
A New Approach to On-Demand Loop-Free Routing
in Ad Hoc Networks

J.J. Garcia-Luna-Aceves
Computer Engineering Dept.
Baskin School of Engineering

University of California
Santa Cruz, CA 95064
jj@soe.ucsc.edu

Marc Mosko
Computer Engineering Dept.
Baskin School of Engineering

University of California
Santa Cruz, CA 95064

mmosko@soe.ucsc.edu

Charles E. Perkins
Communications Systems

Laboratory
Nokia Research Center

Mountain View, CA 94303
charliep @ iprg.nokia.com

ABSTRACT
A new protocol is presented for on-demand loop-free routing
in ad hoc networks. The new protocol, called labeled dis-
tance routing (LDR) protocol, uses a distance invariant to
establish an ordering criterion and per-destination sequence
numbers to reset the invariant :resulting in loop-freedom at
every instant. The distance invariant allows nodes to change
their next hops or distances to destinations without creat-
ing routing-table loops. The destination sequence number,
which only the destination may increment, permits nodes
to reset the values of their distance invariants. The perfor-
mance of LDR is compared against the performance of three
other protocols that are representative of the state-of-the-
art, namely AODV, DSR and OLSR.

Keywords
routing, loop-free, ad hoc network, distance invaxiant

1. INTRODUCTION
An ad hoc wireless network is characterized by nodes func-

tioning as routers, as well as sources and sinks of da ta traffic,
with radio network interfaces and no fixed infrastructure to
support communications. Wireless networks usually have
limited bandwidth and bat tery :power, so their routing pro-
tocols should have low control overhead. Reactive or on-
demand routing protocols have been developed for this rea-
son. In an on-demand routing protocol, a node only main-
tains routes for in-use destinations and does not pro-actively
advertise routes. Rather, it queries for needed routes and
offers routes in response to queries.

*This work was supported in part by the Advanced Tech-
nology Office of the Defense Advanced Research Projects
Agency (DARPA) under grant No. DAAD19-01-C-0026 and
by the U.S. Air Force /OSR under grant No. F49620-00-1-
0330.

Permission to make digital or hard copies of all or part of this work for
p~,sonal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on s~-vevs or to redistribute to lists,
requires prior specific permission and/or a fee.
PODC'03, July 13-16, 2003, Boston, Massachusetts, USA.
Copyright 2003 ACM 1-58113-708-7/03/0007...$5.00.

Many on-demand routing protocols have been proposed
over the past few years, and all of them a t t empt to pro-
vide loop-free paths at every instant through various meth-
ods. Examples of such protocols include the Ad hoc On-
demand Distance Vector (AODV) protocol [12], the Dy-
namic Source Routing (DSR) protocol [8, 9], the Neighbor-
hood-aware Source Routing (NSR) protocol [16], the Tem-
porally-Ordered Routing Algorithm (TORA) protocol [11],
and the Routing On-demand Acyclic Mult ipath (ROAM)
protocol [15]. There are also many examples of pro-active
routing protocols that a t ta in loop-free routing [7] as well as
pro-active routing protocols that tolerate temporary routing
loops [6, 2, 10].

Two factors that decrease routing efficiency in ad hoc net-
works are routing loops and the maintenance of complete
teachabili ty information for all nodes. Routing loops in-
crease packet-delivery latencies and reduce the number of
packets delivered to the intended destinations. Further-
more, maintaining routing information for all destinations
becomes less efficient than maintaining routing information
on-demand at each node as the number of nodes in the net-
work increases and the average number of destinations con-
tacted by each source becomes a smaller and smaller por-
tion of the total number of nodes. Accordingly, this pa-
per addresses the problem of providing efficient on-demand
loop-free routing in ad hoc networks. Prior work on on-
demand loop-free routing has been based on the following
approaches: (a) using source routes in da ta packets, (b) co-
ordinating nodes by way of the directed graph implied by
the next hop entry for a given destination at each node, and
(c) using sequence numbers to establish an ordering among
nodes.

DSR and NSR are examples of using source routing to
avoid routing loops. In DSR, each route request records
its traversed path, and the complete route between source
and the requested destination is specified in the route re-
ply sent back to the source by any node with a valid route
the destination. The discovered route is stored in a route
cache at the origin and the relay nodes. The header of ev-
ery da ta packet specifies the source routes to their intended
destinations. DSR incorporates a number of optimizations
to shorten source routes, learn routes, and cache routes ef-
ficiently. NSR extends the source routing approach of DSR
by having nodes communicate information regarding their
two-hop neighborhood in route requests and route replies
path in addition to path information regarding specific in-

53

use destinations.
TORA uses a link-reversal algorithm [4] to maintain loop-

free multipaths that are created by a query-reply process
similar to that used in DSR and AODV. TORA relies on
synchronized clocks to create time stamps that maintain the
relative ordering of events. The link-reversal algorithm is
a form of synchronization among nodes spanning multiple
hops.

The Diffusing Update Algorithm (DUAL) [7] attains loop
freedom by means of nodal coordination. Based on rout-
ing advertisements, a node i may choose independently a
successor j from its neighbors for a destination d as long
as that choice cannot form a loop; such a choice is called
feasible if it cannot form a loop. If the potential exists to
form a loop, node i must coordinate with other nodes be-
fore changing its route to d. The feasibility of a change is
calculated based on a feasibility condition. If the condition
is satisfied, the change is feasible, and node i may proceed
without coordinating with any other node. If the change
is not feasible, node i starts a diffusing computation [3].
DUAL was developed for wire-line networks and the diffus-
ing computation requires reliable communications between
neighbors to enforce synchronization over potentially large
segments of a network. The diffusing computation resets in-
formation in the network, ensuring that any change at i for
d will not cause a loop. After the computation terminates,
node i is free to make a change and then inform the network
of that change. ROAM extends DUAL to provide loop-free
routing on demand. The distances to a given destination
are used to establish ordering among nodes. ROAM uses a
route reply-request process similar to that used in AODV,
DSR and other on-demand protocols. However, a node can
change its next hop to a destination without notifying its
neighbors as long as it has a neighbor with a distance that
is shorter than the node's own feasible distance value to the
destination, where such a distance is the smallest value at-
tained by the node's distance since it obtained a route to
the destination after sending a route request. If such an
invariant condition is not satisfied, the node must reliably
send a route request to its neighbors, which serves the same
purpose of DUAL's resets. After sending a route request,
the node cannot select a new next hop to a destination until
it receives route replies from all its neighbors.

ROAM and TORA require reliable exchanges among neigh-
bors and coordination among nodes over multiple hops. Rout-
es are locked down at a node until the portion of the dist-
ributed calculation in which it participates is complete, which
is signaled to the node when all its neighbors reply to its
route request. This type of mechanisms incurs more control
messages compared to AODV, DSR, and other on-demand
protocols that work correctly even with unreliable transmis-
sions of route requests and replies among neighbors.

