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Distributed Memory Machines

Intel Paragon, Cray T3E, IBM SP
Each processor is connected to its own memory and

cache:

= cannot directly access another processor's memory.
Each “node” has a network interface (NI) for all
communication and synchronization

= Key issues: design of NI and interconnection topology
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Historical Perspective

= Early machines were:

= Collection of microprocessors

= bi-directional queues between neighbors
= Messages were forwarded by processors on path
= Strong emphasis on topology in algorithms

Network Analogy

= To have a large number of transfers occurring at once, you
need a large number of distinct wires
= Networks are like streets
s link = street
= switch = intersection
= distances (hops) = number of blocks traveled
= routing algorithm = travel plans
= Important Properties:
= latency: how long to get somewhere in the network
= bandwidth: how much data can be moved per unit time
= limited by the number of wires
= and the rate at which each wire can accept data




Network Characteristics

Topology - how things are connected
= two types of nodes: hosts and switches

= Question: what nice properties do we want the network topology to
possess?

Routing algorithm - paths used
= e.g., all east-west then all north-south in a mesh
Switching strategy
= how data in a message traverses a route
= circuit switching vs. packet switching
Flow control - what if there is congestion
= if two or more messages attempt to use the same channel
= may stall, move to buffers, reroute, discard, etc.

Topology Properties

Routing Distance - number of links on route. Minimize average
distance

Diameter is the maximum shortest path between two nodes
A network is partitioned if some nodes cannot reach others
The bandwidth of a link is: w * 1/t

= W is the number of wires

= tis the time per bit

Effective bandwidth lower due to packet overhead
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Bisection bandwidth

= sum of the minimum number of channels which, if removed, will partition
the network




Linear and Ring Topologies

= Linear array
*—0—0—0—0— 000

= diameter is n-1, average distance ~2/3n
= bisection bandwidth is 1
= Torus or Ring

= diameter is n/2, average distance is n/3
= bisection bandwidth is 2
= Used in algorithms with 1D arrays

Meshes and Torli

= 2D Mesh:
" Diameter:d% n
= Bisection andwidqh“. n

» Generalizes to 3D and higher dimensions
» Cray T3D/T3E uses a 3D torus
» Often easy to implement algorithms that use 2D-3D arrays




Hypercubes

= Number of nodes n = 24 for dimension d
= Diameter: d o
= Bisection bandwidth is n/2 /‘|__/| m|
e
- ~—
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= Popular in early machines (Intel iPSC, NCUBE)
= Lots of clever algorithms

= Greycode addressing
= each node connected to “d” others with 1 bit different
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Trees

Diameter: log n
= Bisection bandwidth: 1
Easy layout as planar graph

——

Many tree algorithms (summation) —

Fat trees avoid bisection bandwidth problem
= more (or wider) links near top
= example, Thinking Machines CM-5
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Butterflies

Butterfly building block
Diameter: log n
Bisection bandwidth: n
Cost: lots of wires

Use in BBN Butterfly

Natural for FFT /.\

Qutline

= Interconnection network issues:
= Topology characteristics
= Average routing distance
= Diameter (maximum routing distance)
=« Bisection bandwidth
= Link, switch design
= Switching
= Packet switching vs. circuit switching
» Store-&-forward vs. cut-through routing
= Routing




Link Design/Engineering Space

= Cable of one or more wires/fibers with connectors at the
ends attached to switches or interfaces

Narrow: Synchronous:
- control, data and timing - source & dest on same
multiplexed on wire clock

Short: Long:

- single logical
value at a time

Asynchronous:
- source encodes clock in

- stream of logical
values at atime

Wide:
- control, data and timing

i |
signa on separate wires
Switches
Receiver Input Output 1 smiter
Buffer Buffer
Input Output
Ports — |> | ||| B -E]E—I>—— Ports
> >
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Routing, Scheduling




Switch Components

Output ports
= transmitter (typically drives clock and data)
Input ports
= synchronizer aligns data signal with local clock domain
= essentially FIFO buffer
Crossbhar
= connects each input to any output
= degree limited by area or pinout
Buffering
Control logic
= complexity depends on routing logic and scheduling algorithm
= determine output port for each incoming packet
= arbitrate among inputs directed at same output

