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CPU Scheduling

Question: dispatcher can choose any thread on the ready queue to run;
how to decide and which to choose?

= Depends on scheduling policy goals
= minimize response time : elapsed time to do an operation (or job)
= Response time is what the user sees: elapsed time to
= echo a keystroke in editor
= compile a program
= run a large scientific problem

=  maximize throughput : operations (jobs) per second
= two parts to maximizing throughput
= minimize overhead (for example, context switching)

=« efficient use of system resources (not only CPU, but disk, memory,
etc.)

= fair : share CPU among users in some equitable way




First Come First Served

= Example: Process Exec. Time
P, 24
P, 3
P, 3

= Suppose that the processes arrive in the order: P, , P, , P4
The schedule is:

0 24 27 30

= Waiting time for P, =0; P, = 24; P,= 27
= Average waiting time: (0 + 24 + 27)/3 =17
= Average response time: (24 + 27 + 30)/3 = 27

FCFS scheduling (cont'd)

Suppose that the processes arrive in the order
P2 ] P3 ] Pl .
= The time chart for the schedule is:

0 3 6 30
= Waiting time for P, = 6;P, = 0.P;= 3
= Average waiting time: (6 +0 + 3)/3 =3
= Average response time: (30 + 3 + 6)/3 = 13

= FCFS Pros: simple; Cons: short jobs get stuck behind long jobs




Shortest-Job-First (SJF)

= Associate with each process the length of its exec. time
= Use these lengths to schedule the process with the shortest time

= Two schemes:

= Non-preemptive — once given CPU it cannot be preempted until
completes its quota.

= preemptive — if a new process arrives with less work than the
remaining time of currently executing process, preempt.

= SJF is optimal but unfair
= Pros: gives minimum average response time
= cons: long-running jobs may starve if too many short jobs;
= difficult to implement (how do you know how long job will take)

Non-preemptive SJF

Process Arrival Time Exec. Time
P, 0.0 7
P, 2.0 4
P, 4.0 1
P, 5.0 4

= SJF (non-preemptive)

= Average waitingtime =0+ 6 +3 +7)/4 =4
= Average response time = (7 + 10 + 4 + 11)/4 =8




i Example of preemptive SJF

Process Arrival Time Exec. Time
P, 0.0 7
P, 2.0 4
P, 4.0 1
P, 5.0 4

= Average waiting time = (9 + 1+ 0 + 2)/4 =3
= Average response time = (16 +5+ 1+ 6)/4 =7

* Alternating CPU and 1/0 Bursts
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Round Robin (RR)

= Each process gets a small unit of CPU time (time

guantum). After time slice, it is moved to the end of the
ready queue.

Time Quantum = 10 - 100 milliseconds on most OS
= N processes in the ready queue; time quantum is g
= each process gets 1/n of the CPU time in g time units at once.
= N0 process waits more than (n-1)g time units.
= each job gets equal shot at the CPU
= Performance
= g large b FCFS

= g too small P throughput suffers. Spend all your time context
switching, not getting any real work done

RR with time quantum = 20

Process Exec. Time
P, 53
P, 17
P, 68
P, 24

= The time chart is:

PP, | P, | P | P [P, | P | P | P, |P

3

0 20 37 57 77 97 117 121 134 154 162

= Typically, higher average turnaround than SJF, but better
fairness.




RR vs. FCFS vs. SJF

= Three tasks A, B, C
= A and B both CPU bound (can run for a week)
= Cis I/0 bound: loop 1 ms CPU followed by 10 ms disk 1/0
= running C by itself gets 90% disk utilization

= with FIFO?
= with RR (100 ms time slice):

= What is the disk utilization? 10ms of disk operation every
200ms

= How much does C have to wait after 1/0 completes? 190 ms
with RR (1 ms time slice):

=« What is the disk utilization? 10ms of disk operation every 11-
12 ms

=« How much does C have to wait after 1/0 completes? 0 or 1 ms

Knowledge of future

= Problem: SJF or STCF require knowledge of the future
How do you know how long program will run for?

Option 1: ask the user
= When you submit the job, say how long it will take
= If your job takes more than that, jobs gets killed. (Hard to predict
usage in advance.)
Option 2:
= Use past to predict future
= If program was 1/0 bound in the past, likely to remain so
= Favor jobs that have been at CPU least amount of time




Multilevel queue

Ready queue is partitioned into separate queues:

= Each with different priority
OS does RR at each priority level

= Run highest priority jobs first

= Once those finish, run next highest priority etc

= Round robin time slice increases (exponentially) at lower priorities
Adjust each job’s priority as follows:

= Job starts in highest priority queue

= If time slice is fully used when process is run, drop one level

= If it is not fully used, push up one level
CPU bound jobs drop like a rock, while short-running 1/0
bound jobs stay near top
Still unfair — long running jobs may never get the CPU

Could try to strategize!

Handling dependencies

= Scheduling = deciding who should make progress

= Obvious: a thread’s importance should increase with the
importance of those that depend on it.

= Naive priority schemes violate this (“Priority inversion™)
= Example: T1 at high priority, T2 at low
= T2 acquires lock L. T1 tries to acquire the same lock.
= “Priority donation”
= Thread’s priority scales w/ priority of dependent threads
= Works well with explicit dependencies




Lottery Scheduling

= Problem: this whole priority thing is really ad hoc.

= How to ensure that processes will be equally penalized under load?

= How to deal with priority inversion?

= Lottery scheduling

= Approximate priority: low-priority, give few tickets, high-priority give
many

= Approximate SJF: give short jobs more tickets, long jobs fewer. If job
has at least 1, will not starve

give each process some number of tickets
each scheduling event, randomly pick ticket
run winning process

to give P n% of CPU, give it ntickets * n%
= How to use?

Lottery Scheduling Example

Add or delete jobs (& their tickets) affects all jobs proportionately

short job: 10 tickets; long job: 1 ticket

#short jobs/ % of CPU each % of CPU each
#long jobs short job gets long job gets
1/1 91% 9%

0/2 NA 50%

2/0 50% NA

10/1 10% 1%
1/10 50% 5%

Easy priority inversion:

Donate tickets to process you're waiting on.
Its CPU% scales with tickets of all waiters.




Other notes

Client-server:

= Server has no tickets of its own

= Clients give server all of their tickets during RPC

= Server’s priority is sum of its active clients

= Server can use lottery scheduling to give preferential service
Ticket inflation: dynamic changes in priorities between trusting
programs
Currency:

= Set up an exchange rate across groups

= Can print more money within a group

= Allows independent scheduling properties
Compensation tickets

= What happens if a thread is 1/0 bound and regularly blocks before its
quantum expires?

= If you complete fraction f, your tickets are inflated by 1/f




