
Detecting Distributed Cycles of Garbage in Large-Scale
Systems

Fabrice Le Fessant
(Email: Fabrice.Le_Fessant@inria.fr)

INRIA Rocquencourt, B.P. 105, 78153 Le Chesnay Cedex, France

ABSTRACT
Distributed scalable garbage collectors, mostly based on some
kind of reference counting, fail to detect distributed cycles of
garbage. This problem may lead to important memory leaks
in distributed storage systems. In this paper, we present a
new algorithm which detects and collects such distributed
cycles of garbage.

Our algorithm is based on the propagation of marks along
chains of remote pointers. It uses two new mechanisms:
rain-max marking, to propagate two different marks to each
stub, and sub-generation, to build an acyclic graph on a
cycle using back-tracking information. A new technique,
called optimistic back-tracking, is also used to speed-up sub-
generation.

The resulting algorithm is completely distributed, asyn-
chronous, fault-tolerant and inexpensive. Moreover, it col-
lects incrementally all distributed cycles of garbage, with-
out partitioning the system. Thus, it is particularly well
adapted to large-scale networks. Finally, it can be easily
implemented with minor modifications of a local tracing
garbage collector.

Keywords: distributed garbage collection, cycles,
sub-generation, optimistic back-tracing, rain-max marking.

1. INTRODUCTION
Most scalable distributed garbage collectors [15, 14, 4, 1]

are based on some kind of reference counting, which fails
to detect distributed cycles of garbage. To avoid important
memory leaks in distributed storage systems, detection of
distributed cycles of garbage has become an active area of
research. Two kinds of algorithms address the problem: per-
cycle algorithms [2, 10, 7, 12, 11, 13], i.e. algorithms trig-
gered to verify tha t a particular suspected object belongs to
a free cycle, and all-at-once algorithms [8, 9, 5], i.e. algo-
rithms which detect all free cycles in a single mechanism,
sometimes together with acyclic garbage.

Permission to make digital or bard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
PODC 01 Newport Rhode Island USA
Copyright ACM 2001 1-58113-383-9/01/08...$5.00

1.1 Per-cycle detectors
Per-cycle detectors can be divided in two parts: a heuris-

tic, to detect which objects are likely to belong to distributed
cycles of garbage, and a verifier, which effectively verifies
that suspected objects really belong to garbage cycles.

Lots of heuristics have been proposed, such as last access
time (by the mutator), non-local reachability [12] or, more
recently, distance from a local root [10, 11]. The choice of
the heuristic is important: suspecting too many objects is
expensive in time, since the verifier is erroneously triggered
a lot of times, and suspecting too few objects is expensive
in memory, since reclamation of real garbage is delayed.

When an object is suspected, the verifier is executed. Pro-
posed mechanisms are: (1) migrating suspected objects to a
single site [2, 10], where a tracing local garbage collector can
collect the cycle; (2) back-tr~king [7, 11, 13], i.e.tracing the
references to the object (backward references) recursively
until either a root is reached (if the object is erroneously sus-
pected) or all backward references are traced without finding
a root (the object is really garbage). However, both methods
are quite expensive in time, require important modifications
of the local garbage collectors, and have strong requirements
on the system, such as object migration, extra fields in ob-
jects, or overlapping trace [16](objects traced several times
in the same trace).

The main drawback of per-cycle detectors is their unitary
cost: an algorithm must be started for each suspected ob-
ject, consuming extra memory and messages.

1.2 All-at-once detectors
All-at-once detectors are less expensive, since a single al-

gorithm is able to collect all cycles in one global mechanism.
However, all all-at-once algorithms require some kind of con-
sensus involving all the spaces. Since such a consensus can
hardly be achieved on the whole system [6], i.e. by thou-
sands of spaces, these algorithms are limited to partitions of
the system.

Most of them are distributed tracing garbage collectors:
once a partition of the system is selected - - because it is
likely to contain lots of garbage cycles - - a global trace is
triggered from local roots and scions associated with spaces
outside the partition. Once the global trace is terminated
on the partition, non-traced objects are reclaimed.

Such partitioned detectors differ either by the way they
select the partition (partition can be created dynamically
[12] or hierarchically [9]), or by the way traces are coordi-
nated (traces can be sequential [12] or concurrent [8, 9, 5]).
However, their main drawback is the consensus on the ter-

200

mination of the global trace, which limits both the number
of spaces which can be involved in one par t i t ion and the
tolerance of the algori thm to space crashes.

1.3 Our contribution
In this paper, we present a new detector of free cycles,

designed for the JoC~ml mobile agents system [5].
Our algorithm takes a medium approach between per-

cycle and all-at-once detectors: from the per-cycle algo-
r i thms, it uses the distance heuristic, which is however im-
proved by rain-max marking so tha t some suspected cycles
are immediat ly detected as garbage, and a part ia l and lazy
back-tracking mechanism, called sub-generatior~ From the
all-at-once algorithms, it takes the global and uniform mech-
anism, since it does not require ex t ra messages for suspected
cycles. Moreover, it does not use any kind of consensus be-
tween spaces, and its requirements on the system are modest
(no object migration needed, no extra space in objects, mi-
nor modification of the local tracing collector).

