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ABSTRACT 
Routing topologies for dis tr ibuted hashing in peer-to-peer 
networks are classified into two categories: deterministic and 
randomized. A general technique for constructing determin- 
istic routing topologies is presented. Using this technique, 
classical parallel interconnection networks can be adapted 
to handle the dynamic nature of part icipants in peer-to-peer 
networks. A unified picture of randomized routing topolo- 
gies is also presented. Two new protocols are described 
which improve average latency as a function of out-degree. 
One of the protocols can be shown to be optimal with high 
probability. Finally, routing networks for distr ibuted hash- 
ing are revisited from a systems perspective and several open 
design problems are listed. 

1. INTRODUCTION 
Distr ibuted Hash Tables (DHTs) are currently under in- 

vestigation in the context of peer-to-peer (P2P) systems. 
The hash table is part i t ioned with one part icipant  managing 
any given parti t ion.  This engenders maintenance of a table 
tha t  maps a part i t ion to its manager 's  network address. A 
simple scheme is to let a central server maintain the map- 
ping. However, part icipants  in P2P systems are numerous 
and span wide-area networks. Their short lifetimes result 
in frequent arrivals and departures.  A central server could 
ameliorate its load by leasing portions of the mapping table 
to clients for caching. Still, central servers are single point s 
of failure and potential  performance bottlenecks. DHTs ob- 
viate the need for central servers altogether by creating an 
overlay network among the participants.  Hash lookups are 
routed to appropriate  managers using the overlay. I t  is de- 
sirable tha t  the number of hops for lookups be small. How- 
ever, nodes should not be encumbered with large numbers of 
overlay connections. Thus DHT routing topologies face two 
conflicting goals: fast lookups but  small state. Table 1 sum- 
marizes the trade-offs offered by various DHT topologies. 
All the protocols are scalable and handle dynamic networks. 
The costs of joining and leaving are also reasonable. 
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Summary of Paper 
a) We classify DHT routing networks into two categories: 

deterministic and randomized. Overlay connections in a de- 
terministic topology are a function of the current set of node 
ids. In the case of randomized topologies, there is conceptu- 
ally a large set of possible networks for a given set of node 
ids. At run-time, a specific network is chosen depending 
upon the random choices made by all part icipants.  

b) Existing deterministic DHT routing networks are adap- 
tat ions of specific parallel inter-connection networks: hyper- 
cubes [13, 26, 28], tori [26] and de Bruijn graphs [10, 14, 24]. 
We present a general technique for building deterministic 
DHTs that  allows us to adapt  any of the innumerable paral- 
lel routing topologies to handle the dynamic nature of P2P 
networks. Our construction sheds light on the structure of 
the solution space, enabling a common proof technique for 
analyzing deterministic topologies. In the process, we ob- 
tain several new DHT routing networks with k = O(1) links 
and O(ln n~ In k) average latency. 

c) We identify the common machinery underlying random- 
ized topologies. We describe two new constructions in this 
space. A simple scheme provides O( lnn)  average latency 
with only O(ln In n) links per node. A rather sophisticated 
scheme requires only 3~ + 3 links per node for average la- 
tency O(lnn/lng), which is optimal. Both latency bounds 
hold with high probability. 

d) Using the algorithmic insights obtained, we revisit the 
problem of building DHTs and identify sub-problems tha t  
merit  at tention as separate black-boxes from a systems per- 
spective. We list several open design problems in the end. 

Road map 
In Section 2v we summarize previous work. In Sections 3 
and 4, we s tudy deterministic and randomized DHTs re~- 
spectively. In Section 5, we present an optimal randomized 
protocol. In Section 6, we list research issues tha t  merit  
further investigation. 

2. PREVIOUS WORK 
Inspired by the popular i ty  of file-sharing applications like 

Napster, Gnutella and Kazaa, the research community is 
exploring the possibility of harnessing computing resources 
distr ibuted across the globe into a coherent infrastructure 
for distr ibuted applications. The efficacy of DHTs as a low- 
level abstraction is currently under scrutiny. 

The problem of constructing DHTs is both  old and new. 
Distr ibuted hashing has been studied extensively by the 
SDDS (Scalable Distr ibuted Data  Structures) community, 

133 



start ing with the  seminal work of Litwin, Niemat and Shnei- 
der [18]. However, these hash tables have central com- 
ponents and are designed for small-sized clusters. High- 
performance hash tables over large clusters were recently 
studied by Gribble et al [12]. Hash tables over peer-to-peer 
networks present novel challenges. Peer-to-peer networks 
consist of millions of machines over the wide-area network. 
Moreover, the set of part icipants  is dynamic with frequent 
arrivals and departures  of nodes with short lifetimes. 

CAN [26], Chord [29], Pas t ry  [28] and Tapestry [13] were 
among the first determinist ic DHT proposals. CAN is an 
adapta t ion  of multidimensional tori  while Chord has simi- 
larities with hypercubes. Pas t ry  [28] and Tapestry [13] are 
quite similar to each other and build upon earlier work by 
Plaxton et al [25]. All schemes provide O(ln n) latency with 
O(ln n) links per node. Recently, three groups [10, 14, 24] 
independently demonstra ted tha t  de Bruijn networks [23] 
could be adapted  for routing in DHTs. Such networks pro- 
vide O( lnn)  latency with only O(1) links per node. A nat- 
ural question arises: Is it possible to morph any parallel 
interconnection network into a DHT routing protocol? One 
of our constructions shows tha t  the answer is yes. 

Viceroy [19] was the first randomized protocol for DHT 
routing. I t  provides O( lnn)  latency with O(1) links per 
node. Symphony [20] builds upon previous work by Klein- 
berg [15] to obtain a protocol tha t  offers O((ln 2 n)/k) aver- 
age latency with k + 1 links per node for small k. Symphony 
and Chord are the best  in terms of simplicity and symmetry. 

Parallel interconnection networks [8, 17] have been exten- 
sively investigated, resulting in a rich collection of topolo- 
gies over s tat ic  sets of nodes. Randomized routing in this 
context was pioneered by Valiant [16]. Random graphs [5] 
have also been thoroughly investigated since 1950's. Tradi- 
tionally, random graphs have been studied for mathematical  
properties like diameter,  connectivity and chromatic num- 
ber. Routing algorithms for random graphs have been de- 
veloped only recently [15]. Randomized topologies appear  
to have been ignored by the parallel architecture community 
because interconnection networks are fixed in hardware. 

Routing schemes for both  parallel interconnection net- 
works and random graphs assume tha t  the set of part icipat-  
ing nodes is static. The main challenge in adapting these 
schemes to peer-to-peer networks lies in handling the dy- 
namic nature of par t ic ipants  who leave and join frequently. 

3. DETERMINISTIC TOPOLOGIES 
Without  loss of generality, DHTs can be seen as mapping 

keys to the unit  interval [0, 1). The hash space is part i t ioned 
by allowing nodes to choose their ids from the interval uni- 
formly at random. I t  is convenient to imagine [0, 1) as a 
circle with unit  perimeter.  Node ids correspond to points 
on the circumference. A node maintains connections with 
its immediate clockwise and anti-clockwise neighbors. A 
node also establishes links with other nodes  far away along 
the circle. The set of neighbors of a node depends on the 
parallel routing topology being mimicked. 

