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ABSTRACT 
A new protocol is presented for on-demand loop-free routing 
in ad hoc networks. The new protocol, called labeled dis- 
tance routing (LDR) protocol, uses a distance invariant to 
establish an ordering criterion and per-destination sequence 
numbers to reset the invariant :resulting in loop-freedom at 
every instant.  The distance invariant allows nodes to change 
their next hops or distances to destinations without creat- 
ing routing-table loops. The destination sequence number, 
which only the destination may increment, permits nodes 
to reset the values of their distance invariants. The perfor- 
mance of LDR is compared against the performance of three 
other protocols that  are representative of the state-of-the- 
art, namely AODV, DSR and OLSR. 
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1. INTRODUCTION 
An ad hoc wireless network is characterized by nodes func- 

tioning as routers, as well as sources and sinks of da ta  traffic, 
with radio network interfaces and no fixed infrastructure to 
support  communications. Wireless networks usually have 
limited bandwidth and bat tery  :power, so their routing pro- 
tocols should have low control overhead. Reactive or on- 
demand routing protocols have been developed for this rea- 
son. In an on-demand routing protocol, a node only main- 
tains routes for in-use destinations and does not pro-actively 
advertise routes. Rather,  it queries for needed routes and 
offers routes in response to queries. 
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Many on-demand routing protocols have been proposed 
over the past  few years, and all of them a t t empt  to pro- 
vide loop-free paths at every instant through various meth- 
ods. Examples of such protocols include the Ad hoc On- 
demand Distance Vector (AODV) protocol [12], the Dy- 
namic Source Routing (DSR) protocol [8, 9], the Neighbor- 
hood-aware Source Routing (NSR) protocol [16], the Tem- 
porally-Ordered Routing Algorithm (TORA) protocol [11], 
and the Routing On-demand Acyclic Mult ipath (ROAM) 
protocol [15]. There are also many examples of pro-active 
routing protocols that  a t ta in  loop-free routing [7] as well as 
pro-active routing protocols that  tolerate temporary  routing 
loops [6, 2, 10]. 

Two factors that  decrease routing efficiency in ad hoc net- 
works are routing loops and the maintenance of complete 
teachabili ty information for all nodes. Routing loops in- 
crease packet-delivery latencies and reduce the number of 
packets delivered to the intended destinations. Further- 
more, maintaining routing information for all destinations 
becomes less efficient than maintaining routing information 
on-demand at each node as the number of nodes in the net- 
work increases and the average number of destinations con- 
tacted by each source becomes a smaller and smaller por- 
tion of the total  number of nodes. Accordingly, this pa- 
per addresses the problem of providing efficient on-demand 
loop-free routing in ad hoc networks. Prior work on on- 
demand loop-free routing has been based on the following 
approaches: (a) using source routes in da ta  packets, (b) co- 
ordinating nodes by way of the directed graph implied by 
the next hop entry for a given destination at each node, and 
(c) using sequence numbers to establish an ordering among 
nodes. 

DSR and NSR are examples of using source routing to 
avoid routing loops. In DSR, each route request records 
its traversed path,  and the complete route between source 
and the requested destination is specified in the route re- 
ply sent back to the source by any node with a valid route 
the destination. The discovered route is stored in a route 
cache at the origin and the relay nodes. The header of ev- 
ery da ta  packet specifies the source routes to their intended 
destinations. DSR incorporates a number of optimizations 
to shorten source routes, learn routes, and cache routes ef- 
ficiently. NSR extends the source routing approach of DSR 
by having nodes communicate information regarding their 
two-hop neighborhood in route requests and route replies 
path  in addition to path  information regarding specific in- 
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use destinations. 
TORA uses a link-reversal algorithm [4] to maintain loop- 

free multipaths that are created by a query-reply process 
similar to that used in DSR and AODV. TORA relies on 
synchronized clocks to create time stamps that maintain the 
relative ordering of events. The link-reversal algorithm is 
a form of synchronization among nodes spanning multiple 
hops. 