Finally, we propose a new mechanism, called optimistic
back-tracking, to speed-up the sub-generation when a cycle
is composed of many inter-connected objects located on very
few spaces, a common case in practice.

1.4 Structure
The paper is organized as follow- section 2 describes our

system and goal; section 3 gives an overview of the algo-
r i thm, incrementally detailed in sections 4 (basic algorithm
with rain-max marking); 5 (sub-generation) and 6 (opti-
mistic back-tracking). Finally, the section 7 discusses the
main properties of our detector.

2. MODEL

2.1 The distributed system
Our system consists of a set of spaces, which are the basic

units of computation. Each space has its own local memory
and its own local garbage collector. To access objects in
remote memories, spaces can only send asynchronous mes-
sages, on an unreliable but fair medium of communication.
Therefore, these messages may get lost, dupficated, or deliv-
ered out-of-order. Each space can access a local clock, which
is either implemented by a dis t r ibuted Lampor t clock, or by
loosely synchronized hardware clocks.

A remote reference is materiafized by two objects, called
stub (or eait item) and scion (or entry item) in the SSPC
terminology [14]: Concretely, a reference R from object A
in space X to object B in space Y is represented by two
pointers(Figure 1):

• a local pointer in X from A to the s tub s tubx (R) in
X and

• a local pointer in Y from the scion sciony (R) in Y to
B .

One scion is associated with each stub, and at most one
stub is associated with e ~ scion. Each remote reference
has a unique identifier, called a tocator, stored in its s tub
and scion.

Locators can be sent between spaces in messages, either
as the target object of a remote method call, or as the pa-
rameters or reply of such a call. A new remote reference

¥

Figure 1: A r e m o t e reference f rom s p a c e X t o s p a c e Y'.

can be dynamically created: a scion is first created in the
object space with a new locator; the locator is then sent to
the remote space, where a new s tub is created.

2 . 2 C y c l e s

We write O for the set of all objects created in the sys-
tem. If an object 02 is reachable (either locally or remotely)
from an object O1, we write O1 ~-* 02. If it is only remotely
r e a r ' a b l e from O1, we write O1 "~ 02. An object is said
to be garbage, when it is unrear.hable from a set of refer-
ences, called the roots, which contains both local roots and
messages in transit .

We are only interested here in detecting a part icular kind
of cycles, Top Free Cycles, which are strongly-connected
components, with no incoming references:

DEFINITION 1 (ToP FREE CYCLE). A set G of objects
is a T o p F r e e C y c l e if and only if:

• 301,02 E G, 01 ~,~ 02

• VO E G, ~r E roots, r ~-* 0

• V 0 1 , 0 2 E G, 01 ~ 02

• V01 E G, V02 E O, 02 ~* 01 =:" 02 E G

We define the perimeter of G at 0 as the minimal length
of all simple cycles in G containing O. We define the closure
of G, denoted clos(G), as the set of objects O such tha t
3 0 ' E G, O' --+ O. I t is clear t ha t any unreachable object
which cannot be collected by an acyclic dis t r ibuted garbage
collector must be par t of the closure of (at least) one top free
cycle. By detecting top free cycles, and using the acyclic
garbage collector for other objects, our garbage collector is
complete. Thus, in the following, free cycles always refer to
top free cycles.

3 . O V E R V I E W

Our algorithm is based on the propagation of marks along
chains of remote pointers: marks are propagated locally
from local roots and scions to reachable stubs by the lo-
cal garbage collector, following a strict order on marks; then,
s tub marks are propagated to their associated scions by mes-
sages.

Our marks are complex: they have a distance, a range
and a generator identifier. The distance is the number of
stub-scion pairs the mark has been propagated along. The
range is the maximal distance the mark can reach. When
the mark range is reached, the marked scion becomes a mark
generator with a strictly greater range. Local roots are spe-
cial generators, all emit t ing the same mark identifier for a
given local trace.

201

Figure 2: T h e bas ic scheme: t h e left cycle is
reachable~ while t h e r igh t one is unreachable .
In t h e left case~ g e n e r a t o r G2 (a local roo t)
can not receive i ts murk~ while gene ra to r G1 o f
range 6 receives its mark, a l though gray (since
m i x e d w i t h mark o f G2) . In the right case,
generator G1 receives its white mark: the cycle
is de t ec t ed and can be col lec ted (by removing
the generator G1) .

