
1

Distributed Memory Machines

Arvind Krishnamurthy
Fall 2004

Intel Paragon, Cray T3E, IBM SP
Each processor is connected to its own memory and
cache:

cannot directly access another processor’s memory.

Each “node” has a network interface (NI) for all
communication and synchronization

Key issues: design of NI and interconnection topology

interconnect

P1

memory

NI P2

memory

NI Pn

memory

NI

. . .

Distributed Memory Machines

2

Historical Perspective

Early machines were:
Collection of microprocessors
bi-directional queues between neighbors

Messages were forwarded by processors on path
Strong emphasis on topology in algorithms

To have a large number of transfers occurring at once, you
need a large number of distinct wires
Networks are like streets

link = street
switch = intersection
distances (hops) = number of blocks traveled
routing algorithm = travel plans

Important Properties:
latency: how long to get somewhere in the network
bandwidth: how much data can be moved per unit time

limited by the number of wires
and the rate at which each wire can accept data

Network Analogy

3

Network Characteristics

Topology - how things are connected
two types of nodes: hosts and switches
Question: what nice properties do we want the network topology to
possess?

Routing algorithm - paths used
e.g., all east-west then all north-south in a mesh

Switching strategy
how data in a message traverses a route
circuit switching vs. packet switching

Flow control - what if there is congestion
if two or more messages attempt to use the same channel
may stall, move to buffers, reroute, discard, etc.

Topology Properties

Routing Distance - number of links on route. Minimize average
distance
Diameter is the maximum shortest path between two nodes
A network is partitioned if some nodes cannot reach others
The bandwidth of a link is: w * 1/t

w is the number of wires
t is the time per bit

Effective bandwidth lower due to packet overhead

Bisection bandwidth
sum of the minimum number of channels which, if removed, will partition
the network

R
outing

and control
header

D
ata

payload

E
rror code

Trailer

4

Linear and Ring Topologies
Linear array

diameter is n-1, average distance ~2/3n
bisection bandwidth is 1

Torus or Ring

diameter is n/2, average distance is n/3
bisection bandwidth is 2

Used in algorithms with 1D arrays

Meshes and Tori
2D Mesh:

Diameter: 2 n
Bisection bandwidth: n

• Generalizes to 3D and higher dimensions
• Cray T3D/T3E uses a 3D torus
• Often easy to implement algorithms that use 2D-3D arrays

5

Hypercubes

Number of nodes n = 2d for dimension d
Diameter: d
Bisection bandwidth is n/2

Popular in early machines (Intel iPSC, NCUBE)
Lots of clever algorithms

Greycode addressing
each node connected to “d” others with 1 bit different

001000

100

010 011
111

101

110

Trees

Diameter: log n
Bisection bandwidth: 1
Easy layout as planar graph
Many tree algorithms (summation)
Fat trees avoid bisection bandwidth problem

more (or wider) links near top
example, Thinking Machines CM-5

6

Butterflies

Butterfly building block
Diameter: log n
Bisection bandwidth: n
Cost: lots of wires
Use in BBN Butterfly
Natural for FFT

O 1O 1

O 1 O 1

Interconnection network issues:
Topology characteristics

Average routing distance
Diameter (maximum routing distance)
Bisection bandwidth

Link, switch design
Switching

Packet switching vs. circuit switching
Store-&-forward vs. cut-through routing

Routing

Outline

7

Link Design/Engineering Space

Cable of one or more wires/fibers with connectors at the
ends attached to switches or interfaces

Short:
- single logical

value at a time

Long:
- stream of logical

values at a time

Narrow:
- control, data and timing

multiplexed on wire

Wide:
- control, data and timing

on separate wires

Synchronous:
- source & dest on same
clock

Asynchronous:
- source encodes clock in
signal

Switches

Cross-bar

Input
Buffer

Control

Output
Ports

Input
Receiver Transmiter

Ports

Routing, Scheduling

Output
Buffer

8

Switch Components
Output ports

transmitter (typically drives clock and data)
Input ports

synchronizer aligns data signal with local clock domain
essentially FIFO buffer

Crossbar
connects each input to any output
degree limited by area or pinout

Buffering
Control logic

complexity depends on routing logic and scheduling algorithm
determine output port for each incoming packet
arbitrate among inputs directed at same output