Parallel interconnection networks consist of families of 
graphs with members of varying size. On the basis of struc- 
tural  similarities, families can be classified into two broad 
categories [17]. Shuffle-exchange and de Bruijn constitute 
one category whereas Butterflies, Cub'e-Connected-Cycles 
and Benes form the other. Many variations of these ba- 
sic networks themselves exist, e.g., k-ary Butterfly, wrapped 

D e t e r m i n i s t i c  R o u t i n g  T o p o l o g i e s  
Protocol # Links Avg. Latency 
CAN [26], Chord [29] O( lnn)  O( lnn)  
Wapstry [13], Pastry [28] O( lnn)  O( lnn)  
D2B [10], Koorde [14] k + 1 O(ln n~ In k) 
Butterfly, CCC, Benes ~e + 1 O(ln n~ In £) 

R a n d o m i z e d  R o u t i n g  T o p o l o g i e s  
Protocol # Links Avg. Latency 
Viceroy [19] 7 O(ln n) 
Kleinberg [15] 2 O(ln 2 n) 
Symphony [20] k + 1 O((ln 2 n)/k) 
Bit-Collection ~ + 1 O((lnnlnlnn)/e) 

O ( l n l n n )  O( lnn)  
New Algorithm 3e + 3 O(ln n~ In e) 

Table  1: C o m p a r i s o n  o f  var ious  p r o t o c o l s .  T h e  cur-  
rent  s i z e  o f  t h e  n e t w o r k  is n. 

Butterfly etc. Moreover, it is possible to create products  Of 
arbi t rary pairs of networks. 

A family of graphs is typically defined over a s tat ic  set 
of either 2 k nodes (hypercubes and de Bruijn graphs) or 
k2 k nodes (butterflies). In a dynamic environment,  some 
families are easy to maintain while others are challenging. 
We illustrate the problems encountered with two examples. 

Chord [29] is a variant of hypercubes which consti tute a 
family of graphs defined over 2 k nodes, k > 1. A Chord 
node with id x E [0, 1) maintains a finger table of connec- 
tions with managers of points (x + 1/2, x + 1 / 4 , . . . ) .  As 
the number of part icipants  increases from 2 k to 2 TM, two 
changes in finger tables occur: (a) a new finger of size 1/2 k+l 
on average is introduced, and (b) almost all fingers are re- 
placed. However, a new finger points to a node very close 
to the old finger it  replaces. Let us contrast  the  si tuat ion 
with a Chord-style variant of Butterfly networks which are 
defined over k2 k nodes, k _> 1. For ease of exposition, let us 
assume node ids part i t ion the interval [0, 1) into equi-sized 
sub-intervals. One way to visualize the  network is to split  
the interval [0, 1) into 2 k groups with k node ids per  group. 
Nodes within a group are assigned ranks 0, 1, 2 , . . . ,  k - 1 
in the clockwise direction. The finger table of a node with 
rank r consists of just  one connection with a node of rank 
(r + 1) mod k belonging to tha t  group which contains the 
point x + 1/2 (r+l) rood k As the network increases in size 
from k2 k to (k + 1)2 k+l, almost all of the  existing fingers 
change significantly. This is because the  group size changes 
from k to k + 1. Wi th  new group boundaries,  the rank of a 
node with id x is quite different. This problem has actually 
been encountered by [7] who a t tempted  to emulate a but ter-  
fly along the same lines. Note tha t  the emulation of butterf ly 
in Viceroy [19] has a different flavor. I t  is randomized and 
is discussed in Section 4. 

Emulation of arbi t rary  families of parallel  interconnection 
networks is challenging primari ly due to two sources of un- 
certainty. First ,  the size of the network is not known accu- 
rately to all participants.  Second, the  dis tr ibut ion of points 
is not exactly even. In the context of butterf ly networks, the 
first uncertainty leads to disagreement among nodes about  
group boundaries. A consequence of the second uncertainty 
is that  certain groups might be empty  while some groups 
have too many members. We address the first issue by de- 
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veloping an estimation protocol (Section 3.1). The second 
issue is addressed by clustering (Section 3.3). 

3.1 Network Size Estimation 
In this section, we develop a distributed scheme for esti- 

mating n, the current size of the network. Although differ- 
ent nodes arrive at different estimates of n, each estimate is 
guaranteed to lie in the range n/(1  4- 5) with high probabil- 
ity 1 (w.h.p.) where 5 E (0, 1) is a user parameter. 

Could a node with id x deduce n by simply measuring the 
density of ids close to x? How large a sub-interval suffices 
so that w.h.p., the actual number of ids in the sub-interval 
does not deviate significantly from that expected? 

LEMMA 3.1. Let n points be chosen independently, uni- 
formly "at random from the interval [0, 1). Let pc, be a ran- 
dom variable that equals the total number of points chosen in 
a fixed interval of size a. I r a  > (8e -2 In n) /n ,  then Pr[p~, > 
(1 + e)Ep~] < 1In 2 and Pr[pc, -< (1 - e)Ep~] < 1In 2. 

Lemma 3.1 follows immediately from Chernoff's Inequal- 
ity (see Appendix). It suggests .that we should measure the 
size of the interval spanned by f](ln n) successive points and 
scale the observed density. Two issues remain: (a) How do 
we estimate I n n  itself? (b) Exactly how many points suffice 
to arrive at an estimate for n lying in the range n/(1  4- 6)? 
Both issues are addressed by the following scheme: Consider 
a specific node with id x. Let ni denote the number of nodes 
that share the top i (most significant) bits with x. Node x 
identifies the largest g such that  ne > 16(1 + 5)6 -2 ln(2ene). 

LEMMA 3.2. (a) log2(2ene) :> 0.51og2n with probability 
at least 1 - 1In 2. (b) 2ene lies in the interval n / (1  :k 6) with 
probability at least 1 - 2In 2. 

THEOREM 3.1. With probability at least 1 - 2/n, the es- 
timate of network size made by every node lies in the range 
n / (1  4- 6). 

Lemma 3.2 is proved in the Appendix. Theorem 3.1 can 
be derived from Lemma 3.2 by summing over all n nodes. 

3.2 Topology Establishment 
In the previous Section, we described a distributed scheme 

which ensures that  the estimate of n by all nodes lies in 
the range n/(1  4- 5) w.h.p. On a log-scale in base two, the 
difference between the upper and lower bounds is log2[(1 + 
5)/(1 - J)]. Setting ~ < 1/3 makes the range of ambiguity 
less than 1. Let us see how this moves us a step closer to 
our goal of emulating arbitrary parallel routing topologies. 

We label a node with estimate h by (Llog 2 h j,  [log 2 h] }. 
At most three integers are used in labeling all nodes and at 
least one integer is common to all labels. A similar labeling 
can be done for emulating families of networks defined over 
k2 k nodes. A labeled node constructs two sets of long links, 
one set for each integer in its label. A message could initially 
follow links corresponding to the smaller of the two integers 
at the source, switching over to the next larger integer along 
the way if necessary. This idea works except for a caveat that 
calls for clustering. 