The Diffusing Update Algorithm (DUAL) [7] attains loop 
freedom by means of nodal coordination. Based on rout- 
ing advertisements, a node i may choose independently a 
successor j from its neighbors for a destination d as long 
as that choice cannot form a loop; such a choice is called 
feasible if it cannot form a loop. If the potential exists to 
form a loop, node i must coordinate with other nodes be- 
fore changing its route to d. The feasibility of a change is 
calculated based on a feasibility condition. If the condition 
is satisfied, the change is feasible, and node i may proceed 
without coordinating with any other node. If the change 
is not feasible, node i starts a diffusing computation [3]. 
DUAL was developed for wire-line networks and the diffus- 
ing computation requires reliable communications between 
neighbors to enforce synchronization over potentially large 
segments of a network. The diffusing computation resets in- 
formation in the network, ensuring that any change at i for 
d will not cause a loop. After the computation terminates, 
node i is free to make a change and then inform the network 
of that  change. ROAM extends DUAL to provide loop-free 
routing on demand. The distances to a given destination 
are used to establish ordering among nodes. ROAM uses a 
route reply-request process similar to that used in AODV, 
DSR and other on-demand protocols. However, a node can 
change its next hop to a destination without notifying its 
neighbors as long as it has a neighbor with a distance that 
is shorter than the node's own feasible distance value to the 
destination, where such a distance is the smallest value at- 
tained by the node's distance since it obtained a route to 
the destination after sending a route request. If such an 
invariant condition is not satisfied, the node must reliably 
send a route request to its neighbors, which serves the same 
purpose of DUAL's resets. After sending a route request, 
the node cannot select a new next hop to a destination until 
it receives route replies from all its neighbors. 

ROAM and TORA require reliable exchanges among neigh- 
bors and coordination among nodes over multiple hops. Rout- 
es are locked down at a node until  the portion of the dist- 
ributed calculation in which it participates is complete, which 
is signaled to the node when all its neighbors reply to its 
route request. This type of mechanisms incurs more control 
messages compared to AODV, DSR, and other on-demand 
protocols that  work correctly even with unreliable transmis- 
sions of route requests and replies among neighbors. 

AODV attains loop-free routing by using a sequence num- 
ber for each destination as the means to establish an order- 
ing invariant among nodes. AODV defines an active route 
as one that is fresh and likely to have a good successor path. 
Such a route was either recently learned through some ad- 
vertisement or has been recently used without error. An 
inactive (or invalid) route is one that  has expired its cache 
time without use or one for which the next hop is in an error 
state (e.g., lack of connectivity or downstream route failure). 
The sequence numbers of active routes for a given destina- 
tion are non-increasing moving away from the destination. 

When a node A needs to establish a route to a destination 
D, it broadcasts a route request to its neighbors. If A pre- 
viously knew a route to D that became invalid, A increases 
the sequence number for D and includes it in the route re- 
quest. A node receiving the request can send back a unicast 
route reply along its shortest path to node A only if it has an 
active route to D and the sequence number stored for D is 
no less than the sequence number in the route request. Oth- 
erwise, the recipient must forward the route request. When 
node A sends a route request for a destination, it increases 
the sequence number for itself as well, which is used by other 
nodes that  learn about new routes to node A. 

By increasing the stored sequence number for a destina- 
tion when a route breaks, AODV ensures that  no upstream 
nodes may reply to a route request from a node on their suc- 
cessor path. Unfortunately, this also inhibits responses from 
downstream nodes with the prior sequence number, even if 
they have a valid loop-free path to the destination. A key 
limitation to using only sequence numbers as the loop-free 
routing invariant is that it inhibits responses both moving 
away from the destination and moving toward the destina- 
tion. In many cases, this causes the destination to be the 
only node able to satisfy the request, because it alone can 
increase its own sequence number for a response. 

We present the labeled distance routing protocol (LDR), 
which is an on-demand routing protocol that  uses distance 
labels rather than sequence numbers, source routing, or inter- 
nodal coordination to ensure loop freedom at every instant. 
Section 2 describes LDR through two examples and presents 
the feasibility conditions and protocol procedures. Like any 
other on-demand routing protocol, LDR discovers routes 
through the network only when there are data for a des- 
tination. 

Section 3 shows that LDR works correctly and is loop free 
at every instant. LDR uses a loop-free invariant for each des- 
t ination similar to that first introduced in DUAL [7] and em- 
ploys sequence numbers that  can be incremented only by the 
destinations themselves to permit nodes to reset the values 
of their distance invariants. The combined use of a distance 
invariant and destination-controlled sequence numbers elim- 
inates the need for inter-nodal coordination used in DUAL 
and other loop-free routing protocols, and enables more effi- 
cient responses to route requests compared to AODV, which 
helps reduce network load. 

Section 4 presents the results of simulation experiments 
comparing LDR with AODV, DSR, and OLSR. The other 
three protocols were used as points of comparison given that  
they are representatives of the state-of-the art in routing for 
ad hoc networks, and are being considered by the working 
group on mobile ad hoc networks (MANET) of the Inter- 
net Engineering Task Force (IETF). The simulation results 
clearly show that  LDR attains higher packet delivery ratios, 
smaller packet latencies, and much lower signaling overhead 
than the other three protocols. 

