀𝑖 = 𝑀̃𝑖,1𝑀̃𝑖,2 ⋯ 𝑀̃𝑖,𝑛 with 𝑀̃𝑖,𝑗 = 𝑝𝑋𝑖,𝑗
= 𝑋𝑖,𝑗 if the corres-

ponding minterm mi of Eq. (3) has 𝑥̃𝑖,𝑗 = 𝑥𝑖,𝑗; 𝑀̃𝑖,𝑗 is 1 − 𝑝𝑋𝑖,𝑗
= 1 −

𝑋𝑖,𝑗 if 𝑥̃𝑖,𝑗 = 𝑥̅𝑖,𝑗 .

This key result was first shown by Parker and McCluskey [22]
using rather ad hoc notation. Note that each 𝑀𝑖 corresponds to a
minterm and is the probability of the corresponding input
combination. These probabilities have the form stated in Thm. 1
when the input SNs are independent. As will be shown in Sec. 3, if
the input SNs are correlated, the 𝑀𝑖’s may take a different form. For
the XOR gate with independent inputs, Thm. 1 implies

 𝑍XOR(𝑋1, 𝑋2) = 𝑋1(1 − 𝑋2) + (1 − 𝑋1)𝑋2

which, when multiplied out, becomes

𝑍XOR(𝑋1, 𝑋2) = 𝑋1 + 𝑋2 − 2𝑋1𝑋2 (5)

The sum-of-minterms-style probability expression (4) can be seen
as a canonical representation of the stochastic function Z realized by
the Boolean function z. It thus captures z’s stochastic behavior with
respect to the basic unipolar format. When the Xi’s are restricted to 0
and 1, and sum is interpreted as OR, Eq. (4) reduces to Eq. (3), so Z is
effectively an interpolation of z in the real-number domain. Equation
(4) is also easily converted to other SN formats. To convert from

N

pX

Nominal

value

SN with poor progressive precision

SN with medium progressive precision
SN with good progressive precision

Figure 2. Fluctuations in pX for 3 bit-streams as their length N increases.

Feature Advantages Disadvantages

Circuit
size and
power

Tiny arithmetic
components

Many random number sources and
stochastic-binary conversion
circuits

Operating
speed

Short clock periods
Massive parallelism

Very long bit-streams

Result
quality

High error tolerance
Progressive
precision

Low precision
Random number fluctuations
Correlation-induced inaccuracies

Design
issues

Rich set of arithmetic
components

Theory not fully understood
Little CAD tool support at present

Figure 3. Advantages and disadvantages of stochastic computing.

unipolar to bipolar, for instance, replace 𝑝𝑋𝑖,𝑗
 by 2𝑝𝑋𝑖,𝑗

− 1, and re-

define the SN value 𝑋𝑖,𝑗 to be 2𝑝𝑋𝑖,𝑗
− 1.

The canonical representation of Eq. (4) can also be expressed as
the inner product of two vectors. The first is the truth-table vector 𝑪𝑧
= [𝑐0 𝑐1 ⋯ 𝑐2𝑛−1] defining z in terms of the constant coefficients
in Eq. (3). The second is the input vector 𝑴 = [𝑀0 𝑀1 ⋯ 𝑀2𝑛−1]
specifying the probability distribution of the input combinations, or
equivalently, the stochastic minterm functions. We can now rewrite
Eq. (4) as follows, where “∙” denotes the inner-product operation:

 𝑍(𝑋1, 𝑋2 … , 𝑋𝑛) = 𝑪𝑧 ∙ 𝑴

= [𝑐0 𝑐1 ⋯ 𝑐2𝑛−1] ∙ [𝑀0 𝑀1 ⋯ 𝑀2𝑛−1] (6)

The ci elements in Eqs. (3), (4) and (6) are the same and belong to
the binary set {0,1}. Since SFs deal with real numbers, we can further
generalize Thm. 1 by allowing the ci’s to be any numbers in the real
interval [0,1]. Such generalized ci coefficients can be interpreted as
constant SNs applied to the circuit when the corresponding minterm
mi is activated or set to 1. For example, if c0 = 0, c1 = 0.5, c2 = 0.5,
and c3 = 1 (or in vector form [0 0.5 0.5 1]), then Eq. (4) becomes