23 1 0

23 1 0

23 1 0

23 1 0

23 1 0

23 1 0

23 1 0

23 1 0

23 1 0

23 1 0

23 1 0

23 1

023

3 1 0

2 1 0

23 1 0

0

1

2

3

23 1 0
Tim e

Store & For ward R outing C ut-Through R outing

S ourc e De st Dest

Switching Strategies
circuit switching: full path reserved for entire message

like the telephone
packet switching: message broken into separately-routed packets

like the post office
Question: what are the pros and cons of circuit switching & packet
switching?
Store & forward vs. cut-through routing

9

Interconnection network issues:
Topology characteristics

Average routing distance
Diameter (maximum routing distance)
Bisection bandwidth

Switching
Packet switching vs. circuit switching
Store-&-forward vs. cut-through routing

Link, switch design
Routing

Outline

Routing

Interconnection network provides multiple paths between a
pair of source-dest nodes

Routing algorithm determines
which of the possible paths are used as routes
how the route is determined

Question: what desirable properties should the routing
algorithm have?

10

Routing Mechanism

need to select output port for each input packet
in a few cycles

Simple arithmetic in regular topologies
ex: ∆x, ∆y routing in a grid
Encode distance to destination in header

west (-x) ∆x < 0
east (+x) ∆x > 0
south (-y) ∆x = 0, ∆y < 0
north (+y) ∆x = 0, ∆y > 0
processor ∆x = 0, ∆y = 0

Reduce relative address of each dimension in order
Dimension-order routing in k-ary meshes

Routing Mechanism (cont)

Source-based
message header carries series of port selects
used and stripped en route
Variable sized packets: CRC? Packet Format?
CS-2, Myrinet, MIT Arctic

Table-driven
message header carried index for next port at next switch

o = R[i]
table also gives index for following hop

o, I’ = R[i]
ATM, HPPI

P0P1P2P3

11

Properties of Routing Algorithms

Deterministic
route determined by (source, dest), not intermediate state (i.e.,
traffic)

Adaptive
route influenced by traffic along the way

Minimal
only selects shortest paths

Deadlock free
no traffic pattern can lead to a situation where no packets cannot
move forward

Deadlocks

How can it arise?
necessary conditions:

shared resource
incrementally allocated
non-preemptible

think of a link/channel as a shared resource
that is acquired incrementally

source buffer then dest. buffer
channels along a route

How do you avoid it?
constrain how channel resources are allocated
Question: how do we avoid deadlocks in a 2D mesh?

How do you prove that a routing algorithm is deadlock free

12

Proof Technique

resources are logically associated with channels
messages introduce dependences between resources as they move
forward
need to articulate the possible dependences that can arise between
channels;
show that there are no cycles in Channel Dependence Graph

find a numbering of channel resources such that every legal route follows a
monotonic sequence

=> no traffic pattern can lead to deadlock

network need not be acyclic, only channel dependence graph

Example: 2D array

Theorem: x,y routing is deadlock free
Numbering

+x channel (i,y) (i+1,y) gets i
-x channels are numbered in the reverse direction
+y channel (x,j) (x,j+1) gets N+j
-y channels are numbered in the reverse direction

any routing sequence: x direction, turn, y direction is
increasing 1 2 3

123
00 01 02 03

10 11 12 13

20 21 22 23

30 31 32 33

17

18

1916

17

18

13

Channel Dependence Graph

1 2 3

012
00 01 02 03

10 11 12 13

20 21 22 23

30 31 32 33

17

18

1916

17

18

1 2 3

012

1718 1718 1718 1718

1 2 3

012

1817 1817 1817 1817

1 2 3

012

1916 1916 1916 1916

1 2 3

012

Consider a message traveling from node 11 to node 12 and
then to node 22, and finally to node 32.
It obtains channels numbered 2 and then 18 and then 19.

