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ABSTRACT 
Distributed scalable garbage collectors, mostly based on some 
kind of reference counting, fail to detect distributed cycles of 
garbage. This problem may lead to important memory leaks 
in distributed storage systems. In this paper, we present a 
new algorithm which detects and collects such distributed 
cycles of garbage. 

Our algorithm is based on the propagation of marks along 
chains of remote pointers. It  uses two new mechanisms: 
rain-max marking, to  propagate two different marks to each 
stub, and sub-generation, to build an acyclic graph on a 
cycle using back-tracking information. A new technique, 
called optimistic back-tracking, is also used to  speed-up sub- 
generation. 

The resulting algorithm is completely distributed, asyn- 
chronous, fault-tolerant and inexpensive. Moreover, it col- 
lects incrementally all distributed cycles of garbage, with- 
out partitioning the system. Thus, it is particularly well 
adapted to large-scale networks. Finally, it can be easily 
implemented with minor modifications of a local tracing 
garbage collector. 

Keywords: distributed garbage collection, cycles, 
sub-generation, optimistic back-tracing, rain-max marking. 

1. INTRODUCTION 
Most scalable distributed garbage collectors [15, 14, 4, 1] 

are based on some kind of reference counting, which fails 
to detect distributed cycles of garbage. To avoid important 
memory leaks in distributed storage systems, detection of 
distributed cycles of garbage has become an active area of 
research. Two kinds of algorithms address the problem: per- 
cycle algorithms [2, 10, 7, 12, 11, 13], i.e. algorithms trig- 
gered to verify tha t  a particular suspected object belongs to 
a free cycle, and all-at-once algorithms [8, 9, 5], i.e. algo- 
rithms which detect all free cycles in a single mechanism, 
sometimes together with acyclic garbage. 
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1.1 Per-cycle detectors 
Per-cycle detectors can be divided in two parts: a heuris- 

tic, to  detect which objects are likely to belong to distributed 
cycles of garbage, and a verifier, which effectively verifies 
that  suspected objects really belong to garbage cycles. 

Lots of heuristics have been proposed, such as last access 
time (by the mutator),  non-local reachability [12] or, more 
recently, distance from a local root [10, 11]. The choice of 
the heuristic is important: suspecting too many objects is 
expensive in time, since the verifier is erroneously triggered 
a lot of times, and suspecting too few objects is expensive 
in memory, since reclamation of real garbage is delayed. 

When an object is suspected, the verifier is executed. Pro- 
posed mechanisms are: (1) migrating suspected objects to a 
single site [2, 10], where a tracing local garbage collector can 
collect the cycle; (2) back-tr~king [7, 11, 13], i.e.tracing the 
references to the object (backward references) recursively 
until either a root is reached (if the object is erroneously sus- 
pected) or all backward references are traced without finding 
a root (the object is really garbage). However, both methods 
are quite expensive in time, require important  modifications 
of the local garbage collectors, and have strong requirements 
on the system, such as object migration, extra fields in ob- 
jects, or overlapping trace [16](objects traced several times 
in the same trace). 

The main drawback of per-cycle detectors is their unitary 
cost: an algorithm must be started for each suspected ob- 
ject, consuming extra memory and messages. 

1.2 All-at-once detectors 
All-at-once detectors are less expensive, since a single al- 

gorithm is able to collect all cycles in one global mechanism. 
However, all all-at-once algorithms require some kind of con- 
sensus involving all the spaces. Since such a consensus can 
hardly be achieved on the whole system [6], i.e. by thou- 
sands of spaces, these algorithms are limited to partitions of 
the system. 

Most of them are distributed tracing garbage collectors: 
once a partition of the system is selected - -  because it is 
likely to contain lots of garbage cycles - -  a global trace is 
triggered from local roots and scions associated with spaces 
outside the partition. Once the global trace is terminated 
on the partition, non-traced objects are reclaimed. 

Such partitioned detectors differ either by the way they 
select the partition (partition can be created dynamically 
[12] or hierarchically [9]), or by the way traces are coordi- 
nated (traces can be sequential [12] or concurrent [8, 9, 5]). 
However, their main drawback is the consensus on the ter- 
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mination of the global trace, which limits both the  number 
of spaces which can be involved in one par t i t ion and the 
tolerance of the  algori thm to space crashes. 

