
Routing Networks for Distributed Hash Tables

Gurmeet Singh Manku
Stanford University

manku@cs.stanford.edu

ABSTRACT
Routing topologies for dis tr ibuted hashing in peer-to-peer
networks are classified into two categories: deterministic and
randomized. A general technique for constructing determin-
istic routing topologies is presented. Using this technique,
classical parallel interconnection networks can be adapted
to handle the dynamic nature of part icipants in peer-to-peer
networks. A unified picture of randomized routing topolo-
gies is also presented. Two new protocols are described
which improve average latency as a function of out-degree.
One of the protocols can be shown to be optimal with high
probability. Finally, routing networks for distr ibuted hash-
ing are revisited from a systems perspective and several open
design problems are listed.

1. INTRODUCTION
Distr ibuted Hash Tables (DHTs) are currently under in-

vestigation in the context of peer-to-peer (P2P) systems.
The hash table is part i t ioned with one part icipant managing
any given parti t ion. This engenders maintenance of a table
tha t maps a part i t ion to its manager 's network address. A
simple scheme is to let a central server maintain the map-
ping. However, part icipants in P2P systems are numerous
and span wide-area networks. Their short lifetimes result
in frequent arrivals and departures. A central server could
ameliorate its load by leasing portions of the mapping table
to clients for caching. Still, central servers are single point s
of failure and potential performance bottlenecks. DHTs ob-
viate the need for central servers altogether by creating an
overlay network among the participants. Hash lookups are
routed to appropriate managers using the overlay. I t is de-
sirable tha t the number of hops for lookups be small. How-
ever, nodes should not be encumbered with large numbers of
overlay connections. Thus DHT routing topologies face two
conflicting goals: fast lookups but small state. Table 1 sum-
marizes the trade-offs offered by various DHT topologies.
All the protocols are scalable and handle dynamic networks.
The costs of joining and leaving are also reasonable.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on sem, ers or to redistribute to lists,
requires prior specific permission and/or a fee.
PODC'03, July 13-16, 2003, Boston, Massachusetts, USA.
Copyright 2003 ACM 1-58113-708-7/03/0007...$5.00.

Summary of Paper
a) We classify DHT routing networks into two categories:

deterministic and randomized. Overlay connections in a de-
terministic topology are a function of the current set of node
ids. In the case of randomized topologies, there is conceptu-
ally a large set of possible networks for a given set of node
ids. At run-time, a specific network is chosen depending
upon the random choices made by all part icipants.

b) Existing deterministic DHT routing networks are adap-
tat ions of specific parallel inter-connection networks: hyper-
cubes [13, 26, 28], tori [26] and de Bruijn graphs [10, 14, 24].
We present a general technique for building deterministic
DHTs that allows us to adapt any of the innumerable paral-
lel routing topologies to handle the dynamic nature of P2P
networks. Our construction sheds light on the structure of
the solution space, enabling a common proof technique for
analyzing deterministic topologies. In the process, we ob-
tain several new DHT routing networks with k = O(1) links
and O(ln n~ In k) average latency.

c) We identify the common machinery underlying random-
ized topologies. We describe two new constructions in this
space. A simple scheme provides O(lnn) average latency
with only O(ln In n) links per node. A rather sophisticated
scheme requires only 3~ + 3 links per node for average la-
tency O(lnn/lng), which is optimal. Both latency bounds
hold with high probability.

d) Using the algorithmic insights obtained, we revisit the
problem of building DHTs and identify sub-problems tha t
merit at tention as separate black-boxes from a systems per-
spective. We list several open design problems in the end.

Road map
In Section 2v we summarize previous work. In Sections 3
and 4, we s tudy deterministic and randomized DHTs re~-
spectively. In Section 5, we present an optimal randomized
protocol. In Section 6, we list research issues tha t merit
further investigation.

2. PREVIOUS WORK
Inspired by the popular i ty of file-sharing applications like

Napster, Gnutella and Kazaa, the research community is
exploring the possibility of harnessing computing resources
distr ibuted across the globe into a coherent infrastructure
for distr ibuted applications. The efficacy of DHTs as a low-
level abstraction is currently under scrutiny.

The problem of constructing DHTs is both old and new.
Distr ibuted hashing has been studied extensively by the
SDDS (Scalable Distr ibuted Data Structures) community,

133

start ing with the seminal work of Litwin, Niemat and Shnei-
der [18]. However, these hash tables have central com-
ponents and are designed for small-sized clusters. High-
performance hash tables over large clusters were recently
studied by Gribble et al [12]. Hash tables over peer-to-peer
networks present novel challenges. Peer-to-peer networks
consist of millions of machines over the wide-area network.
Moreover, the set of part icipants is dynamic with frequent
arrivals and departures of nodes with short lifetimes.

CAN [26], Chord [29], Pas t ry [28] and Tapestry [13] were
among the first determinist ic DHT proposals. CAN is an
adapta t ion of multidimensional tori while Chord has simi-
larities with hypercubes. Pas t ry [28] and Tapestry [13] are
quite similar to each other and build upon earlier work by
Plaxton et al [25]. All schemes provide O(ln n) latency with
O(ln n) links per node. Recently, three groups [10, 14, 24]
independently demonstra ted tha t de Bruijn networks [23]
could be adapted for routing in DHTs. Such networks pro-
vide O(lnn) latency with only O(1) links per node. A nat-
ural question arises: Is it possible to morph any parallel
interconnection network into a DHT routing protocol? One
of our constructions shows tha t the answer is yes.

Viceroy [19] was the first randomized protocol for DHT
routing. I t provides O(lnn) latency with O(1) links per
node. Symphony [20] builds upon previous work by Klein-
berg [15] to obtain a protocol tha t offers O((ln 2 n)/k) aver-
age latency with k + 1 links per node for small k. Symphony
and Chord are the best in terms of simplicity and symmetry.

Parallel interconnection networks [8, 17] have been exten-
sively investigated, resulting in a rich collection of topolo-
gies over s tat ic sets of nodes. Randomized routing in this
context was pioneered by Valiant [16]. Random graphs [5]
have also been thoroughly investigated since 1950's. Tradi-
tionally, random graphs have been studied for mathematical
properties like diameter, connectivity and chromatic num-
ber. Routing algorithms for random graphs have been de-
veloped only recently [15]. Randomized topologies appear
to have been ignored by the parallel architecture community
because interconnection networks are fixed in hardware.

Routing schemes for both parallel interconnection net-
works and random graphs assume tha t the set of part icipat-
ing nodes is static. The main challenge in adapting these
schemes to peer-to-peer networks lies in handling the dy-
namic nature of par t ic ipants who leave and join frequently.

3. DETERMINISTIC TOPOLOGIES
Without loss of generality, DHTs can be seen as mapping

keys to the unit interval [0, 1). The hash space is part i t ioned
by allowing nodes to choose their ids from the interval uni-
formly at random. I t is convenient to imagine [0, 1) as a
circle with unit perimeter. Node ids correspond to points
on the circumference. A node maintains connections with
its immediate clockwise and anti-clockwise neighbors. A
node also establishes links with other nodes far away along
the circle. The set of neighbors of a node depends on the
parallel routing topology being mimicked.