Generators can be removed either by muta tor act ivi ty or
by a greater mark propagated to their scion. Some impor-
tan t details are omit ted here for simplicity, but it can be
proved tha t any free cycle is eventually marked by one sin-
gle generator, whose mark range is greater t han the maximal
subcycle length, and this generator remains forever.

We then extend marks by adding a color field: two marks
are propagated to each stub, and the color of the mark prop-
agated to its associated scion depends on them. A gener-
ator scion aiv~ys emits its own mark with a white color.
Other scions propagate the mark received from their as-
sociated stub. Local scions are sorted before each pair of
local garbage collections: the first garbage collection traces
scions in d e c r ~ g order of their marks, while the second
one traces scions in increasing order. This is called rain-
max marldng since each s tub is first marked with the max-
imai mark tha t can be propagated to it, and then with the
minimal one. I ts associated scion is then marked with the
maximal mark, colored in gray if the marks have different
generators.

As a consequence, if a generator receives its mark, and
the mark is white, the generator must be included in a free
cycle (see Figure 2 for a basic example), since it can not be
re~.hable from any local root nor other generator.

However, this basic scheme doesn ' t detect all cycles: if
the final generator does not belong to an art iculat ion edge
of the cycle, orphan gray marks may appear on sub-cycles
and never disappear, preventing the detection of the full
cycle (see example on Figure 3).

The previous scheme is then extended with a part ia l back-
tracking mechanism, called sub-generation: when a scion
propagates the gray mark of the generator to the generator
stub or one of its sub-generator stubs, the scion becomes
a sub-generator, emitt ing the generator white mark. As a
consequence, any orphan gray mark will eventually be re-

F igu re 3: The b a d case: at t h e beginning ,
two genera to r s G1 and G2 a re p resen t on the
cycle. Consequently~ g ray m a r k s a p p e a r on
the sub-cycle , and will not disappear~ even af-
t e r removal o f gene ra to r G2. Thus, the basic
s cheme of de tec t ion is not comple te .

moved, when a sub-generator appears on its sub-cycle (see
Figure 5).

When all sub-generators and the generator only receive
the generator white mark, the cycle is detected and can
safely be reclaimed.

This extended algori thm is then improved by a mechanism
called optimistic back-tracking: when a scion propagates
the gray mark of the generator to the generator s tub or one
of i ts sub-generator stub, all scion8 propagating the same
gray mark in the space become sub-generators. Indeed, all
these scions are neighbors when scions have been sorted.
Since a scion may erroneously become a sub-generator, a
correction mechanism is used to remove such scions from
the sub-generation.

4. THE BASIC ALGORITHM

4.1 Simple propagation of Marks
A mark is a record with a distance field and a generator

record (see Figure 7). A generator record contains a creation
t ime field, a range field and the locator of the mark gener-
ator. Marks are propagated from local roots and scions to
s tubs during local traces of the garbage collector, and from
stubs to their associated scion by dedicated messages, called
CYCLIVE, after each local trace.

At the beginning, the mark generators are the local roots;
all local roots on all spaces use a common special locator
and a common range, but the creation t ime in the generator
record of a mark propagated from a local root by a local
t race is always the s tar t ing t ime of tha t trace.

When a scion is created or used by the mutator , it behaves
as a local root, propagat ing the same mark as other local
roots. Otherwise, it propagates the mark received from its
associated stub.

When a mark is propagated from a s tub to its associated
scion, i ts distance field is incremented. Thus, the distance
field represents the number of stub-scion pairs the mark has
been propagated along.

We define a strict order on generators and marks: gener-
ators use a lexicographic order on the values of their record
fields (creation t ime first, range, and locators which are sup-
posed to be str ict ly ordered with local roots locator as upper
bound). For marks, the generator order is used first. If two

202

7rl-;1VVV1 VFN r r l ~ l ~ r l FI-~N--V1
n c i o n e

l o c a l
o l D 3 e c t s

.

Figure 4: M i n - m a x mark ing : scions are
sor ted , and t r ace a l t e rna t ive ly in decreas ing
and increas ing order . Thus~ each s tub is
ma rked wi th b o t h t h e minimal and max ima l
m a r k which can be p r o p a g a t e d f rom scions it
is local ly reachable from. The final m a r k is
white , only if all marks which can be p ropa -
ga t ed t o t h e s t u b are t he same whi te one (only
t h e dis tance may differ).

marks have the same generator, the mark with the smallest
distance is the greatest mark.

When the distance field of a mark reaches the range of its
generator, the mark can not be propagated further. Instead,
the marked scion becomes a new generator, emit t ing its own
mark, using its own locator with a range strictly greater
than the range of the previous received mark. If the scion
was already a generator, a generator is created only if the
previous generator was smaller than the generator of the
received mark. This mechanism is similar to the distance
heuristic [10], where the verifier is tr iggered if a mark has
been propagated more than a suspicion threshold (here the
range of local roots). Moreover, a generator is removed when
a greater mark is propagated to its scion.

