
1

Multics: Dynamic Linking

Arvind Krishnamurthy
Spring 2004

Multics

n Today: look at Mutics VM
n CTSS: probably the first time-sharing system (1959-1965)

n “Compatible Interactive Time Sharing System”
n Introduced:

n working online

n storing information online
n No protection, off-the-shelf hardware
n 4 consoles running at 110 baud attached to an IBM machine

n Two tape drives/user, swapped programs and data
n Introduced interactive debugging, editors, command-line processors
n Simple, few key ideas, throw out irrelevant, highly successful

Multics (MIT/Bell/GE)

n Multics: “second system effect”
n Huge, complicated, tough to debug, terrible performance

n Designed around 1965
n New hardware, new OS, new programming language

n Multiple processes, separate address spaces, segmentation with 
paging

n Take an interesting idea to the extreme (good research direction!)
n Extreme sharing
n Support sharing & dynamic linking

n Unix: third system
n Understand the limits from the second system, step back, choose 

with taste, pick some key ideas

Key Ideas in Multics VM

n Combine virtual memory & file systems
n Two ways to refer to data: (segment number, offset) and (file name, 

offset); segment is stored on disk or memory
n Kind of like “mmap” for all data

n Fine-grain sharing
n Multics took sharing to the extreme
n Sharing at the level of segments
n Process = many segments (data or code)
n Individual library packages are shared; different subsets of processes share 

different libraries
n Dynamic linking

n Segments can be “made known” at runtime
n Share information and upgrade incrementally

n Autonomy (independent address space per. process)
n Two different libraries might be at different addresses on different 

processes
n Need that if we have to support fine-grain sharing

Static Linking Review

int y;
extern int z;

int foo() {
y = 1;
z = 2;

}
[foo.c]

000: move xxx, r1
004: store 1, (r1)
008: move xxx, r2
00C: store 2, (r2)
010: ret

RELOCATION TABLE:
(remember what addresses
need to be changed)

y: 000
z: 008

[foo.s]

Static Linking Example (contd.)

int z;
extern int y;

int main() {
y = 11;
z = 12;
bar();

}
[bar.c]

000: move xxx, r1
004: store 11, (r1)
008: move xxx, r2
00C: store 12, (r2)
010: jsr xxx
014: ret

RELOCATION TABLE:
y: 000
z: 008
bar: 010

[bar.s]



2

Combined Result

000: move 100, r1
004: store 11, (r1)
008: move 104, r2
00C: store 12, (r2)
010: jsr 018
014: ret
018: move 100, r1
01C: store 1, (r1)
020: move 104, r2
024: store 2, (r2)
028: ret

100: (space for y)
104: (space for z)

Dynamic Linking: Step 1

n Resolving external references at runtime
n Use a level of indirection:

n Initially symbolic references, later become memory references

Indirect Call “libc:fprintf” Indirect Call

n “Link trap” occurs on first reference
n Linker appends the segment to segment table
n Finds the symbol in symbol table for “fprintf”
n Overwrite the pointer to symbolic address
n Return back and retry the instruction

libc:

0xabcd:fprintf

0xabcd

Rewrite Symbolic references

extern int y; /* “foo” */
int z;

int main() {
...
z = y + 1;
...

}

000: ...
004: move 0x100, r2
008: load (r2), r3
00C: load (r3), r4
010: add r4, 1, r5
014: store r5, ...

100: Address: 0x200

200: “foo:y”

Has “symbolic ref” bit set
to cause a link trap

n Add a level of indirection:
n To prevent modifying code
n To share pointer across many 

references

Rewrite Symbolic references

000: ...
004: move 0x100, r2
008: load (r2), r3
00C: load (r3), r4
010: add r4, 1, r5
014: store r5, ...

100: Address: 0x200

200: “foo:y”

000: ...
004: move 0x100, r2
008: load (r2), r3
00C: load (r3), r4
010: add r4, 1, r5
014: store r5, ...

100: Address: 1004 

1000: ...
1004: location of y
1008: ...

foo:

Sharing: Step 2

n Cannot modify code shared by different processes

n Need per-process table for links
n Linkage section: all imports for a given segment, for a given process
n Linkage segment: collection of all linkage sections for a given process

Read X

X: …

P1’s Addr. Space P2’s Addr. Space

Linkage Section

Read I(LP)

X: …

I:

Linkage
Pointer reg.

Linkage
Segment

P1’s Addr. Space P2’s Addr. Space

n Linkage section: links for all external references
n Layout of linkage section same across all processes

n This is the reason why “I” is process-independent



3

Linkage Section Example

Linkage section for “prog”
Has 2 entries:

000: Address 100
004: Address 200

100: “foo::y”
200: “bar::z” 

extern int foo::y;
extern int bar::z;

int progtest() {
...
z = y;
...

}
[prog.c]

000: ...
004: load 0(LP), r2
008: load (r2), r3
00C: load 4(LP), r4
010: store r3, (r4) 

Process so far…

n When process refers to the “prog” segment
n “link trap” happens
n Make code segment “prog” known
n Instantiate linkage section for “prog” in the linkage segment

n Use symbol table, cross-reference list from the object file

n When the code segment refers to the data “foo::y”
n “link trap” happens
n foo’s segment is loaded and foo’s linkage section is instantiated
n Modify address in linkage section for “prog” to point to “foo::y”

n Only problem left: how do you get the linkage pointer 
register point to the right place?

Step 3: Procedure call

n When PC is in segment, LP points to the segment’s linkage 
section

n At every procedure call, change LP
n How to do this?

Procedure Call

n When S1 calls prog::progtest
n Change LP to point to prog’s linkage section

n Then, jump to progtest
n Now progtest’s references will go through prog’s linkage section 

(for the current process only)

call progtest

S1

progtest:

prog S1’s Linkage
section

prog’s Linkage
section

Set LP;
Jump progtest;

Procedure Call (contd.)

n Note that location I in job1’s linkage segment is initially symbolic
n Map code segment of prog
n Instantiate linkage section for prog with 2 instructions per exported 

procedure

call I(LP)

S1

progtest:

prog

S1’s Linkage
segment

prog’s Linkage
segment Set LP to Z

call progtest

I:progtest’

progtest’:

Z:

Questions

n How many link traps does the following code generate:
S1::foo() {

for (j=0; j<10; j++)
call prog::progtest();

}

n How about the following code?
S1::foo() {

call prog::progtest();
…
call prog::progtest();

}

n What happens when there is another segment R that calls 
progtest also?



4

Postscript

n Why so complicated?
n Fine-grained sharing
n Dynamic linking
n Independent address spaces

n For the next 20 years, no one attempted dynamic linking 
and sharing at the same time

n Until MIT takes revenge:
n MIT X-windows: megabytes of X toolkits
n Need shared libraries

n Similar mechanisms are now standard in all major 
operating systems


