* Log Structured FS

Arvind Krishnamurthy
Spring 2004

Log Structured File Systems

= Radical, different approach to designing file systems

= Technology motivations: some technologies are advancing
more faster than others

CPU are getting faster every year (x2 every 1-2 years)

Everything else except CPU will become a bottleneck (Amdahl’s
law)

Disks are not getting much faster
Memory is growing in size dramatically (x2 every 1.5 years)

File systems =» File caches are a good idea (cut down on disk
bandwidth)




Motivation (contd.)

= File System motivations:

File caches help reads a lot

File caches do not help writes very much

Delayed writes help but cannot delay for ever

File caches make disk writes more frequent than disk reads

Files are mostly small -- too much synchronous 1/0

Disk geometries not predictable

RAID: whole bunch of disks with data striped across them
= Increases bandwidth, but does not change latency
= Does not help small files (more on this later)

LFS Writes

Treat disk as a tape!

Buffer recent writes in memory

Log append only — no overwrite in place
Log is the only thing on disk! Main storage structure

When you create a small file (less than a block):

Write data block to memory log
Write file inode to memory log
Write directory block to memory log
Write directory inode to memory log

When memory accumulates to say 1MB or say 30 seconds have

elapsed, write log to disk as a single write

No seeks for writes

But inodes are now floating




Floating I-nodes

= Need to keep track of current position of inodes

= Requires an “l-node-map”

= |-node-map could be large (as many entries as there are
files in the file system)

= Break I-node-map into chunks and cache them
= write out on the log those chunks that have changed

= Created a new problem!
= How to find the chunks of I-node-map?
= Create an I-node-map-map

= Have we solved the problem now?
= |-node-map-map is small enough to be always cached in memory

= Itis small enough to be written to a fixed (and small position) on
the disk (checkpoint region)
= Write the I-node-map-map when filesystem is unmounted

Traditional Unix

= |-nodes stay fixed

HK‘\‘ name | E-number
- = |-number translates
- to a disk location

= FFS splits this array
but approach is

i'. i-n;;ﬁuam‘ibms pulnl.-c-:s—F- - similar
:'4 —
| ATCT BT |
No | . [
26 ——
2. | =x | Gl 3
i WO o Jile blocks

f-mnle fexbie




LFS: floating inodes

When write:

= Append data,
inode, piece of
inode-map to the
log

= Record location of
piece of inode
map in map of
inode map (in
memory)

= Checkpoint map
of inode map
once in a while

LFS Data structures

When read:

= From map map, to
inode map, to
inode to block

= Get some locality
in inode map

= Cache a lot of hot
pieces of inode
map

= Number of 1/0s
per read: a little
worse than FFS




* LFS Data structures (contd.)

When recover:

= Read checkpoint,
get map of map

= Roll forward in
log to update
map of map

* Wrap Around Problem

= Pretty soon you run out of space on the disk
= Log needs to wrap around

= Two approaches:
= Compaction
= Threading

= Sprite (first implementation of LFS):

=« Combination of the two; open up free segments & avoid
copying




Compaction

{

= Works fine if you have a mostly empty disk

But suppose 90% utilization:
= Write 10%
= Compact: (read 90%, write 90%)
= Creates 10% new free space
= Spend 95% of time copying
Should avoid compacting stuff that doesn’t change

Threading

R
T EE =

Free space gets fragmented
Pretty soon your runs start approaching minimum allocation size
Same argument as not having large blocks and small fragments in FFS




Combined Solution

Al

;.