1A guarantee is said to be with high probability if it fails 
with probability at most 1In ¢ for some constant c. 

A Case for Clustering 
a) When emulating certain families of parallel networks, un- 
even distribution of points causes problems. Recall the emu- 
lation of a butterfly network with parameter k. A node with 
id x and rank r would try to make a connection with a node 
of rank (r + 1) mod k which belongs to the group containing 
the point x + 1/2 (~+1) rood k However, it is quite possible 
that  the target group is empty or the target group has too 
many points. In fact, it is possible to show using Chernoff 
bound techniques [22] that  w.h.p., there exist groups with no 
members and groups with f2(ln 2 n) members. In Chord, this 
does not result in serious problems during topology estab- 
lishment except that  some nodes have gt(ln 2 n) links w.h.p. 
For other networks like butterflies, the problem needs to be 
addressed to make emulation feasible. 

b) When emulating topologies like Chord and de Bruijn 
networks, uneven distribution shows up in their analysis. 
For example, the intuition behind the proof that  routes axe 
O(ln n) on average in either of these networks proceeds as 
follows. First, show that  a majority of the most significant 
bits become zero because no node is bereft of long-distance 
links corresponding to these bits. Next, show that  the last 
few steps required for routing in a local neighborhood are 
not too many because the density of points in a small neigh- 
borhood has small variance. 

In the next Section, we develop a clustering scheme that  
not only enables emulation of arbitrary families of parallel 
networks but also provides a common proof technique for 
analyzing such networks. 

3.3 Clustering 

LEMMA 3.3. Let k be such that 2 k < (e2n)/(81nn).  With 
probability at least 1 - 2/n,  the number of points in each of 
2 ~ equi-sized non-overlapping sub-intervals of [0, 1) lies in 
the range (1 4- e)n/2 k . 

PROOF. From Lemma 3.1, we conclude that  with proba- 
bility at least 1 - 2/n  2, the number of points in a specific 
sub-interval lies in the range (1 4- e)n/2 k. Summing over 
2 k _< n intervals, we obtain the desired bound. [] 

Lemma 3.3 suggests a natural  clustering scheme. We label 
a node with estimate fi with a pair of integers (kl, k2) where 
kl = [log 2(e2n)/(16 lnn)J and k2 --- [log 2(e~n)/(16 lnn) ] .  
Assuming 5 < 1/3 in the estimation scheme (Section 3.1), 
at most three k-values are used for labeling £11 nodes and 
at least one k-value is common to all labels. For each k- 
value used in a label, Lemma 3.3 assures us that  each of 2 ~: 
clusters will be populated by (1 4- e)n/2 k node ids w.h.p. 

A family of parallel interconnection networks is emulated 
by constructing an inter-cluster network as follows. A node 
with label (kl ,k2) makes two sets of links. The first set 
corresponds to using kl most significant bits of its id and 
assuming 2 k~ clusters. The second set corresponds to using 
k2 most significant bits and assuming 2 k2 clusters. When 
establishing a particular link, a node can choose any node 
belonging to the destination cluster. Since at least one in-- 
teger is common to all labels, there is at least one value of 
k such that the network over 2 k clusters is complete. Each 
cluster has O(ln n) nodes. 

A hash lookup initially follows links corresponding to the; 
smaller of the two k-values at the source. Along the way, 
routing switches to the next higher k-value if necessary. 
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Upon reaching the dest inat ion cluster, intra-cluster routing 
is done by some local routing network. The choice of local 
routing topology is influenced by several factors like replica- 
tion, fault tolerance etc. Since each cluster has size O(ln n), 
intra-cluster routing takes no more than O(ln n) hops. 

Maintenance of multiple networks for different k-values 
costs no extra  overhead in terms of links in hypercubes and 
de Bruijn networks. For butterflies, the number of links at 
most doubles. Global routing could be faster if all nodes 
could identify the k-value tha t  is common to all labels. In- 
deed, the common k-value can be est imated quite accurately 
by sampling a small number of random nodes. 

The paradigm of first routing to the destination cluster 
and then to a node within the cluster underlies the analy- 
sis of existing protocols like Chord and Koorde. By making 
the distinction explicit and breaking the problem into two 
sub-problems, it  is possible for the two to be developed in 
practice as more or less independent sub-systems. Our con- 
struction also supports  emulation of Butterflies, CCC and 
Benes networks [17]. 

Partition Balance 
A part i t ion of [0, 1) is a sub-interval tha t  is managed by a 
node. From Lemma 3.3, the  ratio of cluster sizes is at most 
(1 + e)/(1 - e )  where e is a small constant. This suggests tha t  
it might be possible to move nodes around within cluster 
boundaries in order to obtain almost equi-sized partit ions. 
However, any movement of nodes potential ly impacts the 
est imation scheme. We are currently developing efficient 
strategies for carrying out par t i t ion balancing tha t  work in 
conjunction with network size estimation. 

3.4 Related Work 

Estimation Scheme 
Our est imation scheme has similarities with Flajolet  and 
Mart in 's  approximate counting technique [9]. Recently, the 
idea was adapted  to est imate distinct  values in streaming 
da ta  [11]. The intuition behind the scheme is also similar 
in flavor to the argument tha t  the  height of random binary 
search trees on n keys is e ( l n n )  w.h.p. 

A scheme for est imating In n was presented in Viceroy [19]. 
If x is the difference between two adjacent ids, then In ( l /x )  
is a constant-factor approximation of Inn  w.h.p. More- 
over, it can be shown tha t  if y denotes the union of sub- 
intervals managed by 16 In 1/x nodes, then 1/y is a factor-2 
approximation of n w.h.p. The motivation for a new scheme 
stemmed from par t i t ion balancing considerations which call 
for adjustments  in node ids. 

Partition Balancing 
Naor and Wieder  [24] and Abraham et al [1] recently showed 
tha t  the ratio between the largest and the smallest part i t ion 
can be made O(1) if a node first chooses O( lnn)  points at  
random and then selects as its id tha t  point which splits the 
largest part i t ion.  Adler et all2] have devised algorithms to 
optimize the  same metric for CAN [26]. 

Emulation of Parallel Networks 
Abraham et al [1] recently described a construction for em- 
ulating families of graphs dynamically. Members of a family 
are required to possess a certain kind of recursive structure 
tha t  allows parent-child functions to have a property called 

child-neighbor commutativity.  The authors show tha t  hy- 
percubes, de Bruijn graphs and butterflies can be defined 
recursively so as to enjoy the property. 

The general construction in Section 3 was derived inde- 
pendent  of [1]. I t  appears tha t  the pr imary advantage of the 
new construction is tha t  the family of graphs being emulated 
need not have a recursive structure. In fact, the  graphs over 
2 k and 2 k+l clusters could be quite different, say a torus 
and a butterfly. The construction has an addit ional  ad- 
vantage from a systems perspective. I t  splits the routing 
problem into two: global and local, which could be archi- 
tected in a practical system by separate groups. A global 
routing designer faces a rather unchanging set of clusters 
with even density. Her concerns include global load balance 
across clusters, congestion avoidance, deadlock prevention 
and high throughput.  A local routing designer focuses on 
local issues like manager replication, fault tolerance and last- 
hop optimizations, independent of global routing. 