𝑍(𝑋1, 𝑋2) = 0.5𝑋1(1 − 𝑋2) + 0.5(1 − 𝑋1)𝑋2 + 𝑋1𝑋2 (7)

which is the scaled add function 0.5(𝑋1 + 𝑋2). The coefficients c1 =
c2 = 0.5 in (7) imply that when minterms m1 and m2 are activated, a
constant SN of value 0.5 should propagate to the output. Such
constant probabilities can be obtained from (pseudo) random number
sources. These sources often appear as auxiliary inputs in the
corresponding circuit. For example, the ri inputs of Figure 1 are
auxiliary inputs that are fed with SNs of value 0.5.

Like BFs, SFs can be expressed and interpreted in different forms,
which are associated with different, and sometimes useful, circuit
design styles. When Eq. (4) is expanded in the manner illustrated by
Eq, (5), Z takes the form of a multi-linear polynomial, i.e., one which
can contain products of Xi variables, but no variable appears with a
power of two or higher. If bipolar instead of unipolar format is used
then, as we saw in the case of Figure 1, Eq. (5) changes to 𝑍XOR =
−𝑋1𝑋2, a different multi-linear polynomial. Qian et al. observed that
these expressions can be replaced by another interesting class of
polynomials called Bernstein polynomials [25].

Alaghi and Hayes showed that the spectrum of a BF z obtained via
the Fourier transform reveals z’s stochastic behavior in useful
ways [3]. First, to facilitate the use of spectral transforms, we map the
usual 0 and 1 values of 𝑪𝑧 into the real numbers +1 and 1,
respectively; see Figure 4. Then we multiply 𝑪𝑧 by an appropriate
matrix, such as the Walsh-Hadamard matrix 𝑯𝑛. This produces a 2n-
dimensional vector (z’s spectrum) which defines yet another
polynomial form of Z. In the case of zXOR, we get 𝑍XOR = 𝑋1𝑋2.

Spectral transformation can be expressed symbolically as Z =
ℱ(𝑧). An advantage of the spectral viewpoint is that the design
problem of finding a z to implement a given SF Z reduces to
computing the inverse spectral transform

z = ℱ−1(𝑍) (8)

A difficulty here is that there may be no BF z satisfying Eq. (8). This
problem can be resolved by approximating Z by another function Z*
for which Eq. (8) has a solution in the Boolean domain. This entails
expressing Z* in a suitable (polynomial) form and introducing new

stochastic variables and constants, a complex process for which only
heuristic methods are known ‎[3]‎[10]‎[25]. For example, the function Z
= X0.45, commonly used in image processing, has no suitable
polynomial form. However, it is approximated by Z* = 0.75X2 +
1.5X + 0.25 ‎[3]. Applying the inverse spectral transform to Z* yields

𝑧(𝑥1, 𝑥2, 𝑟1, 𝑟2) = 𝑥1 ∨ 𝑥2 ∨ 𝑟1 ∧ 𝑟2

which includes several new inputs. Variables x1 and x2 are supplied
with two independent SNs representing X, while r1 and r2 are
auxiliary inputs supplied with constant SNs of value 0.5.

Although every BF has a unique sum-of-minterms form (3), it
turns out, surprisingly, that several different BFs can lead to the same
SF [3] [10]. This happens when generalized minterm coefficients, i.e.,
real-valued constant inputs, are allowed in stochastic functions.
Consider, for instance, the majority function zMAJ = (𝑥1  𝑥2) 
 (𝑥1  𝑟)  (𝑥2  𝑟) and the multiplexer function zMUX =(𝑥1  𝑟) 
(𝑥2  𝑟̅) . They map to two different SFs ZMAJ (𝑋1, 𝑋2, 𝑅) and
ZMUX(𝑋1, 𝑋2, 𝑅), as is easily shown using Eq. (4). However, if R is set
to 0.5, both SFs become the same, i.e.

𝑍MAJ(𝑋1, 𝑋2, 0.5) = 𝑍MUX(𝑋1, 𝑋2, 0.5) = 0.5(𝑋1 + 𝑋2) (9)

This, again, is the scaled addition operation of SC. Figure 5 shows
two-level realizations of zMAJ and zMUX. Although each is optimal in
the usual circuit-cost sense, the multiplexer has somewhat lower cost.
However, in some emerging nanotechnologies, majority gates are the
fundamental building block [15] so a majority-based scaled adder
might be preferred.