Switching Strateqgies

circuit switching: full path reserved for entire message
= like the telephone
packet switching: message broken into separately-routed packets
= like the post office
Question: what are the pros and cons of circuit switching & packet
switching?
Store & forward vs. cut-through routing

Store & Forward Routing Cut-Through Routing
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Qutline

= Interconnection network issues:
= Topology characteristics
« Average routing distance
= Diameter (maximum routing distance)
= Bisection bandwidth
= Switching
= Packet switching vs. circuit switching
» Store-&-forward vs. cut-through routing
= Link, switch design
= Routing

Routing

= Interconnection network provides multiple paths between a
pair of source-dest nodes

= Routing algorithm determines
= which of the possible paths are used as routes
= how the route is determined

= Question: what desirable properties should the routing
algorithm have?




Routing Mechanism

= need to select output port for each input packet
= in a few cycles

= Simple arithmetic in regular topologies
= ex: Ax, Ay routing in a grid
= Encode distance to destination in header
= west (-x) AX <0
= east (+x) Ax >0
= south (-y) Ax=0,Ay <0
= north (+y) AXx=0,Ay >0
= processor AXx=0,Ay =0
= Reduce relative address of each dimension in order
= Dimension-order routing in k-ary meshes

Routing Mechanism (cont)

Py | P2 | Pi| Po

= Source-based
= message header carries series of port selects
= used and stripped en route
= Variable sized packets: CRC? Packet Format?
= CS-2, Myrinet, MIT Arctic
= Table-driven
= message header carried index for next port at next switch
= 0 =R[i]
= table also gives index for following hop
= 0,'=R[]
= ATM, HPPI
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Properties of Routing Algorithms

Deterministic
= route determined by (source, dest), not intermediate state (i.e.,
traffic)
Adaptive
= route influenced by traffic along the way
Minimal
= only selects shortest paths
Deadlock free

= no traffic pattern can lead to a situation where no packets cannot
move forward

Deadlocks
= How can it arise?

= necessary conditions: DjIE'E_ EHDE:
= shared resource 10 j;ﬂ - -Eﬂ:lﬂ
= incrementally allocated ':' | |
= non-preemptible i |

= think of a link/channel as a shared resource ]\, B+~~~ ~11 )'D'I

that is acquired incrementally b= R

= source buffer then dest. buffer
= channels along a route
= How do you avoid it?
= constrain how channel resources are allocated
= Question: how do we avoid deadlocks in a 2D mesh?

= How do you prove that a routing algorithm is deadlock free
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Proof Technique

resources are logically associated with channels

messages introduce dependences between resources as they move
forward

= need to articulate the possible dependences that can arise between
channels;

show that there are no cycles in Channel Dependence Graph

= find a numbering of channel resources such that every legal route follows a
monotonic sequence

=> no traffic pattern can lead to deadlock

network need not be acyclic, only channel dependence graph

Example: 2D array

= Theorem: x,y routing is deadlock free

= Numbering
= +Xx channel (i,y) > (i+1,y) gets i
= -X channels are numbered in the reverse direction
= +Yy channel (x,j) 2 (x,j+1) gets N+j
= -y channels are numbered in the reverse direction
= any routing sequence: x direction, turn, y direction is
increasing 1 a3

.—-‘ 11 [ & 12 'd
A H R
pefe 2l

16hy 19 A Iy ’

o pofea oo

12



Channel Dependence Graph

Consider a message traveling from node 11 to node 12 and

then to node 22, and finally to node 32.
It obtains channels numbered 2 and then 18 and then 19.

Routing Deadlocks
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= If all turns are allowed, then channels are not obtained in
increasing order

= Channel dependency graph will have a cycle:
= Edges between 2:17, 17:1, 1:18, and 18:2

= Question: what happens with a torus (or wraparound

connections)?
= How do we avoid deadlocks in such a situation?
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Deadlock free wormhole networks

= Basic dimension order routing techniques don’'t work

with wrap-around edges

= ldea: add channels!