Abraham et al [1] view the set of node ids as a binary 
search tree with keys only among the leaves. A key corre- 
sponds to the fewest possible number of most-significant bits 
necessary for a node to distinguish it from its neighbors. The 
difference in the lowest and the highest leaf levels is called 
the global gap. The authors show tha t  choosing the short- 
est key among O(ln n) randomly chosen node ids results in 
global gap O(1) w.h.p. This could in fact be exploited to 
devise a more efficient scheme for est imating n. Also, it 
seems tha t  clustering (based upon the est imation scheme of 
Section 3.1) coupled with par t i t ion balancing could provide 
an al ternate method for reducing the global gap to O(1). 

3.5 A Variant of Chord 
A Chord node establishes roughly log 2 n outgoing links 

with managers of points lying at  distances (1/2, 1/4, 1 / 8 , . . . )  
away from itself. A node also has incoming links from man- 
agers of points lying at distances ( - 1 / 2 , - 1 / 4 , - 1 / 8 , . . . ) .  
The total  number of TCP connections is 2 log 2 n on average. 
Average latency by using Chord's  clockwise greedy routing 
protocol [29] is ½ log 2 n. Instead, if every node maintains 
2 log 3 n links at distances (5=1/3, 5=1/9, 5=1/27,. . .) ,  we get a 
reduction in both average latency and average degree. The 
idea is tha t  the distances to any dest inat ion can be writ- 
ten in ternary using the digits { - 1 ,  0, + l } .  Only two-thirds 
of all digits are 5=1 on average. Thus average latency is 
(2 log 3 n)/3 using only 2 log 3 n links. The scheme works 
in conjunction with the part i t ion balancing technique de- 
scribed in Section 3.3 which ensures tha t  a < 2. The idea 
can also be used to define butterf ly networks in base-3 which 
would offer bet ter  latency and out-degree as a function of n. 

4. RANDOMIZED TOPOLOGIES 
A randomized topology is not determined by the set of 

node ids alone. In fact, there is a large set of possible topolo- 
gies from which one is chosen at  run-t ime depending upon 
the random choices made by all part icipants.  

Randomized topologies have three sources of uncertainty: 
(a) The total  number of nodes is not known accurately, (b) 
The distr ibution of ids is not even, and (c) Different nodes 
make different random choices. The intuit ion underlying 
randomized topologies has little to do with the first two 
sources of uncertainty. I t  is possible to first devise random- 
ized protocols on a cycle graph with n vertices. As a second 
step, uncertainty in the knowledge of n and uneven distri- 
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bution of points can be taken into account. We illustrate 
this approach by first building intuition common to several 
known randomized topologies over cycle graphs of size n. 
We then describe a new topolol~y which is quite simple and 
offers O(ln n) average latency with only O(ln In n) links. We 
then build a sophisticated routing protocol that offers the 
optimal latency vs degree trade-off. The analysis of the last 
protocol is for the general setting where we deal with all 
three sources of uncertainty. 

A Case for  Randomization 

One might wonder whether it makes sense to add more ran- 
domness to the system since a system designer already has 
her hands full dealing with uncertainty about n and the 
distribution of ids. We argue that  randomness in topology 
contributes to the overall robustness of the system. It makes 
the system resilient to malicious attacks. Random topolo- 
gies are typically more flexible since each node chooses its 
neighbors independently. Deterministic topologies are less 
flexible as they require coordination among different nodes 
to guarantee correctness of routing protocols. 

4.1 Previous Work 
Viceroy [19] was the first randomized protocol for DHT 

routing. It is an adaptation of butterfly networks. Klein- 
berg [15] discovered routing protocols over a class of ran- 
dom graphs such that  average latency is only O(In 2 n) while 
each node has out-degree two. Kleinberg's construction was 
inspired by the desire to mathematically model the Small 
World Phenomenon [21]. Symphony [20] showed how Klein- 
berg's construction could be adapted to dynamic P2P net- 
works with multiple links per node. 

Consider a cycle graph on n :nodes where vertices are la- 
beled 0, 1~ 2 , . . ,  , n -  1 and there is an edge between node i 
and node (i q- 1) mod n. A message can be routed clockwise 
from a node to any other in at most n -  1 steps. By the 
introduction of a few more links per node~ routing can be 
made significantly faster. 

Assume that  a message destined for node Xde~t is sitting 
at node x . . . .  Let d = (n + xcte~t - Xsrc) mod n, the dis- 
tance between the nodes. Let h denote the number of l ' s  in 
Xdest  @ Xsre, the Hamming distance between the two nodes. 
There seem to be two fundamental themes lying at the heart 
of existing routing protocols: A route diminishes either the 
distance d or the Hamming distance h to the destination. 
CAN, Chord, Kleinberg's protocol, Symphony and Viceroy 
are designed with d in mind. Pastry, Tapestry and de Bruijn 
based networks are designed with h in mind. Routes that di- 
minish d do not necessarily diminish h and vice versa. How- 
ever, the intuition behind both flavors of routing has com- 
monalities, e.g., a protocol gradually diminishes the number 
of l ' s  in either d or h. We now present a unified picture of 
protocols that  diminish distance d. 

Distance Halving 

Consider the function Cn(x) = ( innx) / lnn  for x e [~, 1]. 
This is the cumulative probability distribution of P,~(x) = 
1/(xlnn) for x • [~,1]. For x • [~,1], we will say that 
its notch value is y = Cn(x). "While routing, let the cur- 
rent distance to the destination be xc~,~ent with notch value 
Y¢~,rr~t. Let s = 1/log 2 n. If the current node has a link 
with notch value between y ~ . ~ t  - s and y¢~,~nt, then we 
can forward the lookup along this link such that x~,,.ent 

is at least halved and ycu,.~¢nt diminishes by ~t least s. 
The maximum number of times x c ~ e n t  can be halved (and 
y¢~,-~nt diminished by s) is at most 1/s = log 2 n. This in- 
tuition underlies all DHT protocols that  diminish distances. 

Chord topology corresponds to every node establishing 
exactly log 2 n links corresponding to notch values (1 - s, 1 - 
2s, 1 - 3s , . . . ) .  When a node wishes to route to a point 
Xc~rrent away (with notch value y . . . .  ent), it can immedi- 
ately forward the lookup along a link such that  Xcurr¢.at 
is at least halved and y~r,¢~t diminished by at least s = 
1/log 2 n. Lookup latency is thus O(ln n). 