The preceding discussion shows that SC adds an interesting new
twist to logic optimization, namely: Find the “best” Boolean function
z that implements a target SF Z (or an approximation thereto) in the
form 𝑧(𝑋V;𝑋C), where XV denotes inputs to which variable SNs are
applied, and XC denotes auxiliary inputs to which constant SNs are
applied. (For notational simplicity. XV may refer either to Boolean
variables or SNs.) With slight loss of generality, we assume all
members of XC are 0.5, i.e., 0s and 1s are applied with equal
probability to constant inputs. This reflects the nature of the random
sources normally used in SC.

With these assumptions, we can now define various types of
stochastic equivalence among Boolean functions. For example, two
BFs 𝑧1(𝑋V; 𝑋C) and 𝑧2(𝑋V; 𝑋C)are stochastically equivalent, denoted
𝑧1 𝑧1 , if 𝑍1(𝑋V; 𝑋C) = 𝑍2(𝑋V; 𝑋C) [10]. Equation (9) shows that
𝑧MAJ  𝑧MUX. For any given size parameters |XV| = s and |XC| = t, the

 relation partitions the set of SFs 𝑍(𝑋V; 𝑋C) into stochastic equi-

valence classes (SECs). With s = 2 and t = 1, the 223
= 256 distinct

BFs form 81 SECs, including a 4-member class E containing zMAJ
and zMUX. (The other two members of E result from replacing r by 𝑟̅,
whose value is also 0.5) Each SEC represents a potentially useful
arithmetic component or circuit for designing stochastic circuits. Note
that although XC is usually seen as a set of secondary inputs, they
form an intrinsic part of an SF and consume significant circuit
resources. This is clear from Figure 1 where the two-input SF of Eq.
(2) requires a five-input logic circuit in which XC with t = 3 has a
non-trivial role comparable in complexity to that of XV.

The foregoing SEC concept can also play a useful role in
optimizing stochastic circuits [10]. For small s and t, an SEC
representing some SF 𝑍(𝑋V; 𝑋C) can be searched systematically
either to find an optimal BF 𝑧(𝑋V; 𝑋C) implementing Z, or else to

Spectral

domain

Boolean

domain

X1

X2

ZXOR

-1

Figure 4. Spectral transformation of the XOR function.

(b)

zMUX
rzMAJ

r

x1

x1

x2

x2

(a)

Figure 5. Two circuits implementing scaled addition when R = 0.5.

evaluate the optimality of a known z. To illustrate, consider the
stochastic function

 𝑍edge = 0.5 × (|𝑋1 − 𝑋2| + |𝑋3 − 𝑋4|) (10)

which defines the Roberts Cross function for edge detection in black-
and-white images. It employs a four-pixel window which outputs
four Boolean variables x1,x2,x3,x4 on which random bit-streams
appear that measure light intensity. Figure 6 shows a stochastic logic
circuit implementing Eq. (10) which was derived by ad hoc means [2].
(Its input SNs must meet certain correlation requirements, which we
consider in Sec. 3, but they do not affect SEC membership.) This
circuit’s area cost is about 100x less than that of a non-stochastic
implementation of Eq. (10), and was thought to be optimal. Its BF is

 𝑧edge = 𝑥̅1𝑥2𝑟̅1 𝑥1𝑥̅2𝑟̅1𝑥̅3𝑥4𝑟1 𝑥3𝑥̅4𝑟1 (11)

whose inputs 𝑥1, 𝑥2, 𝑥3 and 𝑥4 define XV, while 𝑟1 defines XC. The
SEC for 𝑧edge contains 256 functions. The implementation cost of

these functions was computed in terms of literal count [14] for an
optimal two-level design using a conventional CAD tool, and found
to range from 16 to 45. Since 𝑧edge’s literal cost is 16, as can be seen

from Eq. (11), the optimality of the edge-detector design in Figure 6
is confirmed.