During the local trace, local roots are t raced first, then
scions are t raced in decreasing order of the marks they prop-
agate. Consequently, stubs are always marked by the max-
imal mark they are locally reachable from.

PROPERTY 1 (STABILITY). Any top free cycle G will
eventually be marked by only one generator S, whose range
is at least equal to the perimeter of G at O, and this final
generator v~ill remain forever.

With this simple algorithm, a generator can not detect
if i t is the final generator, since marks from other smaller
generators may have been hidden during local traces. Thus,
we extend this algori thm with a new mechanism called rain-
max marking.

4.2 Min-max marking
Mark are now colored in white or gray. The mark order is

modified, so tha t gray marks from one generator are greater
than white marks from the same generator. Otherwise, t h e
order is unchanged.

A white mark means tha t the mark is pure, whereas a gray
mark indicates tha t the mark was mixed with marks from

different generators during a local trace (a s tub was reach-
able from different roots marked with marks from different
generators). The idea is t ha t a generator tha t receives i ts
own white mark must be the final generator (stability prop-
my).

We extend the previous algori thm by using couples of local
garbage collections to propagate boo marks to each stub: the
greatest one and the smallest one. This is called rain-max
marking. This is simply implemented by sorting the scions
once before each couple of local traces, and tracing them
in decreasing order during the first trace, and in increasing
order during the second trace 1 (see Figure 8).

The mark propagated to the associated scion now depends
on the two marks on the s tub (see Figure 4 and 9):

• If both marks are white and from the same generator,
the s tub propagates the greatest mark.

• If both marks are from the same generator, but one is
gray, the s tub propagates the gray mark, but with the
smallest distance field of both marks.

• If both marks are from different generators, the s tub
propagates the greatest mark, with a color set to Gray.

Since we keep the smallest distance from the two marks
when they are from the same generator, the stability proper~y
is still true. We have now the following result:

PROPERTY 9. (Pt~TURN OF THE white MARK). I f a gen-
erator receives its oum white mark propagated from its stub,
this generator belongs to a top free cycle.

However, orphan gray marks may appear on top free cycles
if the final generator is not on an art iculation edge of the
cycle (see Figure 3). As a consequence, this algorithm is not
complete:

PROPERTY 3 (INCOMPLETENESS). There are top free cy-
cles where final generators never receive their own white
marks.

4~3 Coping with mutator activity
The mutator may change the reachabili ty of objects while

our algorithm is executing. This problem is solved by the
use of t imestamps in all messages, and threshold-filtering, a
mechanism described in [5, 14].

When a reference has been sent in a message, the corre-
sponding scion behaves as a local root, until a new mark
is propagated from its associated stub. As in [5, 14], this
new mark is used only if the threshold in the CYCLIVE mes-
sage is greater than the t imes tamp of the scion. However,
instead of increasing the threshold when a s tub is collected,
our threshold is increased when a white mark is propagated
from a stub.

5. SUB-GENERATION
A sub-generator of a generator is a scion, which emits

the white mark of the generator during local traces. Sub-
generators are created in a recursive process s tar ted at the
generator which receives its gray mark: when a generator

1 Marks propagated from stubs are only commited at the end
of the pair of local traces.

203

;1 iL..

Figure 5: Sub-generation: generator G1 re-
ceives its o w n mark, but gray. It starts a
sub-generat ion, by creating the sub-generator
sub-G1 in its back-trace. Sub-G1 always prop-
agates the whi te mark o f G1, thus remov ing
the gray color from the sub-cycle . W h e n both
G1 and Sub-G1 receive G1 whi te marks, the
cycle is detected and rec la imed (by removing
pointers G1 and Sub-G1) .

E"

B

g5

~m

~ g 3

A

g l

Figure 6: Opt imis t ic Back-tracking: W i t h o u t
opt imis t ic back-tracking, the genera tor G will
need a t least four local traces in each space
to create its four sub-generators g l , g 2 , g 8 and
g4 required to remove the o rphan mark from
the sub-cycle g4-gS. W i t h Opt imis t ic back-
tracking, g l , g2, g3, g4, g5 b e c o m e immedi-
a t ly sub-genera tors of G and the cycle will be
detected faster. This mechanism is efficient in
m o s t appl icat ions , where cycles contain lots
of in ter -connected objects d i s t r ibu ted on very
few spaces.

stub, or one of its sub-generator stubs, receives the gray
mark of the generator propagated from a scion (which must
be the greatest scion it is rear2table from), this scion becomes
a new sub-generator. The generator or sub-generator stub is
called its dominator. The sub-generation status of each scion
is then propagated to its associated stub in the CYCLIVE
messages.

Thus, sub-generators are created by a lazy b~.~k-tracking
process: if a generator is reachable from multiple scions
marked with its gray mark, a new scion becomes a sub-
generator at each pair of local traces, since new sub-generators
emit the white mark, and thus, are smaller than all other
scions that propagate the gray mark.