AODV attains loop-free routing by using a sequence num-
ber for each destination as the means to establish an order-
ing invariant among nodes. AODV defines an active route
as one that is fresh and likely to have a good successor path.
Such a route was either recently learned through some ad-
vertisement or has been recently used without error. An
inactive (or invalid) route is one that has expired its cache
time without use or one for which the next hop is in an error
state (e.g., lack of connectivity or downstream route failure).
The sequence numbers of active routes for a given destina-
tion are non-increasing moving away from the destination.

When a node A needs to establish a route to a destination
D, it broadcasts a route request to its neighbors. If A pre-
viously knew a route to D that became invalid, A increases
the sequence number for D and includes it in the route re-
quest. A node receiving the request can send back a unicast
route reply along its shortest path to node A only if it has an
active route to D and the sequence number stored for D is
no less than the sequence number in the route request. Oth-
erwise, the recipient must forward the route request. When
node A sends a route request for a destination, it increases
the sequence number for itself as well, which is used by other
nodes that learn about new routes to node A.

By increasing the stored sequence number for a destina-
tion when a route breaks, AODV ensures that no upstream
nodes may reply to a route request from a node on their suc-
cessor path. Unfortunately, this also inhibits responses from
downstream nodes with the prior sequence number, even if
they have a valid loop-free path to the destination. A key
limitation to using only sequence numbers as the loop-free
routing invariant is that it inhibits responses both moving
away from the destination and moving toward the destina-
tion. In many cases, this causes the destination to be the
only node able to satisfy the request, because it alone can
increase its own sequence number for a response.

We present the labeled distance routing protocol (LDR),
which is an on-demand routing protocol that uses distance
labels rather than sequence numbers, source routing, or inter-
nodal coordination to ensure loop freedom at every instant.
Section 2 describes LDR through two examples and presents
the feasibility conditions and protocol procedures. Like any
other on-demand routing protocol, LDR discovers routes
through the network only when there are data for a des-
tination.

Section 3 shows that LDR works correctly and is loop free
at every instant. LDR uses a loop-free invariant for each des-
t ination similar to that first introduced in DUAL [7] and em-
ploys sequence numbers that can be incremented only by the
destinations themselves to permit nodes to reset the values
of their distance invariants. The combined use of a distance
invariant and destination-controlled sequence numbers elim-
inates the need for inter-nodal coordination used in DUAL
and other loop-free routing protocols, and enables more effi-
cient responses to route requests compared to AODV, which
helps reduce network load.

Section 4 presents the results of simulation experiments
comparing LDR with AODV, DSR, and OLSR. The other
three protocols were used as points of comparison given that
they are representatives of the state-of-the art in routing for
ad hoc networks, and are being considered by the working
group on mobile ad hoc networks (MANET) of the Inter-
net Engineering Task Force (IETF). The simulation results
clearly show that LDR attains higher packet delivery ratios,
smaller packet latencies, and much lower signaling overhead
than the other three protocols.

2. LABELED DISTANCE ROUTING
PROTOCOL

In our description of LDR, we assume positive symmetric
link costs; asymmetric costs would require extra packet fields
to communicate the costs upstream, but would not change
the basic operation of LDR.

LDR uses a route request (RREQ), route reply (RREP),

54

I Notation I
sn~ The sequence number of D as known at node A.
dAD The measured distance from node A to D. If all

link costs are 1, it is a hop count.
fdAD The feasible distance from node A to D, being the

minimum dAD for the current SHAD.
IcAB The link cost from node A to neighbor B, assumed

to be positive and equal to unity if using hop count
metrics.

* An advertisement, for example sn~ is the se-
quence number in an advertisement for destina-
tion D.

A solicitation, for example snD ~ is the sequence
number in a solicitation for destination D. Each
issuer adds its own unique identifier rreqid.

f ro ~ Reset required bit (T bit) for solicitation # for
destination D. Indicates that an invaxiant order-
ing violation could occur and the path must be
reset.

and route error (RERR) messaging structure that is based
on that of AODV. We use the term advertisement to denote
the portion of a packet that proffers reachability to a des-
tination, and the term solicitation to denote the portion of
a packet that requests information for a destination. The
RREQ in LDR and other on-demand protocols constitute
both an advertisement of a route to the node issuing the
RREQ and a solicitation for a route to another node. In
general, we will discuss advertisements and solicitations as
separate entities apart from their concrete realizations in
RREQs or RREPs. Table 1 summarizes the notation used
to describe LDR in the rest of this paper.

The RREQ is the tuple (dst, sndst, rreqid, src, sn
fd, dist, f lags}, where src is the identifier of the source
of the RREQ seeking a path to the destination with iden-
tifier dst. The sequence numbers for the destination and
source are sndst and sn respectively. The rreqid field
is a source-specific unique identifier to control the flooding
of the RREQ. The source's feasible distance is fd, and the
measured distance of the path. traversed by the RREQ is
dist. Control bits axe contained in flags.

The RREP is the tuple (dst, 8ndst, src, rreqid, dist,
l i fet ime, f lags}. The field l:ifetime is the milli-seconds
of time remaining for the route to dst and reflects the max-
imum time to cache the route if it is not used.

For a given destination D for which node A has a route,
it maintains the sequence number originated by D (snAp),
its distance to D (dAD), its next hop to D, and its feasible
distance to D (f d ~) . The feasible distance fdAD is the
minimum distance dAD ever known to D for the current
sequence number SHAD.

2.1 Sufficient Conditions for Loop Freedom
The key to loop-freedom in previous works using feasi-

ble distances (DUAL [7], LPA [5], PDA [17]) is an invariant
condition and some form of inter-nodal synchronization used
when such a condition is not satisfied. DUAL states three
invariant conditions, with the source node condition (SNC)
being similar to our numbered distance condition. SNC is
a minimum-cost condition that renders loop-free shortest

paths. LPA uses a condition equivalent to SNC. PDA uses
the loop-free invariant condition (LFI), which relaxes the
shortest-path requirement of SNC to multiple loop-free suc-
cessors. When nodes cannot satisfy the feasibility condition
in these algorithms, they begin a co-ordinated computation
to prevent loops while resetting their distances to higher val-
ues. In DUAL, a node enters an active state for a destination
and requires that all up-stream nodes that potentially use
it as a successor either accept the proposed larger distance
or change their successor. The node then resets the feasi-
ble distance to infinity and chooses a new successor. When
a node using LPA or PDA wishes to change its successor
and detects that doing so could cause a loop, it co-ordinates
with all its immediate neighbors to ensure that none can
continue to use it as a successor to the destination. The
reliable co-ordination with neighbors preempts any possible
loops.

The key to loop-freedom in LDR is the dissemination of
route requests over a tree, forcing route replies to follow
paths in that tree, and enforcing a strict ordering of fea-
sible distances along successor paths. The RREQ tree is
formed by the conventional reverse-path flooding technique
of AODV. The route reply paths are constructed by look-
ing up the RREQ ID in the RREQ cache and sending route
replies only along the reverse path of the flood. Strict order-
ing of feasible distances for a given destination is attained
by ensuring that the following conditions are satisfied.