Want benefits of both:

Compaction: big free space
Threading: leave long living things in place so they aren’t copied again and
again

Solution: “segmented log”

Chop disk into a bunch of large “segments”

Compaction within segments

Threading among segments

Always write to the “current clean” segment before moving onto next one
Segment cleaner: pick some segments and collect their live data together

Recap

= In LFS, everything is stored in a single log

Carry over the data-blocks and I-node data structures from Unix
Buffer writes and write them to disk as a sequential log
Use inode-map and inode-map-map to keep track of floating I-
nodes
Cache (in memory) typically minimizes the cost of the extra levels
of indirection

= Inode-map-map and pieces of inode-map are cache in memory




Cleaning

= Eventually the log could fill the entire disk
= Reclaim the holes in the log. Two approaches:
=« Compaction of entire disk
« Threading over live data
= LFS uses a hybrid strategy. Divides disk into “segments”
= Threads over non-empty segments
= Segments guarantee that seek costs are amortized

= Every once in a while, picks a few segments, compacts them to
generate empty segments

Cleaning Process

= When to clean?
= When the number of free segments falls below a certain threshold

= Choosing a segment to clean:
= Will be based on amount of live data it contains
= Segment usage table: tracks number of live bytes in each segment

= When you rewrite I-nodes/data blocks, find the old segment in
which they used to live, and decrement the usage count for the
old segment




Cleaning Process (contd.)

= How to clean?
= Need to identify all of the live data in the segment

= Segment summary block stores I-numbers (for I-nodes) and
(I-number, block-number) for each data block
= Check whether the corresponding data block still lives in
that segment
= Optimize this process by storing a version number with
each I-number
when a file is deleted, increment this version number

Cleaning Cost

= Write cost = total_1/0O / new_writes = (1+u+1-u)/(1-u) = 2/(1-u)
= U better be small or it is going to hurt performance

Write ciost
K ¢ Log-siructured
12.0 i
mg-+--—---—--—--——- ) . .. ______
EO i
6.0 A

4. i
. - — - FFS improved

ﬂ.‘} ....................;..........;................. {
00 0 04 06 0B 10
Fraction alive in segment cleanad (4)




Cleaning Goals

A

# segs

= Want bimodal distribution:

= Small number of low-utilized segments

v

= So that cleaner can always find easy segments to clean

= Large number of highly-utilized segments

= So that disk is well utilized

Greedy Cleaner

Fraction of segments )

0007

0,006 y \
0.005 o
0.001 - Hecal oo

0.000
(.000
0.001

02 04 06 OB 10

5 ilizat

. Unifoun

Greedy cleaner: pick the
lowest “u” to clean

Workload #1: uniform
(pick random files to
overwrite)

Workload #2: hot-cold
workload (90% of the
updates to 10% of the
files)

10



Greedy Cleaner

Fraction u[‘_sq:gmcuﬁ
0.008 : :
0007 -

0.006 - .
0.005

0.004 -~
0003
0.002
0001

0000 - T T
00 02 04 0

LI

Scgment utilization

hot fish get thrown hack
and quickly come back

cold I'iiah piling up

| Plocamdcald

 Unifomm

6 08 10

Greedy strategy is not
creating a bimodal
distribution

Slow moving
segments likely to
make the cleaning
threshold high

Separation of data
into hot & cold data
also didn’t help

Better Ap

proach

Fraction of segments ]

0.008 J
0.007
0.006 -
0.005 -
0.004 -
0.003 -
0.002 -
0.001 -

3%
Let hot fish -
swim farther

0.000

D? 04 Q6 O0OF 10
Segment utilization

aft

ealwer

. LPS Cogt-Benefit

_ LFS Greedy

cold

= Cold segment space more valuable: if you clean cold segments, takes
them longer to come back

= Hot free space is less valuable: might as well wait a bit longer

11



Cost-Benefit Analysis

= Optimize for benefit/cost = age*(1-u)/(1+u)
= Pick segments to clean based on highest “benefit/cost” value

Write cost
L Mo varlance
128 | LFS Gready
100-- FF3 today
8.0 i
o : LFS Com-Bened
20 i
G .U TR TTTTeT T ? AEERIAEER AN AR AR AR ? s uuq;uu
0o 02 04 Oe O0F LD
[hisk capacity utilization
Postscript
= Results:

= 10x performance for small writes

= Similar for large 1/0 performance

= Terrible for sequential read after random writes

= Fast recovery (support for transactional semantics)

= Then the fight started...