3. IMPACT OF CORRELATION
In stochastic computations, it is often necessary to convert inputs
from a number style such as analog or weighted-binary to stochastic
form. This requires stochastic number generators (SNGs) which tend
to cost far more than other SC components. The large numbers of
them found in traditional designsFigure 1 needs up to five SNGs
for its five inputsrender many such designs impractical.

As shown in Figure 7, a typical SNG comprises a comparator and
a random number source (RNS). In each clock cycle, a new random
number is compared with the input number X* and a bit of the
corresponding SN X appears at the output. Over the years, many
variants of this design have been proposed. Most implement the RNS
by a deterministic sequential circuit such as a linear feedback shift
register (LFSR) that produces pseudo-random outputs. Alternative
SNG designs can be found in [1] [5]. It is also possible to combine
non-random and pseudo-random bit-streams, but the results have
been unpromising. “True” random sources, made possible by
nanotechnologies like memristors [16] and magnetic-tunnel junction
devices [20] have also been proposed recently for SC.

As noted earlier, the inputs of a stochastic circuit must usually be
independent or uncorrelated in order to achieve the desired
functionality. Correlation is caused by insufficient randomness
among SNs and is a key source of inaccuracy. Reducing correlation
requires many costly SNGs with independent RNSs. Alaghi and
Hayes [4] [6] however, show that some circuits are inherently
correlation insensitive (CI), meaning that correlation among their
input SNs does not alter their stochastic function. A formal definition
of CI is given in [6], where it is shown that exploiting correlation
insensitivity can reduce stochastic circuit area substantially.

Correlation insensitivity is most readily seen in the scaled adder
realized by the multiplexer of Figure 5b. The output zMUX is x1 if r = 1
and x2 if r = 0. Hence, the inputs x1 and x2 never affect zMUX
simultaneously, so any correlation between the SNs X1 and X2 is
masked by the circuit. Knowledge of this kind can be used to
reduce the SNG costs. For instance, it implies that a scaled adder’s
inputs x1 and x2 can share an RNS, as shown in Figure 8.

The stochastic function of a circuit with correlated inputs can be
expressed using modified versions of Eqs. (4) or (6). The 𝑀𝑖’s of
these equations are the probabilities of the circuit’s various input
combinations. For example, when n = 2, 𝑴 = [𝑀0 𝑀1 𝑀2 𝑀3]
denotes the probability of x1x2 being 00, 01, 10, and 11, respectively.
Suppose X1 and X2 are constant SNs with values 0.3 and 0.2,
respectively. By Thm. 1, M is 𝑴1 = [0.56 0.14 0.24 0.06]
when X1 and X2 are independent. But if X1 and X2 are correlated, the
𝑀𝑖 ’s generally take different values. Suppose that, in the current
example, whenever X2 applies 1 to x2, X1 always applies a 1 is to x1,
implying that X1 and X2 have a high degree of correlation. Then 𝑴1
changes to 𝑴2 = [0.7 0 0.1 0.2].

Earlier we observed that a MUX-based scaled adder is CI with
respect to 𝑋1 and 𝑋2 using the intuitive argument that the output
function zMUX does not depend on both inputs and at the same time.
This argument does not apply to a MAJ-based scaled adder. To
determine whether it too is CI, consider the majority circuit of Figure
5a. On assigning a constant SN of value 0.5 to its r input (assuming it
is independent of the other input SNs), its truth-table vector becomes
𝑪MAJ = [0 0.5 0.5 1] , which implements stochastic scaled
addition if the inputs are independent. Now assume a generic input
vector 𝑴 = [𝑀0 𝑀1 𝑀2 𝑀3] with no specific assumptions about
correlation between X1 and X2. From Eq. (6), we can write

 𝑍MAJ(𝑋1, 𝑋2) = [𝑀0 𝑀1 𝑀2 𝑀3] ∙ [0 0.5 0.5 1]

 = 0.5𝑀1 + 0.5𝑀2 + 𝑀3

 = 0.5(𝑀1 + 𝑀3) + 0.5(𝑀2 + 𝑀3)

Noting that 𝑀1 + 𝑀3 = 𝑋1 and 𝑀2 + 𝑀3 = 𝑋2 for any possible level
of correlation between 𝑋1 and 𝑋2 , we get 𝑍MAJ(𝑋1, 𝑋2) = 0.5(𝑋1 +
𝑋2). This implies that the majority gate is CI with respect to 𝑋1 and
𝑋2 when the SN constant 0.5 is assigned to r.