Routing Deadlocks

If all turns are allowed, then channels are not obtained in
increasing order
Channel dependency graph will have a cycle:

Edges between 2:17, 17:1, 1:18, and 18:2

Question: what happens with a torus (or wraparound
connections)?

How do we avoid deadlocks in such a situation?

2

17

1

18

14

Deadlock free wormhole networks
Basic dimension order routing techniques don’t work
with wrap-around edges

Idea: add channels!
provide multiple “virtual channels” to break the dependence
cycle
good for BW too!

Do not need to add links, or xbar, only buffer resources
This adds nodes to the CDG

Previous scheme removed edges

Output
Ports

Input
Ports

Cross-Bar

Breaking deadlock with virtual channels

Packet switches
from lo to hi channel

15

Turn Restrictions in X,Y

XY routing forbids 4 of 8 turns and leaves no room
for adaptive routing
Can you allow more turns and still be deadlock free

+Y

-Y

+X-X

Minimal turn restrictions in 2D

West-first

north-last negative first

-x +x

+y

-y

16

Example legal west-first routes

Can route around failures or congestion
Can combine turn restrictions with virtual channels

Adaptive Routing
R: C x N x Σ -> C
Essential for fault tolerance
Can improve utilization of the network
Simple deterministic algorithms easily run into bad permutations

choices: fully/partially adaptive, minimal/non-minimal
can introduce complexity or anomalies
little adaptation goes a long way!

17

Up*-Down* routing

Given any bi-directional network
Construct a spanning tree
Number of the nodes increasing from leaves to roots

Just a topological sort of the spanning tree

Any Source -> Dest by UP*-DOWN* route
up edges, single turn, down edges
Up edge: any edge going from a lower numbered node to higher
number
Down edges are the opposite
Not constrained to just using the spanning tree edges

Performance?
Some numberings and routes much better than others
interacts with topology in strange ways

Topology Summary

n = 2 or n = 3
Short wires, easy to build; Many hops, low bisection
bandwidth

n >= 4
Harder to build, more wires, longer average length
Fewer hops, better bisection bandwidth

Topology Degree Diameter Ave Dist Bisection D (D ave) @ P=1024

1D Array 2 N-1 N / 3 1 huge

1D Ring 2 N/2 N/4 2

2D Mesh 4 2 (N1/2 - 1) 2/3 N1/2 N1/2 63 (21)

2D Torus 4 N1/2 1/2 N1/2 2N1/2 32 (16)

Butterfly 4 log N log N N 10 (10)

Hypercube n =log N n n/2 N/2 10 (5)

18

Butterfly Network

Low diameter:
O(log N)

Switches:
2 incoming links
2 outgoing links

Processors:
Connected to the first
and last levels

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

Routing in Butterfly Network

Routes:
Single path from a
source to a destination
Deterministic
Non-adaptive
Can run into congestion

Routing algorithm
Correct bits one at a
time
Consider: 001 111

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

19

Congestion

Easy to have two
routes share links

Consider: 001 111
And 000 011

How bad can it get?
Consider general
butterfly with 2r = log
N levels
Consider routing from:
Source: 00…0 11…1
Dest: 11…1 00…0
Must pass through
(after r): 00…0 00…0

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

Congestion: worst case scenario

Bit reversal permutation:
b1 b2 … b2r-1 b2r b2r b2r-1 … b2 b1

Consider just the following source-dest pairs:
Source: low-order r bits are zero
Of the form: b1 b2 … br 0 0 … 0 0 0 … 0 br br-1 … b1

All of these pass through 0 0 … 0 0 0 … 0 after r routing steps
How many such pairs exist?

Every combination of b1 b2 … br

Number of combinations : 2r = sqrt(22r) = sqrt(N)

Bad permutations exist for all interconnection networks
Many networks perform well when you have locality or in the average
case

20

Average Case Behavior: Butterfly Networks

Question:
Assume one packet from each source, assume random destinations
How many packets go through some intermediate switch at level k
in the network (on average)?

Sources that could generate a message: 2k

Number of possible destinations: 2logN – k

Expected congestion: 2k * 2logN – k / 2N = 1

Randomized Algorithm

How do we deal with bad permutations?
Turn them into two average-case behavior problems!