1.3 Our contribution 
In this  paper,  we present a new detector  of free cycles, 

designed for the  JoC~ml mobile agents system [5]. 
Our algorithm takes a medium approach between per- 

cycle and all-at-once detectors: from the per-cycle algo- 
r i thms, it uses the distance heuristic, which is however im- 
proved by rain-max marking so tha t  some suspected cycles 
are immediat ly detected as garbage, and  a part ia l  and lazy 
back-tracking mechanism, called sub-generatior~ From the 
all-at-once algorithms, it  takes the  global and uniform mech- 
anism, since it does not  require ex t ra  messages for suspected 
cycles. Moreover, it  does not use any kind of consensus be- 
tween spaces, and its requirements on the system are modest  
(no object  migration needed, no extra  space in objects, mi- 
nor modification of the local tracing collector). 

Finally, we propose a new mechanism, called optimistic 
back-tracking, to  speed-up the  sub-generation when a cycle 
is composed of many inter-connected objects located on very 
few spaces, a common case in practice. 

1.4 Structure 
The paper  is organized as follow- section 2 describes our 

system and goal; section 3 gives an overview of the algo- 
r i thm, incrementally detailed in sections 4 (basic algorithm 
with rain-max marking); 5 (sub-generation) and  6 (opti- 
mistic back-tracking).  Finally, the  section 7 discusses the 
main properties of our detector. 

2. MODEL 

2.1 The distributed system 
Our system consists of a set of spaces, which are the  basic 

units of computation.  Each space has its own local memory 
and its own local garbage collector. To access objects in 
remote memories, spaces can only send asynchronous mes- 
sages, on an unreliable but  fair medium of communication. 
Therefore, these messages may get lost, dupficated, or deliv- 
ered out-of-order. Each space can access a local clock, which 
is either implemented by a dis t r ibuted Lampor t  clock, or by 
loosely synchronized hardware clocks. 

A remote reference is materiafized by two objects,  called 
stub (or eait item) and scion (or entry item) in the  SSPC 
terminology [14]: Concretely, a reference R from object  A 
in space X to object  B in space Y is represented by two 
pointers(Figure 1): 

• a local pointer in X from A to the  s tub s tubx (R) in 
X and 

• a local pointer  in Y from the  scion sciony (R) in Y to 
B .  

One scion is associated with each stub, and at  most one 
stub is associated with e ~  scion. Each remote reference 
has a unique identifier, called a tocator, stored in its s tub 
and scion. 

Locators can be sent between spaces in messages, either 
as the  target  object  of a remote method call, or as the  pa- 
rameters  or reply of such a call. A new remote reference 
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Figure  1: A r e m o t e  reference f rom s p a c e  X t o  s p a c e  Y'. 

can be dynamically created: a scion is first created in the 
object  space with a new locator; the locator is then sent to 
the  remote space, where a new s tub is created. 

2 . 2  C y c l e s  

We write O for the  set of all objects created in the  sys- 
tem. If  an object  02 is reachable (either locally or remotely) 
from an object  O1, we write O1 ~-* 02.  If it  is only remotely 
r e a r ' a b l e  from O1, we write O1 "~ 02. An object is said 
to be garbage, when it is unrear.hable from a set of refer- 
ences, called the  roots, which contains both  local roots and 
messages in transit .  

We are only interested here in detecting a part icular  kind 
of cycles, Top Free Cycles, which are strongly-connected 
components,  with no incoming references: 

DEFINITION 1 (ToP FREE CYCLE). A set G of objects 
is a T o p  F r e e  C y c l e  if and only if: 

• 301,02 E G, 01 ~,~ 02 

• VO E G, ~r E roots, r ~-* 0 

• V 0 1 , 0 2  E G, 01 ~ 02 

• V01 E G, V02 E O, 02 ~* 01 =:" 02 E G 

We define the  perimeter of G at 0 as the  minimal length 
of all simple cycles in G containing O. We define the  closure 
of G, denoted clos(G), as the  set of objects O such tha t  
3 0 '  E G, O' --+ O. I t  is clear t ha t  any unreachable object  
which cannot be collected by an acyclic dis t r ibuted garbage 
collector must be par t  of the closure of (at  least) one top  free 
cycle. By detecting top  free cycles, and using the  acyclic 
garbage collector for other objects,  our garbage collector is 
complete. Thus, in the  following, free cycles always refer to 
top free cycles. 

3 .  O V E R V I E W  

Our algorithm is based on the  propagation of marks along 
chains of remote pointers: marks are propagated locally 
from local roots  and  scions to reachable stubs by the  lo- 
cal garbage collector, following a strict  order on marks; then, 
s tub marks are propagated to their  associated scions by mes- 
sages. 