Parallel interconnection networks consist of families of
graphs with members of varying size. On the basis of struc-
tural similarities, families can be classified into two broad
categories [17]. Shuffle-exchange and de Bruijn constitute
one category whereas Butterflies, Cub'e-Connected-Cycles
and Benes form the other. Many variations of these ba-
sic networks themselves exist, e.g., k-ary Butterfly, wrapped

D e t e r m i n i s t i c R o u t i n g T o p o l o g i e s
Protocol # Links Avg. Latency
CAN [26], Chord [29] O(lnn) O(lnn)
Wapstry [13], Pastry [28] O(lnn) O(lnn)
D2B [10], Koorde [14] k + 1 O(ln n~ In k)
Butterfly, CCC, Benes ~e + 1 O(ln n~ In £)

R a n d o m i z e d R o u t i n g T o p o l o g i e s
Protocol # Links Avg. Latency
Viceroy [19] 7 O(ln n)
Kleinberg [15] 2 O(ln 2 n)
Symphony [20] k + 1 O((ln 2 n)/k)
Bit-Collection ~ + 1 O((lnnlnlnn)/e)

O (l n l n n) O(lnn)
New Algorithm 3e + 3 O(ln n~ In e)

Table 1: C o m p a r i s o n o f var ious p r o t o c o l s . T h e cur-
rent s i z e o f t h e n e t w o r k is n.

Butterfly etc. Moreover, it is possible to create products Of
arbi t rary pairs of networks.

A family of graphs is typically defined over a s tat ic set
of either 2 k nodes (hypercubes and de Bruijn graphs) or
k2 k nodes (butterflies). In a dynamic environment, some
families are easy to maintain while others are challenging.
We illustrate the problems encountered with two examples.

Chord [29] is a variant of hypercubes which consti tute a
family of graphs defined over 2 k nodes, k > 1. A Chord
node with id x E [0, 1) maintains a finger table of connec-
tions with managers of points (x + 1/2, x + 1 / 4 , . . .) . As
the number of part icipants increases from 2 k to 2 TM, two
changes in finger tables occur: (a) a new finger of size 1/2 k+l
on average is introduced, and (b) almost all fingers are re-
placed. However, a new finger points to a node very close
to the old finger it replaces. Let us contrast the si tuat ion
with a Chord-style variant of Butterfly networks which are
defined over k2 k nodes, k _> 1. For ease of exposition, let us
assume node ids part i t ion the interval [0, 1) into equi-sized
sub-intervals. One way to visualize the network is to split
the interval [0, 1) into 2 k groups with k node ids per group.
Nodes within a group are assigned ranks 0, 1, 2 , . . . , k - 1
in the clockwise direction. The finger table of a node with
rank r consists of just one connection with a node of rank
(r + 1) mod k belonging to tha t group which contains the
point x + 1/2 (r+l) rood k As the network increases in size
from k2 k to (k + 1)2 k+l, almost all of the existing fingers
change significantly. This is because the group size changes
from k to k + 1. Wi th new group boundaries, the rank of a
node with id x is quite different. This problem has actually
been encountered by [7] who a t tempted to emulate a but ter-
fly along the same lines. Note tha t the emulation of butterf ly
in Viceroy [19] has a different flavor. I t is randomized and
is discussed in Section 4.

Emulation of arbi t rary families of parallel interconnection
networks is challenging primari ly due to two sources of un-
certainty. First , the size of the network is not known accu-
rately to all participants. Second, the dis tr ibut ion of points
is not exactly even. In the context of butterf ly networks, the
first uncertainty leads to disagreement among nodes about
group boundaries. A consequence of the second uncertainty
is that certain groups might be empty while some groups
have too many members. We address the first issue by de-

134

veloping an estimation protocol (Section 3.1). The second
issue is addressed by clustering (Section 3.3).

3.1 Network Size Estimation
In this section, we develop a distributed scheme for esti-

mating n, the current size of the network. Although differ-
ent nodes arrive at different estimates of n, each estimate is
guaranteed to lie in the range n/(1 4- 5) with high probabil-
ity 1 (w.h.p.) where 5 E (0, 1) is a user parameter.

Could a node with id x deduce n by simply measuring the
density of ids close to x? How large a sub-interval suffices
so that w.h.p., the actual number of ids in the sub-interval
does not deviate significantly from that expected?

LEMMA 3.1. Let n points be chosen independently, uni-
formly "at random from the interval [0, 1). Let pc, be a ran-
dom variable that equals the total number of points chosen in
a fixed interval of size a. I r a > (8e -2 In n) /n , then Pr[p~, >
(1 + e)Ep~] < 1In 2 and Pr[pc, -< (1 - e)Ep~] < 1In 2.

Lemma 3.1 follows immediately from Chernoff's Inequal-
ity (see Appendix). It suggests .that we should measure the
size of the interval spanned by f](ln n) successive points and
scale the observed density. Two issues remain: (a) How do
we estimate I n n itself? (b) Exactly how many points suffice
to arrive at an estimate for n lying in the range n/(1 4- 6)?
Both issues are addressed by the following scheme: Consider
a specific node with id x. Let ni denote the number of nodes
that share the top i (most significant) bits with x. Node x
identifies the largest g such that ne > 16(1 + 5)6 -2 ln(2ene).

LEMMA 3.2. (a) log2(2ene) :> 0.51og2n with probability
at least 1 - 1In 2. (b) 2ene lies in the interval n / (1 :k 6) with
probability at least 1 - 2In 2.

THEOREM 3.1. With probability at least 1 - 2/n, the es-
timate of network size made by every node lies in the range
n / (1 4- 6).

Lemma 3.2 is proved in the Appendix. Theorem 3.1 can
be derived from Lemma 3.2 by summing over all n nodes.

3.2 Topology Establishment
In the previous Section, we described a distributed scheme

which ensures that the estimate of n by all nodes lies in
the range n/(1 4- 5) w.h.p. On a log-scale in base two, the
difference between the upper and lower bounds is log2[(1 +
5)/(1 - J)]. Setting ~ < 1/3 makes the range of ambiguity
less than 1. Let us see how this moves us a step closer to
our goal of emulating arbitrary parallel routing topologies.

We label a node with estimate h by (Llog 2 h j, [log 2 h] }.
At most three integers are used in labeling all nodes and at
least one integer is common to all labels. A similar labeling
can be done for emulating families of networks defined over
k2 k nodes. A labeled node constructs two sets of long links,
one set for each integer in its label. A message could initially
follow links corresponding to the smaller of the two integers
at the source, switching over to the next larger integer along
the way if necessary. This idea works except for a caveat that
calls for clustering.

1A guarantee is said to be with high probability if it fails
with probability at most 1In ¢ for some constant c.

A Case for Clustering
a) When emulating certain families of parallel networks, un-
even distribution of points causes problems. Recall the emu-
lation of a butterfly network with parameter k. A node with
id x and rank r would try to make a connection with a node
of rank (r + 1) mod k which belongs to the group containing
the point x + 1/2 (~+1) rood k However, it is quite possible
that the target group is empty or the target group has too
many points. In fact, it is possible to show using Chernoff
bound techniques [22] that w.h.p., there exist groups with no
members and groups with f2(ln 2 n) members. In Chord, this
does not result in serious problems during topology estab-
lishment except that some nodes have gt(ln 2 n) links w.h.p.
For other networks like butterflies, the problem needs to be
addressed to make emulation feasible.

b) When emulating topologies like Chord and de Bruijn
networks, uneven distribution shows up in their analysis.
For example, the intuition behind the proof that routes axe
O(ln n) on average in either of these networks proceeds as
follows. First, show that a majority of the most significant
bits become zero because no node is bereft of long-distance
links corresponding to these bits. Next, show that the last
few steps required for routing in a local neighborhood are
not too many because the density of points in a small neigh-
borhood has small variance.