Numbered Distance Condition (NDC): Node A may ac-
cept a route advertisement from neighbor B for destination
D and update its routing table independently of other nodes
if A has no information about destination D or either one
of the following two conditions is satisfied:

sn~ > snAp (1)

snSD = ShAD A dBD < fdAD . (2)

Feasible Distance Condition (FDC): Node I must set
rrD # = 1 in a relayed solicitation for destination D that it
forwards if snXD ---- SUb ~ and fdXD _> fdD #.

Start Distance Condition (SDC): Node I may initiate an
advertisement for a solicitation from node A for destination
D if I has an active route to D, and either of the following
conditions is satisfied:

sn~ > SnD # (3)

sn~9 ---- SnD # A d~ < fdD # A -~rrD # (4)

NDC is used to allow nodes to change successors without
coordination among nodes. FDC is used to enforce ordering
of the feasible distances of all the nodes along a path to a
destination. SDC is used to allow a node that does not have
a neighbor satisfying NDC to find a distant node that can
provide a loop-free path to the destination. More specif-
ically, a RREQ specifies the feasible distance of the node
that originated the request and that nodes sequence num-
ber. Subject to TTL restrictions, nodes relay a RREQ, until
it reaches a node that satisfies SDC, and that node issues a
RREP. Any node along the path taken by the RREQ that
does not satisfy FDC sets the T bit to prevent nodes closer
to the destination and with a smaller feasible distance from
sending a RREP. Requests with the T bit set require a path
reset so a node with higher sequence number must reply.

55

THEOREM 1. Using NDC at node A to update successors
for destination D independently of other nodes is su~icient
to ensure that no loop is created.

Proof: Let neighbor I send an advertisement to A for
destination D. If sn~ > snap, then in the absence of node
failures, node A cannot be on node I ' s path to destination
D, for otherwise it would have known of the higher sequence
number. If the sequence numbers are the same, NDC is
equivalent to SNC from DUAL, which is shown to be loop-
free [7, Theorem 1, pp. 132ff]. •

PROPOSITION 1. Using SDC at node I to initiate an ad-
vertisement for a solicitation from node A for destination D
does not create loops.

The proof of the above proposition is immediate from The-
orem 1 and FDC. If a node I issues an advertisement that
is not feasible, it would be rejected by node A according to
NDC. Furthermore, a path from A to D can be discovered
successfully only if each node in the path from A to D satisfy
FDC.

THEOREM 2 (ORDERING CRITERIA). FDC ensures that,
along a successor path P = { n k , . . . , n l } from node nk to
node nl , it is always true for i E[k, 2] that (sn~ < sn~1-1)V

h i - - 1 (sn~nl = sn n'-l,~ A fd~i~ > fd~ 1).

Proof: For any given sequence number for node nx,
d ~ ~i. f ~ _< d,~ 1 According to NDC, for equal sequence num-

. hi-- 1 bers, node ni can use node n i - 1 as a successor only If dnz <
fd: '~, which implies that fd~'~ -~ < fd,~' 1. At some later
time, node ni-1 could change its successor, but that can
only increase the sequence number or decrease the feasible
distance, or remain the same. •

Note that because stable paths to destinations are prefer-
able, if node A already has an active route to destination D,
it should not change its successor after receiving an adver-
tisement from node B if sn~ = shAD, unless its distance to
D through node B can be reduced, i.e., d E + IcAB < d~.

2.2 Route Discovery
Conditions NDC, FDC, and SDC avoid the creation of

routing-table loops. However, they do not guarantee the
establishment of a path from a node sending a solicitation to
the intended destination, even if a physical path does exist.
The reason is that, for the same sequence number for a given
destination, no node is allowed to send an advertisement in
response to a solicitation after the T bit is set according to
conditions NDC, FDC and SDC.

To remedy this shortcoming, LDR augments FDC and
provides a reset operation in the event that the T bit must
be set. If the R R E Q / R R E P path would violate the ordering
of feasible distances, i.e., FDC is not satisfied, the RREQ
is unicast to the destination, so that it can increase its own
sequence number and the RREP then can reset feasible dis-
tances along the path and thus maintaining ordering. The
node that unicasts the RREQ to destination D is the first
node along the path followed by the RREQ that satisfies
SDC without consideration to the T bit . That node must
ensure the RREQ's TTL is sufficient to reach the destination
because in an expanding ring search, the broadcast RREQ
might not have enough time-to-live left.

A given node A enters into a route computation for des-
t ination D when it issues a solicitation for D with identifier

5/5 4/4 3/2 1/1 0/0

numbers: e5 ~ e2
hops / FD I E)

Figure 1: E x a m p l e u s i n g L D R

IDA (the rreqid). Such a node is called active for D in
computation (A, IDA). For a given destination, a node may
have at most one active computation. The computation
(A, IDA) terminates when A receives any feasible adver-
tisement for D or a timer expires. If A receives a feasible
advertisement for A, the computation terminates in success,
otherwise timer expiry indicates failure. The termination of
computation (A, IDA) is a local event at A and does not im-
ply that all solicitations for (A, IDA) are out of the network
or that intermediate nodes participating in the computation
have terminated their engagement.

If a node relays the solicitation, it participates in the com-
putation (A, IDA) and must cache certain data for a period
of time. Such a node is said to be engaged in (A, IDA).
A relay node must record the tuple {A, IDA, lasthop},
where lasthop identifies the previous hop node participat-
ing in the computation. An engaged node terminates com-
putation (A, IDA) at the expiry of a timer. A node may
be engaged in multiple computations, but may only enter
the engaged state once per computation (A, IDA). For the
same computation (A, IDA) the node A may not be both ac-
tive and engaged (i.e., it may not relay its own solicitation).
Note that a relay node has no state about the destination
D of a computation and in fact may go active for D while
being engaged in other computations for D. A node that is
neither active or engaged in a computation (A, IDA) is said
to be passive for (A, IDA). This is the default state of a
node.

PROCEDURE 1 (INITIATE SOLICITATION). A node A that
requires a route for destination D first checks to see if it is
active for D. If it is, A should queue the packet that requires
the route. I f A is not active for D, it becomes active and
increments its rreqid. Let IDA be the incremented iden-
tifier. A issues a solicitation for D identified by (A, IDA)
and starts a timer with expiry t = 2 • ttl . latency, where ttl
is the time-to-live of the broadcast flood and latency is the
estimated per-hop latency of the network. I f the timer ex-
pires, A may retry the solicitation and increase the ttl based
on the network policies. If after the final attempt, A does
not find a route to D, A should inform the packet origins of
the failure and drop the queued packets.

