
1

Log Structured FS

Arvind Krishnamurthy
Spring 2004

Log Structured File Systems

n Radical, different approach to designing file systems

n Technology motivations: some technologies are advancing
more faster than others
n CPU are getting faster every year (x2 every 1-2 years)
n Everything else except CPU will become a bottleneck (Amdahl’s

law)
n Disks are not getting much faster
n Memory is growing in size dramatically (x2 every 1.5 years)
n File systems è File caches are a good idea (cut down on disk

bandwidth)

2

Motivation (contd.)

n File System motivations:
n File caches help reads a lot
n File caches do not help writes very much
n Delayed writes help but cannot delay for ever
n File caches make disk writes more frequent than disk reads
n Files are mostly small -- too much synchronous I/O
n Disk geometries not predictable
n RAID: whole bunch of disks with data striped across them

n Increases bandwidth, but does not change latency
n Does not help small files (more on this later)

LFS Writes

n Treat disk as a tape!

n Buffer recent writes in memory
n Log append only – no overwrite in place
n Log is the only thing on disk! Main storage structure

n When you create a small file (less than a block):
n Write data block to memory log
n Write file inode to memory log
n Write directory block to memory log
n Write directory inode to memory log

n When memory accumulates to say 1MB or say 30 seconds have
elapsed, write log to disk as a single write

n No seeks for writes

n But inodes are now floating

3

Floating I-nodes

n Need to keep track of current position of inodes
n Requires an “I-node-map”
n I-node-map could be large (as many entries as there are

files in the file system)
n Break I-node-map into chunks and cache them
n write out on the log those chunks that have changed

n Created a new problem!
n How to find the chunks of I-node-map?
n Create an I-node-map-map

n Have we solved the problem now?
n I-node-map-map is small enough to be always cached in memory
n It is small enough to be written to a fixed (and small position) on

the disk (checkpoint region)
n Write the I-node-map-map when filesystem is unmounted

Traditional Unix

n I-nodes stay fixed

n I-number translates
to a disk location

n FFS splits this array
but approach is
similar

4

LFS: floating inodes

When write:
n Append data,

inode, piece of
inode-map to the
log

n Record location of
piece of inode
map in map of
inode map (in
memory)

n Checkpoint map
of inode map
once in a while

LFS Data structures

When read:
n From map map, to

inode map, to
inode to block

n Get some locality
in inode map

n Cache a lot of hot
pieces of inode
map

n Number of I/Os
per read: a little
worse than FFS

5

LFS Data structures (contd.)

When recover:
n Read checkpoint,

get map of map

n Roll forward in
log to update
map of map

Wrap Around Problem

n Pretty soon you run out of space on the disk

n Log needs to wrap around

n Two approaches:
n Compaction
n Threading

n Sprite (first implementation of LFS):
n Combination of the two; open up free segments & avoid

copying

6

Compaction

n Works fine if you have a mostly empty disk
n But suppose 90% utilization:

n Write 10%
n Compact: (read 90%, write 90%)
n Creates 10% new free space
n Spend 95% of time copying

n Should avoid compacting stuff that doesn’t change

Threading

n Free space gets fragmented
n Pretty soon your runs start approaching minimum allocation size
n Same argument as not having large blocks and small fragments in FFS

7

Combined Solution

n Want benefits of both:
n Compaction: big free space
n Threading: leave long living things in place so they aren’t copied again and

again

n Solution: “segmented log”
n Chop disk into a bunch of large “segments”
n Compaction within segments
n Threading among segments
n Always write to the “current clean” segment before moving onto next one
n Segment cleaner: pick some segments and collect their live data together

Recap

n In LFS, everything is stored in a single log
n Carry over the data-blocks and I-node data structures from Unix
n Buffer writes and write them to disk as a sequential log
n Use inode-map and inode-map-map to keep track of floating I-

nodes
n Cache (in memory) typically minimizes the cost of the extra levels

of indirection
n Inode-map-map and pieces of inode-map are cache in memory

8

Cleaning

n Eventually the log could fill the entire disk
n Reclaim the holes in the log. Two approaches:

n Compaction of entire disk
n Threading over live data

n LFS uses a hybrid strategy. Divides disk into “segments”
n Threads over non-empty segments
n Segments guarantee that seek costs are amortized
n Every once in a while, picks a few segments, compacts them to

generate empty segments

Cleaning Process

n When to clean?
n When the number of free segments falls below a certain threshold

n Choosing a segment to clean:
n Will be based on amount of live data it contains
n Segment usage table: tracks number of live bytes in each segment

n When you rewrite I-nodes/data blocks, find the old segment in
which they used to live, and decrement the usage count for the
old segment

9

Cleaning Process (contd.)