2. LABELED DISTANCE ROUTING 
PROTOCOL 

In our description of LDR, we assume positive symmetric 
link costs; asymmetric costs would require extra packet fields 
to communicate the costs upstream, but  would not change 
the basic operation of LDR. 

LDR uses a route request (RREQ), route reply (RREP), 
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I Notation I 
sn~ The sequence number of D as known at node A. 
dAD The measured distance from node A to D. If all 

link costs are 1, it is a hop count. 
fdAD The feasible distance from node A to D, being the 

minimum dAD for the current SHAD. 
IcAB The link cost from node A to neighbor B, assumed 

to be positive and equal to unity if using hop count 
metrics. 

* An advertisement, for example sn~ is the se- 
quence number in an advertisement for destina- 
tion D. 

# A solicitation, for example snD ~ is the sequence 
number in a solicitation for destination D. Each 
issuer adds its own unique identifier rreqid. 

f ro  ~ Reset required bit (T bit ) for solicitation # for 
destination D. Indicates that an invaxiant order- 
ing violation could occur and the path must be 
reset. 

and route error (RERR) messaging structure that is based 
on that of AODV. We use the term advertisement to denote 
the portion of a packet that proffers reachability to a des- 
tination, and the term solicitation to denote the portion of 
a packet that requests information for a destination. The 
RREQ in LDR and other on-demand protocols constitute 
both an advertisement of a route to the node issuing the 
RREQ and a solicitation for a route to another node. In 
general, we will discuss advertisements and solicitations as 
separate entities apart from their concrete realizations in 
RREQs or RREPs. Table 1 summarizes the notation used 
to describe LDR in the rest of this paper. 

The RREQ is the tuple (dst, sndst, rreqid, src, sn . . . .  
fd,  dist, f lags},  where src is the identifier of the source 
of the RREQ seeking a path to the destination with iden- 
tifier dst. The sequence numbers for the destination and 
source are sndst and sn . . . .  respectively. The rreqid field 
is a source-specific unique identifier to control the flooding 
of the RREQ. The source's feasible distance is fd,  and the 
measured distance of the path. traversed by the RREQ is 
dist. Control bits axe contained in flags. 

The RREP is the tuple (dst, 8ndst, src, rreqid, dist, 
l i fet ime,  f lags}.  The field l:ifetime is the milli-seconds 
of time remaining for the route to dst and reflects the max- 
imum time to cache the route if it is not used. 

For a given destination D for which node A has a route, 
it maintains the sequence number originated by D (snAp), 
its distance to D ( dAD), its next hop to D, and its feasible 
distance to D ( f d ~ ) .  The feasible distance fdAD is the 
minimum distance dAD ever known to D for the current 
sequence number SHAD. 

2.1 Sufficient Conditions for Loop Freedom 
The key to loop-freedom in previous works using feasi- 

ble distances (DUAL [7], LPA [5], PDA [17]) is an invariant 
condition and some form of inter-nodal synchronization used 
when such a condition is not satisfied. DUAL states three 
invariant conditions, with the source node condition (SNC) 
being similar to our numbered distance condition. SNC is 
a minimum-cost condition that renders loop-free shortest 

paths. LPA uses a condition equivalent to SNC. PDA uses 
the loop-free invariant condition (LFI), which relaxes the 
shortest-path requirement of SNC to multiple loop-free suc- 
cessors. When nodes cannot satisfy the feasibility condition 
in these algorithms, they begin a co-ordinated computation 
to prevent loops while resetting their distances to higher val- 
ues. In DUAL, a node enters an active state for a destination 
and requires that all up-stream nodes that potentially use 
it as a successor either accept the proposed larger distance 
or change their successor. The node then resets the feasi- 
ble distance to infinity and chooses a new successor. When 
a node using LPA or PDA wishes to change its successor 
and detects that doing so could cause a loop, it co-ordinates 
with all its immediate neighbors to ensure that  none can 
continue to use it as a successor to the destination. The 
reliable co-ordination with neighbors preempts any possible 
loops. 

The key to loop-freedom in LDR is the dissemination of 
route requests over a tree, forcing route replies to follow 
paths in that tree, and enforcing a strict ordering of fea- 
sible distances along successor paths. The RREQ tree is 
formed by the conventional reverse-path flooding technique 
of AODV. The route reply paths are constructed by look- 
ing up the RREQ ID in the RREQ cache and sending route 
replies only along the reverse path of the flood. Strict order- 
ing of feasible distances for a given destination is attained 
by ensuring that the following conditions are satisfied. 