PROCEDURE 2 (RELAY SOLICITATION). A node B that
receives a solicitation (A, IDA) for destination D firsts checks
to see if it is passive for (A, IDA) . If it is not passive, it
silently ignores the solicitation. If it is passive, it becomes
engaged. If B satisfies SDC, it may issue an advertisement
for D. Otherwise, B relays the solicitation. Let the last hop
be node C (possibly equal to A) and let the new solicitation be
denoted by ~. Node B must cache the tuple {A, IDA, C} for
a su~cient period of time such that all solicitation instances
of (A, IDA) have left the network and any advertisements in

56

response to (A, IDA) have had time to complete.

{ snBD i f snBD > SnD #
sn~D ~-- sn~D otherwise (5)

{ iSsnf > she
fd~D ~-- min{fd~ , fd:D #} i f sn~ = SnD ~ (6)

f dD # otherwise

+ los (7)
0 i l >

if (far < fd) ^ = (S)
1 otherwise

Eq. 8 controls the path-reset request mechanism. The first
condition resets the T bit to zero when B's sequence number
exceeds the requested sequence number. This is because B
has increased the requested sequence number by Eq. 5, so
that any advertisement sent in response to the solicitation
functions as a path reset. The second condition reflects that
B matches the ordering criteria, and therefore it relays the
path-reset value that already exist. The third condition sets
the T bit when B violates the ordering criteria.

If the destination receives a solicitation with the T bit
set, it must reset the path. If snD D > snD #, it may use the
current sequence number to reset the path. Otherwise, it
must increment its stored sequence number before sending
the advertisement. As with all solicitations, the destination
will only send one advertisement per source and rreqid pair.

When a node relays a solicitation, it has to record the last
hop of the solicitation, because it will use that last hop as
part of a reverse path. When a node relays a RREP, it will
look up the (originator, rreqid) pair and force the RREP
to follow the RREQ reverse path, even if the node has an
active route to the originator. This reverse path information
may be kept in the RREQ cache.

As an advertisement progresses through the network, it
may happen that a relay node has stronger invariants than
those contained in the advertisement. In such a case, the
relay node must discard the advertisement and issue a new
advertisement, if possible. It may also be the case that the
relay node has stronger invariants, but an invalid route. In
such as case, the relay cannot issue a new advertisement.
At other times, a node relaying a route request may need to
update the invariants of the request, such that the relaying
node may use any solicited reply.

In the following, when a node drops an advertisement and
issues a new one with stronger invariants or strengthens the
invariants in a solicitation, we call this "updating the invaxi-
ants," which is an oxymoron but succinct.

PROCEDURE 3 (SET ROUTE). When node A adds or up-
dates a route to destination D via successor B, it updates
its sequence number, distance, and feasible distance for des-
tination D.

snAD+- ShE (9)
dAD ~ dE q-lc~ (10)

l dAD if ShAD < sn E
fdAD ~--- min{fd~,dAD} if snAD= sue (11)

Procedure 3 guarantees that the feasible distance for a
given sequence number is a non-increasing function over

time for a given node. The distance for a given sequence
number and feasible distance may fluctuate, but is never less
than the feasible distance. This behavior prevents loops.

If a node has an active route to the destination of an
advertisement and is not itself the terminus of the adver-
tisement, the node should issue a new advertisement for the
route. If the node does not have an active route to the des-
t ination (because it could not update its routing table based
on NDC), the node must not relay the advertisement.

It is possible for a RREQ to propagate through the net-
work without creating the reverse path. If a node relays a
RREQ without having an active reverse path to the RREQ
origin, the relay node must set the (newly specified) N bit
to indicate that the RREQ is no longer an advertisement
for the RREQ origin. The N bit is not part of the current
AODV specification. If the node replying to the RREQ does
not have a reverse path, it sets the new corresponding N bit
in the RREP indicating such. When the origin receives a
RREP with the N bit set, it may send a unicast RREQ probe
along its forward path with the D bit set. It should increase
its sequence number to ensure that the reverse path is built.
Nodes otherwise should not increase their sequence number
when issuing a RREQ.

PROCEDURE 4 (RELAY ADVERTISEMENT). I f node A is
not the terminus of the advertisement (e.g., the source ad-
dress in a RREP) , and it has an active route to destination
D, node A should issue a new advertisement for D upon re-
ceipt of an advertisement for the destination. Node A may
create or update its own routing table by Procedure 3 upon
receiving an advertisement, and uses its RREQ cache to en-
sure that it does not forward more than one reply per (orig-
inator, rreqid) pair. Let the new advertisement be denoted
by t , then sntD +- SHAD, dtD ~ dAD .

2.3 Example
Figure 1 shows the directed acyclic successor graph for

destination T in a six node network. The numbers repre-
sent the stored distance and feasible distance to node T.
Initially, node E does not have a route to T and issues a
RREQ. Nodes {B, C, D} respond with RREPs. Let node C
respond first. It happens to have a measured distance of 3
and a feasible distance of 2. These numbers may occur due
to mobility and changing successors. When node C issues a
RREP, it sets the measured distance to 3. When node E re-
ceives this RREP, it sets its measured distance and feasible
distance both to 4. Node B then issues a RREP with start
distance 4. Node E ignores that RREP when it receives
it, because it does not provide a shorter distance than E's
current feasible distance. Node D issues a RREP with mea-
sured distance 1. When E receives that RREP, it updates
both its feasible distance and measured distance to 2 and
set its successor to D.

Node E issues a new RREQ with a feasible distance of
2 if links e2 and e3 fail at some future time. When node
B receives the RREQ, it must forward it because it cannot
create a RREP for it, given that its measured distance of
4 does not satisfy the requesting feasible distance. Node B
must also set the T bit to indicate the destination must reset
the path. Node C must forward the RREQ because its mea-
sured distance of 3 is not sufficient either. Node D, finally,
could issue a RREP because its measured distance satisfies
the requesting feasible distance. However, the reset bit is set

57

so C must unicast the RREQ to T, which would then issue
a RREP with larger sequence number and a distance of 0.
D would relay it to C. When node C receives the RREP,
it changes its measured distance to 2 and keeps its feasible
distance at 2, then relays the RREP with a distance of 2.
When node B receives the RREP, it sets both its measured
distance and feasible distance to 3, then relays the RREP
with distance 3. Finally, node E receives the RREP and sets
its measured distance to 4 and resets its feasible distance to
4.

3 . A N A L Y S I S

We first show that LDR is loop free at every instant. Then
we demonstrate that a source that requests a route to a given
destination is successful within a finite time, provided that
there is a physical path between source and destination and
the network is stable for a sufficiently long period of time
after an arbitrary sequence of topology changes. Because all
computations in LDR are bounded by finite timers, showing
that LDR is live is trivial and is omitted for brevity.

LDR uses a sequence number consisting of a destination-
specific time stamp taken from a node's real-time clock and
an unsigned monotonically increasing counter. When the
counter reaches its maximum value, the node places a new
time stamp in its sequence number and resets the counter
to zero. We assume that a node's real-time clock does not
reset on reboot or adjust for daylight savings. This scheme
is adopted because it does not require synchronized clocks
or the explicit reset of sequence numbers throughout the
network. Furthermore, it avoids using AODV's reboot-hold
procedure, which requires that a node stay off-line long
enough for the network to forget any cached information
about it.

