
1

Shared Memory Architectures

Arvind Krishnamurthy
Fall 2004

Approaches to Building Parallel Machines

P1

Switch/Bus

Main memory

Pn

(Interleaved)

(Interleaved)

First-level $
P1

$ $

Pn

Shared Cache
Bus Based shared memory

Scale

Alliant FX-8
early 80’s
eight 68020s with x-bar to 512 KB
interleaved cache

Encore & Sequent
first 32-bit micros (N32032)
two to a board with a shared cache

P1

$

Interconnection network

$

Pn

Mem Mem

Centralized Memory
Dance Hall, UMA

Main memory
(Interleaved)

2

Shared Cache Architectures

What are the advantages and disadvantages?

Example Cache Coherence Problem

Processors see different values for u after event 3
With write back caches, value written back to memory depends on
happenstance of which cache flushes or writes back value when

Processes accessing main memory may see very stale value
Unacceptable to programs, and frequent!

I/O devices

Memory

P1

$ $ $

P2 P3

5

u = ?
4

u = ?

u:5 2

u :5

3

u= 7

1

3

Snoopy Cache-Coherence Protocols

Bus is a broadcast medium & caches know what they have
Cache Controller “snoops” all transactions on the shared bus

A transaction is a relevant transaction if it involves a cache block
currently contained in this cache
take action to ensure coherence

invalidate, update, or supply value
depends on state of the block and the protocol

State
Address
Data

I/O devicesMem

P1

$

Bus snoop

$

Pn

Cache-memorytransaction

Design Choices

Update state of blocks in
response to processor and
snoop events

Valid/invalid
Dirty (inconsistent with
memory)
Shared (in another caches)

Snoopy protocol
set of states
state-transition diagram
actions

Basic Choices
Write-through vs Write-back
Invalidate vs. Update

Snoop

State Tag Data

° ° °

Cache Controller

Processor
Ld/St

4

Write-through Invalidate Protocol

Two states per block in each cache
Invalid, Valid
as in uniprocessor

Cache check:
Compute position(s) to check based on
address
Check whether valid
If valid, check whether tag matches
required address

If present:
If read just use the value
If write update value, send update to
bus

Writes invalidate all other caches
can have multiple simultaneous readers
of block, but write invalidates them

I

V
BusWr / -

PrRd/ --
PrWr / BusWr

PrWr / BusWr

PrRd / BusRd

Write-through vs. Write-back

Write-through protocol is simple
every write is observable

Every write goes on the bus
=> Only one write can take place at a time in any processor

Uses a lot of bandwidth!

Example: 3GHz processor, CPI = 1, 10% stores of 8 bytes

=> 300 M stores per second per processor

=> 2400 MB/s per processor

4 GB/s bus can support only about 1-2
processors without saturating

5

Invalidate vs. Update

When does one prefer:
Invalidation based scheme?
Update based scheme?

=> Need to look at program reference patterns and hardware
complexity, but first: correctness

Write-back Caches (Uniprocessor)

3 Processor operations:
read
write
replace

3 states:
Invalid, valid(clean), modified(dirty)

2 bus transactions:
Read, write-back

PrRd/—

PrRd/—
PrW/BusRd

BusRd/—

PrW /—

V

M

I

Replace/BusWBPrW

PrRd/BusRd
Replace/-

6

Write-back MSI (multi-processors)

Treat valid as “shared”
Treat modified as “exclusive”
Introduce new bus operation

Read-exclusive: read for later
modifications (read to own)
BusRdx causes others to invalidate
BusRdx even if write-hit in S
Read obtains block in “shared”

PrRd/—

PrRd/—
PrW/BusRdX

BusRd/—

PrW/—

S

M

I

BusRdX/Flush
BusRdX/—

BusRd/Flush
PrW/BusRdX

PrRd/BusRd

Lower Level Protocol Choices

How does memory know whether or not to supply data on
BusRd?
BusRd observed in M state: transition to make?

M I
M S
Depends on expectation of access patterns

BusRdX could be replaced by BusUpgr without data
transfer
Read-Write is 2 bus transactions, even if no sharing

BusRd (I S) followed by BusRdX or BusUpgr
What happens on sequential programs? Performance degrades

7

Update Protocols

If data is to be communicated between processors,
invalidate protocols seem inefficient
Consider shared flag:

P0 waits for it to be zero, then does work and sets it one
P1 waits for it to be one, then does work and sets it zero

How many transactions?
P0: Read shared
P1: Read Exclusive
P1: Write 0
P0: Read
P1: Read shared
P0: Read Exclusive
P0: Write 1
P1: Read…

Shared Memory Systems

Two variants:
Shared cache systems
Separate cache, bus-based access to shared memory

Variants:
Write-through vs. write-back systems
Invalidation-based vs. update-based systems

8

Write-Back Update Protocol

Let’s have a system where:
Write-backs happen when cache line is replaced
All writes result in updates of other caches caching the value

Let’s design the simplest write-back update protocol:
How many states should it have?
What are the significance of the states?