Systematic correlation among input SNs of a circuit is not
necessarily a source of inaccuracy. In fact, it can change a circuit’s
underlying stochastic function to a more desirable one [4]. For
example, consider the upper XOR gate of Figure 6. As shown by Eq.
(5), it has the stochastic function 𝑍XOR(𝑋1, 𝑋2) = 𝑋1 + 𝑋2 − 2𝑋1𝑋2
when its inputs are independent SNs. However, with maximally
correlated input SNs, the XOR gate implements the stochastic
function 𝑍𝑋𝑂𝑅(𝑋1, 𝑋2) = |𝑋1 − 𝑋2|, which turns out to be a key part
of the 𝑍edgefunction implemented by the circuit of Figure 6.

To quantify systematic correlation among SNs, a measure called
SCC (stochastic computing correlation) is proposed in [4]. Zero SCC
between two SNs implies their independence. If SCC = +1, then the
SNs have maximum overlap of 1s and 0s; if SCC = 1, then the SNs
have a minimum overlap of 1s and 0s. It is important to note that
these conditions hold for SNs of arbitrary value. For example, if X1 =
11110000 and X2 = 1100000, then SCC(X1, X2) = +1, while if X1 =
11110000 and X2= 0000011, we get SCC(X1, X2) = 1. In contrast,
the standard Pearson correlation measure imposes constraints on the

zedge

0

MUX

1

x1

x2

x3

x4

r1

Figure 6. Stochastic edge detector ‎[2].

Comp-

aratorNon-

stochastic

number X*

Random number

source RNS
Stochastic

number XClock

Figure 7. Generic stochastic number generator (SNG).

X
R1

Y

Z

0

1

(a)

RNS1
Comp

MUX
R2

RNS2

Comp

X*

X
R1

Y

Z

0

1

(b)

RNS1

Comp

MUX

Y*
Comp

Y*

X*

Figure 8. Stochastic number generation for a scaled adder with

(a) two independent RNSs, and (b) one shared RNS.

SN values. For instance, a correlation of +1 implies that the SNs are
identical, and hence must have the same value. Thus SCC is a more
suitable correlation measure for SC. More importantly, we can
incorporate SCC into Thm. 1 and extend it as follows.

Theorem 2: The correlation-dependent stochastic function
𝑍(𝑋1, 𝑋2) implemented by the Boolean function 𝑧(𝑥1, 𝑥2) defined by
Eq. (3) with n = 2 is

 𝑍(𝑋1, 𝑋2) = ∑ 𝑐𝑖𝑀𝑖
′3

𝑖=0

where representative 𝑀𝑖
′’s are given by Figure 9.

 SCC(X1, X2) = 0 SCC(X1, X2) = 1 SCC(X1, X2) = +1

𝑀0
′

 (1 − 𝑋1)(1 − 𝑋2) max(1 − 𝑋1 − 𝑋2 , 0) min(1 − 𝑋1, 1 − 𝑋2)

𝑀1
′
 (1 − 𝑋1)𝑋2 min(1 − 𝑋1, 𝑋2) max(𝑋2 − 𝑋1, 0)

𝑀2
′
 (1 − 𝑋2)𝑋1 min(1 − 𝑋2 , 𝑋1) max(𝑋1 − 𝑋2 , 0)

𝑀3
′
 𝑋1𝑋2 max(𝑋1 + 𝑋2 − 1,0) min(𝑋1, 𝑋2)

Figure 9. Correlation-dependent probabilities for Thm. 2.

 To illustrate this theorem, consider the upper XOR gate of
Figure 6 which has the two minterms m1 and m2. When supplied by
SNs with SCC = +1, it implements the stochastic function

𝑍XOR = max(𝑋2 − 𝑋1, 0) + max(𝑋1 − 𝑋2, 0) = |𝑋1 − 𝑋2|

In contrast, the SF implemented by the multiplexer of Figure 5b
remains the same for all possible SCC values among its inputs.