THEOREM 3. Solicitations and advertisements in LDR do
not loop.

Proof." For a given calculation (A, IDA) , a node may be
passive, engaged, or active. A node enters any calculation
at most once. Therefore, the propagation graph of the calcu-
lation forms a tree. By using the cached information at en-
gaged nodes, advertisements for the calculation follow paths
only in the calculation tree.

If a node unicasts a solicitation, it is guaranteed to not
flow in a loop, even if the underlying routing table contains
loops. This is because nodes enter the engaged or active
states at most once per computation, regardless of the uni-
cast or broadcast nature of the solicitation. Thus, the T bit
does not affect the loop-freedom of control packets. •

LDR treats each solicitation independently of each other
by identifying each such computation by the identifier of its
origin and a sequence number assigned by the origin. This
independence enables LDR to guarantee successful termina-
tion of simultaneous calculations for the same destination
by multiple active nodes.

LEMMA 1. I f a node updates its routing table by Proce-
dure 3 and relays advertisements by Procedure .4, then N D C
ensures that the network maintains the ordering criteria dur-
ing the creation of a successor path assuming no node along
the path changes successor once on the path.

Proof: By induction on the number of hops to the source of
an advertisement. According to Procedure 4, the relaying of

aa advertisement is no different than initiating an advertise-
ment. The relay node places its distance and sequence num-
ber in the packet before transmitt ing it. Consider the suc-
cessor path from node nk to node n l to be P = { n k , . . . , nl}.
Let the time t ~ be when node ni chooses node n~-i as its
successor. Node n l initiates an advertisement -1 at time to

*1 nl (to) and d ~ = 0. For node n2 to choose with 8nnl ~ 8nnl
node nl as successor, one of the following cases must be
satisfied according to NDC.

Case I: Node n2 has no information about node hi. By
t ~ and fd~l (t~2) > dnl. Be- Procedure 4, 8nnl 8nnl

cause the sequence number is a non-decreasing function with
~ 2 8 - - rt I ~q time, snn~(tn2) < sn,~l(t~2). The sequence number *1 is

fixed at time to but the sequence number variable stored in
nl may increase. Node nl will never have a positive dis- S n n 1

tance to itself and the feasible distance at node n i ¢ n~ is
always positive, so the ordering criteria is true

Case II: sn,~ 1 > sn,1 (t~2). Because the sequence num-
"~(t ;~) > "~(t0). If "~ t ~ bet is non-decreasing, snnl _ san 1 san 1 (~) >

n l t 8 sn,~ (to), the ordering is maintained. Otherwise, snn~ (~2)
CHn2 (ts ~ ,1 n~ (to). In this case by Procedure 3, ,--n~ ~ "2, > d"l so S U n 1

the ordering is maintained.
*1 n 2 S *1 ra n2(t s h As per Case III: snnl = sn,~ (tn2) A d ~ < ,~ ,~ ~ ~2,"

Case II, sn~l (t ,2) could have increased, in which case the
ordering criteria is true. If the sequence number did not
change, then by Case I, f d ~ is always greater than ffd,~.

By the inductive assumption, nodes { n i , . . . , n l } have a
path that obeys the ordering criteria. We show that when
node ni+l chooses nl, it maintains the ordering criteria. At

s node ni emits the advertisement. time t~ < t < t~i+~,
Because ni does not change successor during (t ~ , t ~ i + l) ,

s n ~ = s n ~ (t ~) and dn~ = d ~ (t~) . Following the three
cases above, we only need to validate in Case I ,rd ~+~.1 ,~,~+~,(~ ~ >

d i s f ,~ (t,~+~), as the other statements do not depend on the
identity of node nl .

ni.%l (t s ~ * i Case I (revised): By Procedure 4, s n , l ~ ,~+l, = sn,~l

and fan~+~ [÷~ ~ > d ~ Because the sequence number is J U t 1 1 \ v n i + l I
r t l 8 a non-decreasing function, sn~i~ +~ (t~i+a) _< sn,~ (t , ;+i) . If

the sequence number at node n~ increases (which does not
happen by the premise of the lemma), then the ordering cri-
teria is maintained regardless of f d ~ x (t~.. ~). If the sequence
number remains the same, then f d : ' (t~,+a) -< fd: ' l (t) _<

* i f dn l . Thus, the ordering is maintained. •

LEMMA 2. Given an established path that obeys the or-
dering criteria, any change of successor along that path by
N D C and Procedure .4 maintains the ordering.

Proof: Let time tc~ be the time at which node n¢ changes
its successor off an established path. Taking the path in
Lemma 1 { n ~ , . . . , n l} that obeys the ordering criteria, we
show that if some node n~ changes its successor to ni to
some other node m j along the path { m j , . . . , ml , n i), which
is in order, that the ordering criteria is obeyed. That is,

ni c rnj it c ~ nl c , n. tc Snnl (tnl) < snnl , n, , or Snnl (tni) = Snnm~ (t~.)A f d ~ (nl)
t ~ > f d ~ (~) . For the change to occur, node my must issue

an advertisement *m~ at time t~,~i < t < t c~. As per the
discussion in Lemma 1, the invariants at mj at time t c n l

can only be stronger than at time t, so if *m~ is feasible at
n~, Procedure 4 maintains the ordering criteria. What we
must show is that Procedure 4 does not violate the ordering
criteria for node ni+l , which then by the assumption that
P is ordered, is sufficient to show that the change does not

58

violate the ordering criteria anywhere along the path.
*m.

I f , ~ j is feasible at ni at t ime t c then either s n ~ J >

sn,~l(tn~) or snnl = sn,~l(t,~i) < f d n l (t ~) . In the
first case, Procedure 4 ensures that ni 's sequence number
increases, which satisfies the ordering criteria. In the second
case, Procedure 4 decreases the feasible distance at node nj,
which also satisfies the ordering criteria. •

THEOREM 4. LDR is loop-free at every instant, as long
as nodes update their routing tables according to NDC and
Procedure 3, and relay messages by Procedures 2 and 4.

Proof: Let node I be the node issuing the routing adver-
tisement for destination D and let the advertisement take
the path P -- { n i , . . . , n j } , where ni = I and nj = A.
I may be equivalent to D. Let the path from I to D be
Q = { m l , . . . , m k } , where ml := D and mk = I and it may
be null if nl = D.

For a loop to form, A must be on the path Q. The path P
is loop-free by Theorem 3. If ni = D, this is trivially true.
If n i ¢ D, we show that it is impossible for A to be on I ' s
successor graph using a proof by contradiction.

At time to, assume that path Q exists and is loop free
and at t ime t~, A chooses a successor path based on an
advertisement from I. Let node A be some node mi, 1 <
i < k. By the ordering criteria, ShE(to) > ShE(to)or
ShE(to) = sn~(to) and fd~(to) < fd~(to). At this time,
node I sends an advertisement along the loop-free path P
to A, thus ShE -- ShE(to) and d~ = diD(to).