In the next Section, we develop a clustering scheme that
not only enables emulation of arbitrary families of parallel
networks but also provides a common proof technique for
analyzing such networks.

3.3 Clustering

LEMMA 3.3. Let k be such that 2 k < (e2n)/(81nn). With
probability at least 1 - 2/n, the number of points in each of
2 ~ equi-sized non-overlapping sub-intervals of [0, 1) lies in
the range (1 4- e)n/2 k .

PROOF. From Lemma 3.1, we conclude that with proba-
bility at least 1 - 2/n 2, the number of points in a specific
sub-interval lies in the range (1 4- e)n/2 k. Summing over
2 k _< n intervals, we obtain the desired bound. []

Lemma 3.3 suggests a natural clustering scheme. We label
a node with estimate fi with a pair of integers (kl, k2) where
kl = [log 2(e2n)/(16 lnn)J and k2 --- [log 2(e~n)/(16 lnn)] .
Assuming 5 < 1/3 in the estimation scheme (Section 3.1),
at most three k-values are used for labeling £11 nodes and
at least one k-value is common to all labels. For each k-
value used in a label, Lemma 3.3 assures us that each of 2 ~:
clusters will be populated by (1 4- e)n/2 k node ids w.h.p.

A family of parallel interconnection networks is emulated
by constructing an inter-cluster network as follows. A node
with label (kl ,k2) makes two sets of links. The first set
corresponds to using kl most significant bits of its id and
assuming 2 k~ clusters. The second set corresponds to using
k2 most significant bits and assuming 2 k2 clusters. When
establishing a particular link, a node can choose any node
belonging to the destination cluster. Since at least one in--
teger is common to all labels, there is at least one value of
k such that the network over 2 k clusters is complete. Each
cluster has O(ln n) nodes.

A hash lookup initially follows links corresponding to the;
smaller of the two k-values at the source. Along the way,
routing switches to the next higher k-value if necessary.

135

Upon reaching the dest inat ion cluster, intra-cluster routing
is done by some local routing network. The choice of local
routing topology is influenced by several factors like replica-
tion, fault tolerance etc. Since each cluster has size O(ln n),
intra-cluster routing takes no more than O(ln n) hops.

Maintenance of multiple networks for different k-values
costs no extra overhead in terms of links in hypercubes and
de Bruijn networks. For butterflies, the number of links at
most doubles. Global routing could be faster if all nodes
could identify the k-value tha t is common to all labels. In-
deed, the common k-value can be est imated quite accurately
by sampling a small number of random nodes.

The paradigm of first routing to the destination cluster
and then to a node within the cluster underlies the analy-
sis of existing protocols like Chord and Koorde. By making
the distinction explicit and breaking the problem into two
sub-problems, it is possible for the two to be developed in
practice as more or less independent sub-systems. Our con-
struction also supports emulation of Butterflies, CCC and
Benes networks [17].

Partition Balance
A part i t ion of [0, 1) is a sub-interval tha t is managed by a
node. From Lemma 3.3, the ratio of cluster sizes is at most
(1 + e)/(1 - e) where e is a small constant. This suggests tha t
it might be possible to move nodes around within cluster
boundaries in order to obtain almost equi-sized partit ions.
However, any movement of nodes potential ly impacts the
est imation scheme. We are currently developing efficient
strategies for carrying out par t i t ion balancing tha t work in
conjunction with network size estimation.

3.4 Related Work

Estimation Scheme
Our est imation scheme has similarities with Flajolet and
Mart in 's approximate counting technique [9]. Recently, the
idea was adapted to est imate distinct values in streaming
da ta [11]. The intuition behind the scheme is also similar
in flavor to the argument tha t the height of random binary
search trees on n keys is e (l n n) w.h.p.

A scheme for est imating In n was presented in Viceroy [19].
If x is the difference between two adjacent ids, then In (l /x)
is a constant-factor approximation of Inn w.h.p. More-
over, it can be shown tha t if y denotes the union of sub-
intervals managed by 16 In 1/x nodes, then 1/y is a factor-2
approximation of n w.h.p. The motivation for a new scheme
stemmed from par t i t ion balancing considerations which call
for adjustments in node ids.

Partition Balancing
Naor and Wieder [24] and Abraham et al [1] recently showed
tha t the ratio between the largest and the smallest part i t ion
can be made O(1) if a node first chooses O(lnn) points at
random and then selects as its id tha t point which splits the
largest part i t ion. Adler et all2] have devised algorithms to
optimize the same metric for CAN [26].

Emulation of Parallel Networks
Abraham et al [1] recently described a construction for em-
ulating families of graphs dynamically. Members of a family
are required to possess a certain kind of recursive structure
tha t allows parent-child functions to have a property called

child-neighbor commutativity. The authors show tha t hy-
percubes, de Bruijn graphs and butterflies can be defined
recursively so as to enjoy the property.

The general construction in Section 3 was derived inde-
pendent of [1]. I t appears tha t the pr imary advantage of the
new construction is tha t the family of graphs being emulated
need not have a recursive structure. In fact, the graphs over
2 k and 2 k+l clusters could be quite different, say a torus
and a butterfly. The construction has an addit ional ad-
vantage from a systems perspective. I t splits the routing
problem into two: global and local, which could be archi-
tected in a practical system by separate groups. A global
routing designer faces a rather unchanging set of clusters
with even density. Her concerns include global load balance
across clusters, congestion avoidance, deadlock prevention
and high throughput. A local routing designer focuses on
local issues like manager replication, fault tolerance and last-
hop optimizations, independent of global routing.

Abraham et al [1] view the set of node ids as a binary
search tree with keys only among the leaves. A key corre-
sponds to the fewest possible number of most-significant bits
necessary for a node to distinguish it from its neighbors. The
difference in the lowest and the highest leaf levels is called
the global gap. The authors show tha t choosing the short-
est key among O(ln n) randomly chosen node ids results in
global gap O(1) w.h.p. This could in fact be exploited to
devise a more efficient scheme for est imating n. Also, it
seems tha t clustering (based upon the est imation scheme of
Section 3.1) coupled with par t i t ion balancing could provide
an al ternate method for reducing the global gap to O(1).

3.5 A Variant of Chord
A Chord node establishes roughly log 2 n outgoing links

with managers of points lying at distances (1/2, 1/4, 1 / 8 , . . .)
away from itself. A node also has incoming links from man-
agers of points lying at distances (- 1 / 2 , - 1 / 4 , - 1 / 8 , . . .) .
The total number of TCP connections is 2 log 2 n on average.
Average latency by using Chord's clockwise greedy routing
protocol [29] is ½ log 2 n. Instead, if every node maintains
2 log 3 n links at distances (5=1/3, 5=1/9, 5=1/27,. . .) , we get a
reduction in both average latency and average degree. The
idea is tha t the distances to any dest inat ion can be writ-
ten in ternary using the digits { - 1 , 0, + l } . Only two-thirds
of all digits are 5=1 on average. Thus average latency is
(2 log 3 n)/3 using only 2 log 3 n links. The scheme works
in conjunction with the part i t ion balancing technique de-
scribed in Section 3.3 which ensures tha t a < 2. The idea
can also be used to define butterf ly networks in base-3 which
would offer bet ter latency and out-degree as a function of n.