The mark propagated by a stub involved in the sub-generation
process to its associated scion is computed from the marks
received by the sub-generators created (dominated) by this
stub from their associated stubs. If all these marks are white,
and the stub mark is also white, the propagated mark is also
white; otherwise, the mark is gray (see Figure 11).

The property 2 still holds. Indeed, a generator receives its
white mark only if all its sub-generat0rs also receive the white
mark. However, any orphan gray mark in a sub-cycle cycle
will eventually be removed when a sub-generator appears in
the same sub-cycle (see Figure 5).

PROPERTY 4. Completene88
The final generator of any top free cycle ~#ill eventually

receive its own white mark.

Once a top free cycle has been detected, the easiest and
most efficient way to collect it is to remove its generator and
sub-generators scions from the set of traced scions. As a con-
sequence, the cycle will be collected by the acyclic garbage
collector.

6. OPTIMISTIC BACK-TRACKING
The lazy back-tracking algorithm can be very slow, since

it can only detect one sub-generator per pair of local traces.
Thus, we propose a faster algorithm for back-tracking, which
is unfortunately not exact. The basic idea is that, in a space
where a sub-generator is present, all the scions which prop-
agate the generator gray mark are probably only reachable
from this generator. Thus, they can be immediatly added
to sub-generators set.

Thus, when a generator or sub-generator stub is marked
with the generator gray mark 2, all the scions in the local
space which also propagate the same gray mark are included
in the sub-generators set (unless they are already part of it).
This is easy to implement since such scions are neighbors of
the traced scion in the sorted array of scions.

Of course, this mechanism is not always correct: such
scions may also be reachable from other generators, without
being part of the cycle. As a consequence, we need do be
able to correct such errors: if a scion is erroneously added to

2This can even be done when the stub become~ a sub-
generator stub.

204

a sub-generators set, it will eventually receive a greater mark
f~m another generator. As a consequence, the dominator of
this scion will propagate to its associated scion a mark with
a special black color, which will then be propagated again
until the final generator.

When the generator receive its black mark, it increments
a nero field of its generator record, called the sub-generation
counter. We immediatly update the order on marks: if two
marks are from the same generator, but have different sub-
generation counter, the greatest one is the mark with the
highest sub-generation counter.

The mark change is important, since the white mark prop-
agated by the incorrect sub-generator may erroneously lead
to the collection of the graph. Moreover, this new field
doesn't modify the order between marks from different gen-
erators: the scion erroneously included in the sub-generators
set won't be included again, whereas other sub-generators
will be included.

7. DISCUSSION

7.1 Fault-tolerance
Our algorithm is fault-tolerant: unreliable communica-

tions are supported, since the only message - the CYCLIVE
message - can be lost, or delivered out-of-order. Indeed, this
message always contains the full up-to-date information re-
quired for progress of the computation, and the computation
is still conservative with older information. Race conditions
are avoided thanks to an extension of the SSPC timestamp
system.

Space failures can be easily handled by considering in-
coming references from suspected or crashed spaces as local
roots. This approach is conservative, and only prevents the
detection of cycles spanning on crashed spaces.

Ease of implementation
Our algorithm has been implemented in the JoCaml sys-

tem [3], an extension of Objective CAML with mobile agents.
The implementation only requires minor modifications of
any local tracing garbage collector. In particular, local garbage
collection has been kept incremental and locally optimal (no
need for overlapping traces).

70 Resources consumption

7.3.1 Memory usage
Our algorithm does not add any space overhead for local

objects. This is not the case of other cycle detectors, such as
the back-tracing algorithm of Maheshawari and Liskov [11]
which requires a Leader field per object to compute backward
information.

Only stubs and scions structures are modified. Conse-
quently, memory usage is only proportional to the number
of stubs and scions in each space. Marks are quite complex,
but most of them are root marks, which can be represented
by long integers (for example 56 bits for time and 8 bits for
distance).

7.3.2 Messages
In our algorithm, only one message is sent after each pair

of local garbage collections. This message contains one mark
for each stub (mainly root marks), and one mark for each
scion involved in a sub-generation. Other cycles detectors

also propagate some information for each stub, either a dis-
tance [10, 11], a timestamp [9, 5] or a list of locators [16].
Moreover, the CYCLIVE message can be shared with the
acyclic garbage collector, for example to propagate the con-
tent of the LIVE message of the SSPC cleanup protocol [14].

7.3.3 Computation time
Scions must be sorted before ear~ pair of local garbage

collections. However, sorting scions before local garbage col-
lections is also required by other detectors [10, 11, 9, 5] to
correctly propagate either timestamps or distances.