In Kleinberg's construction [15], each node establishes one 
long link with another node at a distance drawn from a dis- 
crete distribution which is quite similar to Pn. This is equiv- 
alent to choosing a notch value uniformly at random from 
[0, 1]. Routing proceeds clockwise greedily. If the long link 
takes us beyond the destination, the request is forwarded to 
a node's successor. Otherwise, the long link is followed. Let 
us denote the current distance to the destination by xc~r~,~ 
with notch value yc . . . . .  t. With probability s = 1/log 2 n, 
the long link of the current node has notch value lying be- 
tween ycurrent - -  8 and ycurrent. Thus the expected number 
of nodes that need to be visited before we arrive at a node 
which halves x ~  is 1/s = log 2 n. Effectively, in com- 
parison with Chord, there is an inflation in lookup latency 
by a factor of O(ln n). Kleinberg's routing scheme requires 
O(ln 2 n) steps. 

Symphony extends Kleinberg's idea in the following way. 
Instead of one long-distance per node, there are k long- 
distance links where k < log 2 n. Effectively, a node gets 
to choose k notches uniformly from [0, 1]. Loosely speak- 
ing, when we are at X¢~,.~n~ (with notch value y ~ , ~ t ) ,  
we need to examine roughly (log 2 n)/k  nodes before we en- 
counter some link that  diminishes xc~,~ent by at least half. 
Thus average latency for Symphony is O((ln 2 n)/k).  

Greedy Routing 

Barriere et al [4] show that  greedy routing using P~ requires 
f/(ln 2 x) steps. Aspnes et al [3] study two variants of greedy 
routing. For g links per node and any fixed distribution, they 
prove that one-sided routing (clockwise and never overshoot 
the target) requires ~( ln 2 n/(t~ In In n)) hops. For two-sided 
routing, they prove a lower bound of ~( ln 2 n/(g 2 l n l n n ) )  
hops and conjecture that this can be improved to match the 
bound for one-sided routing. 

In light of the abovementioned results pertaining to greedy 
routing and harmonic distributions, the l~rotocol we build 
next seems interesting. It employs a variant of Pn but  rout- 
ing is not greedy. For small £ < In In n links, average la- 
tency is only O((ln n In in n)/g). For large £, average latency 
is O((lnn/lne) ln(ln n / I n  £)). 

4.2 Bit-Collection Protocol 
Consider a cycle graph on n nodes. Let b = ~log 2 n~ bits. 

A node with id x chooses an integer r uniformly at random 
from the set {1, 2 , . . . ,  b} and establishes a link with node 
[x + n/2"q mod n. The construction can be looked upon as 
a modification of Chord where each node is restricted to use 
exactly one entry chosen uniformly at random from its finger 
table. It is possible to route clockwise in O(ln n In In n) steps 
w.h.p, by using a non-greedy protocol. 

Let the distance remaining to the destination be d. Let 
b' = [log 2 (4b In b)] bits. If the long link of the current node 
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corresponds to one of the top (most significant) b - b' bit 
positions where d represented in binary has a 1, then forward 
the message along the long link. Otherwise, forward the 
message clockwise along the short link. Forwarding along a 
long link removes some 1 among the top b - b ~ bits. The 
lower order b ' bits act as a counter that  diminishes by 1 
whenever a short link is followed. 

The protocol is reminiscent of the classic Coupon Collec- 
tion problem [22]. Essentially, we have to collect at most 
b - b' coupons where the probability of collecting a coupon 
in one step is 1/b. It is well known that  w.h.p., all b -  b ~ bits 
can be collected in 2b In b steps. Building upon this intuition, 
it can be shown that  on average, routing requires O(b In b) 
hops. Since b -- O( lnn) ,  average latency is O(lnnlnlnn). 

With g < In b links chosen uniformly out of the b pos- 
sible, it can be shown that  average latency diminishes to 
O((ln n In In n)/g). With In I n n  links, average latency is only 
O(ln n). For large values of g, a further improvement is pos- 
sible. The key idea is that  g links can be used to fix [ln2 gJ 
bits in one hop. It  can be shown that  for large g, routing 
requires O((ln n~ in ~) In(In n~ In ~)) hops. 

The basic Bit-Collection protocol works even for degree- 
3 Chord described in Section 3.5 where routing is not al- 
ways clockwise. The idea can also be carried over to hy- 
percubes where every node chooses one of the hypercube 
edges uniformly at random. This would create a variant of 
Pastry [28]/Tapestry [13] that  routes in O( lnn)  with only 
O(ln Inn)  links w.h.p. 

Towards Optimality 

With at most g links per node, we can reach fewer than 
~e a nodes in d -  1 hops. Therefore, average path length for 
lookups originating at any node is ~( ln n~ In e). 

Bit-Collection is only a factor O(ln(lnn/lne)) more ex- 
pensive than the best possible protocol. How could we pos- 
sibly make it faster? By chaining the bits being collected. 
We illustrate the idea for a network with n nodes. Consider a 
node x with a finger that  should point to ~x + n/2 r] mod n 
for some integer r. This finger fixes the r th most significant 
bit. If we could make it point to a node that  fixes the ( r + l )  th 
bit, then we could hope to collect bits rapidly in succession. 
The key idea is to search for a pair of nodes, one each in 
the vicinity of x and x + n/2" that  both fix the (r + 1) ~h 
bit. The two searches on average require only b steps each. 
How would routing work? If x wishes to send a message to 
some node, we first search for a node in the vicinity of x that  
fixes the top bit. This requires b steps on average. Then, 
routing proceeds rapidly by fixing successive top-order bits. 
A problem that  emerges is that  searches associated with the 
top order bits collectively introduce a bias of roughly O(b2). 
If every node maintains an additional pointer that  points a 
fixed distance b away, the last stretch of length O(b 2) can 
be covered in only O(b) steps. 

The intuition developed in the previous paragraph is ex- 
actly how Viceroy [19] would work if all nodes knew n pre- 
cisely. Using the terminology of notches developed earlier in 
this Section, Viceroy assigns each node a notch value drawn 
uniformly at random from the set {1 - s, 1 - 2s, 1 - 3s , . . .} .  
The size of the set is log S n. The relationship with Chord 
is the following. A Chord node uses the entire set for link 
establishment resulting in log 2 n links per node. However, 
a Viceroy node at position p E [0, 1) and notch value y 
(corresponding to distance x = Cffl(y)), searches intervals 

centered around points p and p + x for a pair of nodes with 
notch value y - s. 

We now develop a protocol that  requires only 3~ + 3 links 
per node and offers O(lnn/ln£) average latency. It is based 
on Kleinberg's idea and employs the intuit ion we just de- 
veloped. Kleinberg's construction assumes that  a node does 
not possess any knowledge of random choices made by other 
nodes. Our protocol demonstrates that  if each node were al- 
lowed to gather knowledge of a small number, O(i~7 Inn) ,  of 
other nodes, we can construct a topology which diminishes 
average latency to O(ln n~ In g) w.h.p. It turns out that  our 
protocol has similarities with Viceroy. The main difference 
lies in the fact that  we allow notch values to be anywhere in 
the continuous interval [0, 1] while Viceroy limits the choices 
to log 2 n discrete values. 