4. RANDOMIZED TOPOLOGIES
A randomized topology is not determined by the set of

node ids alone. In fact, there is a large set of possible topolo-
gies from which one is chosen at run-t ime depending upon
the random choices made by all part icipants.

Randomized topologies have three sources of uncertainty:
(a) The total number of nodes is not known accurately, (b)
The distr ibution of ids is not even, and (c) Different nodes
make different random choices. The intuit ion underlying
randomized topologies has little to do with the first two
sources of uncertainty. I t is possible to first devise random-
ized protocols on a cycle graph with n vertices. As a second
step, uncertainty in the knowledge of n and uneven distri-

136

bution of points can be taken into account. We illustrate
this approach by first building intuition common to several
known randomized topologies over cycle graphs of size n.
We then describe a new topolol~y which is quite simple and
offers O(ln n) average latency with only O(ln In n) links. We
then build a sophisticated routing protocol that offers the
optimal latency vs degree trade-off. The analysis of the last
protocol is for the general setting where we deal with all
three sources of uncertainty.

A Case for Randomization

One might wonder whether it makes sense to add more ran-
domness to the system since a system designer already has
her hands full dealing with uncertainty about n and the
distribution of ids. We argue that randomness in topology
contributes to the overall robustness of the system. It makes
the system resilient to malicious attacks. Random topolo-
gies are typically more flexible since each node chooses its
neighbors independently. Deterministic topologies are less
flexible as they require coordination among different nodes
to guarantee correctness of routing protocols.

4.1 Previous Work
Viceroy [19] was the first randomized protocol for DHT

routing. It is an adaptation of butterfly networks. Klein-
berg [15] discovered routing protocols over a class of ran-
dom graphs such that average latency is only O(In 2 n) while
each node has out-degree two. Kleinberg's construction was
inspired by the desire to mathematically model the Small
World Phenomenon [21]. Symphony [20] showed how Klein-
berg's construction could be adapted to dynamic P2P net-
works with multiple links per node.

Consider a cycle graph on n :nodes where vertices are la-
beled 0, 1~ 2 , . . , , n - 1 and there is an edge between node i
and node (i q- 1) mod n. A message can be routed clockwise
from a node to any other in at most n - 1 steps. By the
introduction of a few more links per node~ routing can be
made significantly faster.

Assume that a message destined for node Xde~t is sitting
at node x Let d = (n + xcte~t - Xsrc) mod n, the dis-
tance between the nodes. Let h denote the number of l ' s in
Xdest @ Xsre, the Hamming distance between the two nodes.
There seem to be two fundamental themes lying at the heart
of existing routing protocols: A route diminishes either the
distance d or the Hamming distance h to the destination.
CAN, Chord, Kleinberg's protocol, Symphony and Viceroy
are designed with d in mind. Pastry, Tapestry and de Bruijn
based networks are designed with h in mind. Routes that di-
minish d do not necessarily diminish h and vice versa. How-
ever, the intuition behind both flavors of routing has com-
monalities, e.g., a protocol gradually diminishes the number
of l ' s in either d or h. We now present a unified picture of
protocols that diminish distance d.

Distance Halving

Consider the function Cn(x) = (innx) / lnn for x e [~, 1].
This is the cumulative probability distribution of P,~(x) =
1/(xlnn) for x • [~,1]. For x • [~,1], we will say that
its notch value is y = Cn(x). "While routing, let the cur-
rent distance to the destination be xc~,~ent with notch value
Y¢~,rr~t. Let s = 1/log 2 n. If the current node has a link
with notch value between y ~ . ~ t - s and y¢~,~nt, then we
can forward the lookup along this link such that x~,,.ent

is at least halved and ycu,.~¢nt diminishes by ~t least s.
The maximum number of times x c ~ e n t can be halved (and
y¢~,-~nt diminished by s) is at most 1/s = log 2 n. This in-
tuition underlies all DHT protocols that diminish distances.

Chord topology corresponds to every node establishing
exactly log 2 n links corresponding to notch values (1 - s, 1 -
2s, 1 - 3s , . . .) . When a node wishes to route to a point
Xc~rrent away (with notch value y ent), it can immedi-
ately forward the lookup along a link such that Xcurr¢.at
is at least halved and y~r,¢~t diminished by at least s =
1/log 2 n. Lookup latency is thus O(ln n).

In Kleinberg's construction [15], each node establishes one
long link with another node at a distance drawn from a dis-
crete distribution which is quite similar to Pn. This is equiv-
alent to choosing a notch value uniformly at random from
[0, 1]. Routing proceeds clockwise greedily. If the long link
takes us beyond the destination, the request is forwarded to
a node's successor. Otherwise, the long link is followed. Let
us denote the current distance to the destination by xc~r~,~
with notch value yc t. With probability s = 1/log 2 n,
the long link of the current node has notch value lying be-
tween ycurrent - - 8 and ycurrent. Thus the expected number
of nodes that need to be visited before we arrive at a node
which halves x ~ is 1/s = log 2 n. Effectively, in com-
parison with Chord, there is an inflation in lookup latency
by a factor of O(ln n). Kleinberg's routing scheme requires
O(ln 2 n) steps.

Symphony extends Kleinberg's idea in the following way.
Instead of one long-distance per node, there are k long-
distance links where k < log 2 n. Effectively, a node gets
to choose k notches uniformly from [0, 1]. Loosely speak-
ing, when we are at X¢~,.~n~ (with notch value y ~ , ~ t) ,
we need to examine roughly (log 2 n)/k nodes before we en-
counter some link that diminishes xc~,~ent by at least half.
Thus average latency for Symphony is O((ln 2 n)/k).

Greedy Routing

Barriere et al [4] show that greedy routing using P~ requires
f/(ln 2 x) steps. Aspnes et al [3] study two variants of greedy
routing. For g links per node and any fixed distribution, they
prove that one-sided routing (clockwise and never overshoot
the target) requires ~(ln 2 n/(t~ In In n)) hops. For two-sided
routing, they prove a lower bound of ~(ln 2 n/(g 2 l n l n n))
hops and conjecture that this can be improved to match the
bound for one-sided routing.

In light of the abovementioned results pertaining to greedy
routing and harmonic distributions, the l~rotocol we build
next seems interesting. It employs a variant of Pn but rout-
ing is not greedy. For small £ < In In n links, average la-
tency is only O((ln n In in n)/g). For large £, average latency
is O((lnn/lne) ln(ln n / I n £)).

4.2 Bit-Collection Protocol
Consider a cycle graph on n nodes. Let b = ~log 2 n~ bits.

A node with id x chooses an integer r uniformly at random
from the set {1, 2 , . . . , b} and establishes a link with node
[x + n/2"q mod n. The construction can be looked upon as
a modification of Chord where each node is restricted to use
exactly one entry chosen uniformly at random from its finger
table. It is possible to route clockwise in O(ln n In In n) steps
w.h.p, by using a non-greedy protocol.

Let the distance remaining to the destination be d. Let
b' = [log 2 (4b In b)] bits. If the long link of the current node

137

corresponds to one of the top (most significant) b - b' bit
positions where d represented in binary has a 1, then forward
the message along the long link. Otherwise, forward the
message clockwise along the short link. Forwarding along a
long link removes some 1 among the top b - b ~ bits. The
lower order b ' bits act as a counter that diminishes by 1
whenever a short link is followed.