Numbered Distance Condition (NDC): Node A may ac- 
cept a route advertisement from neighbor B for destination 
D and update its routing table independently of other nodes 
if A has no information about destination D or either one 
of the following two conditions is satisfied: 

sn~ > snAp (1) 

snSD = ShAD A dBD < fdAD . (2) 

Feasible Distance Condition (FDC): Node I must set 
rrD # = 1 in a relayed solicitation for destination D that it 
forwards if snXD ---- SUb ~ and fdXD _> fdD #. 

Start Distance Condition (SDC): Node I may initiate an 
advertisement for a solicitation from node A for destination 
D if I has an active route to D, and either of the following 
conditions is satisfied: 

sn~ > SnD # (3) 

sn~9 ---- SnD # A d~ < fdD # A -~rrD # (4) 

NDC is used to allow nodes to change successors without 
coordination among nodes. FDC is used to enforce ordering 
of the feasible distances of all the nodes along a path to a 
destination. SDC is used to allow a node that  does not have 
a neighbor satisfying NDC to find a distant node that can 
provide a loop-free path to the destination. More specif- 
ically, a RREQ specifies the feasible distance of the node 
that originated the request and that nodes sequence num- 
ber. Subject to TTL restrictions, nodes relay a RREQ, until 
it reaches a node that  satisfies SDC, and that  node issues a 
RREP. Any node along the path taken by the RREQ that 
does not satisfy FDC sets the T bit to prevent nodes closer 
to the destination and with a smaller feasible distance from 
sending a RREP. Requests with the T bit set require a path 
reset so a node with higher sequence number must reply. 
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THEOREM 1. Using NDC at node A to update successors 
for destination D independently of other nodes is su~icient 
to ensure that no loop is created. 

Proof: Let neighbor I send an advertisement to A for 
destination D. If sn~ > snap, then in the absence of node 
failures, node A cannot be on node I ' s  path to destination 
D, for otherwise it would have known of the higher sequence 
number. If the sequence numbers are the same, NDC is 
equivalent to SNC from DUAL, which is shown to be loop- 
free [7, Theorem 1, pp. 132ff]. • 

PROPOSITION 1. Using SDC at node I to initiate an ad- 
vertisement for a solicitation from node A for destination D 
does not create loops. 

The proof of the above proposition is immediate from The- 
orem 1 and FDC. If a node I issues an advertisement that 
is not feasible, it would be rejected by node A according to 
NDC. Furthermore, a path from A to D can be discovered 
successfully only if each node in the path from A to D satisfy 
FDC. 

THEOREM 2 (ORDERING CRITERIA). FDC ensures that, 
along a successor path P = { n k , . . . , n l }  from node nk to 
node nl ,  it is always true for i E[k, 2] that ( sn~  < sn~1-1)V 

h i - - 1  (sn~nl = sn n'-l,~ A fd~i~ > fd~ 1 ). 

Proof: For any given sequence number for node nx, 
d ~ ~i. f ~ _< d,~ 1 According to NDC, for equal sequence num- 

. hi-- 1 bers, node ni can use node n i -  1 as a successor only If dnz < 
fd: '~,  which  implies that  fd~'~ -~ < fd,~' 1. At  some  later 
time, node ni-1 could change its successor, but  that can 
only increase the sequence number or decrease the feasible 
distance, or remain the same. • 

Note that  because stable paths to destinations are prefer- 
able, if node A already has an active route to destination D, 
it should not change its successor after receiving an adver- 
tisement from node B if sn~ = shAD, unless its distance to 
D through node B can be reduced, i.e., d E + IcAB < d~. 

2.2 Route Discovery 
Conditions NDC, FDC, and SDC avoid the creation of 

routing-table loops. However, they do not guarantee the 
establishment of a path from a node sending a solicitation to 
the intended destination, even if a physical path does exist. 
The reason is that,  for the same sequence number for a given 
destination, no node is allowed to send an advertisement in 
response to a solicitation after the T bit is set according to 
conditions NDC, FDC and SDC. 