= provide multiple “virtual channels” to break the dependence

cycle

= good for BW too! Ireu %
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= Do not need to add links, or xbar, only buffer resources

s This adds nodes to the CDG

= Previous scheme removed edges

Breaking deadlock with virtual channels
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Packet switches
from lo to hi channel
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Turn Restrictions in X.,Y

+Y

+X

-Y

= XY routing forbids 4 of 8 turns and leaves no room
for adaptive routing

= Can you allow more turns and still be deadlock free

Minimal turn restrictions in 2D
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north-last . negative first
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Example legal west-first routes
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= Can route around failures or congestion
= Can combine turn restrictions with virtual channels

Adaptive Routing

R:CxNxX->C

Essential for fault tolerance

Can improve utilization of the network

Simple deterministic algorithms easily run into bad permutations

looo

|

= choices: fully/partially adaptive, minimal/non-minimal
= can introduce complexity or anomalies
= little adaptation goes a long way!
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Up*-Down* routing

Given any bi-directional network

Construct a spanning tree

Number of the nodes increasing from leaves to roots
= Just a topological sort of the spanning tree

Any Source -> Dest by UP*-DOWN* route
= up edges, single turn, down edges

= Up edge: any edge going from a lower numbered node to higher
number

= Down edges are the opposite
= Not constrained to just using the spanning tree edges

Performance?
= Some numberings and routes much better than others
= interacts with topology in strange ways

Topology Summary

Topology Degree Diameter Ave Dist Bisection D (D ave) @ P=1024

1D Array 2 N-1 N/3 1 huge
1D Ring 2 N/2 N/4 2

2D Mesh 4 2 (NY2-1) 2/3N¥2 N2 63 (21)
2D Torus 4 N1/2 1/2 N¥2 N2 32 (16)
Butterfly 4 log N log N N 10 (10)
Hypercube n=logN n n/2 N/2 10 (5)

m h=2o0rn=3

= Short wires, easy to build; Many hops, low bisection
bandwidth

m N>=4
= Harder to build, more wires, longer average length
= Fewer hops, better bisection bandwidth
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Butterfly Network

= Low diameter:
= O(log N)
= Switches:
= 2 incoming links
= 2 outgoing links
= Processors:

= Connected to the first
and last levels
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Routing in Butterfly Network

= Routes:

= Single path from a
source to a destination

= Deterministic
= Non-adaptive
= Can run into congestion

= Routing algorithm
= Correct bits one at a
time
= Consider: 001 - 111
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= Easy to have two

Congestion

o O—0— 00 =

routes share links

001 001
= Consider: 001 > 111
= And 000 -> 011
010 010
= How bad can it get? 011 011
= Consider general
butterfly with 2r = log 100 100
N levels
= Consider routing from: 101 101

Source: 00...0 11...1
Dest: 11...1 00...0

= Must pass through 110
(after r): 00...0 00...0

110

111

Congestion: worst case scenario

Bit reversal permutation:
" b1 bz b2r—1 b2r > b2r b2r-l bz bl

Consider just the following source-dest pairs:
= Source: low-order r bits are zero
= Of the form: b; b,..b, 00..0 =>00..0b,b,,..b;
= All of these pass through00...0 00 .. 0 after r routing steps
= How many such pairs exist?
= Every combination of b, b, ... b,
= Number of combinations : 2" = sqrt(22") = sqrt(N)

Bad permutations exist for all interconnection networks

Many networks perform well when you have locality or in the average
case
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Average Case Behavior: Butterfly Networks

= Question:
= Assume one packet from each source, assume random destinations

= How many packets go through some intermediate switch at level k
in the network (on average)?

= Sources that could generate a message: 2
= Number of possible destinations: 2o9N -k
= Expected congestion: 2k* 2logN-k/ 2N =1

Randomized Algorithm

= How do we deal with bad permutations?
= Turn them into two average-case behavior problems!

= To route from source to dest:
= Route from source to random node

= Route from random node to destination

= Turn initial routing problem into two average case permutations
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Why Butterfly networks?

