
1

Remote Procedure Calls

Arvind Krishnamurthy
Spring 2003

Remote Procedure Call

n Classic RPC System: Birrell, Nelson
n Different kind of protocol from TCP
n Not designed for one-way flow
n Request-response style of interaction (client-server style)
n Lightweight

n Ideally suited for single ethernet/LAN;
n no long distance communication
n no round-trip calculation
n no sliding window, etc.

n Very little state associated with it

n Procedure model:
n execute code on remote machine

n return result

Java Remote Method Invocation

n Object oriented version of RPC
n Key components/class definitions in RMI:

n Name server (provides location information of services)
n Interface definition of server code
n Implementation of server
n Implementation of client

n Example: date server interface definition

import java.rmi.*;
import java.rmi.server.*;
import java.util.Date;

public interface DateServer extends Remote {
public Date getDate() throws RemoteException;

}

RMI Server Code

import java.rmi.*;
import java.rmi.server.*;
import java.util.Date;

public class DateServerImpl
extends UnicastRemoteObject implements DateServer {

public DateServerImpl() throws RemoteException { }
public Date getDate() {

return new Date();
}
public static void main(String() args) {

DateServerImpl dateServer = new DateServerImpl();
Naming.bind(“Date Server”, dateServer);

}
}

RMI Client Code

import java.rmi.Naming;
import java.util.Date;

public class DateClient {
public static void main(String[] args) {

DateServer dateServer =
(DateServer)Naming.lookup(“rmi://” + args[0] +

“/Date Server”);
Date when = dateServer.getDate();
System.out.println(when);

}
}

Name Server

n Allow runtime binding of clients to servers
n Basically a table

n Can be made more fancy with server attributes/geographical preferences
etc.

n Central place to perform access control
n Fail over: if server fails, use another
n Provides the bootstrapping mechanism:

n Need to know where the name server is running

n Java remote objects are represented by:
n Machine (ip address)
n Port number where the server is listening on
n Unique object id number inside the machine

n In Java, start name server by running the command: “rmiregistry”

2

Garbage collection

n Problem: Java garbage collects objects that are not being
used (referenced)

n Ideal solution: perform distributed garbage collection
n Difficult, requires global coordination (stop everyone and collect

garbage)
n Inefficient

n Java solution:
n RMI support code keeps track of who is actively using the remote

objects
n Pings periodically to check whether client is alive
n While client is alive:

n Keeps a pointer to the object in a table (not really use the
object, but just hang on to a reference so object is not garbage
collected)

RPC

n Characteristics:
n Synchronous
n Little data

n Performance dominated by latency issues

n Which one is better?
n Message based model, or
n Procedure based model

n Easier programming model
n Depends on application

Remote procedure call

n Call a procedure on a remote machine
n Client calls: remoteFileSys->Read (“foo”)
n Translated into call on server: fileSys->Read(“foo”)

n Implementation: (1) request-response message passing (2) “stub”
provides glue on client/server

call bundle args send
Client ClientStub PacketHandler

return unbundle retvals receive

network
transport

return bundle retvals send
Server ServerStub PacketHandler

call unbundle args receive

Implementation (cont’d)

n Client stub
n build message
n send message
n wait for response
n unpack reply
n return result

n Server stub
n create N threads to wait for work to do
n loop: wait for command

decode and unpack request parameters
call procedure
build reply message with results
send reply

Implementation issues

n Stub generator --- generates stub automatically.
n For this, only need procedure signature --- types of arguments, return

value.
n Generates code on client to pack message, send it off
n On server to unpack message, call procedure

n Input: interface definitions in an interface definition language (IDL)
n Output: stub code in the appropriate source language (C, C++, Java,

…)
n Stub generator in Java: “rmic”
n Examples of other modern RPC systems:

n CORBA (Common Object Request Broker Architecture)
n DCOM (Distributed COM)
n Microsoft Ole

Announcements

n Readings for next week:
n Background reading: “Unix Security”
n Paper review for “Authentication in distributed systems” due on

Monday

3

Stub Code Issues

n Arguments, results are passed by value
n Simple case: procedure take two integers and a short

n More complex case (supported in some Java implementations): object
contains pointers to other objects

n Consider: object with a pointer to another object and two ints
n Need to optimize for sharing
n Reverse operation performed while unpacking

int: 4 int: 4 short: 2

index: 12 int: 4 int: 4 second object …

Implementation Details

n Client can’t locate the server
n Procedure returns error upon binding time

n Request and reply messages are acknowledged; do timeout
and retransmit

n All requests are accompanied by a sequence number for
the client

n Server maintains per client:
n Sequence number of last request

n Result generated by last request

RPC Failure Situations

n If no acknowledgement to request:
n Caller retransmits
n If request message was lost, callee just sees the request as a new request
n If acknowledgement was lost, callee uses request sequence number to

identify duplicate requests

n If no acknowledgement to reply:
n Callee retransmits
n If reply message was lost, caller just gets one unique reply
n If acknowledgement was lost, caller uses the request sequence number

(for which this reply was the result) to identify duplicate replies

n Server crash: use another one.
n Client crash

n log RPC calls and then ask server to kill orphans upon recovery
n Wait for a while before reusing sequence numbers

Performance

n Typically: one packet for args, one for results
n Each packet must be acknowledged

n Piggyback the acknowledgement to the result
n Result acknowledges the request
n Next request acknowledge the previous result
n Server state: table of caller sequence ids; can be flushed after a

while

n Long call: client retransmits, server acknowledges the second
request, client prods periodically

request: 1000

reply: 1000

request: 1001

Performance (contd.)

n Large messages: (file blocks not fitting in a packet)
n Acknowledge per packet
n Doubles packets, adds latency
n Alternative: stream data, send back a bit-mask of

acknowledgements
n Extra complexity is probably worth-while
n Performance: 1.2ms/call in original RPC implementation

n 2000-5000 instructions
n 100us (best today?)
n 3-4x kernel call

n Overheads:
n Two copies into kernel and two copies out of kernel
n Two marshalls and two un-marshalls
n Two context switches on server and two on client

Cross-Domain Communication

n How do address spaces communicate with one another?
n File system
n Shared memory segments
n Pipes
n Alternative: “remote” procedure calls

n RPCs can be used to communicate between address spaces on
different machines or between address spaces on the same machine

n Microkernel operating systems:

File system

windowing

networking threads

VM

App App App App filesys windowing

Monolithic OS Kernel

VM RPC

threads

Microkernel

4

Microkernel advantages

n Why split OS into separate domains?
n Fault isolation: bugs are more isolated (builds a firewall)
n Enforces modularity

n Allows incremental upgrades of pieces of servers
n Can have multiple types of file systems running simultaneously

n Location transparency:
n Service can be local or remote
n Example: x-windowing system