To remedy this shortcoming, LDR augments FDC and 
provides a reset operation in the event that the T bit must 
be set. If the R R E Q / R R E P  path would violate the ordering 
of feasible distances, i.e., FDC is not satisfied, the RREQ 
is unicast to the destination, so that it can increase its own 
sequence number and the RREP then can reset feasible dis- 
tances along the path and thus maintaining ordering. The 
node that unicasts the RREQ to destination D is the first 
node along the path followed by the RREQ that satisfies 
SDC without consideration to the T bit . That  node must 
ensure the RREQ's  TTL is sufficient to reach the destination 
because in an expanding ring search, the broadcast RREQ 
might not have enough time-to-live left. 

A given node A enters into a route computation for des- 
t ination D when it issues a solicitation for D with identifier 

5/5 4/4 3/2 1/1 0/0 

numbers: e5 ~ e2 
hops / FD I E ) 

Figure 1: E x a m p l e  u s i n g  L D R  

IDA (the rreqid). Such a node is called active for D in 
computation (A, IDA).  For a given destination, a node may 
have at most one active computation. The computation 
(A, IDA)  terminates when A receives any feasible adver- 
tisement for D or a timer expires. If A receives a feasible 
advertisement for A, the computation terminates in success, 
otherwise timer expiry indicates failure. The termination of 
computation (A, IDA)  is a local event at A and does not im- 
ply that all solicitations for (A, IDA)  are out of the network 
or that intermediate nodes participating in the computation 
have terminated their engagement. 

If a node relays the solicitation, it participates in the com- 
putation (A, IDA)  and must cache certain data for a period 
of time. Such a node is said to be engaged in (A, IDA).  
A relay node must record the tuple {A, IDA,  lasthop}, 
where lasthop identifies the previous hop node participat- 
ing in the computation. An engaged node terminates com- 
putation (A, IDA)  at the expiry of a timer. A node may 
be engaged in multiple computations, but  may only enter 
the engaged state once per computation (A, IDA).  For the 
same computation (A, IDA)  the node A may not be both ac- 
tive and engaged (i.e., it may not relay its own solicitation). 
Note that a relay node has no state about the destination 
D of a computation and in fact may go active for D while 
being engaged in other computations for D. A node that  is 
neither active or engaged in a computation (A, IDA)  is said 
to be passive for (A, IDA).  This is the default state of a 
node. 

PROCEDURE 1 (INITIATE SOLICITATION). A node A that 
requires a route for destination D first checks to see if it is 
active for D. If  it is, A should queue the packet that requires 
the route. I f  A is not active for D, it becomes active and 
increments its rreqid. Let IDA be the incremented iden- 
tifier. A issues a solicitation for D identified by (A, IDA) 
and starts a timer with expiry t = 2 • ttl . latency, where ttl 
is the time-to-live of the broadcast flood and latency is the 
estimated per-hop latency of the network. I f  the timer ex- 
pires, A may retry the solicitation and increase the ttl based 
on the network policies. If  after the final attempt, A does 
not find a route to D, A should inform the packet origins of 
the failure and drop the queued packets. 

PROCEDURE 2 (RELAY SOLICITATION). A node B that 
receives a solicitation ( A, IDA)  for destination D firsts checks 
to see if it is passive for (A, IDA) .  If  it is not passive, it 
silently ignores the solicitation. If  it is passive, it becomes 
engaged. If  B satisfies SDC, it may issue an advertisement 
for D. Otherwise, B relays the solicitation. Let the last hop 
be node C (possibly equal to A)  and let the new solicitation be 
denoted by ~. Node B must cache the tuple {A, IDA,  C} for 
a su~cient  period of time such that all solicitation instances 
of (A, IDA)  have left the network and any advertisements in 
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response to (A, IDA)  have had time to complete. 

{ snBD i f  snBD > SnD # 
sn~D ~-- sn~D otherwise (5) 

{ iSsnf  > she 
fd~D ~-- min{fd~ ,  fd:D #} i f  sn~ = SnD ~ (6) 

f dD # otherwise 

+ los (7) 
0 i l  > 

if (far < fd ) ^ = (S) 
1 otherwise 

Eq. 8 controls the path-reset request mechanism. The first 
condition resets the T bit to zero when B's sequence number 
exceeds the requested sequence number. This is because B 
has increased the requested sequence number by Eq. 5, so 
that any advertisement sent in response to the solicitation 
functions as a path reset. The second condition reflects that 
B matches the ordering criteria, and therefore it relays the 
path-reset value that  already exist. The third condition sets 
the T bit when B violates the ordering criteria. 

If the destination receives a solicitation with the T bit 
set, it must reset the path. If snD D > snD #, it may use the 
current sequence number to reset the path. Otherwise, it 
must increment its stored sequence number before sending 
the advertisement. As with all solicitations, the destination 
will only send one advertisement per source and rreqid pair. 