Our  marks are complex: they have a distance, a range 
and a generator identifier. The distance is the  number of 
stub-scion pairs the  mark has been propagated along. The 
range is the  maximal distance the  mark can reach. When 
the mark range is reached, the  marked scion becomes a mark 
generator with a strictly greater range. Local roots are spe- 
cial generators, all emit t ing the  same mark identifier for a 
given local trace. 
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Figure  2: T h e  bas ic  scheme:  t h e  left cycle is 
reachable~ while  t h e  r igh t  one is unreachable .  
In  t h e  left  case~ g e n e r a t o r  G2 (a local roo t )  
can not  receive i ts  murk~ while  gene ra to r  G1 o f  
range  6 receives its mark,  a l though  gray (since 
m i x e d  w i t h  mark  o f  G2) .  In the  right case, 
generator G1 receives its white mark: the  cycle  
is de t ec t ed  and  can  be  col lec ted  (by removing  
the  generator G1) .  

Generators can be  removed either by muta tor  act ivi ty or 
by a greater mark  propagated  to  their  scion. Some impor- 
tan t  details are omit ted  here for simplicity, but  it  can be 
proved tha t  any free cycle is eventually marked by one sin- 
gle generator, whose mark range is greater t han  the maximal  
subcycle length, and this  generator remains forever. 

We then extend marks by adding a color field: two marks 
are propagated to  each stub, and  the color of the  mark  prop- 
agated to its associated scion depends on them. A gener- 
ator scion aiv~ys emits its own mark with a white color. 
Other scions propagate the  mark received from their  as- 
sociated stub. Local scions are sorted before each pair  of 
local garbage collections: the  first garbage collection traces 
scions in d e c r ~ g  order of their  marks, while the  second 
one traces scions in increasing order. This  is called rain- 
max marldng since each s tub  is first marked with the  max- 
imai mark tha t  can be propagated  to  it, and then with the  
minimal one. I ts  associated scion is then  marked with the  
maximal  mark, colored in gray if the  marks  have different 
generators. 

As a consequence, if a generator receives its mark, and  
the mark is white, the  generator must be included in a free 
cycle (see Figure 2 for a basic example),  since it can not be 
re~.hable from any local root  nor other generator. 

However, this  basic scheme doesn ' t  detect  all cycles: if 
the  final generator does not  belong to an art iculat ion edge 
of the  cycle, orphan gray marks may appear  on sub-cycles 
and never disappear,  preventing the detection of the full 
cycle (see example on Figure 3). 

The previous scheme is then extended with a part ia l  back- 
tracking mechanism, called sub-generation: when a scion 
propagates the  gray mark  of the  generator to  the  generator 
stub or one of its sub-generator stubs, the  scion becomes 
a sub-generator, emitt ing the  generator white mark. As a 
consequence, any orphan gray mark will eventually be re- 

F igu re  3: The  b a d  case: at  t h e  beginning ,  
two  genera to r s  G1 and  G2 a re  p resen t  on  the  
cycle.  Consequently~ g ray  m a r k s  a p p e a r  on 
the  sub-cycle ,  and  will not disappear~ even af- 
t e r  removal  o f  gene ra to r  G2.  Thus,  the  basic 
s cheme  of  de tec t ion  is not comple te .  

moved, when a sub-generator appears  on its sub-cycle (see 
Figure 5). 

When  all sub-generators and  the generator only receive 
the  generator white mark,  the  cycle is detected and can 
safely be reclaimed. 

This extended algori thm is then  improved by a mechanism 
called optimistic back-tracking: when a scion propagates  
the  gray mark  of the  generator to the  generator s tub or one 
of i ts sub-generator stub, all scion8 propagating the same 
gray mark in the space become sub-generators.  Indeed, all 
these scions are neighbors when scions have been sorted. 
Since a scion may erroneously become a sub-generator,  a 
correction mechanism is used to remove such scions from 
the sub-generation. 

4. THE BASIC ALGORITHM 

4.1 Simple propagation of Marks 
A mark is a record with a distance field and a generator 

record (see Figure 7). A generator record contains a creation 
t ime field, a range field and the  locator of the  mark  gener- 
ator. Marks are propagated from local roots  and  scions to  
s tubs during local traces of the  garbage collector, and  from 
stubs to their  associated scion by dedicated messages, called 
CYCLIVE, after each local trace. 

At the  beginning, the  mark  generators are the  local roots; 
all local roots  on all spaces use a common special locator 
and a common range, but  the  creation t ime in the generator 
record of a mark  propagated from a local root  by a local 
t race is always the  s tar t ing t ime of tha t  trace. 

When  a scion is created or used by the mutator ,  it  behaves 
as a local root,  propagat ing the same mark as other local 
roots. Otherwise, it  propagates the  mark received from its 
associated stub. 

When  a mark is propagated from a s tub to its associated 
scion, i ts distance field is incremented. Thus, the  distance 
field represents the number of stub-scion pairs the  mark has 
been propagated  along. 