Finally, a small amount of computation is needed for each
stub to computes the mark it will propagate to its associated
scion after a pair of local garbage collection. Thus, the total
computation time is in O(nstub8 + nscion8, log(nscions))

8. CONCLUSION
We have presented a new algorithm to detect free dis-

tributed cycles in large-scale networks. This new detector
combines three new techniques: min-maz marking, to detect
different paths leading to a same object, sub-generation, to
build a partial bvfok-tracking graph upon a potentially free
distributed cycle, and optimistic back-tracing, to retrieve
back-references in an inexpensive but potentially erroneous
way.

Our algorithm has good properties for large-scale net-
works: it is completely asynchronous, tolerant to space fail-
ures and unreliable communication, while preserving locality
of detection; all cycles are detected in a same process, and
it is economic in resources, such as computation time, mem-
ory usage and messages. Finally, it has been successfully
implemented in our system, the JoCaml system [3].

Acknowledgements
The author would like to tb~nk Georges Gonthier, Damien
Doligez, Marc Shapiro, Alan Schmitt and James Leifer for
their valuable comments and suggestions on improving this
paper.

APPENDIX

A. REFERENCES

[1] BIRRELL, A., EVERS, D., NELSON, G., OWICKI, S.,
AND WOBBER, E. Distributed garbage collection for
network objects. Tech. Rep. 116, DEC SRC, Dec.
1993.

[3]

BISHOP, P. B. Computer systems with a very large
address space and garbage collection. MIT Report
LCS/TR-178, Laboratory for Computer Science,
MIT, Cambridge, MA., May 1977.

CONCHON, S., AND FESSANT, F. L. Jocamh mobile
agents for objective-c~ml. In Syrup. on Agent Systema
and Applications, Mobile Agents 1999. (ASA/MA99)
(Palm Springs, California (USA), oct 1999), IEEE
Computer Society, pp. 22-29.

FERREIRA, P., SHAPIRO, M., BLONDEL, X., FAMBON,
O., GARCIA, J., KLOOSTERMAN, S., RICHER, N.,
I~OBERTS, M., SANDAKLY, F., COULOURIS, G.,
DOLLIMORE, J., GUEDES, P., HAGIMONT, D., AND
KRAKOWIAK, S. PerDiS: design, implementation, and

205

use of a PERsistent Distributed Store. Tech. Rep.
INRIA Kit 3525, Oct. 1998.

[5] FESSANT, F. L., PIUMARTA, I., AND SHAPIRO, M. An
implementation of complete, asynchronous,
distributed garbage collection. In Conf. on Prog.
Lang. Design and Impl. (PLDI) (Montreal (Canada),
June 1998), ACM SIGPLAN.

[6] FISHER, M., LYNCH, N., AND PATTERSON, M.
Impossibility of distributed consensus with one faulty
process. Journal of the ACM 32, 2 (Apr. 1985),
274-382.

[7] FUCHS, M. Garbage collection on an open network. In
Proceedings of International Workshop on Memory
Management (Concurrent Engineering Research
Center, West Virginia University, Morgantown, WV,
Sept. 1995), H. Baker, Ed., vol. 986 of Lecture Notes
in Computer Science, Springer-Verlag.

[8] HUGHES, R. J. M. A distributed garbage collection
algorithm. In Record of the 1985 Conference on
b'hnctional Programming and Compute r Architecture
(Nancy, France, Sept. 1985), J.-P. Jouannaud, Ed.,
voL 201 of Lecture Notes m Computer Science,
Springer-Verlag, pp. 256-272.

[9] LANG, B., QUEINNP.C, C., AND PIQUER, J. Garbage
collecting the world. In Conference Record of the
Nineteenth Annual A CM Symposium on Principles of
Programming Languages (Jan. 1992), SIGPLAN
Notices, ACM Press, pp. 39-50.

[10] MAHESHWARI, U., AND LISKOV, B. Collecting cyclic
distributed gvxbage by controlled migration. In Proc.
of the Syrup. on Principles of Distributed Computing
(1995).

[11] MAHESHWARI, U., AND LISKOV, B. Partitioned
garbage collection of a large object store. In Proc. of
SIGMOD (1997).

[12] I:~DRIGUES, H. C. C. D., AND JONES, R. E. A cyclic
distributed garbage collector for Network Objects. In
Tenth International Workshop on Distributed
Algorithms WDAG'96 (Bologna, Oct. 1996),
O. Babaoglu and K. Marzullo, Eds., vol. 1151 of
Lecture Notes in Computer Science, Springer-Verlag.

[13] RODBdGUEz-PdvmRA, G., AND RUSSO, V. Cyclic
distributed garbage collection without global
synchronization in CORBA. In OOPSLA '97
Workshop on Garbage Collection and Memory
Management (Oct. 1997), P. Dickman and P. R.
Wilson, Eds.