The protocol is reminiscent of the classic Coupon Collec-
tion problem [22]. Essentially, we have to collect at most
b - b' coupons where the probability of collecting a coupon
in one step is 1/b. It is well known that w.h.p., all b - b ~ bits
can be collected in 2b In b steps. Building upon this intuition,
it can be shown that on average, routing requires O(b In b)
hops. Since b -- O(lnn) , average latency is O(lnnlnlnn).

With g < In b links chosen uniformly out of the b pos-
sible, it can be shown that average latency diminishes to
O((ln n In In n)/g). With In I n n links, average latency is only
O(ln n). For large values of g, a further improvement is pos-
sible. The key idea is that g links can be used to fix [ln2 gJ
bits in one hop. It can be shown that for large g, routing
requires O((ln n~ in ~) In(In n~ In ~)) hops.

The basic Bit-Collection protocol works even for degree-
3 Chord described in Section 3.5 where routing is not al-
ways clockwise. The idea can also be carried over to hy-
percubes where every node chooses one of the hypercube
edges uniformly at random. This would create a variant of
Pastry [28]/Tapestry [13] that routes in O(lnn) with only
O(ln Inn) links w.h.p.

Towards Optimality

With at most g links per node, we can reach fewer than
~e a nodes in d - 1 hops. Therefore, average path length for
lookups originating at any node is ~(ln n~ In e).

Bit-Collection is only a factor O(ln(lnn/lne)) more ex-
pensive than the best possible protocol. How could we pos-
sibly make it faster? By chaining the bits being collected.
We illustrate the idea for a network with n nodes. Consider a
node x with a finger that should point to ~x + n/2 r] mod n
for some integer r. This finger fixes the r th most significant
bit. If we could make it point to a node that fixes the (r + l) th
bit, then we could hope to collect bits rapidly in succession.
The key idea is to search for a pair of nodes, one each in
the vicinity of x and x + n/2" that both fix the (r + 1) ~h
bit. The two searches on average require only b steps each.
How would routing work? If x wishes to send a message to
some node, we first search for a node in the vicinity of x that
fixes the top bit. This requires b steps on average. Then,
routing proceeds rapidly by fixing successive top-order bits.
A problem that emerges is that searches associated with the
top order bits collectively introduce a bias of roughly O(b2).
If every node maintains an additional pointer that points a
fixed distance b away, the last stretch of length O(b 2) can
be covered in only O(b) steps.

The intuition developed in the previous paragraph is ex-
actly how Viceroy [19] would work if all nodes knew n pre-
cisely. Using the terminology of notches developed earlier in
this Section, Viceroy assigns each node a notch value drawn
uniformly at random from the set {1 - s, 1 - 2s, 1 - 3s , . . .} .
The size of the set is log S n. The relationship with Chord
is the following. A Chord node uses the entire set for link
establishment resulting in log 2 n links per node. However,
a Viceroy node at position p E [0, 1) and notch value y
(corresponding to distance x = Cffl(y)), searches intervals

centered around points p and p + x for a pair of nodes with
notch value y - s.

We now develop a protocol that requires only 3~ + 3 links
per node and offers O(lnn/ln£) average latency. It is based
on Kleinberg's idea and employs the intuit ion we just de-
veloped. Kleinberg's construction assumes that a node does
not possess any knowledge of random choices made by other
nodes. Our protocol demonstrates that if each node were al-
lowed to gather knowledge of a small number, O(i~7 Inn) , of
other nodes, we can construct a topology which diminishes
average latency to O(ln n~ In g) w.h.p. It turns out that our
protocol has similarities with Viceroy. The main difference
lies in the fact that we allow notch values to be anywhere in
the continuous interval [0, 1] while Viceroy limits the choices
to log 2 n discrete values.

5. OPTIMAL RANDOMIZED PROTOCOL
In this Section, we describe a randomized topology with

3g -t- 3 links per node for average latency O(ln n~ In g) w.h.p.
Let I denote the unit interval [0, 1). It is convenient to

imagine I as a circle with unit perimeter. The binary oper-
ators + and - wrap around the interval I. In other words,
x + y denotes the point that lies clockwise distance y away
from x along the circle. Similarly, x - y denotes the point
that lies anti-clockwise distance y away from x.

Let n denote the total number of nodes in the system
currently. Each node maintains 3g + f + 3 outgoing links
where g, f > 1. We will assume that £ = O(polylog(n)). A
node maintains three real numbers: position p, range r and
estimate h. Position p is chosen uniformly at random from
I. An estimate of the network size h is maintained by using
the protocol described in Section 3.1. A node chooses as its
range r, a real number drawn from a range probability dis-
tribution 79~ = 1/(xlnh) for x E [l/h, 1]. Distribution ~a
is simply the continuous version of the discrete distribution
in Kleinberg's construction [15]. A node at position p with
range r is said to span the interval [p - r, p] t.3 [p, p + r].

5.1 Link Structure and Routing Protocol
For ~ > 2, a node establishes f + 1 short links, 2 interme-

diate links, 2~ long links and at most g global links. When
g = 1, a node maintains f + 1 short links, 1 intermediate
link, 2 long links and at most 2 global links. In any case,
the total number of links is 3£ + f + 3 for ~ > 1. We will
assume that g = O(polylog(n)).

Short and Intermediate Links

Short links are established with the f + 1 immediate clock-
wise successors of a node. Only one of these links (with the
immediate successor) is crucial for routing. Other links are
for fault tolerance and do not play any role in routing.

For g > 2, intermediate links are established with two
nodes that are Vln hi and Fin h / I n g] hops away in the clock-
wise direction along the circle. When g = 1, only one inter-
mediate link is established with the node that is [ln hi hops
away in the clockwise direction. Intermediate links are used
to route when the target is known to be nearby. In partic-
ular, Lemma 5.3 will show that a node that is O(ln 2 n / l n g)
hops away is reachable in only O(ln n~ ln£) steps.

Long Links

Long links are established as follows. A node partitions
the interval [p - r, p] into e non-overlapping equisized sub-

138

intervals and establishes one long link per sub-interval. It
establishes g additional links by partitioning the interval
[p, p + r] into g non-overlapping equisized sub-intervals. Note
that [p - r, p] and [p, p + r] would have more than one point
in common if r > 0.5.

Let us denote a sub-interval by Is~b. Its size is list, b[=
r/g. Let us denote the mid-point of Is~b by Ps~,b. We also
define an interval Is h with I/8 hi = 64 In 2 fi/(fi ln g),
centered at psub. Note that IXseareh] is independent of r.
If lie hi _> IIs~,b]12, we say that Is~b is a small sub-
interval. Otherwise I~b is said to be a large sub-interval.
If Is~b is small, we establish a link with the manager of the
point Ps~b -- r/(2g). Mathematically, this allows for mul-
tiple links to a node and even self loops. In practice, we
could easily avoid both. If I~,b is large, we invoke a rou-
tine called SEARCH. The goal of SEARCH is to discover some
node lying within [search whose range lies in the interval
[3r/(4g), 7r/(Sv/g)]. Since IIs h[<]I~bl/2, the range of
such a node covers every point of Is~,b in its span. Lemma
5.5 will prove that w.h.p., all invocations of SEARCH succeed
because I/8 hi is sufficiently large.