To route from source to dest:
Route from source to random node
Route from random node to destination

Turn initial routing problem into two average case permutations

21

Why Butterfly networks?

Equivalence to hypercubes and fat-trees

Fat Tree

Relationship Butterflies to Hypercubes

Wiring is isomorphic
Except that Butterfly always takes log n steps

22

de Bruijn Network

Each node has two
outgoing links
Node x is connected to
2*x, and 2*x + 1
Example:

Node 000 is connected to
Node 000 and Node 001
Node 001 is connected to
Node 010 and Node 011

How do we perform
routing on such a
network?
What is the diameter of
this network?

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

Summary

We covered:
Popular topologies
Routing issues

Cut-through/store-and-forward/packet-switching/circuit-switching
Deadlock-free routes:

Limit paths
Introduce virtual channels

Link/switch design issues
Some popular routing algorithms

From software perspective:
All that matters is that the interconnection network takes a chunk of bytes
and communicates it to the target processor
Would be useful to abstract the interconnection network to some useful
performance metrics

23

How do you model and measure point-to-point
communication performance?

mostly independent of source and destination!
linear is often a good approximation
piecewise linear is sometimes better
the latency/bandwidth model helps understand performance

A simple linear model:
data transfer time = latency + message size / bandwidth

latency is startup time, independent of message size
bandwidth is number of bytes per second

Linear Model of Communication Cost

Latency and Bandwidth
for short messages, latency dominates transfer time
for long messages, the bandwidth term dominates transfer time
What are short and long?

latency term = bandwidth term
when

latency = message_size/bandwidth
Critical message size = latency * bandwidth
Example: 50 us * 50 MB/s = 2500 bytes

messages longer than 2500 bytes are bandwidth dominated
messages shorter than 2500 bytes are latency dominated

But linear model not enough
When can next transfer be initiated?
Can cost be overlapped?

24

LogGP Model

Interconnection Network

MPMPMP
° ° °

P (processors)

Limited Volume
(L/ g to/from

a proc)

o (overhead)

L (latency)

o
g (gap)

Latency in sending a (small) message between modules

overhead felt by the processor on sending or receiving message

gap between successive sends or receives

G: gap between successive bytes of the same message

Processors

Using the Model

Time to send a large message:
L + o + size * G

Time to send n small messages from one processor to
another processor
L + o + (n-1)*g

processor has n*o cycles of overhead
Has (n-1)*(g-o) idle cycles that could be overlapped with other
computation

o L o
o og L

time

25

Some Typical LogGP values

CM5:
L = 16.5 us
o = 6.0 us
g = 6.2 us
G = 0.125 us (8MB/s)

Intel Paragon:
L = 20.5 us
o = 5.9 us
g = 8.3 us
G = 0.007 us (140 MB/s)

T3D:
L = 0.85 us
o = 0.40 us
g = 0.40 us
G = 0.007 us (140 MB/s)

Message Passing Programs
Separate processes, separate address spaces
Processes execute independently and concurrently
Processes transfer data cooperatively
General version: Multiple Program Multiple Data (MPMD)

Slightly constrained version:
Single Program Multiple Data (SPMD)
Single code image running on different processors
Can execute independently (or asynchronously), take different branches for
instance

MPI: most popular message passing library
extended message-passing model
not a language or compiler specification
not a specific implementation or product

26

Hello World (Trivial)
A simple, but not very interesting SPMD Program.
To make this legal MPI, we need to add 2 lines.

#include "mpi.h"
#include <stdio.h>

int main(int argc, char *argv[])
{

printf("Hello, world!\n");

return 0;
}

MPI_Init(&argc, &argv);

MPI_Finalize();

Hello World (Independent Processes)
#include "mpi.h"
#include <stdio.h>

int main(int argc, char *argv[])
{

int rank, size;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);
printf("I am %d of %d\n", rank, size);
MPI_Finalize();
return 0;

}

Processors belong to “communicators” (process groups)
Default communicator is “MPI_COMM_WORLD”
Communicators have a “size” and define a “rank” for each
member

27

MPI Basic Send/Receive

We need to fill in the details in

Things that need specifying:
How will processes be identified?
How will “data” be described?
How will the receiver recognize/screen messages?
What will it mean for these operations to complete?