[14] SHAPIRO, M., DICKMAN, P., AND PLAINFOSS, D.
Robust distributed references and acyclic garbage
collection. In Proc. 11th Syrup. PODC (Aug. 1992),
ACM Press, pp. 135-146.

[15] WOLLRATH, A., RIGGS, R., AND WALDO, J. A
distributed object model for the java system. In Conf.
on Object-Oriented Technologies (Toronto Ontario
(Canada), 1996), Usenix.

[16] YE, X., AND KEANE, J. Collecting cyclic garbage in
distributed systems. In Proceedings of the 1997
International Symposium on Parallel Architectures,
Algorithms and Networks (ISPAN '97) (1997), IEEE.

206

B. PSEUDO-CODE

t y p e c o l o r = I/lLite [Gray

t y p e g e n e r a t o r =
c r e a t i o n : t i m e ;
r a n g e : i n t ;
l o c a t o r : l o c a t o r ;

}

t y p e mark =
g e n e r a t o r : g e n e r a t o r ;
d i s t a n c e : i n t ;
c o l o r : c o l o r ;

}

t y p e s t u b ffi {
s c i o n _ i d : l o c e t o r ;
l a s t _ r e c v : t i m e ;
rain_mark : mark ;
ma~_mark : mark ;
s c i o n _ m a r k : m~rk;

}

t y p e s c i o n : {
s c i o n _ i d : l o c a t o r ;
l a s t _ s e n t : t i m e ;
s t u b _ m a r k : mark ;
mark : mark ;
i s _ g e n e r a t o r : b o o l ;
t ~ r g e t : o b j e c t ;

}

F i g u r e T: R e c o r d s t r u c t u r e s for g e n e r a t o r s ,
m a r k s , s t u b s a n d sc ions .

m i n J m x _ t r a c e (r o o t s , s c i o n s)

r o o t _ m a r k . c r e a t i o n := c u r r e n t _ t i ~ e () ;
£ o r e a c h r i n r o o t s , t r a c e (r , r o o t _ m a r k) ;
i f (t r a c e _ m ~)

f o r (n e c i o n = l a s t _ s c i o n ; n s c i o n > O ; n s c i o n - -)
t r a c e (s c i o n s [n s c i o n] , s c i o n s [n s c i o n] . mark) ;

t r a c e _ m i n := f a l s e ;
s e n d _ c ~ c l i v e _ m s g s () ;

} else (
c o ~ a i t _ n e w _ r e c e i v e d _ m a r k s (s c i o n s) ;
s o r t (s c i o n s) ;
f o r (n s c i o n = l ; n s c i o n ~ l a s t _ s c i o n ; n s c i o n + +)

t r a c e (s c i o n s [n s c i o n] , s c i o n s [n s c i o n] . ~ T k) ;
t r a c e _ r a i n : = t r u e ;

} }

t r a c e (r , mark)

i f (n o t _ t r a c e d (r))
i f (i s _ s t u b (r))

i f (t r a c e _ r a i n) { r . m i n _ ~ L r k := mark ; }
e l s e { r . ~ a v _ m a r k := mark ; }

} e l s e
f o r e a c h o i n o b j e c t (r) , t r a c e (o , m a r k) ;

} } }

F i g u r e 8: T h e loca l g a r b a g e c o l l e c t o r w i t h
r a i n - m a x m a r k i n g . T h i s c o d e c a n eas i ly
b e m o d i f i e d t o b e e x e c u t e d i n c r e m e n t a l l y .
co-mi t_nev_rece ived_narks c o m m i t s stub_mark t o
mark in e a c h sc ion b e f o r e s o r t i n g t h e sc ions .

s c i o n . m a r k (s t u b)
(

m4- mark := s t u b . r a i n _ m a r k ;
max_mark :-- s t u b . m ~ T _ l ~ r k ;
mark := max_mark;
i f (ra in_mark. g e n e r a t o r = max_mark, g e n e r a t o r)

mark . d i s t a n c e : =
rain (m~ n_mark , d i s t a n c e , max_mark, d i s t a n c e) ;

} e l s e { m a r k . c o l o r := g r a y ; }
r e t u r n mark ;

F i g u r e 9: T h e c o m p u t a t i o n o f t h e m a r k p r o p a -
g a t e d b y a s t u b

207

t y p e c o l o r = Whi te [6 r a y

t y p e g e n e r a t o r = {
c r e a t i o n : t J ~ e ;
r a n g e : i n t ;
l o c a t o r : l o c a t o r ;
g e n e r a t i o n : i n t ;

}

t y p e mark ffi
g e n e r a t o r : g e n e r a t o r ;
d i s t a n c e : i n t ;
c o l o r : c o l o r ;

}

t y p e s t u b = {
s c i o n _ i d : l o c a t o r ;
l a s t _ r e c v : t i m e ;
rain_mark : mark;
max_mark : mark;
sc ion_mark : mark;
sub_mark : mark;
s u b _ s e n s : s c i o n l i s t ;