n How to clean?
n Need to identify all of the live data in the segment
n Segment summary block stores I-numbers (for I-nodes) and

(I-number, block-number) for each data block
n Check whether the corresponding data block still lives in

that segment
n Optimize this process by storing a version number with

each I-number
n when a file is deleted, increment this version number

Cleaning Cost

n Write cost = total_I/O / new_writes = (1+u+1-u)/(1-u) = 2/(1-u)
n u better be small or it is going to hurt performance

10

Cleaning Goals

n Want bimodal distribution:
n Small number of low-utilized segments

n So that cleaner can always find easy segments to clean
n Large number of highly-utilized segments

n So that disk is well utilized

segs

u

Greedy Cleaner

n Greedy cleaner: pick the
lowest “u” to clean

n Workload #1: uniform
(pick random files to
overwrite)

n Workload #2: hot-cold
workload (90% of the
updates to 10% of the
files)

11

Greedy Cleaner

n Greedy strategy is not
creating a bimodal
distribution

n Slow moving
segments likely to
make the cleaning
threshold high

n Separation of data
into hot & cold data
also didn’t help

Better Approach

n Cold segment space more valuable: if you clean cold segments, takes
them longer to come back

n Hot free space is less valuable: might as well wait a bit longer

12

Cost-Benefit Analysis

n Optimize for benefit/cost = age*(1-u)/(1+u)
n Pick segments to clean based on highest “benefit/cost” value

Postscript

n Results:
n 10x performance for small writes
n Similar for large I/O performance
n Terrible for sequential read after random writes
n Fast recovery (support for transactional semantics)

n Then the fight started…
n Margo Seltzer wrote Usenix papers that reported unfavorable

performance of LFS
n Resulted in a big controversial web warfare
n Both sides made valid points. The debate was:

n What’s a representative workload?
n How to draw the line between implementation artifacts and

fundamental flaws of the approach?

13

When is LFS good?

n LFS does well on
“common” cases

n LFS degrade for
“corner” cases

Why this is good research?

n Driven by keen awareness of technology trend

n Willing to radically depart from conventional practice

n Yet keep sufficient compatibility to keep things simple and
limit grunge work

n Provide insight with simplified math

n Simulation to evaluate and validate ideas

n Solid real implementation and measurements

14

Announcements

n Design review meetings:
n Tomorrow from 2-4pm
n Thursday from 2-4pm with Zheng Ma

n Suggested background readings:
n RAID paper
n Unix Time Sharing System paper

RAIDs and availability

n Suppose you need to store more data than fits on a single disk (e.g.,
large database or file servers). How should arrange data across disks?

n Option 1: treat disks as huge pool of disk blocks
n Disk1 has blocks 1, 2, …, N
n Disk2 has blocks N+1, N+2, …, 2N
n …………

n Option 2: Stripe data across disks, with k disks:
n Disk1 has blocks 1, k+1, 2k+1, …
n Disk2 has blocks 2, k+2, 2k+2, …
n …………

n What are the advantages/disadvantages of the two options?

15

Array of Disks

n Storage system performance factors:
n Throughput: number of requests satisfied per second
n Single request metric: latency and bandwidth (could vary for reads and

writes)

n RAID 0: improves throughput, does not affect latency
n RAID 1: duplicate writes; improves read performance (can choose

closest copy, transfer large files at aggregate bandwidth of all disks)
n Improves reliability (extra copy always available)

More RAID Levels

n No need for complete duplication to achieve reliability
n Use parity bits:

n One scheme: interleave at the level of bits, store parity bit in parity
disk

n Another scheme: interleave at the level of blocks, store parity block
in parity disk
n Reads < block size: access only one disk (better throughput than

RAID 3)

16

Writes to RAID 4

n Large writes which accesses all disks (say, a stripe of
blocks)
n Compute the parity block and store it on the parity disk

n Small writes. Two options:
n Read current stripe of blocks, compute parity with the new block,

write parity block
n Better option:

n Read current version of block being written
n Read current version of parity block
n Compute how parity would change:

n If a bit on block changed, the corresponding parity bit needs to be
flipped

n Write new version of block
n Write new version of parity block

n Disk containing parity block is updated on all writes

Distributed Parity

n Parity blocks are distributed across disks
n Spreads load evenly
n Multiple writes could potentially be serviced at the same time
n All disks can be used for servicing reads

17

Comparison

n RAID-5 vs. normal disks:
n RAID-5: better throughput, better reliability, good bandwidth for

large reads, small waste of space
n Normal disks: perform better for small writes

n RAID-1 vs. RAID-5: Which is better?
n RAID-1 wastes more space
n For small writes: RAID-1 is better

n HP-AutoRAID system:
n Stores hot data in RAID-1
n Cold data in RAID-5
n Does automatic background propagation of data as working set

changes