= Margo Seltzer wrote Usenix papers that reported unfavorable
performance of LFS

= Resulted in a big controversial web warfare
= Both sides made valid points. The debate was:
« What's a representative workload?

= How to draw the line between implementation artifacts and
fundamental flaws of the approach?




= LFS does well on
“common” cases

Bursty L),

Lots Small Weltes, \ s LFS degrade for

Mon-random Yy rites “ »

Low Disk Utilization, corner- cases
Fast Recovery, J

REAlrs

i Why this is good research?

Driven by keen awareness of technology trend
= Willing to radically depart from conventional practice

= Yet keep sufficient compatibility to keep things simple and
limit grunge work

= Provide insight with simplified math
= Simulation to evaluate and validate ideas

= Solid real implementation and measurements

13



Announcements

= Design review meetings:

= Tomorrow from 2-4pm
= Thursday from 2-4pm with Zheng Ma

= Suggested background readings:

= RAID paper
= Unix Time Sharing System paper

RAIDs and availability

Suppose you need to store more data than fits on a single disk (e.g.,
large database or file servers). How should arrange data across disks?

Option 1: treat disks as huge pool of disk blocks
= Diskl has blocks 1, 2, ..., N
= Disk2 has blocks N+1, N+2, ..., 2N

Option 2: Stripe data across disks, with k disks:
= Diskl has blocks 1, k+1, 2k+1, ...
= Disk2 has blocks 2, k+2, 2k+2, ...

What are the advantages/disadvantages of the two options?

14



Array of Disks

HEEE

Wom-Redondam {FA.II‘J L | 0

SEEEEEEE

Mirrored (RATD Level 1)

= Storage system performance factors:
= Throughput: number of requests satisfied per second

= Single request metric: latency and bandwidth (could vary for reads and
writes)

= RAID 0: improves throughput, does not affect latency

= RAID 1: duplicate writes; improves read performance (can choose
closest copy, transfer large files at aggregate bandwidth of all disks)
= Improves reliability (extra copy always available)

More RAID Levels

|3:. )

Eu: ].nr,::rlnwe m1|3rl:R AN Leve

=
SES= |

Black-Interleaved Pasiry (RAID Lt'-t] 3

= No need for complete duplication to achieve reliability
= Use parity bits:
= One scheme: interleave at the level of bits, store parity bit in parity
disk
= Another scheme: interleave at the level of blocks, store parity block
in parity disk

= Reads < block size: access only one disk (better throughput than
RAID 3)

15



i Writes to RAID 4

= Large writes which accesses all disks (say, a stripe of
blocks)
= Compute the parity block and store it on the parity disk

= Small writes. Two options:

= Read current stripe of blocks, compute parity with the new block,
write parity block

= Better option:
= Read current version of block being written
= Read current version of parity block
= Compute how parity would change:

If a bit on block changed, the corresponding parity bit needs to be
flipped

= Write new version of block
= Write new version of parity block

= Disk containing parity block is updated on all writes

Distributed Parity

S=ES==

Block-Interleaved Distibawed-Paity (RAID Level 5}

= Parity blocks are distributed across disks
= Spreads load evenly
= Multiple writes could potentially be serviced at the same time
= All disks can be used for servicing reads

16



Comparison

s RAID-5 vs. normal disks:

RAID-5: better throughput, better reliability, good bandwidth for
large reads, small waste of space

Normal disks: perform better for small writes

= RAID-1 vs. RAID-5: Which is better?

RAID-1 wastes more space
For small writes: RAID-1 is better

= HP-AutoRAID system:

Stores hot data in RAID-1
Cold data in RAID-5

Does automatic background propagation of data as working set
changes

17