We define a strict  order on generators and marks: gener- 
ators use a lexicographic order on the  values of their  record 
fields (creation t ime first, range, and  locators which are sup- 
posed to be str ict ly ordered with local roots  locator as upper  
bound).  For marks, the generator order is used first. If  two 
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Figure  4: M i n - m a x  mark ing :  scions are  
sor ted ,  and  t r ace  a l t e rna t ive ly  in decreas ing 
and  increas ing  order .  Thus~ each s tub  is 
ma rked  wi th  b o t h  t h e  minimal  and  max ima l  
m a r k  which can be  p r o p a g a t e d  f rom scions it 
is local ly reachable  from. The  final m a r k  is 
white ,  only  if  all  marks  which can be  p ropa -  
ga t ed  t o  t h e  s t u b  are  t he  same whi te  one (only 
t h e  dis tance  may  differ).  

marks have the same generator, the  mark with the smallest 
distance is the  greatest mark. 

When the distance field of a mark reaches the  range of its 
generator, the  mark can not be propagated further. Instead, 
the marked scion becomes a new generator, emit t ing its own 
mark, using its own locator with a range strictly greater 
than the  range of the  previous received mark. If the scion 
was already a generator,  a generator is created only if the  
previous generator was smaller than  the  generator of the  
received mark. This  mechanism is similar to  the distance 
heuristic [10], where the  verifier is tr iggered if a mark  has 
been propagated more than  a suspicion threshold (here the  
range of local roots).  Moreover, a generator is removed when 
a greater mark  is propagated to  its scion. 

During the  local trace, local roots  are t raced first, then 
scions are t raced in decreasing order of the  marks they prop- 
agate. Consequently, stubs are always marked by the  max- 
imal mark they are locally reachable from. 

PROPERTY 1 (STABILITY). Any top free cycle G will 
eventually be marked by only one generator S, whose range 
is at least equal to the perimeter of G at O, and this final 
generator v~ill remain forever. 

With  this simple algorithm, a generator can not detect  
if i t  is the  final generator,  since marks from other smaller 
generators may have been hidden during local traces. Thus, 
we extend this algori thm with a new mechanism called rain- 
max marking. 

4.2 Min-max marking 
Mark are now colored in white or gray. The mark order is 

modified, so tha t  gray marks from one generator are greater 
than white marks from the same generator. Otherwise, t h e  
order is unchanged. 

A white mark means tha t  the mark  is pure, whereas a gray 
mark indicates tha t  the  mark was mixed with marks from 

different generators during a local trace (a s tub was reach- 
able from different roots  marked with marks from different 
generators). The idea is t ha t  a generator tha t  receives i ts 
own white mark must  be the  final generator (stability prop- 
my). 

We extend the  previous algori thm by using couples of local 
garbage collections to propagate boo marks to  each stub: the 
greatest one and the smallest one. This is called rain-max 
marking. This is simply implemented by sorting the scions 
once before each couple of local traces, and tracing them 
in decreasing order during the first trace, and in increasing 
order during the second trace 1 (see Figure 8). 

The mark propagated to the  associated scion now depends 
on the  two marks on the s tub (see Figure 4 and 9): 

• If  both marks are white and from the same generator, 
the  s tub propagates the  greatest mark. 

• If both marks are from the same generator, but  one is 
gray, the s tub propagates the  gray mark, but  with the 
smallest distance field of both  marks. 

• If  both  marks are from different generators, the  s tub 
propagates the  greatest mark, with a color set to Gray. 

Since we keep the  smallest distance from the  two marks 
when they are from the same generator,  the  stability proper~y 
is still true. We have now the  following result: 

PROPERTY 9. (Pt~TURN OF THE white MARK). I f  a gen- 
erator receives its oum white mark propagated from its stub, 
this generator belongs to a top free cycle. 

However, orphan gray marks may appear  on top  free cycles 
if the  final generator is not on an art iculation edge of the 
cycle (see Figure 3). As a consequence, this algorithm is not 
complete: 

PROPERTY 3 (INCOMPLETENESS). There are top free cy- 
cles where final generators never receive their own white 
marks. 

4~3 Coping with mutator activity 
The mutator  may change the reachabili ty of objects while 

our algorithm is executing. This problem is solved by the 
use of t imestamps in all messages, and  threshold-filtering, a 
mechanism described in [5, 14]. 

When  a reference has been sent in a message, the  corre- 
sponding scion behaves as a local root,  until a new mark 
is propagated from its associated stub. As in [5, 14], this 
new mark  is used only if the threshold in the  CYCLIVE mes- 
sage is greater than  the t imes tamp of the  scion. However, 
instead of increasing the  threshold when a s tub is collected, 
our threshold is increased when a white mark is propagated 
from a stub. 