5. OPTIMAL RANDOMIZED PROTOCOL 
In this Section, we describe a randomized topology with 

3g -t- 3 links per node for average latency O(ln n~ In g) w.h.p. 
Let I denote the unit  interval [0, 1). It is convenient to 

imagine I as a circle with unit  perimeter. The binary oper- 
ators + and - wrap around the interval I. In other words, 
x + y denotes the point that  lies clockwise distance y away 
from x along the circle. Similarly, x - y denotes the point 
that  lies anti-clockwise distance y away from x. 

Let n denote the total number of nodes in the system 
currently. Each node maintains 3g + f + 3 outgoing links 
where g, f > 1. We will assume that  £ = O(polylog(n)). A 
node maintains three real numbers: position p, range r and 
estimate h. Position p is chosen uniformly at random from 
I. An estimate of the network size h is maintained by using 
the protocol described in Section 3.1. A node chooses as its 
range r, a real number drawn from a range probability dis- 
tribution 79~ = 1/(xlnh) for x E [l/h, 1]. Distribution ~a  
is simply the continuous version of the discrete distribution 
in Kleinberg's construction [15]. A node at position p with 
range r is said to span the interval [p - r, p] t.3 [p, p + r]. 

5.1 Link Structure and Routing Protocol 
For ~ > 2, a node establishes f + 1 short links, 2 interme- 

diate links, 2~ long links and at most g global links. When 
g = 1, a node maintains f + 1 short links, 1 intermediate 
link, 2 long links and at most 2 global links. In any case, 
the total number of links is 3£ + f + 3 for ~ > 1. We will 
assume that  g = O(polylog(n)). 

Short and Intermediate Links 

Short links are established with the f + 1 immediate clock- 
wise successors of a node. Only one of these links (with the 
immediate successor) is crucial for routing. Other links are 
for fault tolerance and do not play any role in routing. 

For g > 2, intermediate links are established with two 
nodes that  are Vln hi and Fin h / I n  g] hops away in the clock- 
wise direction along the circle. When g = 1, only one inter- 
mediate link is established with the node that  is [ln hi  hops 
away in the clockwise direction. Intermediate links are used 
to route when the target is known to be nearby. In partic- 
ular, Lemma 5.3 will show that  a node that  is O(ln 2 n / l n g )  
hops away is reachable in only O(ln n~ ln£) steps. 

Long Links 

Long links are established as follows. A node partitions 
the interval [p - r, p] into e non-overlapping equisized sub- 
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intervals and establishes one long link per sub-interval. It 
establishes g additional links by partitioning the interval 
[p, p +  r] into g non-overlapping equisized sub-intervals. Note 
that [p - r, p] and [p, p + r] would have more than one point 
in common if r > 0.5. 

Let us denote a sub-interval by Is~b. Its size is list, b[ = 
r/g. Let us denote the mid-point of Is~b by Ps~,b. We also 
define an interval Is . . . .  h with I/8 . . . .  hi = 64 In 2 fi/(fi ln g), 
centered at psub. Note that  IXseareh] is independent of r. 
If lie . . . .  hi _> IIs~,b]12, we say that  Is~b is a small sub- 
interval. Otherwise I~b  is said to be a large sub-interval. 
If Is~b is small, we establish a link with the manager of the 
point Ps~b -- r/(2g). Mathematically, this allows for mul- 
tiple links to a node and even self loops. In practice, we 
could easily avoid both. If I~,b is large, we invoke a rou- 
tine called SEARCH. The goal of SEARCH is to discover some 
node lying within [search whose range lies in the interval 
[3r/(4g), 7r/(Sv/g)]. Since IIs .. . . .  h[ < ]I~bl/2, the range of 
such a node covers every point of Is~,b in its span. Lemma 
5.5 will prove that  w.h.p., all invocations of SEARCH succeed 
because I/8 . . . .  hi is sufficiently large. 

Long links lie at the heart of our protocol. For a node 
at position p with range r, vie claim that all points within 
[p - r, p] U [p, p + r] are reachable by short paths. To reach 
the manager of some point, we identify the sub-interval to 
which the point belongs and forward the lookup along that 
long link that  corresponds to this sub-interval. If the sub- 
interval is small, we arrive at a node such that  the destina- 
tion is no more than 64 In 2 fi /(~ ln g) away. At this point, 
intermediate and short links can carry out further routing. 
Lemmas 5.2 and 5.3 will show that this requires no more 
than O ( l n n l l n g )  steps. If the sub-interval is large, we ar- 
rive at a node whose range is at most 7r/(8V'g). The idea 
is that  shrinking by a factor of 7/(Sx/g) limits the number 
of long links along any path to O(lnn / lng) .  We will prove 
our claims formally in Section 5.2. 

One aspect of our construction remains. A lookup request 
can originate at a node tha t  does not include the destination 
in its span. This might happen if r < 0.5. In such a case, 
how do we reach a node with range large enough to include 
the destination? Global links solve this problem. 

Global Links 
Global links are established if the range r < 0.5. Consider 
[ -  [ p - r , p + r ]  where I denotes the full circle. For g > 2, we 
partition the interval I - [p - % p + r] into g equisized sub- 
intervals having size (1 - 2r)/g each. For each sub-interval 
I~b,  we invoke SEARCH with the size and location of Isear~h 
being similar to our earlier description for long link estab- 
lishment. The only change is that  SEARCH looks for a node 
with range lying in the interval [3(1 - 2r)/(4g), 1]. When 

= 1, we partition I - [p - r ,p + r] into two equisized sub- 
intervals with size (1 - 2r)/2 each. SEARCH is invoked twice 
to look for a pair of nodes, one in each sub-interval, with 
ranges lying in [3(1 - 2r)/8, 1]. 

Lookup Protocol 
When a node initiates a lookup request, it forwards it along 
that long or global link whose range spans the destination. 
Thereafter, the request is forwarded along a series of long 
links until we reach a sub-interval that  is small. Hereafter, 
intermediate and short links are used for routing. 

5.2 Theoretical Analysis 
We will establish that  w.h.p., the worst case routing la- 

tency is O( lnn / lng )  for g = O(polylog(n)). The overall 
proof is as follows. We first show that  with probability at 
least 1 - 2In, the estimate f i e  [~, 4HI for all nodes. Next, 
we show that small sub-intervals do not have high densities. 
In particular, we will show that  w.h.p., no small sub-interval 
has more than O(ln 2 n~ lng) nodes. Next, we will establish 
that with probability at least 1 - 3 g / n ,  all invocations of 
SEARCH succeed. The resulting topology enjoys the prop- 
erty that path lengths of lookups are guaranteed to be as 
small as O(lnn / lng) .  Overall, we would have proved that  
w.h.p., the worst case lookup latency is O(lnn / lng ) .  

LEMMA 5.1. With probability at least 1 - 2/n, all nodes 
in a network of size n have ~ e [¼n, 4HI. 

PROOF. From Theorem 3.1 (for sufficiently small 5). [] 

A small sub-interval has size less than 64 In 2 fi/(fi In g). 

LEMMA 5.2. With probability at least 1 - 2/n,  no Small 
sub-interval has more than O(ln 2 n~ In g) nodes. 