4. SEQUENTIAL STOCHASTIC CIRCUITS
Stochastic circuits are highly sequential in that their behavior is
determined by long sequences of binary data involving synchronous
sequential components like SNGs and I/O registers. So far in this
paper (and throughout the SC literature) it has been assumed that the
data-processing functions are fully defined by combinational circuits.
Introducing memory into these circuits changes the picture.

Consider the circuit of Figure 10a which combines an AND gate
with a D-flip-flop. The AND acts as a stochastic multiplier
implementing the function 𝑍 = 𝑋(1 − 𝑌) . The D-flip-flop simply
shifts its input bit-stream by 1 bit, and implements the stochastic
function 𝑌 = 𝑍. Eliminating Y from the preceding equations, gives
𝑍 = 𝑋/(1 + 𝑋) , which is the SF implemented by the circuit of
Figure 10a. This function does not have an appropriate polynomial
form, and so cannot be directly implemented by combinational
stochastic circuits. A similar example is the JK-flip-flop shown in
Figure 10b, which has the SF 𝑍 = 𝑋1 (𝑋1 + 𝑋2)⁄ , and is used to
approximate stochastic division.

Figure 11 shows the general structure of an n-input sequential
circuit with k flip-flops. The combinational block generates the
output z and the next state variables 𝑦1

+, … , 𝑦𝑘
+ based on the inputs

and the current state variables 𝑦1, … , 𝑦𝑘. The memory block merely
copies the 𝑦𝑖

+’s values to 𝑦𝑖 at the active clock edge. The stochastic
functions implemented by a sequential circuit C are defined by the
stationary distribution Y of its states and the primary output Z, which
can be derived by solving the Markov chain equations for C ‎[12].

As an example, let n = k = 1 in the circuit of Figure 11, and
assume that the Boolean functions 𝑦+(𝑥, 𝑦) and 𝑧(𝑥, 𝑦) realized by
the combinational block, have the following truth-table vectors.

𝑪𝑦+ = [𝑐0
𝑦

𝑐1
𝑦

𝑐2
𝑦 𝑐3

𝑦
] and 𝑪𝑧 = [𝑐0

𝑧 𝑐1
𝑧 𝑐2

𝑧 𝑐3
𝑧]

Then the stationary state distribution at Y is obtained by assigning
𝑌+ = 𝑌 in the following equation

𝑌+(𝑋, 𝑌) = 𝑪𝑦+ ∙ [(1 − 𝑋)(1 − 𝑌) (1 − 𝑋)𝑌 𝑋(1 − 𝑌) 𝑋𝑌]

Solving this equation gives Y’s SF.

𝑌(𝑋) =
𝑐0

𝑦
+ 𝑋(𝑐2

𝑦
− 𝑐0

𝑦
)

1 + 𝑐0
𝑦

− 𝑐1
𝑦

− 𝑋(𝑐0
𝑦

− 𝑐1
𝑦

− 𝑐2
𝑦

+ 𝑐3
𝑦

)

The SF at Z can be derived similarly.

By assigning different values to the 𝑀𝑖
𝑦

’s and 𝑀𝑗
𝑧 ’s, one can

obtain all the possible stochastic sequential circuits with one input
and one flip-flop. Interestingly, many of these circuits implement
similar stochastic functions, showing that there are many equivalence
classes of sequential stochastic circuits analogous to the
combinational SECs mentioned in Sec. 2. For instance, the two
circuits shown in Figure 12 implement exactly the same SF 𝑍(𝑋) =
(2𝑋 − 2) (𝑋 − 2⁄), so they are stochastically equivalent. Within the
256 single-input single-flip-flop sequential circuits, there are only 55
distinguished equivalent classes of SFs.

These small examples show that sequential circuits implement a
larger class of SFs than combinational circuits, namely, rational
functions of the form

𝑍(𝑋1, … , 𝑋𝑛) =
𝑃(𝑋1, … , 𝑋𝑛)

𝑄(𝑋1, … , 𝑋𝑛)

in which P and Q are polynomials.