When a node relays a solicitation, it has to record the last 
hop of the solicitation, because it will use that last hop as 
part of a reverse path. When a node relays a RREP, it will 
look up the (originator, rreqid) pair and force the RREP 
to follow the RREQ reverse path, even if the node has an 
active route to the originator. This reverse path information 
may be kept in the RREQ cache. 

As an advertisement progresses through the network, it 
may happen that  a relay node has stronger invariants than 
those contained in the advertisement. In such a case, the 
relay node must discard the advertisement and issue a new 
advertisement, if possible. It may also be the case that the 
relay node has stronger invariants, but an invalid route. In 
such as case, the relay cannot issue a new advertisement. 
At other times, a node relaying a route request may need to 
update the invariants of the request, such that the relaying 
node may use any solicited reply. 

In the following, when a node drops an advertisement and 
issues a new one with stronger invariants or strengthens the 
invariants in a solicitation, we call this "updating the invaxi- 
ants," which is an oxymoron but  succinct. 

PROCEDURE 3 (SET ROUTE). When node A adds or up- 
dates a route to destination D via successor B,  it updates 
its sequence number, distance, and feasible distance for des- 
tination D. 

snAD+- ShE (9) 
dAD ~ dE q-lc~ (10) 

l dAD if ShAD < sn E 
fdAD ~--- min{fd~,dAD} if snAD= sue (11) 

Procedure 3 guarantees that  the feasible distance for a 
given sequence number is a non-increasing function over 

time for a given node. The distance for a given sequence 
number and feasible distance may fluctuate, but  is never less 
than the feasible distance. This behavior prevents loops. 

If a node has an active route to the destination of an 
advertisement and is not itself the terminus of the adver- 
tisement, the node should issue a new advertisement for the 
route. If the node does not have an active route to the des- 
t ination (because it could not update its routing table based 
on NDC), the node must not relay the advertisement. 

It is possible for a RREQ to propagate through the net- 
work without creating the reverse path. If a node relays a 
RREQ without having an active reverse path to the RREQ 
origin, the relay node must set the (newly specified) N bit 
to indicate that  the RREQ is no longer an advertisement 
for the RREQ origin. The N bit is not part of the current 
AODV specification. If the node replying to the RREQ does 
not have a reverse path, it sets the new corresponding N bit 
in the RREP indicating such. When the origin receives a 
RREP with the N bit set, it may send a unicast RREQ probe 
along its forward path with the D bit set. It should increase 
its sequence number to ensure that the reverse path is built. 
Nodes otherwise should not increase their sequence number 
when issuing a RREQ. 

PROCEDURE 4 (RELAY ADVERTISEMENT). I f  node A is 
not the terminus of the advertisement (e.g., the source ad- 
dress in a RREP) ,  and it has an active route to destination 
D, node A should issue a new advertisement for D upon re- 
ceipt of an advertisement for the destination. Node A may 
create or update its own routing table by Procedure 3 upon 
receiving an advertisement, and uses its RREQ cache to en- 
sure that it does not forward more than one reply per (orig- 
inator, rreqid) pair. Let the new advertisement be denoted 
by t ,  then sntD +- SHAD, dtD ~ dAD . 

2.3 Example 
Figure 1 shows the directed acyclic successor graph for 

destination T in a six node network. The numbers repre- 
sent the stored distance and feasible distance to node T. 
Initially, node E does not have a route to T and issues a 
RREQ. Nodes {B, C, D} respond with RREPs. Let node C 
respond first. It happens to have a measured distance of 3 
and a feasible distance of 2. These numbers may occur due 
to mobility and changing successors. When node C issues a 
RREP, it sets the measured distance to 3. When node E re- 
ceives this RREP, it sets its measured distance and feasible 
distance both to 4. Node B then issues a RREP with start 
distance 4. Node E ignores that  RREP when it receives 
it, because it does not provide a shorter distance than E's 
current feasible distance. Node D issues a RREP with mea- 
sured distance 1. When E receives that RREP, it updates 
both its feasible distance and measured distance to 2 and 
set its successor to D. 