Long links lie at the heart of our protocol. For a node
at position p with range r, vie claim that all points within
[p - r, p] U [p, p + r] are reachable by short paths. To reach
the manager of some point, we identify the sub-interval to
which the point belongs and forward the lookup along that
long link that corresponds to this sub-interval. If the sub-
interval is small, we arrive at a node such that the destina-
tion is no more than 64 In 2 fi /(~ ln g) away. At this point,
intermediate and short links can carry out further routing.
Lemmas 5.2 and 5.3 will show that this requires no more
than O (l n n l l n g) steps. If the sub-interval is large, we ar-
rive at a node whose range is at most 7r/(8V'g). The idea
is that shrinking by a factor of 7/(Sx/g) limits the number
of long links along any path to O(lnn / lng) . We will prove
our claims formally in Section 5.2.

One aspect of our construction remains. A lookup request
can originate at a node tha t does not include the destination
in its span. This might happen if r < 0.5. In such a case,
how do we reach a node with range large enough to include
the destination? Global links solve this problem.

Global Links
Global links are established if the range r < 0.5. Consider
[- [p - r , p + r] where I denotes the full circle. For g > 2, we
partition the interval I - [p - % p + r] into g equisized sub-
intervals having size (1 - 2r)/g each. For each sub-interval
I~b, we invoke SEARCH with the size and location of Isear~h
being similar to our earlier description for long link estab-
lishment. The only change is that SEARCH looks for a node
with range lying in the interval [3(1 - 2r)/(4g), 1]. When

= 1, we partition I - [p - r ,p + r] into two equisized sub-
intervals with size (1 - 2r)/2 each. SEARCH is invoked twice
to look for a pair of nodes, one in each sub-interval, with
ranges lying in [3(1 - 2r)/8, 1].

Lookup Protocol
When a node initiates a lookup request, it forwards it along
that long or global link whose range spans the destination.
Thereafter, the request is forwarded along a series of long
links until we reach a sub-interval that is small. Hereafter,
intermediate and short links are used for routing.

5.2 Theoretical Analysis
We will establish that w.h.p., the worst case routing la-

tency is O(lnn / lng) for g = O(polylog(n)). The overall
proof is as follows. We first show that with probability at
least 1 - 2In, the estimate f i e [~, 4HI for all nodes. Next,
we show that small sub-intervals do not have high densities.
In particular, we will show that w.h.p., no small sub-interval
has more than O(ln 2 n~ lng) nodes. Next, we will establish
that with probability at least 1 - 3 g / n , all invocations of
SEARCH succeed. The resulting topology enjoys the prop-
erty that path lengths of lookups are guaranteed to be as
small as O(lnn / lng) . Overall, we would have proved that
w.h.p., the worst case lookup latency is O(lnn / lng) .

LEMMA 5.1. With probability at least 1 - 2/n, all nodes
in a network of size n have ~ e [¼n, 4HI.

PROOF. From Theorem 3.1 (for sufficiently small 5). []

A small sub-interval has size less than 64 In 2 fi/(fi In g).

LEMMA 5.2. With probability at least 1 - 2/n, no Small
sub-interval has more than O(ln 2 n~ In g) nodes.

PROOF. Using Chernoff Inequality and Lemma 5.1, we
can show that with probability at least 1 - 2/n 2, a particular
sub-interval cannot be dense. Summing over all nodes, we
obtain the requisite bound. []

The role of intermediate links is to route quickly to any
node that is O(ln 2 n~ lng) hops away.

LEMMA 5.3. Intermediate and short links can be followed
to reach any node that is O(ln2n/ lng) hops away in the
clockwise direction in O(ln n~ In g) steps.

PROOF. The longer of the two intermediate links can be
followed in succession to reach a node that is at most O(ln n)
hops away. This requires O(lnn / lng) steps. Then the
shorter of the intermediate links can be followed to reach
a node within O(ln n~ In g) hops of the destination. This re-
quires O(ln g) steps. Finally, O(ln n~ In g) short links can be
followed to reach the destination. Since £ = O(polylog(n)),
the total number of steps is O(ln n~ In g). []

For small sub-intervals, long and global link establishment
always succeeds. If the sub-interval is large, there is a chance
that SEARCH fails.

LEMMA 5.4. An invocation of SEARCH fails with probabil-
ity at most 1/n 2.

PROOF. We will prove the lemma for long links. The
proof for global links is along the same lines.

SEARCH is invoked only if [Is~b[/2 > [Is hi. This im-
plies r/2g > 64 In 2 fi/(fi In g), where fi is the estimate of the
node that invoked SEARCH. Thus, 3r/(4g) > 96 In 2 fi/(fi In g)
> 16/fi for large n. From Lemma 5.1, 16/~ > 4In, which
is definitely larger than 1/fi for any node in Isearch being
probed.

When establishing long links, the goal of SEARCH is to
discover some node whose range lies in [3r/(4g), 7r/(Svrg)].
The probability that the range of a node with estimate fi

~'/Svq lies in this interval is given by p = f3,-/4e 1/(x In n)dx. In
the preceding paragraph, we showed that 3r/4g > 1/fi for
any node in [search. Therefore, the value of the integral is

139

(in ~ / ~) / l n h . From Lemma 5.1, this quantity is at least

(in ~ v~)/(2 lnn).
I/8 h[= 641n 2 h / (h lng) . Lemma 5.1 yields [Is hi >_

81n2n/(nlne) for large n.
Let us fix the position of the node which invoked SEARCH.

Consider the sequence of n - 1 remaining nodes choosing
their positions and ranges one by one. With probability
1 -ILe~r=hh the position does not lie in Isearch. Otherwise,
with probability at least (ln ~ v/~)/(2 In n), SEARCH succeeds.
Thus the probability that no node makes SEARCH succeed

is at most [1 - 1 I hi + [Is hi(1 -- I n k) In-1 21.. J __<[1-
(sin 2 ~)0~ ~',/~) l ~ - 1 2 1 ~ 1 ~ - i

(nlne)(2lnn) j __ < [1 - T ~ - < 1/n2" []

LEMMA 5.5. With probability at least 1 - 3£/n, all invo-
cations of SEARCH succeed.

PROOF. Lemma 5.4 shows that the probability that a par-
ticular invocation of SEARCH fails is at most 1In 2. Since
there are at most 3en total invocations, the probability that
any of them fails is at most 3e/n. []

The next lemma shows that although we allow SEARCH to
probe all nodes in a rather large sized ls h, the expected
number of nodes it needs to probe is much smaller.

LEMMA 5.6. SEARCH probes an average of O(lnn/lne)
nodes before succeeding.

PROOF. In the proof of Lemma 5.5, we proved that the
probability that a node in ls~,-~h makes SEARCH invoked
for long links succeed is at least (In ~ x/~)/(2 In n). Thus the
expected number of nodes to be probed before we succeed is
at most (2 in n) / (l n ~v/e) = O(ln n~ ln l). The same bound
can be established for SEARCH invoked for global links. []

We proved that w.h.p., all global and long links success-
fully get established. The resulting topology enjoys the
property that all lookup paths are short.

THEOREM 5.1. With probability at least 1 - (6 + 3e)/n,
the worst case routing latency with e = O(polylog(n)) is
O(ln n/ in £) hops.

PROOF. From Lemmas 5.1, 5.2 and 5.5, we conclude that
with probability at least 1 - (6 + 3e)/n, all estimates of n are
within a factor of four, no small sub-interval is dense and
all long and global links get established. We show that the
resulting graph has short diameter.

Routing proceeds in two phases. In the first phase, a
lookup is forwarded along some long or global link whose
range is guaranteed to contain the destination. The request
then moves along a series of long links such that every node
along the path has a range large enough to contain the desti-
nation in its span. The first phase starts at some node with
range at most 1. From 5.1, when the first phase finishes, the
last node will have range at least 1/4n. Since each long link

8 along the path shrinks the range by at least yv~, the first
phase requires no more than O(ln n~ ln e) hops.