As noted, the stochastic function of sequential circuits can be
obtained by solving the corresponding equations for Y and Z, but this
can be very difficult when many state variables are involved. To
sidestep this problem, Gaines proposed restricting attention to finite-
state machines (FSMs) with a chain structure in which the states are
ordered and transitions only occur between adjacent states; jumping
over states is not allowed [12]. This restriction allows easy Markov
chain analysis. Figure 13 shows the state behavior of one such chain-
structured FSM, the ADDIE (ADaptive Digital Element). Gaines also
argued that state transitions should be local to avoid excessive
fluctuations in SF values. ADDIEs have been used in various analog-
style stochastic circuits such as filters [12]. Similar chain structured
sequential circuits can implement non-polynomial functions such as
tanh and exp efficiently [7] [18].

Variations and extensions of Gaines’s ADDIE model have been
proposed over the years. A 2-dimensional extension of the chain-
structured FSM was proposed by Li et al. [18]. A more general form
of ADDIE was used by Saraf et al. [27] to implement SFs such as
trigonometric functions. Evidently, sequential implementations can
be more efficient than combinational for certain classes of SFs.

x

(a)

J Q

K

(b)

y

x1

x2

z
D Q

z

Figure 10. Sequential stochastic circuits implementing (a) 𝑍 = 𝑋/(1 + 𝑋)

and (b) 𝑍 = 𝑋1/(𝑋1 + 𝑋2).

x1

Combinational

circuit
Memory

elements

+

xn

y1

yk
yk

+
y1

z

Figure 11. An n-input sequential circuit with k flip-flops.

z

y

x

(a)

D Q

z

y

x

D Q

(b)

Figure 12. Two sequential circuits implementing 𝑍(𝑋) = (2𝑋 − 2) (𝑋 − 2⁄).

However, many optimal combinational stochastic circuits exist. For
example, the sequential edge-detection circuit in [17] is more than 20
times larger than the combinational edge detector of Figure 6.

A drawback of sequential circuits is that they require a transition
(warm-up) period before settling to the desired stationary distribution.
During this period, which can be quite long, the circuit may produce
inaccurate results. Another disadvantage of sequential circuits is that
their behavior is affected by auto-correlation among the SNs. This
refers to the correlation between a SN and its shifted or delayed
versions. Auto-correlation imposes new requirements for the SNGs
used for sequential circuits. Combinational circuits, being memory-
less, are not affected by auto-correlation.

Finally, we note that unlike combinational circuits, a general
design methodology for sequential stochastic circuits is not known.
Most existing methods are limited to chain-structured designs.

5. DISCUSSION
Stochastic computing is a fascinating blend of analog and digital
concepts. By associating data values with signal probabilities, SC
enables analog computation to be performed using digital bit-streams
and circuits. This hybrid approach tends to merge the advantages and
disadvantages of analog and digital. Unsurprisingly, SC is best suited
to applications that benefit most from the advantages (powerful low-
cost primitives and error tolerance) and are least affected by the
disadvantages (low precision, scaling issues, and complex behavior).

We have examined the dual nature of SC from a functional
perspective, starting from the fact that a stochastic circuit implements
both a Boolean function z and a stochastic function Z. Theorem 1
states the basic connection between z and Z. This connection can be
expressed in many different, but equivalent, ways (multi-linear
polynomials, spectral transforms, etc.), some of which have
interesting and potentially useful design implications. By introducing
auxiliary variables and constants, and accounting for phenomena like
correlation and sequential behavior, the range of stochastic functions
and their implementations can be greatly expanded.

Many questions, old and new, about SC remain unanswered. We
have only begun to investigate the full range of stochastic functions
that are realizable, even by relatively small logic circuits. Sequential
stochastic circuits still present many challenges. Most of what we
know about correlation, precision, scalability and the like derives
from studies of circuits involving just a few gates and flip-flops. It
seems likely that many of the problems of building large stochastic
systems have not yet been fully recognized, let alone solved.

ACKNOWLEDGEMENT
This work was supported by Grant CCF-1318091 from the National
Science Foundation.

REFERENCES

[1] Alaghi, A. and Hayes, J.P. 2013. Survey of stochastic computing.
ACM Trans. Embed.Comp. Syst.12, 92:1-92:12.

[2] Alaghi, A. et al. 2013. Stochastic circuits for real-time image-
processing applications. In Proc. DAC, 136:1-136-6.

[3] Alaghi, A. and Hayes, J.P. 2012. A spectral transform approach to
stochastic circuits. In Proc. ICCD, 315-312.