Process 0 Process 1

Send(data)

Receive(data)

Point-to-Point Example

Process 0 sends array “A” to process 1 which receives it as “B”
1:
#define TAG 123
double A[10];
MPI_Send(A, 10, MPI_DOUBLE, 1,

TAG, MPI_COMM_WORLD)
2:
#define TAG 123
double B[10];
MPI_Recv(B, 10, MPI_DOUBLE, 0,

TAG, MPI_COMM_WORLD, &status)
or

MPI_Recv(B, 10, MPI_DOUBLE, MPI_ANY_SOURCE,
MPI_ANY_TAG, MPI_COMM_WORLD, &status)

status: useful for querying the tag, source after reception

28

The data in a message to be sent or received is described by a
triple (address, count, datatype), where
An MPI datatype is recursively defined as:

predefined, corresponding to a data type from the language (e.g.,
MPI_INT, MPI_DOUBLE_PRECISION)

Goal: support heterogeneous clusters
a contiguous array of MPI datatypes
a strided block of datatypes

an indexed array of blocks of datatypes
an arbitrary structure of datatypes

May improve performance:
reduces memory-to-memory copies in the implementation

allows the use of special hardware (scatter/gather) when available

MPI DataTypes

layout in memory

Collective Communication in MPI

Collective operations are called by all processes in a
communicator.

MPI_BCAST distributes data from one process to all others in
a communicator.
MPI_Bcast(start, count, datatype,

source, comm);
MPI_REDUCE combines data from all processes in
communicator and returns it to one process.
MPI_Reduce(in, out, count, datatype,

operation, dest, comm);
For example:

MPI_Reduce(&mysum, &sum, 1, MPI_DOUBLE, MPI_SUM, 0,
MPI_COMM_WORLD);

29

Non-blocking Operations

Split communication operations into two parts.
First part initiates the operation. It does not block.
Second part waits for the operation to complete.

MPI_Request request;
MPI_Recv(buf, count, type, dest, tag, comm, status)

=
MPI_Irecv(buf, count, type, dest, tag, comm, &request)

+
MPI_Wait(&request, &status)

MPI_Send(buf, count, type, dest, tag, comm)
=

MPI_Isend(buf, count, type, dest, tag, comm, &request)
+

MPI_Wait(&request, &status)

Using Non-blocking Receive

Two advantages:
No deadlock (correctness)

Data may be transferred concurrently (performance)

Process 0

Send(1)
Recv(1)

Process 1

Send(0)
Recv(0)

Process 0

Isend(1)
…compute…
Wait()

30

Operations on MPI_Request

MPI_Wait(INOUT request, OUT status)
Waits for operation to complete and returns info in status
Frees request object (and sets to MPI_REQUEST_NULL)

MPI_Test(INOUT request, OUT flag, OUT status)
Tests to see if operation is complete and returns info in status
Frees request object if complete

MPI_Request_free(INOUT request)
Frees request object but does not wait for operation to complete

Wildcards:
MPI_Waitall(..., INOUT array_of_requests, ...)
MPI_Testall(..., INOUT array_of_requests, ...)
MPI_Waitany/MPI_Testany/MPI_Waitsome/MPI_Testsome

Non-Blocking Communication Gotchas

Obvious caveats:
1. You may not modify the buffer between Isend() and the
corresponding Wait(). Results are undefined.
2. You may not look at or modify the buffer between Irecv() and the
corresponding Wait(). Results are undefined.
3. You may not have two pending Irecv()s for the same buffer.

Less obvious:
4. You may not look at the buffer between Isend() and the
corresponding Wait().
5. You may not have two pending Isend()s for the same buffer.

Why the isend() restrictions?
Restrictions give implementations more freedom, e.g.,

Heterogeneous computer with differing byte orders
Implementation swap bytes in the original buffer