Node E issues a new RREQ with a feasible distance of 
2 if links e2 and e3 fail at some future time. When node 
B receives the RREQ, it must forward it because it cannot 
create a RREP for it, given that  its measured distance of 
4 does not satisfy the requesting feasible distance. Node B 
must also set the T bit to indicate the destination must reset 
the path. Node C must forward the RREQ because its mea- 
sured distance of 3 is not sufficient either. Node D, finally, 
could issue a RREP because its measured distance satisfies 
the requesting feasible distance. However, the reset bit is set 

57 



so C must unicast the RREQ to T, which would then issue 
a RREP with larger sequence number and a distance of 0. 
D would relay it to C. When node C receives the RREP, 
it changes its measured distance to 2 and keeps its feasible 
distance at 2, then relays the RREP with a distance of 2. 
When node B receives the RREP, it sets both its measured 
distance and feasible distance to 3, then relays the RREP 
with distance 3. Finally, node E receives the RREP and sets 
its measured distance to 4 and resets its feasible distance to 
4. 

3 .  A N A L Y S I S  

We first show that LDR is loop free at every instant. Then 
we demonstrate that  a source that requests a route to a given 
destination is successful within a finite time, provided that 
there is a physical path between source and destination and 
the network is stable for a sufficiently long period of time 
after an arbitrary sequence of topology changes. Because all 
computations in LDR are bounded by finite timers, showing 
that  LDR is live is trivial and is omitted for brevity. 

LDR uses a sequence number consisting of a destination- 
specific time stamp taken from a node's real-time clock and 
an unsigned monotonically increasing counter. When the 
counter reaches its maximum value, the node places a new 
time stamp in its sequence number and resets the counter 
to zero. We assume that  a node's real-time clock does not 
reset on reboot or adjust for daylight savings. This scheme 
is adopted because it does not require synchronized clocks 
or the explicit reset of sequence numbers throughout the 
network. Furthermore, it avoids using AODV's reboot-hold 
procedure, which requires that a node stay off-line long 
enough for the network to forget any cached information 
about it. 

THEOREM 3. Solicitations and advertisements in LDR do 
not loop. 

Proof." For a given calculation (A, IDA ) ,  a node may be 
passive, engaged, or active. A node enters any calculation 
at most once. Therefore, the propagation graph of the calcu- 
lation forms a tree. By using the cached information at en- 
gaged nodes, advertisements for the calculation follow paths 
only in the calculation tree. 

If a node unicasts a solicitation, it is guaranteed to not 
flow in a loop, even if the underlying routing table contains 
loops. This is because nodes enter the engaged or active 
states at most once per computation, regardless of the uni- 
cast or broadcast nature of the solicitation. Thus, the T bit 
does not affect the loop-freedom of control packets. • 

LDR treats each solicitation independently of each other 
by identifying each such computation by the identifier of its 
origin and a sequence number assigned by the origin. This 
independence enables LDR to guarantee successful termina- 
tion of simultaneous calculations for the same destination 
by multiple active nodes. 

LEMMA 1. I f  a node updates its routing table by Proce- 
dure 3 and relays advertisements by Procedure .4, then N D C  
ensures that the network maintains the ordering criteria dur- 
ing the creation of a successor path assuming no node along 
the path changes successor once on the path. 

Proof: By induction on the number of hops to the source of 
an advertisement. According to Procedure 4, the relaying of 

aa advertisement is no different than initiating an advertise- 
ment. The relay node places its distance and sequence num- 
ber in the packet before transmitt ing it. Consider the suc- 
cessor path from node nk to node n l  to be P = { n k , . . . ,  nl}.  
Let the time t ~  be when node ni chooses node n~-i  as its 
successor. Node n l  initiates an advertisement -1 at time to 

*1 nl (to) and d ~  = 0. For node n2 to choose with 8nnl ~ 8nnl 
node nl  as successor, one of the following cases must be 
satisfied according to NDC. 

Case I: Node n2 has no information about node hi.  By 
t ~ and fd~l ( t~2  ) > dnl. Be- Procedure 4, 8nnl 8nnl 

cause the sequence number is a non-decreasing function with 
~ 2  8 - -  rt I ~q time, snn~(tn2) < sn,~l(t~2). The sequence number *1 is 

fixed at time to but the sequence number variable stored in 
nl may increase. Node nl  will never have a positive dis- S n n  1 

tance to itself and the feasible distance at node n i ¢  n~ is 
always positive, so the ordering criteria is true 

Case II: sn,~ 1 > sn,1 (t~2). Because the sequence num- 
"~(t ;~)  > "~(t0). If "~ t ~ bet is non-decreasing, snnl _ san 1 san 1 ( ~ )  > 

n l  t 8 sn,~ (to), the ordering is maintained. Otherwise, snn~ (~2)  
CHn2 (ts ~ ,1 n~ (to). In this case by Procedure 3, ,--n~ ~ "2, > d"l so S U n  1 

the ordering is maintained. 
*1 n 2 S *1 ra n2(t s h As per Case III: snnl  = sn,~ (tn2) A d ~  < ,~ ,~  ~ ~2," 

Case II, sn~l ( t ,2)  could have increased, in which case the 
ordering criteria is true. If the sequence number did not 
change, then by Case I, f d ~  is always greater than ffd,~. 

