
1

Semaphores & Monitors

Arvind Krishnamurthy
Spring 2004

Semaphores (Dijkstra 1965)

n Semaphores have a non-negative integer value, and 
support two operations:
n semaphore->P(): an atomic operation that waits for semaphore 

to become positive, then decrements it by 1
n semaphore->V(): an atomic operation that increments 

semaphore by 1, waking up a waiting P, if any.

n Semaphores are like integers except: 
(1) non-negative values;
(2) only allow P&V --- can’t read/write value except to set it initially; 
(3) operations must be atomic: 

-- two P’s that occur together can’t decrement the value below zero. 
-- thread going to sleep in P won’t miss wakeup from V, 

even if they both happen at about the same time.



2

Implementing semaphores

P means “test” (proberen in Dutch)
V means “increment” (verhogen in Dutch)

n Binary semaphores:
n Like a lock; can only have value 0 or 1 (unlike the previous 

“counting semaphore” which can be any non-negative integers)

n How to implement semaphores?  Standard tricks:
n Can be built using interrupts disable/enable
n Or using test-and-set

n Use a queue to prevent unnecessary busy-waiting
n Question: Can we build semaphores using just locks?

Using interrupts

class Semaphore { int value = 0; }

Semaphore::P()   { 
Disable interrupts;
while (value == 0) {

Enable interrupts;
Disable interrupts;

} 
value = value - 1;
Enable interrupts;

}

Semaphore::V()   { 
Disable interrupts;
value++;
Enable interrupts;

}



3

Using test&set

class Semaphore { int value = 0; 
int guard = 0; }

Semaphore::P()   { 
while (test&set(guard))  // short wait time

;

if (value == 0) {
Put on queue of threads waiting for lock;
Go to sleep and set guard to 0

} else {
value = value - 1;
guard = 0;

}
}

Semaphore::V()   { 
while (test&set(guard))

;
if  anyone on wait queue {

Take a waiting thread off wait 
queue and put it at the front 
of the ready queue;

} else {
value = value + 1;

}
guard = 0;

}

How to use semaphores

n Binary semaphores can be used for mutual exclusion:
initial value of 1; P() is called before the critical section; and V() is called after the 
critical section.

semaphore->P();
// critical section goes here
semaphore->V();

n Scheduling constraints 
n having one thread to wait for something to happen

n Example: Thread::Join, which must wait for a thread to terminate. By 
setting the initial value to 0 instead of 1, we can implement waiting on 
a semaphore

n Controlling access to a finite resource



4

Scheduling constraints

n Some thread must wait for some event
n For instance, thread join can be implemented using 

semaphores

Initial value of semaphore = 0;
Fork a child thread
Thread::Join calls P     // will wait until something 

// makes the semaphore positive
-------------------------------------------------------------------------

Thread finish calls V    // makes the semaphore positive
// and wakes up the thread
// waiting in Join

n Question: Can we implement thread join with just locks and unlocks?

n In general:
n scheduling dependencies between threads T1, T2, …, Tn can be 

enforced with n-1 semaphores, S1, S2, …, Sn-1
n T1 runs and signals V(S1) when done.
n Tm waits on Sm-1 (using P) and signals V(Sm) when done.

n Contrived example: schedule print(f(x,y))
float  x, y, z;
sem   Sx = 0, Sy = 0, Sz = 0;
T1: T2: T3:

x = …; P(Sx); P(Sz);
V(Sx); P(Sy); print(z);
y = …; z = f(x,y); …
V(Sy); V(Sz);
…                       ...

Scheduling with Semaphores



5

n Example:
n cpp file.S | as

Producer Consumer

Example: producer-consumer 
with a bounded buffer

Producer-consumer: problem definition

n Producer puts things into a shared buffer; consumer takes them out. 
n Need synchronization for coordinating producer and consumer

n Don’t want producer and consumer to have to operate in lockstep
n so put a fixed-size buffer between them
n need to synchronize access to this buffer
n Producer needs to wait if buffer is full
n Consumer needs to wait if buffer is empty
n Semaphores are used for both mutex and scheduling

n Example coke vending machine:
n Consumers are students/faculty
n Producer is the delivery person