5. SUB-GENERATION 
A sub-generator of a generator is a scion, which emits 

the white mark of the generator during local traces. Sub- 
generators are created in a recursive process s tar ted at  the 
generator which receives its gray mark: when a generator 

1 Marks propagated from stubs are only commited at  the end 
of the pair  of local traces. 
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Figure 5: Sub-generation:  generator G1 re- 
ceives its o w n  mark,  but  gray. It starts a 
sub-generat ion,  by creating the  sub-generator 
sub-G1 in its back-trace.  Sub-G1 always prop- 
agates the  whi te  mark o f  G1,  thus  remov ing  
the  gray color from the  sub-cycle .  W h e n  both  
G1 and Sub-G1 receive G1 whi te  marks,  the  
cycle  is detected  and rec la imed (by removing  
pointers  G1 and Sub-G1) .  

E" 

B 

g5 

~m 

~ g 3  

A 

g l  

Figure 6: Opt imis t ic  Back-tracking:  W i t h o u t  
opt imis t ic  back-tracking,  the  genera tor  G will 
need a t  least four local traces in each space 
to  create its four sub-generators  g l , g 2 , g 8  and  
g4 required  to  remove the  o rphan  mark  from 
the  sub-cycle g4-gS. W i t h  Opt imis t ic  back- 
tracking,  g l ,  g2, g3, g4, g5 b e c o m e  immedi-  
a t ly  sub-genera tors  of G and the  cycle  will be 
detected faster. This  mechanism is efficient in 
m o s t  appl icat ions ,  where  cycles  contain  lots 
of in ter -connected  objects  d i s t r ibu ted  on very 
few spaces.  

stub, or one of its sub-generator stubs, receives the gray 
mark of the generator propagated from a scion ( which must 
be the greatest scion it is rear2table from), this scion becomes 
a new sub-generator. The generator or sub-generator stub is 
called its dominator. The sub-generation status of each scion 
is then propagated to its associated stub in the CYCLIVE 
messages. 

Thus, sub-generators are created by a lazy b~.~k-tracking 
process: if a generator is reachable from multiple scions 
marked with its gray mark, a new scion becomes a sub- 
generator at each pair of local traces, since new sub-generators 
emit the white mark, and thus, are smaller than all other 
scions that propagate the gray mark. 

The mark propagated by a stub involved in the sub-generation 
process to its associated scion is computed from the marks 
received by the sub-generators created (dominated) by this 
stub from their associated stubs. If all these marks are white, 
and the stub mark is also white, the propagated mark is also 
white; otherwise, the mark is gray (see Figure 11). 

The property 2 still holds. Indeed, a generator receives its 
white mark only if all its sub-generat0rs also receive the white 
mark. However, any orphan gray mark in a sub-cycle cycle 
will eventually be removed when a sub-generator appears in 
the same sub-cycle (see Figure 5). 

PROPERTY 4. Completene88 
The final generator of any top free cycle ~#ill eventually 

receive its own white mark. 

Once a top free cycle has been detected, the easiest and 
most efficient way to collect it is to remove its generator and 
sub-generators scions from the set of traced scions. As a con- 
sequence, the cycle will be collected by the acyclic garbage 
collector. 

6. OPTIMISTIC BACK-TRACKING 
The lazy back-tracking algorithm can be very slow, since 

it can only detect one sub-generator per pair of local traces. 
Thus, we propose a faster algorithm for back-tracking, which 
is unfortunately not exact. The basic idea is that, in a space 
where a sub-generator is present, all the scions which prop- 
agate the generator gray mark are probably only reachable 
from this generator. Thus, they can be immediatly added 
to sub-generators set. 

Thus, when a generator or sub-generator stub is marked 
with the generator gray mark 2, all the scions in the local 
space which also propagate the same gray mark are included 
in the sub-generators set (unless they are already part of it). 
This is easy to implement since such scions are neighbors of 
the traced scion in the sorted array of scions. 

Of course, this mechanism is not always correct: such 
scions may also be reachable from other generators, without 
being part of the cycle. As a consequence, we need do be 
able to correct such errors: if a scion is erroneously added to 

2This can even be done when the stub become~ a sub- 
generator stub. 

204 



a sub-generators set, it will eventually receive a greater mark 
f~m another generator. As a consequence, the dominator of 
this scion will propagate to its associated scion a mark with 
a special black color, which will then be propagated again 
until the final generator. 

When the generator receive its black mark, it increments 
a nero field of its generator record, called the sub-generation 
counter. We immediatly update the order on marks: if two 
marks are from the same generator, but have different sub- 
generation counter, the greatest one is the mark with the 
highest sub-generation counter. 