At time tl , node A receives the advertisement. The se-
quence number for a destination is a non-decreasing function
with time, so sn~(t l) > BuD(to).

In the case where sn~(to) > sn~(to), A cannot accept
the advertisement because ShE < ShE(t1).

In the case where shAD(to) = sum(to) = shAD(t1), we
know that d~ _> d~(to) >_ fd~(to) > fall(to). Because
the feasible distance is a non-increasing function with time
for the same sequence number, f d~ (t i) < fd~(to) , so d~ _>
f d~ (tl). By NDC, node A cannot accept the advertisement.

In the case where shAD(to) = sn~(to) < sn~(t i) , we have
ShE < sn~(t l) and A cannot accept the advertisement. •

We now consider several lemmas that show LDR success-
fully terminates route calculations in several event contexts
that span the route calculation space. Theorem 5 combines
the lemmas to show that LDR terminates a route discovery
successfully in an error-free and. stable connected network.

In our analysis of the route calculation process, we have
to make certain assumptions about the network. No rout-
ing protocol can converge if there are certain errors or if the
network topology changes frequently enough. A route dis-
covery process will also fail if no node exists that can satisfy
the route, such as in a partitioned network. We will thus
impose three conditions on our analysis arguments when we
consider a node A initiating a route discovery: (1) There
exists a node B, perhaps equal to D, such that node A and
B are connected and B's route to D is feasible for every
node along the path from A to B; (2) node A sends the
solicitation with large enough time-to-live that it may reach
a node capable of sending a feasible advertisement back to
A; and (3) relay nodes follow Procedure 2.

LEMMA 3. If a single node A initiates a route discovery
for destination D identified by (A, IDA) in an error-free sta-
ble connected network, LDR guarantees that each solicitation

for a route is answered with a feasible advertisement for the
destination.

Proof: We consider the case of the first advertisement
*A to reach A response to (A, IDA). If there are multiple
advertisement, it does not affect the fact that A terminates
successfully based on the first advertisement; A may improve
its route.

Let node A send a solicitation for destination D, and let
that solicitation traverse the path P ---- {hi . . . n k - i } before
arriving at node nk (possibly equal to D) which satisfies
SDC. Node nk issues an advertisement for D with terminus
A. We show that the way in which nodes relay advertise-
ments ensures that any solicited advertisement is usable by
the relaying nodes. It is usable by A by virtue of satisfy-
ing SDC. By Procedure 2, we know any advertisement sent
in response to (A, ID) will follow the reverse path of the
solicitation, so it will follow the path P from nk to A.

Let us first consider the case in which no node along the
solicitation path P is affected by another route discovery
event for D during the computation period. In this case, no
node along P can satisfy A's invariants and has an active
route; otherwise, such a node would have responded to the
solicitation instead of node nk. Each node n E P matches
one of three cases: (i) n has no information about D, (it)
n's information is invalid, or (iii) the invariants of A are
stronger than n's invariants.

In case (i), node n may use any advertisement sent by nk.
In case (iii), the advertisement sent by nk will satisfy the
invariants at n because it satisfies A.

For case (it), we show by induction that the advertisement
issued by nk in response to node A's solicitation will satisfy
all nodes along P if they followed Procedure 2. Let us first
consider node nl , being the immediate neighbor of node A.
If sn~ 1 > snD ~, then node ni has an invalid route to desti-
nation D and placed its own sequence number and feasible
distance in the advertisement. Because the sequence num-
ber increased, node A may use any solicited advertisement.
If sn~ 1 -- snD ~, then node n relayed the solicitation with the
minimum feasible distance of nodes A and hi , which ensures
that nodes nl and A may use the solicited advertisement.
Otherwise, node A had a higher sequence number than node
hi , and any solicited advertisement will be usable by node
h i .

If by the inductive assumption, all nodes A . . . hi-1 may
use the advertisement, then we show that the actions at node
ni do not affect predecessors, and ni will be satisfied. Node
nl may only increase the sequence number or, keeping the
sequence number the same, decrease the feasible distance;
nl cannot invalidate the usability of the advertisement for
any predecessor node. Node ni will relay invariants to be
the stronger of its own or those already in the solicitation
and ensure that it may use the advertisement. •

LEMMA 4. Considering the case of Lemma 3, let there be
one or more other nodes mi ~ P that go active for D during
the calculation (A, IDA). LDR guarantees that each solici-
tation for a route is answered with a feasible advertisement
for the destination.

Proof: By symmetry, if we show A's route calculation
successfully terminates, the other calculations for set m suc-
cessfully terminate. We thus restrict ourselves to considering
A's calculation.

59

Because the relaying of a solicitation does not change the
invaxiants stored at a node or the information cached for
calculation (A, IDA) , we only need to consider the interac-
tion of advertisements. Let *j be the set of advertisements
generated by the calculations (mi, IDm~). For these adver-
tisements to affect (A, IDA) they must intersect {A, P}.

If one or more of *j intersect A before *A, then A's cal-
culation (A, IDA) terminates in success. By Lemma 3, the
first ~j to reach A is feasible at A.

Let , E ~j intersect some node n E P before *A. By
Lemma 3, * is feasible at n and n may relay it toward the
appropriate active node. The sequence number and feasible
distance at n could only have remained the same or been
strengthened by *.

If they remained the same, ~A will be usable because there
was no change. It could be that n changed from an inactive
to an active route, but that does not affect the feasibility of
~A a t n .

If the invariants at n were strengthened by *, then either
(1) some node in {A, P) has stronger invaxiants, or (2) n's
invariants became stronger than the strongest in {A,P}.
In case (1), *A is stronger than n, so it will supersede the
route at n and continue as per Lemma 3. In case (2) n
will follow Procedure 4. It will discard *A and issue a new
advertisement ~A with the stronger invaxiants. •

LEMMA 5. Considering the case of Lemma 3, let there be
one or more other nodes m~ E P that go active for D during
the calculation (A, IDA) . LDR guarantees that each solici-
tation for a route is answered with a feasible advertisement
for the destination.

Proof: A node n E P going active for destination D
does not change the cached information from the engage-
ment (A, IDA) nor does it change the invariants at n. It
follows from Lemma 4 that any advertisements sent in re-
sponse to calculation (n, IDa) cannot interfere with calcu-
lation (A, IDA) . •

THEOREM 5. I f node A initiates a route discovery for des-
tination D identified by (A, IDA) in an error-free stable con-
nected network, LDR guarantees that A receives a feasible
advertisement for D.