}

t y p e s c i o n = {
s c i o n _ i d : l o c a t o r ;
l a s t _ s e n t : t i m e ;
s tub_mark : mark;
mark : mark;
i s _ g e n e r a t o r : b o o l ;
t a r g e t : o b j e c t ;
sub_mark : mark;

F i g u r e 10: l t e c o r d s t r u c t u r e s fo r t h e gen -
e r a t o r s , m a r k s , s t u b s a n d sc ions w i t h s u b -
g e n e r a t i o n . E a c h s t u b keeps t h e l is t o f i ts d o m -
i n a t e d s u b - g e n e r a t o r s , a n d t h e m a r k o f t h e r ea l
g e n e r a t o r i t is i nvo lved in a s u b - g e n e r a t i o n .

t r a c e (r , mark)

i f (n o t _ t r a c e d (r)) {
i f (i s _ s t u b (r))

i f (t r a c e _ r a i n) { r . m i n m~Tk := mark; }
e l s e (

r .maz_mark := mark;
s c i o n := s c i o n s [n s c i o n] ;
i f (s c i o n . s u b _ m a r k = NULL

k k r . s u b _ m a r k . g e n e r a t o r = m a r k . g e n e r a t o r
k k m a r k . c o l o r = g r a y)

r . sub_gens =
r . s u b _ g e n s U { s c i o n ; }

s c l o n . s u b _ m a r k := r . s u b _ m a r k ;
s c i o n . i s _ g e n e r a t o r := t r u e ;

} } } else {
f o r e a c h o i n o b j e c t (r) , t r a c e (o ,mark) ;

} } }

s c i o n _ m u r k (s t u b)

rain_mark : = s t u b . rain_mark;
max_mark := s tub .max_mark ;
mark := m~T mark;
i f (m~n_mark. g e n e r a t o r = max_mark, g e n e r a t o r)

mark. d i s t a n c e : =
m4n (rain_mark. d i s t a n c e , max_mark, d i s t a n c e) ;

i f (3 s c i o n E s t u b . s u b _ g e n s ,
s c i o n , s tub_mark , c o l o r = g r a y)

mark. c o l o r : = g r a y ; }
} else {

mark. c o l o r := g r a y ;
}
r e t u r n mark;

F i g u r e 11: T h e t r a c e w i t h s u b - g e n e r a t l o n .
D u r i n g e a c h t r a c e , s c ions m a y b e c o m e s u b -
g e n e r a t o r s . T h e c o m p u t a t i o n o f t h e m a r k p r o p -
a g a t e d f r o m t h e s t u b t o i t s a s s o c i a t e d sc ion in
sci0n.mark t a k e s b o t h t h e m a r k r e c e i v e d d u r -
ing t h e local t r a c e a n d t h e m a r k s o n d o m i n a t e d
s u b - g e n e r a t o r s i n to a c c o u n t .

208

co,,~' i t _ s t u b _ m a r k (s c i o n)
{

s tub_mark :ffi s c i o n , s tub_mark ;
s tub_mark , d i s t a n c e : = s tub_mark , d i s t a n c e + 1;
i f (s c i o n . i s _ g e n e r a t o r

s t u b _ m a r k . g e n e r a t o r > s c i o n . m a r k . g e n e r a t o r) {
s c i o n . i s _ g e n e r a t o r := f a l s e ;
s c i o n . s u b _ m a r k := NULL;

}
i f (no t s c i o n . i s _ g e n e r a t o r) {

i f (s t ub_mark . d i s t a n c e = s t ub_mark , g e n e r a t o r , r a n g e) {
s c i o n . i s _ g e n e r a t o r := t r u e ;
s c i o n . m a r k :ffi {
d i s t a n c e ffi O;
g e n e r a t o r = {

l o c a t o r = s c i o n . l o c a t o r ;
r a n g e ffi s t u b _ m a r k . r a n g e + o f f s e t (s t u b m a r k . r a n g e) ;
c r e a t i o n = c u r r e n t _ t ~ n e () ;

c o l o r = Whi te ;
g e n e r a t i o n ffi O;

} else {
scion.mark := stub_mark;

}
} else {

if (stub_mark. generator = scion, mark. generator) {
if(scion.mark.locator = scion.locator

#d~ stub_mark.color = White) { cycle_detected(scion) ; }
else { scion.sub_mark := scion.mark }

}
}

F i g u r e 12: B e f o r e s o r t i n g t h e sc ions , t h e l a t e s t
r e c e i v e d m a r k s a r e c o m m i t e d . A t t h i s s t a t e ,
o ld g e n e r a t o r s m a y be r e m o v e d , n e w g e n e r a t o r s
c r e a t e d , o r a s u b - g e n e r a t i o n s t a r t e d f r o m t h e
g e n e r a t o r .

209