The mark change is important, since the white mark prop- 
agated by the incorrect sub-generator may erroneously lead 
to the collection of the graph. Moreover, this new field 
doesn't modify the order between marks from different gen- 
erators: the scion erroneously included in the sub-generators 
set won't be included again, whereas other sub-generators 
will be included. 

7. DISCUSSION 

7.1 Fault-tolerance 
Our algorithm is fault-tolerant: unreliable communica- 

tions are supported, since the only message - the CYCLIVE 
message - can be lost, or delivered out-of-order. Indeed, this 
message always contains the full up-to-date information re- 
quired for progress of the computation, and the computation 
is still conservative with older information. Race conditions 
are avoided thanks to an extension of the SSPC timestamp 
system. 

Space failures can be easily handled by considering in- 
coming references from suspected or crashed spaces as local 
roots. This approach is conservative, and only prevents the 
detection of cycles spanning on crashed spaces. 

Ease of implementation 
Our algorithm has been implemented in the JoCaml sys- 

tem [3], an extension of Objective CAML with mobile agents. 
The implementation only requires minor modifications of 
any local tracing garbage collector. In particular, local garbage 
collection has been kept incremental and locally optimal (no 
need for overlapping traces). 

70  Resources consumption 

7.3.1 Memory usage 
Our algorithm does not add any space overhead for local 

objects. This is not the case of other cycle detectors, such as 
the back-tracing algorithm of Maheshawari and Liskov [11] 
which requires a Leader field per object to compute backward 
information. 

Only stubs and scions structures are modified. Conse- 
quently, memory usage is only proportional to the number 
of stubs and scions in each space. Marks are quite complex, 
but most of them are root marks, which can be represented 
by long integers (for example 56 bits for time and 8 bits for 
distance). 

7.3.2 Messages 
In our algorithm, only one message is sent after each pair 

of local garbage collections. This message contains one mark 
for each stub (mainly root marks), and one mark for each 
scion involved in a sub-generation. Other cycles detectors 

also propagate some information for each stub, either a dis- 
tance [10, 11], a timestamp [9, 5] or a list of locators [16]. 
Moreover, the CYCLIVE message can be shared with the 
acyclic garbage collector, for example to propagate the con- 
tent of the LIVE message of the SSPC cleanup protocol [14]. 

7.3.3 Computation time 
Scions must be sorted before ear~ pair of local garbage 

collections. However, sorting scions before local garbage col- 
lections is also required by other detectors [10, 11, 9, 5] to 
correctly propagate either timestamps or distances. 

Finally, a small amount of computation is needed for each 
stub to computes the mark it will propagate to its associated 
scion after a pair of local garbage collection. Thus, the total 
computation time is in O(nstub8 + nscion8, log(nscions) ) 

8. CONCLUSION 
We have presented a new algorithm to detect free dis- 

tributed cycles in large-scale networks. This new detector 
combines three new techniques: min-maz marking, to detect 
different paths leading to a same object, sub-generation, to  
build a partial bvfok-tracking graph upon a potentially free 
distributed cycle, and optimistic back-tracing, to retrieve 
back-references in an inexpensive but potentially erroneous 
way. 

Our algorithm has good properties for large-scale net- 
works: it is completely asynchronous, tolerant to space fail- 
ures and unreliable communication, while preserving locality 
of detection; all cycles are detected in a same process, and 
it is economic in resources, such as computation time, mem- 
ory usage and messages. Finally, it has been successfully 
implemented in our system, the JoCaml system [3]. 
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B. PSEUDO-CODE 

t y p e  c o l o r  = I/lLite [ Gray 

t y p e  g e n e r a t o r  = 
c r e a t i o n  : t i m e ;  
r a n g e  : i n t ;  
l o c a t o r  : l o c a t o r ;  

} 

t y p e  mark = 
g e n e r a t o r  : g e n e r a t o r ;  
d i s t a n c e  : i n t ;  
c o l o r  : c o l o r ;  

} 

t y p e  s t u b  ffi { 
s c i o n _ i d  : l o c e t o r ;  
l a s t _ r e c v  : t i m e ;  
rain_mark : mark ;  
ma~_mark : mark ;  
s c i o n _ m a r k  : m~rk;  

} 

t y p e  s c i o n  : { 
s c i o n _ i d  : l o c a t o r ;  
l a s t _ s e n t  : t i m e ;  
s t u b _ m a r k  : mark ;  
mark : mark ;  
i s _ g e n e r a t o r  : b o o l ;  
t ~ r g e t  : o b j e c t ;  

} 

F i g u r e  T: R e c o r d  s t r u c t u r e s  for  g e n e r a t o r s ,  
m a r k s ,  s t u b s  a n d  sc ions .  