6

Producer-consumer with semaphores (1)

n Correctness constraints
n consumer must wait for producer to fill buffers, if all empty (scheduling 

constraint)
n producer must wait for consumer to empty buffers, if all full 

(scheduling constaint)
n Only one thread can manipulate buffer queue at a time (mutual 

exclusion)

n General rule of thumb: use a separate semaphore for each constraint
Semaphore fullBuffers;                       // consumer’s constraint

// if 0, no coke in machine
Semaphore emptyBuffers;                  // producer’s constraint

// if 0, nowhere to put more coke
Semaphore mutex;                            // mutual exclusion

Announcements

n Zheng Ma’s office hours
n Design document structure and scope
n Paper review for “Scheduler Activations” paper: next 

Wednesday



7

Monitors & condition variables

n Locks provide mutual exclusion to shared data
n Semaphores help handle scheduling constraints

n Semaphore utility is overloaded:
n dual purpose: mutual exclusion and scheduling constraints. 

n Monitors make things easier: 
n “locks” for mutual exclusion
n “condition variables” for scheduling constraints

n Monitor definition:
n a lock and zero or more condition variables for managing 

concurrent access to shared data

Synchronized Lists

n With semaphores, you could maintain a counter on number of 
elements in the list
n Perform a semaphore-decrement on the counter before trying to obtain the 

lock
n What if you wanted to support a “peek” operation on the list?  Multiple 

threads could be waiting for an element to appear; need to wake them all 
up

n What if a thread wants to wait for a general non-counter based program 
condition

n Can be done using semaphores, but would like a better high level construct

AddToQueue()
{

lock.Acquire();           // lock before use
put item on queue;     // ok to access
lock.Release();           // unlock after done

}

RemoveFromQueue()
{

lock.Acquire(); 
if something on queue        // can we wait? 

remove it;
lock->Release();                    
return item;

}



8

Condition variables

n How to make RemoveFromQueue wait until something is on the 
queue?
n can’t sleep while holding the lock
n Key idea: make it possible to go to sleep inside critical section, by 

atomically releasing lock at same time we go to sleep.

n Condition variable: a queue of threads waiting for 
something inside a critical section.
n Wait() --- Release lock, go to sleep, re-acquire lock

n release lock and going to sleep is atomic
n Signal() --- Wake up a waiter, if any
n Broadcast() --- Wake up all waiters

Synchronized queue

n Rule: must hold lock when doing condition variable 
operations

AddToQueue()
{

lock.Acquire(); 

put item on queue;     
condition.signal();

lock.Release();         
}

RemoveFromQueue()
{

lock.Acquire(); 

while nothing on queue
condition.wait(&lock); 

// release lock; go to      
// sleep; reacquire lock

remove item from queue;
lock->Release();                    
return item;

}



9

Mesa-style vs. Hoare-style 

n Mesa-style (Nachos, most real OS):
n Signaler keeps lock, processor
n Waiter simply put on ready queue, with no special priority

(in other words, waiter may have to wait for lock again)

n Hoare-style (most theory, textbook):
n Signaler passes lock, CPU to waiter; waiter runs immediately
n Waiter gives lock, processor back to signaler when it exits critical 

section or if it waits again

n For Mesa-semantics, you always need to check the 
condition after wait (use “while”). For Hoare-semantics you 
can change it to “if”.

Producer-consumer with monitors

Condition full;      
Condition empty; 
Lock lock; 

int numInBuffer = 0;

Producer() {
lock.Acquire();

while (numInBuffer == MAX_BUFFER)
full.wait(&lock);

put 1 Coke in machine; numInBuffer++;

empty.signal();
lock.Release();

}

Consumer() {
lock.Acquire();

while (numInBuffer == 0)
empty.wait(&lock);

take 1 Coke;  numInBuffer--;

full.signal();
lock.Release();

}



10

n High-level data abstraction that unifies handling of:
n Shared data, operations on it, synch and scheduling

n All operations on data structure have single (implicit) lock
n An operation can relinquish control and wait on condition

n Java from Sun; Mesa/Cedar from Xerox PARC

n Monitors easier and safer than semaphores
n Compiler can check, lock implicit (cannot be forgotten)

// only one process at time can update instance of Q
class Q {

int head, tail;  // shared data
synchronized void enq(v) { locked access to Q instance }
synchronized int deq() { locked access to Q instance }

}

Monitors Support in Languages