= Equivalence to hypercubes and fat-trees

Relationship Butterflies to Hypercubes

= Wiring is isomorphic
= Except that Butterfly always takes log n steps

21



de Bruijn Network

Each node has two 000 000
outgoing links
Node x is connected to 0oL 0oL
2*x, and 2*x + 1
Example: 010 010
= Node 000 is connected to
Node 000 and Node 001 011 011
= Node 001 is connected to
Node 010 and Node 011 100 100
How do we perform
routing on such a 101 101
network?
What is the diameter of 1o 1o
this network?
111 111

Summary

We covered:
= Popular topologies
= Routing issues
= Cut-through/store-and-forward/packet-switching/circuit-switching
= Deadlock-free routes:
Limit paths
Introduce virtual channels
= Link/switch design issues
= Some popular routing algorithms

From software perspective:

= All that matters is that the interconnection network takes a chunk of bytes
and communicates it to the target processor

= Would be useful to abstract the interconnection network to some useful
performance metrics
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Linear Model of Communication Cost

= How do you model and measure point-to-point
communication performance?
= mostly independent of source and destination!
= linear is often a good approximation
= piecewise linear is sometimes better
= the latency/bandwidth model helps understand performance

= A simple linear model:

data transfer time = latency + message size / bandwidth

= latency is startup time, independent of message size
= bandwidth is number of bytes per second

Latency and Bandwidth

for short messages, latency dominates transfer time
for long messages, the bandwidth term dominates transfer time
What are short and long?

latency term = bandwidth term

when
latency = message_size/bandwidth
= Critical message size = latency * bandwidth
= Example: 50 us * 50 MB/s = 2500 bytes
= messages longer than 2500 bytes are bandwidth dominated
= messages shorter than 2500 bytes are latency dominated

= But linear model not enough
= When can next transfer be initiated?
= Can cost be overlapped?

23



LogGP Model

—~— P (processors )————*

o[ T

g (9ap)

Limited Volume
(L/g to/from

aproc)

Latency in sending a (small) message between modules
Overhead felt by the processor on sending or receiving message

Qgap between successive sends or receives
G: gap between successive bytes of the same message

m Processors

Using the Model

= Time to send a large message:
L+o0+size*G

= Time to send n small messages from one processor to
another processor
L +o0 + (n-1)*g
= processor has n*o cycles of overhead

= Has (n-1)*(g-o) idle cycles that could be overlapped with other
computation

time
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Some Typical LogGP values

= CM5:
L =16.5us
0 = 6.0us
g = 6.2us

G = 0.125 us (8MB/s)
= Intel Paragon:

L =20.5us

0o =59us

g =8.3us

G = 0.007 us (140 MB/s)

= T3D:

L =0.85us

o0 =0.40 us

g =0.40 us

G = 0.007 us (140 MB/s)

Messaqge Passing Programs

= Separate processes, separate address spaces

= Processes execute independently and concurrently

= Processes transfer data cooperatively

= General version: Multiple Program Multiple Data (MPMD)

= Slightly constrained version:
= Single Program Multiple Data (SPMD)
= Single code image running on different processors

= Can execute independently (or asynchronously), take different branches for

instance

=  MPI: most popular message passing library
= extended message-passing model
= not a language or compiler specification
= nhot a specific implementation or product
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Hello World (Trivial)

A simple, but not very interesting SPMD Program.
To make this legal MPI, we need to add 2 lines.

#include "mpi.h"
#include <stdio.h>

int main( int argc, char *argv[] )

{
MPI_Init( &argc, &argv );
printf( "Hello, world!\n" );
MPI_Finalize();
return O;

}

Hello World (Independent Processes)

#include "mpi.h"
#include <stdio.h>

int main( int argc, char *argv[] )

{
int rank, size;
MPI_Init( &argc, &argv );
MPI_Comm_rank( MPI1_COMM_WORLD, &rank );
MPI_Comm_size( MPI_COMM_WORLD, &size );
printf( "1 am %d of %d\n", rank, size );
MPI_Finalize();
return O;

}

Processors belong to “communicators” (process groups)
Default communicator is “MPI_COMM_WORLD”
Communicators have a “size” and define a “rank” for each
member
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MPI Basic Send/Receive

= We need to fill in the details in

Process 0 ‘ Process 1

Send (data)
Receive (data)

= Things that need specifying:
= How will processes be identified?
= How will “data” be described?
= How will the receiver recognize/screen messages?
= What will it mean for these operations to complete?