m i n J m x _ t r a c e  ( r o o t s ,  s c i o n s )  

r o o t _ m a r k . c r e a t i o n  := c u r r e n t _ t i ~ e ( )  ; 
£ o r e a c h  r i n  r o o t s ,  t r a c e ( r ,  r o o t _ m a r k )  ; 
i f  ( t r a c e _ m ~ )  

f o r ( n e c i o n = l a s t _ s c i o n ;  n s c i o n > O ;  n s c i o n - - )  
t r a c e  ( s c i o n s  [ n s c i o n ] ,  s c i o n s  [ n s c i o n ] .  mark)  ; 

t r a c e _ m i n  := f a l s e ;  
s e n d _ c ~ c l i v e _ m s g s  ( )  ; 

} else ( 
c o ~ a i t _ n e w _ r e c e i v e d _ m a r k s  ( s c i o n s )  ; 
s o r t ( s c i o n s )  ; 
f o r ( n s c i o n = l ;  n s c i o n ~  l a s t _ s c i o n ;  n s c i o n + + )  

t r a c e  ( s c i o n s  [ n s c i o n ] ,  s c i o n s  [ n s c i o n ]  . ~ T k )  ; 
t r a c e _ r a i n  : = t r u e ;  

} }  

t r a c e  ( r ,  mark)  

i f ( n o t _ t r a c e d ( r ) )  
i f  ( i s _ s t u b  ( r ) )  

i f ( t r a c e _ r a i n )  { r . m i n _ ~ L r k  := mark ;  } 
e l s e  { r . ~ a v _ m a r k  := mark ;  } 

} e l s e  
f o r e a c h  o i n  o b j e c t ( r ) ,  t r a c e ( o , m a r k )  ; 

} } }  

F i g u r e  8: T h e  loca l  g a r b a g e  c o l l e c t o r  w i t h  
r a i n - m a x  m a r k i n g .  T h i s  c o d e  c a n  eas i ly  
b e  m o d i f i e d  t o  b e  e x e c u t e d  i n c r e m e n t a l l y .  
co-mi t_nev_rece ived_narks  c o m m i t s  stub_mark t o  
mark in  e a c h  sc ion  b e f o r e  s o r t i n g  t h e  sc ions .  

s c i o n . m a r k  ( s t u b )  
( 

m4- mark  := s t u b . r a i n _ m a r k ;  
max_mark :-- s t u b . m ~ T _ l ~ r k ;  
mark := max_mark;  
i f  ( ra in_mark.  g e n e r a t o r  = max_mark,  g e n e r a t o r )  

mark .  d i s t a n c e  : = 
rain (m~ n_mark ,  d i s t a n c e ,  max_mark,  d i s t a n c e )  ; 

} e l s e  { m a r k . c o l o r  := g r a y ;  } 
r e t u r n  mark ;  

F i g u r e  9: T h e  c o m p u t a t i o n  o f  t h e  m a r k  p r o p a -  
g a t e d  b y  a s t u b  
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t y p e  c o l o r  = Whi te  [ 6 r a y  

t y p e  g e n e r a t o r  = { 
c r e a t i o n  : t J ~ e ;  
r a n g e  : i n t ;  
l o c a t o r  : l o c a t o r ;  
g e n e r a t i o n  : i n t ;  

} 

t y p e  mark ffi 
g e n e r a t o r  : g e n e r a t o r ;  
d i s t a n c e  : i n t ;  
c o l o r  : c o l o r ;  

} 

t y p e  s t u b  = { 
s c i o n _ i d  : l o c a t o r ;  
l a s t _ r e c v  : t i m e ;  
rain_mark : mark;  
max_mark : mark;  
sc ion_mark  : mark;  
sub_mark : mark;  
s u b _ s e n s  : s c i o n  l i s t ;  

} 

t y p e  s c i o n  = { 
s c i o n _ i d  : l o c a t o r ;  
l a s t _ s e n t  : t i m e ;  
s tub_mark  : mark;  
mark : mark; 
i s _ g e n e r a t o r  : b o o l ;  
t a r g e t  : o b j e c t ;  
sub_mark : mark;  

F i g u r e  10: l t e c o r d  s t r u c t u r e s  fo r  t h e  gen -  
e r a t o r s ,  m a r k s ,  s t u b s  a n d  sc ions  w i t h  s u b -  
g e n e r a t i o n .  E a c h  s t u b  keeps  t h e  l is t  o f  i ts  d o m -  
i n a t e d  s u b - g e n e r a t o r s ,  a n d  t h e  m a r k  o f  t h e  r ea l  
g e n e r a t o r  i t  is i nvo lved  in  a s u b - g e n e r a t i o n .  

