
1

Implementing Mutual Exclusion

Arvind Krishnamurthy
Spring 2004

Disable Interrupts

n Uniprocessor only: an operation will be atomic as long as a
context switch does not occur

n Two ways for dispatcher to get control:
n Internal events – thread does something to relinquish the CPU

n External events – interrupts cause dispatcher to take CPU away

n Need to prevent both internal and external events
n Preventing internal events is easy
n Preventing external events require disabling interrupts

n Hardware delays handling of external events

Using interrupts (1)

n Flawed but simple:

Lock::Acquire() { disable interrupts; }

Lock::Release() { enable interrupts; }

n Problems:
n the above may make some user thread never give back CPU

n critical sections can be arbitrarily long --- it may take too long to
respond to an interrupt --- real-time system won’t be happy

n this won’t work for other higher-level primitives such as
semaphores and condition variables

Using interrupts (2)

Key idea: maintain a lock variable and impose mutual exclusion only
on the operations of testing and setting that variable

class Lock { int value = FREE; }

Lock::Acquire() {
Disable interrupts;
while (value != FREE) {

Enable interrupts;
Disable interrupts;

}
value = BUSY;
Enable interrupts;

}

Lock::Release() {
Disable interrupts;
value = FREE;
Enable interrupts;

}

Using interrupts (3)

Key idea: Use a queue to maintain a list of threads waiting for the
lock. Avoid busy-waiting:

class Lock { int value = FREE; }

Lock::Acquire() {
Disable interrupts;
if (value == BUSY) {

Put on queue of threads waiting for lock;
Go to sleep;

// Enable interrupts ? No!
} else {

value = BUSY;
}
Enable interrupts

}

Lock::Release() {
Disable interrupts;
if anyone on wait queue {

Take a waiting thread off wait
queue and put it at the front
of the ready queue;

} else {
value = FREE;

}
Enable interrupts

}

When to re-enable interrupts?

n Before putting the thread on the wait queue ?
n Then Release can check the queue, and not wake the thread up

n After putting the thread on the wait queue but before
going to sleep
n Then Release puts the thread on the ready queue, but the thread

still thinks it needs to go to sleep!
n It will go to sleep and miss the wakeup from Release

n In Nachos, interrupts are disabled when you call
Thread:Sleep; it is the responsibility of the next thread-to-
run to re-enable interrupts.

2

Interrupt disable/enable pattern

Time

Thread A
.
.

Disable interrupt
Sleep

Sleep return
Enable interrupts

.

.

Thread B

Sleep return
Enable interrupts

.

.
Disable interrupts
Sleep

switch

switch

Atomic read-modify-write

n On a multiprocessor, interrupt disable does not provide
atomicity
n other CPUs could still enter the critical section
n disabling interrupts on all CPUs would be expensive

n Solution: HW provides some special instructions
n test&set (most arch) --- read value, write 1 back to memory
n exchange (x86) --- swaps value between register and memory

n compare&swap (68000) --- read value; if value matches register, do
exchange

n load linked and conditional store (MIPS R4000, Alpha)
n read value in one instruction, do some operations, when store occurs, check if

value has been modified in the meantime. If not, ok; otherwise, abort, and jump
back to start.

Locks using test&set (1)

n Flawed but simple:

lock value = 0;

Lock::Acquire() { while (test&set(value) == 1); }

Lock::Release() { value = 0;}

n Problems:
n busy-waiting --- thread consumes CPU while it is waiting

n also known as “Spin” lock
n could cause problems if threads have different priorities

Locks using test&set (2)

Key idea: only busy-wait to atomically check lock value --- if
lock is busy, give up CPU. Use a guard on the lock itself.

Lock::Acquire() {
while (test&set(guard)) // short wait time

;

if (value == BUSY) {
Put on queue of threads waiting for lock;
Go to sleep and set guard to 0

} else {
value = BUSY;
guard = 0;

}
}

Lock::Release() {
while (test&set(guard))

;
if anyone on wait queue {

Take a waiting thread off wait
queue and put it at the front
of the ready queue;

} else {
value = FREE;

}
guard = 0;

}

Test-and-Set on Multiprocessors

n Each processor repeatedly executes a test_and_set
n In hardware, it is implemented as:

n Fetch the old value
n Write a “1” blindly

n Write in a cached system results in invalidations to other
caches

n Simple algorithm results in a lot of bus traffic
n Wrap an extra test (test-and-test-and-set)

lock: if (!location)
if (!test-and-set(location))

return;
goto lock;

Ticket Lock for Multiprocessors

n Hardware support: fetch-and-increment
n Obtain a ticket number and wait for your turn

n Ensures fairness
n Still could result in a lot of bus transactions
n Can be used to build concurrent queues

Lock:
next_ticket = fetch_and_increment(next_ticket)
while (next_ticket != now_serving);

Unlock:
now_serving++;

3

Array Locks

n Problem with ticket locks: everyone is polling the same location
n Distribute the shared value, and do directed “unlocks”

Initialization:
int slots[numProcs] = {has_lock, must_wait,

must_wait, … };
next_slot = 0;

Lock:
my_slot = fetch_and_increment(next_slot);
my_slot = my_slot % numProcs;
while (slots[my_slot] == must_wait);
slots[my_slot] = must_wait;

Unlock:
slots[(my_slot + 1) % numProcs] = has_lock;

Locks Summary

n Supports two operations: acquire and release
n Is easy to write programs with mutual exclusion
n Make accesses to shared data be guarded by a lock

n Implementation of locks:
n Uniprocessor: can use interrupt-enable/disable

n Solution should not require busy-waiting (or spin-locks)
n Typically, requires a queue of threads waiting for each lock

n Multiprocessors:
n Requires special hardware instructions such as test-and-set
n Also need to avoid busy-waiting
n Interesting variants exist that try to minimize bus traffic

generated by locks

Busy-waiting

n Busy-waiting wastes processor cycles
n Might prevent the thread that has the lock from running
n Scenario:

n Thread A has lock but gets context-switched out
n Thread B starts running, decides to acquire lock

n Spins trying to acquire the lock; prevents thread A from making
forward progress (and thus delaying the lock release)

n If threads package does not use preemption (or if thread B has
higher priority), could result in deadlocks

n Non-busy-waiting solutions are better:
n Thread B just goes to sleep if lock is not available
n Thread A executes, makes progress, releases lock, and thread B is

woken up

Priorities, Locks, Scheduling

n Even without spin-locks, there are subtle interactions
between priorities and scheduling and holding locks

n Mars Pathfinder:
n Success story for the

first few days
n Landed with fancy

airbags, released a
“rover”, shot some
spectacular photos of
the Mars landscape

n A few days later after it
started collecting
meteorological data,
system started resetting
itself periodically

Priority Inversion

n “Information bus” shared between:
n Bus manager (high priority)
n Meteorological data gatherer (low priority)
n Reset if bus manager hasn’t run for a while
n Protected by a lock
n If bus manager is scheduled (by context-switching out the data

gatherer), it will sleep for a bit, let the data gatherer run, release the lock

n Another thread: communications task
n medium priority, long-running task
n Sometimes the communications task would get scheduled instead of the

data gatherer è neither the lower priority data gatherer nor the higher
priority bus manager would run

n Works in pairs, but not all three together; resulted in periodic resets