Proof: Considering the set of possible events, we must
have the situation described in Lemma 3, Lemma 4, Lemma 5
or both Lemmas 4 and 5. The first three situations follow
from the Lemmas. The four situation, being nodes both on
and off P go active for D during the calculation (A, IDA) ,
also follows from the Lemmas. No matter how many other
nodes go active for D during A's calculation, the other cal-
culations cannot affect the cached information at nodes en-
gaged in (A, IDA) and by Lemma 4, any advertisements
generated by those other calculations must have invaxiants
at least as strong as necessary to complete (A, IDA) if they
are to interfere with it. •

4. P E R F O R M A N C E
We present results that show LDR out-performs other

routing protocols over varying loads and mobility. Simu-
lations are run in GlomoSim [1] for LDR, AODV, DSR, and
OLSR. They follow the parameters in [13]. There are packet
j i t ter problems in the OLSR code from INRIA for Linux [14],
and we introduce a new FIFO ji t ter queue to OLSR. The

FIFO ji t ter queue adds a uniformly c:hosen inter-packet j i t ter
between 0 and 15ms and maintains FIFO packet order. The
modified code performs substantially better than the base
OLSR. We use the DSR implementation from GlomoSim,
which implements DSR Draft 3.

In our simulations, the performance of DSR is poor with
mobility and load. In most delivery ratio figures, the DSR
plot is substantially below other protocols. We reprogrammed
our simulations in Qualnet 3.5.2, which implements DSR
draft 7, but we observed similar results. Fig. 6 for Qualnet
has the same mobility and traffic load patterns as Fig. 3 in
GlomoSim. The performance of DSR is slightly better, but
still shows the same downward trend with increasing mo-
bility. The AODV implementation in Qualnet also showed
poor performance in the 120 packet-per-second scenario. Al-
though we only present one graph, DSR performance in
other Qualnet runs mirrored GlomoSim over all tested sce-
narios.

We use the following optimizations to LDR:
M u l t i p l e R R E P s : A node may relay multiple RREPs

for the same (originator, rreqid) pair as long as only RREPs
with stronger invaxiants cross over time.

R e q u e s t as e r r o r : If node A receives a solicitation for
destination D from neighbor B and A has an active route
for D with next hop B, it is likely that B no longer has a
valid route to D. If fdD ~ > dAD -- leAs, then B should have
answered the query if it had an active route.

R e d u c e d d i s t a n c e : Because of mobility and link fail-
ures, it is often desirable in an ad hoc network to use non-
optimal bounds. A node may place in a R R E Q an answering
distance extension, which is any distance no greater than the
node's feasible distance. Nodes use the answering distance
to test SDC. We use a factor of 0.8, t runcated to the lowest
integer no less than 1.

M i n i m u m l i f e t ime : A node should not respond to a
RREQ if the lifetime remaining in its active route is less than
a threshold. We use 1/3 the A C T I V E . . R O U T E _ T I M E O U T ,
or 1 second using default values. If a node receives such a
RREQ, it relays the RREQ.

O p t i m a l T T L : The initial TTL of a R R E Q should be
set according to the known distance and R R E Q feasible dis-
tance. Here, let FD be the value, possibly lowered by the re-
duced distance optimization, given in the RREQ. The initial
TTL should be T T L = D - F D + 1 + L O C A L _ A D D _ T T L .

There are two main sets of simulations, one on a 50-node
network over a 1500m x 300m terrain, and one on a 100-
node network over a 2200m x 600m terrain with 10-flow
and 30-flow traffic loads using 512 byte packets at 4 packets
per second per flow. The simulations use the 802.11 MAC
layer with a 275m transmission range. The simulations run
for 900 seconds. Nodes move between 1 m/ s and 20 m/s.
Flows have a mean length of 100 seconds, chosen from an
exponential variate. We repeat each configuration (nodes,
number of sources, routing protocol, and pause time) for
10 trials using different random number seeds. The LDR
results reflect using the suggested optimizations.

We present six metrics. A "transmitted" packet count
includes all hop-wise transmissions. An "initiated" packet
count only includes the first transmission of a packet. The
delivery ratio is the fraction of CBR data packets received at
destinations. The network load is the total number of con-
trol packets (RREQ, RREP, RERR, Hello, TC, etc.) trans-
mit ted divided by total number of received data packets.

60

The RREQ Load is the total number of RREQs transmit-
ted per received da ta packet. ' rhe data latency is the mean
latency of da ta packets. The RREP Init is the number of
RREPs ini t iated per RREQ initiated. The RREP Reev is
the number of hop-wise usable RREPs received per RREQ
initiated. A RREP may be usable at multiple nodes along
its path to the RREQ origin. In the graphs, the vertical
error bars represent the 95% confidence interval for all mea-
surements. Table 1 summarizes the results by averaging over
all pause times and both 50-node and 100-node scenarios for
a given number of flows. The columns show the mean value
and the 95% confidence interw~l range.

Figs. 2, 3, 4, 5 show the delivery ratio. In practically
all cases, LDR has a higher delivery ratio than the other
protocols. The exception is at high load and high mobility,
where AODV sometimes performs better , and at high load
and low mobility, where DSR sometimes performs better.
In the low-load, 40pps, scenarios, LDR maintains a very
high delivery ratio at all mobility speeds. The minimum
delivery ratio is 98.5% for the 200s pause t ime in Fig. 4
(100-node, 10-flow, 40pps). The average LDR delivery ratio
for all pause times and all 10-flow scenarios is 0.992 ::t: 0.002.
The next-best protocol in terms of delivery ratio is AODV,
but in many cases it is almost identical to OLSR. For 30-
flows, LDR, AODV and OLSR are statist ically identical on
the average over all mobili ty pause times.

Fig. 7 shows the mean destination sequence number for
LDR and AODV for low load and high load. LDR with 10-
flows has a maximum mean sequence number of 0.8 and with
30-flows has a maximum of 15.8. AODV, on the other hand,
has a 10-flow maximum of 104 and a 30-flow maximum of
108.

In terms of delay from Table 1, we see tha t OLSR and
LDR have statist ically identical latencies (overlapping con-
fidence intervals), although at 10-flows they barely overlap.
DSR and AODV have significantly higher latency. In terms
of load from Table 1, LDR and AODV have statistically
identical network load for 10-flows. LDR, AODV, DSR, and
OLSR are equivalent for 30-flows. Looking at the RREQ
load, LDR transmits about 1/3 fewer broadcast RREQs.
LDR initiates about 39% fewer I:tREPs per RREQ packet
for 10 flows and 8% fewer for 30 flows than AODV. Yet,
LDR has a higher number of received RREPs per RREQ
packet.

5. CONCLUSION
We have presented LDR, a novel on-demand loop-free

routing protocol using a new distance label invariant based
on DUAL and a messaging structure based on AODV. LDR
removes the requirement of AODV for nodes to indepen-
dently increase other node's sequence numbers, placing firm
control of a sequence number with the owning node. LDR
avoids loops by introducing a second routing invariant, the
feasible distance. If the s tar t distance of an advertisement
is less than a node's feasible distance, there can be no loop,
even if the measured distance increases. Destination se-
quence numbers play the role of resets for feasible distances
and allow nodes to increase their feasible distance along
paths. Through simulation, we showed tha t LDR exhibits
bet ter packet delivery ratios than AODV, DSR, and OLSR,
except at 3 out of 32 da ta points. At times, LDR's deliv-
ery ratio is significantly higher than other protocols and is
never significantly worse. Our da ta also shows that LDR's

network load is less than or comparable to the loads of other
protocols. In terms of mean latency of da ta packets, LDR
is second to OLSR at low load and comparable to OLSR at
high load.