PROOF. Using Chernoff Inequality and Lemma 5.1, we 
can show that with probability at least 1 - 2/n  2, a particular 
sub-interval cannot be dense. Summing over all nodes, we 
obtain the requisite bound. [] 

The role of intermediate links is to route quickly to any 
node that is O(ln 2 n~ lng) hops away. 

LEMMA 5.3. Intermediate and short links can be followed 
to reach any node that is O( ln2n/ lng)  hops away in the 
clockwise direction in O(ln n~ In g) steps. 

PROOF. The longer of the two intermediate links can be 
followed in succession to reach a node that  is at most O(ln n) 
hops away. This requires O( lnn / lng )  steps. Then the 
shorter of the intermediate links can be followed to reach 
a node within O(ln n~ In g) hops of the destination. This re- 
quires O(ln g) steps. Finally, O(ln n~ In g) short links can be 
followed to reach the destination. Since £ = O(polylog(n)), 
the total number of steps is O(ln n~ In g). [] 

For small sub-intervals, long and global link establishment 
always succeeds. If the sub-interval is large, there is a chance 
that SEARCH fails. 

LEMMA 5.4. An invocation of SEARCH fails with probabil- 
ity at most 1/n 2. 

PROOF. We will prove the lemma for long links. The 
proof for global links is along the same lines. 

SEARCH is invoked only if [Is~b[/2 > [Is . . . .  hi. This im- 
plies r/2g > 64 In 2 fi/(fi In g), where fi is the estimate of the 
node that invoked SEARCH. Thus, 3r/(4g) > 96 In 2 fi/(fi In g) 
> 16/fi for large n. From Lemma 5.1, 16/~ > 4In, which 
is definitely larger than 1/fi for any node in Isearch being 
probed. 

When establishing long links, the goal of SEARCH is to 
discover some node whose range lies in [3r/(4g), 7r/(Svrg)]. 
The probability that  the range of a node with estimate fi 

~'/Svq lies in this interval is given by p = f3,-/4e 1/(x  In n)dx. In 
the preceding paragraph, we showed that  3r/4g > 1/fi for 
any node in [search. Therefore, the value of the integral is 
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(in ~ / ~ ) / l n h .  From Lemma 5.1, this quantity is at least 

(in ~ v~)/(2 lnn). 
I/8 . . . .  h[ = 641n 2 h / (h lng) .  Lemma 5.1 yields [Is . . . .  hi >_ 

81n2n/(nlne) for large n. 
Let us fix the position of the node which invoked SEARCH. 

Consider the sequence of n - 1 remaining nodes choosing 
their positions and ranges one by one. With probability 
1 -ILe~r=hh the position does not lie in Isearch. Otherwise, 
with probability at least (ln ~ v/~)/(2 In n), SEARCH succeeds. 
Thus the probability that  no node makes SEARCH succeed 

is at most [1 - 1 I  . . . . .  hi + [Is . . . .  hi(1 -- I n k )  In-1 21..  J __<[1-  
(sin 2 ~)0~ ~',/~) l ~ -  1 2 1 ~ 1 ~ - i  

(nlne)(2lnn) j __ < [1 - T ~  - < 1/n2" [] 

LEMMA 5.5. With probability at least 1 - 3£/n, all invo- 
cations of SEARCH succeed. 

PROOF. Lemma 5.4 shows that  the probability that  a par- 
ticular invocation of SEARCH fails is at most 1In 2. Since 
there are at most 3en total invocations, the probability that 
any of them fails is at most 3e/n. [] 

The next lemma shows that  although we allow SEARCH to 
probe all nodes in a rather large sized ls . . . .  h, the expected 
number of nodes it needs to probe is much smaller. 

LEMMA 5.6. SEARCH probes an average of O(lnn/lne) 
nodes before succeeding. 

PROOF. In the proof of Lemma 5.5, we proved that the 
probability that  a node in ls~,-~h makes SEARCH invoked 
for long links succeed is at least (In ~ x/~)/(2 In n). Thus the 
expected number of nodes to be probed before we succeed is 
at most (2 in n ) / ( l n  ~v/e) = O(ln n~ ln l). The same bound 
can be established for SEARCH invoked for global links. [] 

We proved that  w.h.p., all global and long links success- 
fully get established. The resulting topology enjoys the 
property that  all lookup paths are short. 

THEOREM 5.1. With probability at least 1 - (6 + 3e)/n, 
the worst case routing latency with e = O(polylog(n)) is 
O(ln n/ in  £) hops. 

PROOF. From Lemmas 5.1, 5.2 and 5.5, we conclude that  
with probability at least 1 - (6 + 3e)/n, all estimates of n are 
within a factor of four, no small sub-interval is dense and 
all long and global links get established. We show that  the 
resulting graph has short diameter. 

Routing proceeds in two phases. In the first phase, a 
lookup is forwarded along some long or global link whose 
range is guaranteed to contain the destination. The request 
then moves along a series of long links such that  every node 
along the path has a range large enough to contain the desti- 
nation in its span. The first phase starts at some node with 
range at most 1. From 5.1, when the first phase finishes, the 
last node will have range at least 1/4n. Since each long link 

8 along the path shrinks the range by at least yv~,  the first 
phase requires no more than O(ln n~ ln e) hops. 

The second phase starts when we encounter a node with 
t iny range such that  all its sub-intervals are small. At this 
point, the destination is only O(ln 2 n/(nlne)) hops away 
(Lemma 5.2). Intermediate and small links can reach the 
destination in O(ln n~ In e) steps (Lemma 5.3). 

Total latency is thus O(ln n~ In £). [] 

5.3 Arrival, Departure and Re-linking 
When a new node x arrives, it chooses its position p uni- 

formly from [0, 1). It then discovers node y, the manager 
of point p using the Lookup Protocol. Node x establishes 
a short link with y. The predecessor of y then terminates 
its short link with y and establishes it with x instead. This 
completes the insertion of x into the ring. 

Node x estimates the network size h using the procedure 
outlined in Section 3.1. The estimate allows x to iden- 
tify nodes for establishing intermediate links at a cost of 
O(ln n~ In ~) messages. The estimate also enables x to select 
its range r. Thereafter, x establishes 2e long links and at 
most ~ global links. This requires at most 3~ invocations 
of SEARCH. From Lemma 5.6, the average cost of all these 
invocations is O(i~7 lnn) .  

When a node arrives or departs, estimates of as many as 
O(ln n) nodes change. If all O(ln n) nodes re-establish their 
links, the total cost of joining is O(i~7 In ~ n). The cost can 
be reduced by maintaining two numbers, h and h. Estimate 

is continually updated using the network size estimation 
scheme (Section 3.1). Estimate h is initialized to h when a 
node joins. If at any point of time, h ~ [7 , 2h], then links 
are re-established and ¢~ is made equal to h. This scheme 
was shown to work well in practice [20]. The amortized cost 
of joining reduces to O(i~7 Inn) .  

