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CPU Scheduling

Question: dispatcher can choose any thread on the ready queue to run; 
how to decide and which to choose? 

n Depends on scheduling policy goals
n minimize response time : elapsed time to do an operation (or job)

n Response time is what the user sees: elapsed time to
n echo a keystroke in editor
n compile a program
n run a large scientific problem

n maximize throughput : operations (jobs) per second
n two parts to maximizing throughput

n minimize overhead (for example, context switching)
n efficient use of system resources (not only CPU, but disk, memory, 

etc.)

n fair : share CPU among users in some equitable way
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n Example: Process Exec. Time
P1 24
P2 3
P3 3

n Suppose that the processes arrive in the order: P1 , P2 , P3  
The schedule is:

n Waiting time for P1 = 0; P2 = 24; P3 = 27
n Average waiting time:  (0 + 24 + 27)/3 = 17
n Average response time: (24 + 27 + 30)/3 = 27

P1 P2 P3

24 27 300

First Come First Served

FCFS scheduling (cont’d)

Suppose that the processes arrive in the order
P2 , P3 , P1 .

n The time chart for the schedule is:

n Waiting time for P1 = 6; P2 = 0; P3 = 3
n Average waiting time:   (6 + 0 + 3)/3 = 3
n Average response time: (30 + 3 + 6)/3 = 13

n FCFS Pros: simple;   Cons: short jobs get stuck behind long jobs

P1P3P2

63 300
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Shortest-Job-First (SJF)

n Associate with each process the length of its exec. time
n Use these lengths to schedule the process with the shortest time

n Two schemes: 
n Non-preemptive – once given CPU it cannot be preempted until 

completes its quota.
n preemptive – if a new process arrives with less work than the 

remaining time of currently executing process, preempt. 

n SJF is optimal but unfair 
n pros: gives minimum average response time
n cons: long-running jobs may starve if too many short jobs;
n difficult to implement (how do you know how long job will take)

Process Arrival Time Exec. Time
P1 0.0 7
P2 2.0 4
P3 4.0 1
P4 5.0 4

n SJF (non-preemptive)

n Average waiting time = (0 + 6 + 3 + 7)/4 = 4
n Average response time = (7 + 10 + 4 + 11)/4 = 8

P1 P3 P2

73 160

P4

8 12

Non-preemptive SJF
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Example of preemptive SJF

Process Arrival Time Exec. Time
P1 0.0 7
P2 2.0 4
P3 4.0 1
P4 5.0 4

n SJF (preemptive)

n Average waiting time = (9 + 1 + 0 + 2)/4 = 3
n Average response time = (16 + 5 + 1 + 6)/4 = 7

P1 P3P2

42 110

P4

5 7

P2 P1

16

n CPU–I/O Burst Cycle 

n CPU burst distribution

Alternating CPU and I/O Bursts
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Round Robin (RR)

n Each process gets a small unit of CPU time (time 
quantum).  After time slice,  it is moved to the end of the 
ready queue.

Time Quantum = 10 - 100 milliseconds on most OS

n n processes in the ready queue; time quantum is q
n each process gets 1/n of the CPU time in q time units at once.
n no process waits more than (n-1)q time units.
n each job gets equal shot at the CPU

n Performance
n q large ⇒ FCFS
n q  too small ⇒ throughput suffers. Spend all your time context 

switching, not getting any real work done

RR with time quantum = 20

Process Exec. Time
P1 53
P2 17
P3 68
P4 24

n The time chart is: 

n Typically, higher average turnaround than SJF, but better 
fairness.

P1 P2 P3 P4 P1 P3 P4 P1 P3 P3

0 20 37 57 77 97 117 121 134 154 162
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RR vs. FCFS vs. SJF

n Three tasks A, B, C
n A and B both CPU bound (can run for a week)
n C is I/O bound: loop 1 ms CPU followed by 10 ms disk I/O 

n running C by itself gets 90% disk utilization

n with FIFO?
n with RR (100 ms time slice):

n What is the disk utilization?   10ms of disk operation every 
200ms

n How much does C have to wait after I/O completes?  190 ms
n with RR (1 ms time slice):

n What is the disk utilization?   10ms of disk operation every 11-
12 ms   

n How much does C have to wait after I/O completes?  0 or 1 ms

Knowledge of future

n Problem: SJF or STCF require knowledge of the future
n How do you know how long program will run for?

n Option 1: ask the user
n When you submit the job, say how long it will take
n If your job takes more than that, jobs gets killed. (Hard to predict 

usage in advance.)

n Option 2:
n Use past to predict future
n If program was I/O bound in the past, likely to remain so
n Favor jobs that have been at CPU least amount of time
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Multilevel queue

n Ready queue is partitioned into separate queues:
n Each with different priority

n OS does RR at each priority level
n Run highest priority jobs first
n Once those finish, run next highest priority etc
n Round robin time slice increases (exponentially) at lower priorities

n Adjust each job’s priority as follows:
n Job starts in highest priority queue
n If time slice is fully used when process is run, drop one level
n If it is not fully used, push up one level

n CPU bound jobs drop like a rock, while short-running I/O 
bound jobs stay near top

n Still unfair – long running jobs may never get the CPU
n Could try to strategize!

Handling dependencies

n Scheduling = deciding who should make progress
n Obvious: a thread’s importance should increase with the 

importance of those that depend on it.
n Naïve priority schemes violate this (“Priority inversion”)

n Example:  T1 at high priority, T2 at low
n T2 acquires lock L.  T1 tries to acquire the same lock.

n “Priority donation”
n Thread’s priority scales w/ priority of dependent threads
n Works well with explicit dependencies
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Lottery Scheduling

n Problem: this whole priority thing is really ad hoc.
n How to ensure that processes will be equally penalized under load? 
n How to deal with priority inversion?

n Lottery scheduling
n give each process some number of tickets 
n each scheduling event, randomly pick ticket 
n run winning process
n to give P n% of CPU, give it ntickets * n%

n How to use?
n Approximate priority: low-priority, give few tickets, high-priority give 

many
n Approximate SJF: give short jobs more tickets, long jobs fewer. If job 

has at least 1, will not starve

Lottery Scheduling Example

n Add or delete jobs (& their tickets)  affects all jobs proportionately 
short job: 10 tickets; long job: 1 ticket

#short jobs/                  % of CPU each                  % of CPU each
#long jobs                       short job gets                 long job gets

1 / 1                                   91%                     9%
0 / 2                                  NA                       50%
2 / 0                                  50%                      NA
10 / 1                                 10%                      1%
1 / 10                                 50%                      5%

n Easy priority inversion: 
n Donate tickets to process you’re waiting on.  
n Its CPU% scales with tickets of all waiters.
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Other notes

n Client-server:
n Server has no tickets of its own
n Clients give server all of their tickets during RPC
n Server’s priority is sum of its active clients
n Server can use lottery scheduling to give preferential service

n Ticket inflation: dynamic changes in priorities between trusting
programs

n Currency:
n Set up an exchange rate across groups
n Can print more money within a group
n Allows independent scheduling properties

n Compensation tickets
n What happens if a thread is I/O bound and regularly blocks before its 

quantum expires?
n If you complete fraction f, your tickets are inflated by 1/f