The second phase starts when we encounter a node with
t iny range such that all its sub-intervals are small. At this
point, the destination is only O(ln 2 n/(nlne)) hops away
(Lemma 5.2). Intermediate and small links can reach the
destination in O(ln n~ In e) steps (Lemma 5.3).

Total latency is thus O(ln n~ In £). []

5.3 Arrival, Departure and Re-linking
When a new node x arrives, it chooses its position p uni-

formly from [0, 1). It then discovers node y, the manager
of point p using the Lookup Protocol. Node x establishes
a short link with y. The predecessor of y then terminates
its short link with y and establishes it with x instead. This
completes the insertion of x into the ring.

Node x estimates the network size h using the procedure
outlined in Section 3.1. The estimate allows x to iden-
tify nodes for establishing intermediate links at a cost of
O(ln n~ In ~) messages. The estimate also enables x to select
its range r. Thereafter, x establishes 2e long links and at
most ~ global links. This requires at most 3~ invocations
of SEARCH. From Lemma 5.6, the average cost of all these
invocations is O(i~7 lnn) .

When a node arrives or departs, estimates of as many as
O(ln n) nodes change. If all O(ln n) nodes re-establish their
links, the total cost of joining is O(i~7 In ~ n). The cost can
be reduced by maintaining two numbers, h and h. Estimate

is continually updated using the network size estimation
scheme (Section 3.1). Estimate h is initialized to h when a
node joins. If at any point of time, h ~ [7 , 2h], then links
are re-established and ¢~ is made equal to h. This scheme
was shown to work well in practice [20]. The amortized cost
of joining reduces to O(i~7 Inn) .

5.4 Reducing the Out-degree
We briefly outline a construction that requires only 4 links

per node for O(lnn) average latency w.h.p. We set ~ = 1 and
get rid of global links. Note that a fraction ,~ c / In n nodes
will have their range smaller than c / /n for some constants
c and c'. These nodes will not establish long links since
their range is tiny. They will instead establish two global
links each. Routing now requires that a lookup be forwarded
to some node with t iny range. Hereafter, the usual protocol
works. We can reduce the number of links to only 3 per node
by removing the intermediate link as well. The resulting
topology has an average latency of O(ln n/In ~). However,
the high probability bound no longer holds.

6. DISTRIBUTED HASHING REVISITED
Guided by the intuition gained while exploring the solu-

tion space of routing networks for DHTs, we propose that
the problem be broken into four pieces for practical systems:

(a) N e t w o r k Size E s t i m a t i o n : In practice, if network
size does not change too rapidly, central servers, crawlers
or traffic monitors might very well be ab le to provide fine
estimates. What schemes work well? Can we and should we
adapt them to work in distributed settings?

(b) P a r t i t i o n Ba lance : Efficient schemes are needed to
help a node choose its initial id upon entry into the system.
At run-time, nodes could move around to maintain evenness
in sizes of hash table partitions. However, repartitioning
is costly. The efficacy of repartitioning schemes and their
impact on the rest of the system needs investigation.

(e) G l o b a l R o u t i n g : The space of routing networks for
routing among clusters as defined in Section 3.3, appears to
be rich. A global routing protocol designer does not have to
worry about uncertainty of n or uneven distribution of node
ids. From her standpoint, the routing layer over clusters is
rather static. Results from parallel architecture literature
might be applicable here. However, the load on parallel

140

machines is primarily scientific computations. The expecta-
tions from the routing layer in the context of peer-to-peer
applications are not fully understood yet. Perhaps new rout-
ing topologies and protocols that change dynamically in re-
sponse to load are useful in practice.

(d) Loca l R o u t i n g : System design for routing within
clusters is different in nature from global routing. The in-
terplay of several issues like fault tolerance, replication and
caching contributes to design complexity.

Routing-related Issues

N e t w o r k P r o x i m i t y : For mapping nodes in the real world
to ids in [0, 1), two contrasting approaches exist. CAN [26,
27] proposes that geographically nearby nodes should be
close in id space too. Such a design is problematic. As
the network evolves at different rates in different parts of
the world, portions of the hash table have to migrate to en-
sure partition balance. A more serious concern pertains to
network partitions caused by physical layer failures which
cause large portions of the hash table to vanish.

An alternative design is to allow nodes to choose their
ids independent of their geographical position. For long-
distance links, a small interval (within the destination clus-
ter defined in Section 3.3) could be searched for a geograph-
ically nearby node. The idea is similar to proximity routing
in Pastry [6]. By sampling enough points, a link with a suf-
ficiently close neighbor could be established. An interesting
consequence is that short links (around the circle) are actu-
ally expensive whereas long links are cheap. It is possible
to avoid following large-latency short links for the last few
hops if there is sufficient replication and caching. Note that
replication of managers is necessitated by fault tolerance
concerns alone. The exact trade-offs require investigation.

Fau l t To le rance : A simple scheme is to make every node
manage partitions of a handful of its neighbors. Assuming
that nodes choose their ids at random independent of ge-
ography, the effect is to replicate managers for a given par-
tition at geographically diverse locations. This makes the
hash table resilient to network partitions caused by physical
layer failures. Schemes for replica management, reconcilia-
tion and possible oscillations arising out of physical network
partitions need be worked out.

C a c h e M a n a g e m e n t : A promising application of DHTs
appears to be caching of large volumes of relatively static
pieces of information for which leases suffice. There is a
strong connection between caching and 'routing. For effec-
tive caching, copies of objects should be placed in such a way
that routing paths are shortened. This requires an investiga-
tion into the interplay between routing topologies, caching
policies and leases.

7. CONCLUSIONS & FUTURE W O R K
We presented a unified view of DHT routing protocols,

highlighting commonalities and differences among various
deterministic and randomized schemes. We hope that our
synthesis makes the job of system designers easier when they
choose among protocols for implementations. Guided by the
intuition gained while exploring: the design space, we revis-
ited the problem of constructing DHTs routing topologies
from a systems perspective. It appears that routing should
be split into several black boxes that can be attacked more
or less independently. An implementation exploring some of
these design issues is underway at Stanford University.

8. ACKNOWLEDGEMENTS
Many thanks to Dahlia Malkhi for pointing out the recent

work of Abraham et al [1] and to Rajeev Motwani, Mayur
Datar and Arvind Arasu for proof-reading drafts of this pa-
per. This research was partially supported by grants from
Stanford Networking Research Center and Veritas Inc.

9. REFERENCES
[1] I. Abraham, B. Awerbuch, Y. Azar, Y. Bartal,

D. Malkhi, and E. Pavlov. A generic scheme for
building overlay networks in adversarial scenarios. In
Proc. Intl. Parallel and Distributed Processing Syrup.,
Apr 2003.

[2] M. Adler, E. Halperin, R. M. Karp, and V. V.
Vazirani. A stochastic process on the hypercube with
applications to peer-to-peer networks. In Proc. 35nd
ACM Syrup. on Theory of Computing (STOC 2003),
Jun 2003.

[3] J. Aspnes, Z. Diamadi, and G. Shah. Fault-tolerant
routing in peer-to-peer systems. In Proc. 21st ACM
Syrup. on Principles of Distributed Computing (PODC
PO02), pages 223-232, Jul 2002.