5.4 Reducing the Out-degree 
We briefly outline a construction that  requires only 4 links 

per node for O( lnn)  average latency w.h.p. We set ~ = 1 and 
get rid of global links. Note that  a fraction ,~ c / In  n nodes 
will have their range smaller than c / /n  for some constants 
c and c'. These nodes will not establish long links since 
their range is tiny. They will instead establish two global 
links each. Routing now requires that  a lookup be forwarded 
to some node with t iny range. Hereafter, the usual protocol 
works. We can reduce the number of links to only 3 per node 
by removing the intermediate link as well. The resulting 
topology has an average latency of O(ln n/In ~). However, 
the high probability bound no longer holds. 

6. DISTRIBUTED HASHING REVISITED 
Guided by the intuition gained while exploring the solu- 

tion space of routing networks for DHTs, we propose that  
the problem be broken into four pieces for practical systems: 

(a) N e t w o r k  Size E s t i m a t i o n :  In practice, if network 
size does not change too rapidly, central servers, crawlers 
or traffic monitors might very well be ab le  to provide fine 
estimates. What  schemes work well? Can we and should we 
adapt them to work in distributed settings? 

(b) P a r t i t i o n  Ba lance :  Efficient schemes are needed to 
help a node choose its initial id upon entry into the system. 
At run-time, nodes could move around to maintain evenness 
in sizes of hash table partitions. However, repartitioning 
is costly. The efficacy of repartitioning schemes and their 
impact on the rest of the system needs investigation. 

(e) G l o b a l  R o u t i n g :  The space of routing networks for 
routing among clusters as defined in Section 3.3, appears to 
be rich. A global routing protocol designer does not have to 
worry about uncertainty of n or uneven distribution of node 
ids. From her standpoint,  the routing layer over clusters is 
rather static. Results from parallel architecture literature 
might be applicable here. However, the load on parallel 
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machines is primarily scientific computations. The expecta- 
tions from the routing layer in the context of peer-to-peer 
applications are not fully understood yet. Perhaps new rout- 
ing topologies and protocols that  change dynamically in re- 
sponse to load are useful in practice. 

(d) Loca l  R o u t i n g :  System design for routing within 
clusters is different in nature from global routing. The in- 
terplay of several issues like fault tolerance, replication and 
caching contributes to design complexity. 

Routing-related Issues 

N e t w o r k  P r o x i m i t y :  For mapping nodes in the real world 
to ids in [0, 1), two contrasting approaches exist. CAN [26, 
27] proposes that  geographically nearby nodes should be 
close in id space too. Such a design is problematic. As 
the network evolves at different rates in different parts of 
the world, portions of the hash table have to migrate to en- 
sure partition balance. A more serious concern pertains to 
network partitions caused by physical layer failures which 
cause large portions of the hash table to vanish. 

An alternative design is to allow nodes to choose their 
ids independent of their geographical position. For long- 
distance links, a small interval (within the destination clus- 
ter defined in Section 3.3) could be searched for a geograph- 
ically nearby node. The idea is similar to proximity routing 
in Pastry [6]. By sampling enough points, a link with a suf- 
ficiently close neighbor could be established. An interesting 
consequence is that  short links (around the circle) are actu- 
ally expensive whereas long links are cheap. It is possible 
to avoid following large-latency short links for the last few 
hops if there is sufficient replication and caching. Note that  
replication of managers is necessitated by fault tolerance 
concerns alone. The exact trade-offs require investigation. 

Fau l t  To le rance :  A simple scheme is to make every node 
manage partitions of a handful of its neighbors. Assuming 
that nodes choose their ids at random independent of ge- 
ography, the effect is to replicate managers for a given par- 
tition at geographically diverse locations. This makes the 
hash table resilient to network partitions caused by physical 
layer failures. Schemes for replica management, reconcilia- 
tion and possible oscillations arising out of physical network 
partitions need be worked out. 

C a c h e  M a n a g e m e n t :  A promising application of DHTs 
appears to be caching of large volumes of relatively static 
pieces of information for which leases suffice. There is a 
strong connection between caching and 'routing. For effec- 
tive caching, copies of objects should be placed in such a way 
that  routing paths are shortened. This requires an investiga- 
tion into the interplay between routing topologies, caching 
policies and leases. 

7. CONCLUSIONS & FUTURE W O R K  
We presented a unified view of DHT routing protocols, 

highlighting commonalities and differences among various 
deterministic and randomized schemes. We hope that our 
synthesis makes the job of system designers easier when they 
choose among protocols for implementations. Guided by the 
intuition gained while exploring: the design space, we revis- 
ited the problem of constructing DHTs routing topologies 
from a systems perspective. It appears that  routing should 
be split into several black boxes that  can be attacked more 
or less independently. An implementation exploring some of 
these design issues is underway at Stanford University. 
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A P P E N D I X  
C h e r n o f f  I n e q u a l i t y :  Let X1, X 2 , . . . ,  Xt denote inde- 

pendent Bernoulli variables with probabil i ty of success pi E 
t X [0,1] for 1 < i < t. Let X = ~ = 1  i and ~ = E X  = 

~ = l P ' "  Then for any 0 < e  < 2 e -  1, Pr[Z  > (1 + e)p] < 
e x p - ~ e 2 / 4  and Pr[X < (1 - e)~] < e x p - # e 2 / 4 .  

P r o o f  o f  L e m m a  3 .2(a) :  If 2knk ~ vfn, then (1 - 
1/2 k) <_ (1 -nk / v /n ) .  We assume tha t  nk < n for otherwise, 
there is no error in estimate. Let us fix the  ids of the nodes 
tha t  contribute to nk. The probabil i ty  tha t  none of the  
remaining n - nk nodes chooses its id in the interval of size 
1/2 k is given by (1 - 1/2k) ~-~k < (1 - nk/x/~) ~-~k < 
e - (n-D/v~ < 1/n 2 for large n. 

P r o o f  o f  L e m m a  3 .2 (b) :  We know tha t  nl  >_ 16(1 + 
5)5-21n(2tnt). Part  (a) above assures us tha t  ln2 tn t  > 
0 .h lnn  with probabil i ty at  least 1 - 1/n 2. Therefore, n~ _> 
85-2(1 + 5)) l n n  with probabil i ty at least 1 - 1/n 2. 

n~ successive points are expected to lie in a sub-interval of 
size ne/n. However, we observed n~ to lie in a sub-interval 
of size 1/2 l. The probabil i ty tha t  1/2 ~ does not lie in the 
range (1 ± 5)n~/n is given by Pr[ll /2 k - n~/n I > 5n~/n] < 
Fr i l l2  ~ < (1 - 5)nt/n] + Fr i l l2  ~ > (1 + 5)nl/n]. We no~v 
prove tha t  the first term is at most 1In 2. The proof for the 
second term is along similar lines. 

Consider the probabil i ty Pr[1/2 t < (1 - 5)nt/n]. This 
is identical to the probabil i ty Pr[po_~)n j ,  > nt] (using 
the definition of pa from Lemma 3.1). We can rewrite it as 
Pr[P(1-~)~t/n > (1 + e)(1 - 5)n~/n] where c = 5/(1 - 5). 
From Lemma 3.1, this probabil i ty is less than  1/n 2 as long 
as a = (1 - 5)ne/n > (8e 2 lnn)/n,  which is indeed true for 

= 5/(1 - 5). 
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