6. REFERENCES
[1] L. Bajaj et al. GloMoSim: A scalable network

simulation environment. Technical Report 990027,
UCLA Computer Science Department , 1999.

[2] T. Clausen et al. Optimized link state routing
protocol. IETF Internet draft,
draft-ietf-manet-olsr-06.txt, Sep 2001.

[3] E. W. Dijkstra and C. S. Scholten. Termination
detection for diffusing computations. Information
Processing Letters, 11(1):1-4, Aug. 1980.

[4] E. M. Gafni and D. P. Bertsekas. Distr ibuted
algorithms for generating loop-free routes in networks
with frequently changing topology, iEEE Trans.
Comm., COM-29(1):11-18, Jan. 1981.

[5] J. Garcia-Luna-Aceves and S. Murthy. A path finding
algorithm for loop-free routing. IEEE/A CM Trans.
Networking, 5(1):148-160, Feb. 1997.

[6] J. J. Garcia-Luna-Aceves and M. Spohn. Source-tree
routing in wireless networks. In Proc. IEEE ICNP'99,
pp. 273-82, Oct. 1999.

[7] J. J. Garcia-Lunes-Aceves. Loop-free routing using
diffusing computations. IEEE/A CM Transactions on
Networking, 1(1):130-41, Feb. 1993.

[8] D. Johnson et al. The dynamic source routing
protocol for mobile ad hoc networks (DSR). IETF
Internet draft, draft-ietf-manet-dsr-07.txt, Feb 2002.

[9] D. B. Johnson and 13. A. Maltz. Dynamic source
routing in ad hoc wireless networks. In Mobile
Computing, volume 353. Kluwer Academic Publishers,
1996.

[10] R. Ogler et al. Topology broadcast based on
reverse-path forwarding (TBRPF) . IETF Internet
draft, draft-ietf-manet-tbrpf-05.txt , Mar 2001.

[11] V. D. Park and M. S. Corson. A highly adaptive
distr ibuted routing algorithm for mobile wireless
networks. In IEEE INFOCOM, pp. 1405-13 vol.3,
Apr. 1997.

[12] C. Perkins, E. Belding-Royer, and S. Das. Ad hoc on
demand distance vector (AODV) routing. IETF
Internet draft, draft-ietf-manet-aodv-10.txt , Mar 2002.

[13] C. Perkins et al. Performance comparison of two
on-demand routing protocols for ad hoc networks.
IEEE Personal Communications, 8(1):16 - 28, Feb
2001.

[14] A. Plakoo and A. Laouiti. INRIA OLSR draft 3 linux
source code. h t tp : / /mene tou . in r ia . f r /o l s r /#code ,
ported by Marco Spohn, 2001.

[15] J. Raju and J. J. Gaxcia-Luna-Aceves. A new
approach to on-demand loop-free mul t ipath routing.
In IEEE IC3N'99, pp. 522-7, Oct. 1999.

[16] M. Spohn and J. J. Garcia-Luna-Aceves.
Neighborhood aware source routing. In A CM
MOBIHOC 2001, pp. 11-21, Oct. 2001.

[17] S. Vutukury and J. Garcia-Luna-Aceves. A simple
approximation to minimum-delay routing. In Proc.
AMC SIGCOMM 1999, pp. 227 - 238, Sept. 1999.

51

Table 1: P e r f o r m a n c e a v e r a g e ove r a l l p a u s e t i m e s
I flows I protocol I delivery ratio I Net load I RREQ load latency (sec) RREP Init RREP Recv

10 LDR 0.992 ::1= 0.003 0.464 ::i: 0.132 0.410 ::1:0.121 0.066 ::1= 0.034 3.379 ± 0.129 1.335 ::k 0.020
10 AODV 0.962 :k 0.017 0.777 :k 0.203 0.609 :k 0.136 0.731 :k 0.538 5.641 ± 1.356 1.303 :i: 0.006
10 DSR 0.736 ± 0.087 8.337 ± 3.719 0.043 ::k 0.015 2.111 :t: 0.831
10 OLSR 0.904 ± 0.026 5.773 ± 2.040 0.029 ::1:0.004
30 LDR 0.857 ± 0.044 2.063 ± 0.759 1.532 ::k 0.556 0.656 ::1= 0.113 7.183 ::1= 0.998 1.642 ± 0.105
30 AODV 0.822 ::1= 0.028 2.353 :t= 0.623 1.746 ± 0.455 1.030 ± 0.105 7.775 =1::0.774 1.533 ± 0.158
30 DSR 0.603 =1:0.094 3.270 ::1= 1.625 0.033 ::1:0.011 3.837 :t: 1.567
30 OLSR 0.799 ± 0.044 2.680 ± 1.009 0.489 ::1= 0.146

1 i i : : t ! ; -

0.80"9 ~ ~

o

LDR : =

>~ 0.7 ~

0.6

0.5

0.4 I- AODV ----,~
I DSR ~----E~-

0 3 1 OLSR ,--~,

050100 200 300 500 700 900

pause time (seconds)

Figure 2: D e l i v e r y 5 0 - n o d e s , 10-flow, 4 0 p p s

o

>

1

0.9

0.8"

0.7

0.6

0.5q

0.4

0.3

Figure 4:

50100 200 300 500 700 900

pause time (seconds)

D e l i v e r y 1 0 0 - n o d e s ~ 1 0 - f l o w ~ 40pps

1

0.9

0.8

0.7

0.6

0.5

0.4

i

LDR : = :
AODV ,----,~

D S R ~.-.--G-
OLSR ,.-.--× 0.3 i r i i I i i

050100 200 300 500 700 900

pause time (seconds)

F i g u r e 6: Q u a l n e t d e l i v e r y 50-node~ 30-flow, 120pps

0.9

0.8
._o , i

~: 0.7

= 0 . 6 '

0.5
LDR : * :

0.4 AODV ----~
DSR ~---E)-

OLSR x
0.3 ' ' ' ' ' ' '

050100 200 300 500 700 900

pause time (seconds)

Figure 3: D e l i v e r y 50-nodes~ 30-f low, 1 2 0 p p s

1 , , , , , , ,

0.9 ~

0.8 z

~= 0.7 : ~

~ 0.8

05

0.4 I- ~ AODV ,----A
] . J " DSR ~--~- 0 . 3 ~ OLSR ~ ,

050100 200 300 500 700 900

pause time (seconds)

Figure 5: D e l i v e r y 100-nodes~ 30-flow~ 1 2 0 p p s

~. 60

< 20

LDR-'050-10: ~ :
LDR-100-30 ,----e

AODV~050-10 ~--~-

50100 200 300 500 700 900

pause time (seconds)

Figure 7: Average node sequence number

62