[4] Alaghi, A. and Hayes, J.P. 2013. Exploiting correlation in stochastic
circuit design. In Proc. ICCD, 39-46.

[5] Alaghi, A. and Hayes, J.P. 2014. Fast and accurate computation
using stochastic circuits. In Proc. DATE. 1-4.

[6] Alaghi, A. and Hayes, J.P. 2015. Dimension reduction in statistical
simulation of digital circuits. In Proc. Symp. Theory of Modeling
and Simulation (TMS). To appear.

[7] Brown, B.D. and Card, H.C. 2001. Stochastic neural computation I:
computational elements. IEEE Trans. Computers. 50, 891-905.

[8] Brown, E.N. 2004. Multiple neural spike train data analysis: state-
of-the-art and future challenges. Nature Neuroscience.7, 456-461.

[9] Chen, H. and Han, J. 2010. Stochastic computational models for
accurate reliability evaluation of logic circuits. In Proc. GLSVLSI,
61-66.

[10] Chen, T.H. and Hayes, J.P. 2015. Equivalence among stochastic
logic circuits and its application. In Proc DAC. To appear.

[11] Chippa V.K. et al. 2014. StoRM: a stochastic recognition and
mining processor. In Proc. ISLPED, 39-44.

[12] Gaines, B.R. 1969. Stochastic computing systems. In Advances in
Information Systems Science, Springer. 2, 37-172.

[13] Gross, W.J. et al. 2005. Stochastic implementation of LDPC
decoders. In Proc. Asilomar Conf. 713-717.

[14] Hachtel, G.D. and Somenzi, F. 1996. Logic Synthesis and
Verification Algorithms. Kluwer.

[15] Zhang, R. et al. 2007. Majority and minority network synthesis with
application to QCA-, SET-, and TPL-based nanotechnologies. IEEE
Trans. CAD. 26, 1233-1245.

[16] Knag, P. et al. 2014. A native stochastic computing architecture
enabled by memristors. IEEE Trans. Nanotech. 13, 283-293.

[17] Li, P. et al. 2013. Computation on stochastic bit streams: digital
image processing case studies. IEEE Trans. VLSI. 22, 449-462.

[18] Li, P. et al. 2014. Logical computation on stochastic bit streams with
linear finite-state machines. IEEE Trans. Computers. 63, 1473-1485.

[19] MacLennan, B.J. 2009. Analog computation. In Encyclopedia of
Complexity and System Science, Springer, 271-294.

[20] Onizawa, N. et al. 2014. Analog-to-stochastic converter using
magnetic-tunnel junction devices. In Proc. NANOARCH, 59-64.

[21] Paler, A. et al. 2013. Approximate simulation of circuits with
probabilistic behavior. In Proc. DFT Symp. 95-100.

[22] Parker, K.P. and McCluskey, E.J. 1975. Probabilistic treatment of
general combinational networks. IEEE Trans. Computers. C-24,
668-670.

[23] Poppelbaum, W.J. 1976. Statistical processors. In Advances in
Computers, Academic Press, 187-230, 1976.

[24] Qian, W. et al. 2011. Transforming probabilities with combinational
logic. IEEE Trans. CAD. 30, 1279-1292.

[25] Qian, W. et al. 2011. An architecture for fault-tolerant computation
with stochastic logic. IEEE Trans. Computers. 60, 93-105.

[26] Rossello, J.L. et al. 2010. Hardware implementation of stochastic-
based neural networks. In Proc. IJCNN. 1-4.

[27] Saraf, N. et al. 2013. Stochastic functions using sequential logic. In
Proc. ICCD, 507-510.

[28] Yuan, B and Parhi, K.K. 2015. Successive cancellation decoding of
polar codes using stochastic computing. In Proc. ISCAS. To appear.

[29] Zhang D. and Li, H. 2008. A stochastic-based FPGA controller for
an induction motor drive with integrated neural network algorithms.
IEEE Trans. Industrial Electronics, 55, 551-561.

S1 S2 S3

p1→2

p1→1

p2→1

p2→3

p3→2

p2→2 p3→3

p3→4

Sk

pk-1→k

p4→3 pk→k-1

pk→k

Figure 13. State diagram of a generalized ADDIE ‎[12].