t r a c e  ( r ,  mark) 

i f  ( n o t _ t r a c e d ( r ) )  { 
i f  ( i s _ s t u b  ( r ) )  

i f ( t r a c e _ r a i n )  { r . m i n  m~Tk := mark;  } 
e l s e  ( 

r .maz_mark  := mark; 
s c i o n  := s c i o n s [ n s c i o n ]  ; 
i f ( s c i o n . s u b _ m a r k  = NULL 

k k  r . s u b _ m a r k . g e n e r a t o r  = m a r k . g e n e r a t o r  
k k  m a r k . c o l o r  = g r a y )  

r .  sub_gens  = 
r . s u b _ g e n s  U { s c i o n ;  } 

s c l o n . s u b _ m a r k  := r . s u b _ m a r k ;  
s c i o n . i s _ g e n e r a t o r  := t r u e  ; 

} } } else { 
f o r e a c h  o i n  o b j e c t  ( r ) ,  t r a c e  (o ,mark)  ; 

} } }  

s c i o n _ m u r k ( s t u b )  

rain_mark : = s t u b .  rain_mark; 
max_mark := s tub .max_mark ;  
mark := m~T mark;  
i f  (m~n_mark. g e n e r a t o r  = max_mark, g e n e r a t o r )  

mark.  d i s t a n c e  : = 
m4n (rain_mark. d i s t a n c e ,  max_mark, d i s t a n c e )  ; 

i f ( 3  s c i o n  E s t u b . s u b _ g e n s ,  
s c i o n ,  s tub_mark ,  c o l o r  = g r a y )  

mark.  c o l o r  : = g r a y ;  } 
} else { 

mark.  c o l o r  := g r a y ;  
} 
r e t u r n  mark;  

F i g u r e  11: T h e  t r a c e  w i t h  s u b - g e n e r a t l o n .  
D u r i n g  e a c h  t r a c e ,  s c ions  m a y  b e c o m e  s u b -  
g e n e r a t o r s .  T h e  c o m p u t a t i o n  o f  t h e  m a r k  p r o p -  
a g a t e d  f r o m  t h e  s t u b  t o  i t s  a s s o c i a t e d  sc ion  in 
sci0n.mark t a k e s  b o t h  t h e  m a r k  r e c e i v e d  d u r -  
ing  t h e  local  t r a c e  a n d  t h e  m a r k s  o n  d o m i n a t e d  
s u b - g e n e r a t o r s  i n to  a c c o u n t .  
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co,,~' i  t _ s t u b _ m a r k  ( s c i o n )  
{ 

s tub_mark  :ffi s c i o n ,  s tub_mark ;  
s tub_mark ,  d i s t a n c e  : = s tub_mark ,  d i s t a n c e  + 1; 
i f  ( s c i o n .  i s _ g e n e r a t o r  

s t u b _ m a r k . g e n e r a t o r  > s c i o n . m a r k . g e n e r a t o r ) {  
s c i o n . i s _ g e n e r a t o r  := f a l s e ;  
s c i o n . s u b _ m a r k  := NULL; 

} 
i f  (no t  s c i o n . i s _ g e n e r a t o r )  { 

i f  ( s t ub_mark .  d i s t a n c e  = s t ub_mark ,  g e n e r a t o r ,  r a n g e )  { 
s c i o n . i s _ g e n e r a t o r  := t r u e ;  
s c i o n . m a r k  :ffi { 
d i s t a n c e  ffi O; 
g e n e r a t o r  = { 

l o c a t o r  = s c i o n . l o c a t o r ;  
r a n g e  ffi s t u b _ m a r k . r a n g e  + o f f s e t ( s t u b m a r k . r a n g e ) ;  
c r e a t i o n  = c u r r e n t _ t ~ n e ( )  ; 

c o l o r  = Whi te ;  
g e n e r a t i o n  ffi O; 

} else { 
scion.mark := stub_mark; 

} 
} else { 

if (stub_mark. generator = scion, mark. generator) { 
if(scion.mark.locator = scion.locator 

#d~ stub_mark.color = White) { cycle_detected(scion) ; } 
else { scion.sub_mark := scion.mark } 

} 
} 

F i g u r e  12: B e f o r e  s o r t i n g  t h e  sc ions ,  t h e  l a t e s t  
r e c e i v e d  m a r k s  a r e  c o m m i t e d .  A t  t h i s  s t a t e ,  
o ld  g e n e r a t o r s  m a y  be  r e m o v e d ,  n e w  g e n e r a t o r s  
c r e a t e d ,  o r  a s u b - g e n e r a t i o n  s t a r t e d  f r o m  t h e  
g e n e r a t o r .  
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