Point-to-Point Example

Process 0 sends array “A” to process 1 which receives it as “B”
1:
#define TAG 123
double A[10];
MPI_Send(A, 10, , 1,
TAG, MPI_COMM_WORLD)
2:
#define TAG 123
double B[10];
MPI_Recv(B, 10, , 0,
TAG, MPI_COMM_WORLD, &status)
or
MPI1_Recv(B, 10, , MPI_ANY_SOURCE,
MP1_ANY_TAG, MPI_COMM_WORLD, &status)

status: useful for querying the tag, source after reception
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MPI DataTypes

= The data in a message to be sent or received is described by a
triple (address, count, datatype), where

= An MPI datatype is recursively defined as:

= predefined, corresponding to a data type from the language (e.g.,
MPI_INT, MPI_DOUBLE_PRECISION)

= Goal: support heterogeneous clusters
= a contiguous array of MPI datatypes
= a strided block of datatypes

= an indexed array of blocks of datatypes
= an arbitrary structure of datatypes

= May improve performance:
= reduces memory-to-memory copies in the implementation
= allows the use of special hardware (scatter/gather) when available

Collective Communication in MPI

= Collective operations are called by all processes in a
communicator.
= MP1_BCAST distributes data from one process to all others in
a communicator.
MPI1_Bcast(start, count, datatype,
source, comm);
= MP1_REDUCE combines data from all processes in
communicator and returns it to one process.
MP1_Reduce(in, out, count, datatype,

operation, dest, comm);
For example:

MPI_Reduce(&mysum, &sum, 1, MPI_DOUBLE, MPI_SUM, O,
MP1_COMM_WORLD) ;
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Non-blocking Operations

Split communication operations into two parts.
= First part initiates the operation. It does not block.
= Second part waits for the operation to complete.
MPI_Request request;

MPI_ (buf, count, type, dest, tag, comm, status)

MPI_ (buf, count, type, dest, tag, comm, &request)
+

MPI_ (&request, &status)

MPI_S (buf, count, type, dest, tag, comm)

MPI_ (buf, count, type, dest, tag, comm, &request)
+

MPI_ (&request, &status)

Using Non-blocking Receive

= Two advantages:
= No deadlock (correctness)

Process 0 Process 1
Send(1) Send(0)
Recv(1) Recv(0)

= Data may be transferred concurrently (performance)

Process 0

Isend(1)
..compute...
Wait(Q

29



Operations on MPI Request

= MP1_Wait(INOUT request, OUT status)
=Waits for operation to complete and returns info in status
sFrees request object (and sets to MPI_REQUEST_NULL)

= MPI_Test(INOUT request, OUT flag, OUT status)
sTests to see if operation is complete and returns info in status
sFrees request object if complete

= MPI_Request_free(INOUT request)
sFrees request object but does not wait for operation to complete

= Wildcards:
«MPI_Waitall(..., INOUT array_of_requests, ...)
=«MPI_Testall(..., INOUT array_of_requests, ...)
=MPI_Waitany/MPI_Testany/MP1_Waitsome/MPI_Testsome

Non-Blocking Communication Gotchas

= Obvious caveats:

= 1. You may not modify the buffer between Isend() and the
corresponding Wait(). Results are undefined.

= 2. You may not look at or modify the buffer between Irecv() and the
corresponding Wait(). Results are undefined.

= 3. You may not have two pending Irecv()s for the same buffer.
= Less obvious:

= 4. You may not /ook at the buffer between Isend() and the
corresponding Wait().

= 5. You may not have two pending Isend()s for the same buffer.
= Why the isend() restrictions?
= Restrictions give implementations more freedom, e.g.,
= Heterogeneous computer with differing byte orders
= Implementation swap bytes in the original buffer
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