[4] L. Barriere, P. Fraigniaud, E. Kranakis, and
D. Krizanc. Efficient routing in networks with long
range contacts. In Proc. 15th Intl. Symp. on
Distributed Computing (DISC 01), pages 270-284,
2001.

[5] B. Bollobas. Random Graphs. Cambridge University
Press, 2nd edition, 2001.

[6] M. Castro, P. Druschel, Y. C. Hu, and A. Rowstron.
Topology-aware routing in structured peer-to-peer
overlay networks. In Proc. Intl. Workshop on Future
Directions in Distrib. Computing (FuDiCo 2002),
2002.

[7] J. Considine and T. Florio. Scalable peer-to-peer
indexing with constant state. Technical Report
2002-026, Computer Science Deptt., Boston
University, Sep 2002.

[8] J. Duato, S. Yalamanchili, and L. Ni. Interconnection
Networks: An Engineering Approach. IEEE Press,
1997.

[9] P. Flajolet and G. N. Martin. Probabilistic counting.
In Proc. 24th Annual Syrup. on Foundations of
Computer Science (FOCS 1983), pages 76-82, 1983.

[10] P. Fraigniaud and C. Gavoille. The
content-addressable network d2b. Technical Report
1349, LRI, Univ. Paris-Sud, France, Jan 2003.

[11] P. Gibbons. Distinct sampling for highly-accurate
ans3vers to distinct value queries and event reports. In
Proc. PTth Intl. Conf. on Very Large Data Bases
(VLDB 2001), pages 541-550, 2001.

[12] S. D. Gribble, E. A. Brewer, J. M. Hellerstein, and
D. Culler. Scalable, distributed data structures for
internet service construction. In Proc. 4th Symposium
on Operating System Design and Implementation
(OSDI 2000), pages 319-332, 2000.

[13] K. Hildrum, J. D. Kubiatowicz, S. Rao, and B. Y.
Zhao. Distributed object location in a dynamic
network. In Proc. 14th ACM Symposium on Parallel
Algorithms and Architectures (SPAA 2002), pages
41-52, 2002.

141

[14] F. Kaashoek and D. R. Karger. Koorde: A simple
degree-optimal hash table. In Proc. 2nd Intl.
Workshop on Peer-to-Peer Systems (IPTPS 2003),
2003.

[15] J. Kleinberg. The small-world phenomenon: An
algorithmic perspective. In Proc. 32nd A CM
Symposium on Theory of Computing (STOC 2000),
pages 163-170, 2000.

[16] L. G. Valiant. A scheme for fast parallel
communication. SIAM J. of Computing, 11:350-361,
1982.

[17] F. T. Leighton. Introduction to Parallel Algorithms
and Architectures: Arrays - Trees - Hypercubes.
Morgan Kanfmann, 1992.

[18] W. Litwin, M. Neimat, and D. A. Schneider. LH* - A
scalable, dis t r ibuted da ta structure. ACM
Transactions On Database Systems, 21(4):480-525,
1996.

[19] D. Malkhi, M. Naor, and D. Ratajczak. Viceroy: A
scalable and dynamic emulation of the butterfly. In
Proc 21st ACM Symposium on Principles of
Distributed Computing (PODC 2002), pages 183-192,
2002.

[20] G. S. Manku, M. BaTh, and P. Raghavan. Symphony:
Distr ibuted hashing in a small world. Proc. 4th
USENIX Symposium on Internet Technologies and
Systems (USITS 2003), 2003.

[21] S. Milgram. The small world problem. Psychology
Today, 67(1), 1967.

[22] R. Motwani and P. Raghavan. Randomized
Algorithms. Cambridge University Press, 1995.

[23] N. de Bruijn. A combinatorial problem. Proc.
Kominklitjke Nederlandse Akademie van
Wetenschappen, 49:758-764, 1946.

[24] M. Naor and U. Wieder. Novel architectures for p2p
applications: The continuous-discrete approach. In
Proc. 15th ACM Syrup. on Parallelism in Algorithms
and Architectures (SPAA-2003), Jun 2003.

[25] C. G. Plaxton, R. Rajaraman, and A. W. Richa.
Accessing nearby copies of replicated objects in a
dis t r ibuted environment. In Proc. 9th A CM
Symposium on Parallel Algorithms and Architectures
(SPAA 1997), pages 311-320, 1997.

[26] S. Ratnasamy, P. Francis, M. Handley, and R. M.
Karp. A scalable content-addressable network. In
Proc. ACM SIGCOMM 2001, pages 161-172, 2001.

[27] S. Ratnasamy, M. Handley, R. M. Karp, and
S. Shenker. Topologically-aware overlay construction
and server selection. In Proc. IEEE INFOCOM-2002,
Jun 2002.

[28] A. I. T. Rowstron and P. Druschel. Pastry: Scalable,
decentralized object location, and routing for
large-scale peer-to-peer systems. In IFIP/ACM
International Conference on Distributed Systems
Platforms (Middleware 2001), pages 329-350, 2001.

[29] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer
lookup service for internet applications. In Proc. ACM
SIGCOMM 2001, pages 149-160, 2001.

A P P E N D I X
C h e r n o f f I n e q u a l i t y : Let X1, X 2 , . . . , Xt denote inde-

pendent Bernoulli variables with probabil i ty of success pi E
t X [0,1] for 1 < i < t. Let X = ~ = 1 i and ~ = E X =

~ = l P ' " Then for any 0 < e < 2 e - 1, Pr[Z > (1 + e)p] <
e x p - ~ e 2 / 4 and Pr[X < (1 - e)~] < e x p - # e 2 / 4 .

P r o o f o f L e m m a 3 .2(a) : If 2knk ~ vfn, then (1 -
1/2 k) <_ (1 -nk / v /n) . We assume tha t nk < n for otherwise,
there is no error in estimate. Let us fix the ids of the nodes
tha t contribute to nk. The probabil i ty tha t none of the
remaining n - nk nodes chooses its id in the interval of size
1/2 k is given by (1 - 1/2k) ~-~k < (1 - nk/x/~) ~-~k <
e - (n-D/v~ < 1/n 2 for large n.

P r o o f o f L e m m a 3 .2 (b) : We know tha t nl >_ 16(1 +
5)5-21n(2tnt). Part (a) above assures us tha t ln2 tn t >
0 .h lnn with probabil i ty at least 1 - 1/n 2. Therefore, n~ _>
85-2(1 + 5)) l n n with probabil i ty at least 1 - 1/n 2.

n~ successive points are expected to lie in a sub-interval of
size ne/n. However, we observed n~ to lie in a sub-interval
of size 1/2 l. The probabil i ty tha t 1/2 ~ does not lie in the
range (1 ± 5)n~/n is given by Pr[ll /2 k - n~/n I > 5n~/n] <
Fr i l l2 ~ < (1 - 5)nt/n] + Fr i l l2 ~ > (1 + 5)nl/n]. We no~v
prove tha t the first term is at most 1In 2. The proof for the
second term is along similar lines.

Consider the probabil i ty Pr[1/2 t < (1 - 5)nt/n]. This
is identical to the probabil i ty Pr[po_~)n j , > nt] (using
the definition of pa from Lemma 3.1). We can rewrite it as
Pr[P(1-~)~t/n > (1 + e)(1 - 5)n~/n] where c = 5/(1 - 5).
From Lemma 3.1, this probabil i ty is less than 1/n 2 as long
as a = (1 - 5)ne/n > (8e 2 lnn)/n, which is indeed true for

= 5/(1 - 5).

142