Dragon Write-back Update Protocol

4 states
Exclusive-clean (E): Myproc & Memory have it
Shared clean (Sc): Myproc and other procs may have it
Shared modified (Sm): Myproc and other procs may have it, memory does
not have updated value (Myproc’s responsibility to update memory)
Modified(M): Myproc has it, no one else

Cache block can be:
M state on one cache and no one has the same cache block
E state on one cache and no one has the same cache block
Sc on one or more caches
Sm on one cache, Sc on zero or more caches

No invalid state
If in cache, cannot be invalid (but still need to deal with tag mismatches)

New bus transaction: BusUpd
Broadcasts single word written on bus, updates other relevant caches
Bandwidth savings

9

Questions:

How can we recognize which state should be currently
associated with a cache line?

How do we know that a cache line should be stored in:
Exclusive state?
Modified state?
Shared clean state?
Shared modified state?

Dragon State Transition Diagram

E Sc

Sm M

PrW/—
PrRd/—

PrRd/—

PrRd/—

PrRdMiss/BusRd(S)PrRdMiss/BusRd(!S)

PrW/—

PrWMiss/(BusRd(S); BusUpd)
PrWMiss/BusRd(!S)

PrW/BusUpd(S)

PrW/BusUpd(S)

BusRd/—

BusRd/Flush

PrRd/— BusUpd/Update

BusUpd/Update

BusRd/Flush

PrW/BusUpd(!S)

PrWr/BusUpd(!S)

10

Lower-level Protocol Choices

Can shared-modified state be eliminated?
If memory is updated on BusUpd transactions (DEC Firefly)
Dragon protocol doesn’t (assumes DRAM memory slow to
update)

Should replacement of an Sc block be broadcast?
Would allow last copy to go to E state (or M state) and not
generate updates

More overhead on replacements
Less overhead for updates

I/O MEM MEM° ° °

PROC

cache

PROC

cache

° ° °

Assume:
3 GHz processor w/o cache

=> 12 GB/s inst BW per proc. (32-bit)
=> 3.6 GB/s data BW at 30% load-store

Suppose 98% inst hit rate and 95% data
hit rate

=> 240 MB/s inst BW per processor
=> 180 MB/s data BW per processor
⇒ 420 MB/s combined BW

Assuming 4 GB/s bus bandwidth
∴ 10 processors will saturate bus

What is the solution to this scalability
problem?

5.2 GB/s

140 MB/s

Limits of Bus-based Shared Memory

11

True sharing
Frequent writes to a variable can create a bottleneck
OK for read-only or infrequently written data
Technique: make copies of the value, one per processor, if this
is possible in the algorithm
Example problem: the data structure that stores the
freelist/heap for malloc/free

False sharing
Cache block may also introduce artifacts
Two distinct variables in the same cache block
Technique: allocate data used by each processor contiguously,
or at least avoid interleaving
Example problem: an array of ints, one written frequently by
each processor

Sharing: a performance problem

P

Disk

Memory

L2

L1

100:34

100:35

100:67

Intuitive Memory Model

Reading an address should return the last value written to that address
Uniprocessor: Different levels can have different values

Made consistent at “replacement” time
Multiprocessor:

Approach 1: Use shared top level caches
Approach 2: Use separate caches but keep them consistent through
snooping

P

12

Ordering of operations on single variable

Bus establishes a total ordering on writes
Assuming atomic bus transactions
Later we will look at split-phase transactions

Writes establish a partial order on operations from different
processors

Doesn’t constrain ordering of reads, though bus will order read
misses too

R W

R

R R

R R

RR R W

R

R

R R

RR

R

P0:

P1:

P2:

Ordering of operations on multiple variables

Question: which of these outputs are valid?
[0 0]
[0 1]
[2 0]
[2 1]

Question: what might cause these kinds of outputs on real
machines?
What’s the intuition? This is the memory consistency model

P1 P2

/*Assume initial values of A and B are 0 */
(1a) A = 1; (2a) print B;

(1b) B = 2; (2b) print A;

13

Related Example

Intuition not guaranteed by coherence
Coherence: preserves order to a single variable

Coherence is not enough!

Also expect memory to respect order between accesses to
different locations issued by a given process

P1 P2

/*Assume initial value of A and ag is 0*/
A = 1; while (flag == 0); /*spin idly*/
flag = 1; print A;

Sequential Consistency

Total order achieved by interleaving accesses:
Maintains program order; memory operations, from all processes,
appear to [issue, execute, complete] atomically
as if there were no caches, and a single memory

“A multiprocessor is sequentially consistent if the result of any
execution is the same as if the operations of all the processors were
executed in some sequential order, and the operations of each
individual processor appear in this sequence in the order specified
by its program.” [Lamport, 1979]

Processors
issuing memory
references as
per program or der

P1 P2 Pn

Memory

The “switch” is randomly
set after each memory
reference

14

Implementing Sequential Consistency

Sufficient Conditions
every process issues memory operations in program order
after a read is issued, the issuing process waits for the read to
complete before issuing its next operation
after a write operation is issued, the issuing process waits for the
write to complete (update other caches if necessary) before issuing
next memory operation

How can architectural enhancements violate SC?
Out-of-order execution
Write-buffers
Non-blocking operations

How can compilers violate SC?
Reordering of operations
Compilers designed to generate correct uniprocessor code and not
correct multiprocessor code

Summary

Basic shared memory design
Shared cache
Separate caches: results in coherence problems
Snoopy cache: write back vs. write-through, update vs. invalidate

State machines for coherence logic
Cache coherence implements state machine
Scales to about 10’s of processors

Coherence is not enough
Require to specify memory consistency model
Abstract model for accesses to multiple variables