By the inductive assumption, nodes { n i , . . .  , n l }  have a 
path that obeys the ordering criteria. We show that  when 
node ni+l  chooses nl,  it maintains the ordering criteria. At 

s node ni emits the advertisement. time t~  < t < t~i+~, 
Because ni does not change successor during ( t ~ , t ~ i + l ) ,  

s n ~  = s n ~  ( t ~ )  and dn~ = d ~  ( t~) .  Following the three 
cases above, we only need to validate in Case I ,rd ~+~.1 ,~,~+~,(~ ~ > 

d i s f ,~ (t,~+~), as the other statements do not depend on the 
identity of node nl .  

ni.%l ( t s  ~ * i  Case I (revised): By Procedure 4, s n , l  ~ ,~+l, = sn,~l 

and fan~+~ [÷~ ~ > d ~  Because the sequence number is J U t 1 1  \ v n i + l  I 
r t l  8 a non-decreasing function, sn~i~ +~ (t~i+a) _< sn,~ ( t , ;+i) .  If 

the sequence number at node n~ increases (which does not 
happen by the premise of the lemma), then the ordering cri- 
teria is maintained regardless of f d ~  x (t~.. ~ ). If the sequence 
number remains the same, then f d : '  (t~,+a) -< fd: ' l ( t )  _< 

* i  f dn l .  Thus, the ordering is maintained. • 

LEMMA 2. Given an established path that obeys the or- 
dering criteria, any change of  successor along that path by 
N D C  and Procedure .4 maintains the ordering. 

Proof: Let time tc~ be the time at which node n¢ changes 
its successor off an established path. Taking the path in 
Lemma 1 { n ~ , . . . ,  n l}  that  obeys the ordering criteria, we 
show that  if some node n~ changes its successor to ni  to 
some other node m j  along the path { m j , . . . ,  ml ,  n i  ), which 
is in order, that the ordering criteria is obeyed. That  is, 

ni c rnj it c ~ nl c , n. tc Snnl (tnl ) < snnl , n, , or Snnl (tni ) = Snnm~ (t~.)A f d ~  ( nl ) 
t ~ > f d ~  ( ~ ) .  For the change to occur, node my must issue 

an advertisement *m~ at time t~,~i < t < t c~. As per the 
discussion in Lemma 1, the invariants at mj  at time t c n l  

can only be stronger than at time t, so if *m~ is feasible at 
n~, Procedure 4 maintains the ordering criteria. What  we 
must show is that Procedure 4 does not violate the ordering 
criteria for node ni+l ,  which then by the assumption that 
P is ordered, is sufficient to show that  the change does not 

58 



violate the ordering criteria anywhere along the path. 
*m. 

I f , ~ j  is feasible at ni at t ime t c then either s n ~  J > 

sn,~l(tn~) or snnl = sn,~l(t,~i) < f d n l ( t ~ ) .  In the 
first case, Procedure 4 ensures that  ni 's sequence number 
increases, which satisfies the ordering criteria. In the second 
case, Procedure 4 decreases the feasible distance at node nj, 
which also satisfies the ordering criteria. • 

THEOREM 4. LDR is loop-free at every instant, as long 
as nodes update their routing tables according to NDC and 
Procedure 3, and relay messages by Procedures 2 and 4. 

Proof: Let node I be the node issuing the routing adver- 
tisement for destination D and let the advertisement take 
the path P -- { n i , . . . , n j } ,  where ni = I and nj = A. 
I may be equivalent to D. Let the path from I to D be 
Q = { m l , . . . , m k } ,  where ml  := D and mk = I and it may 
be null if nl = D. 

For a loop to form, A must be on the path Q. The path P 
is loop-free by Theorem 3. If ni = D, this is trivially true. 
If n i ¢  D, we show that  it is impossible for A to be on I ' s  
successor graph using a proof by contradiction. 

At time to, assume that  path Q exists and is loop free 
and at t ime t~, A chooses a successor path based on an 
advertisement from I. Let node A be some node mi, 1 < 
i < k. By the ordering criteria, ShE(to) > ShE( to )or  
ShE(to) = sn~(to) and fd~( to)  < fd~(to).  At this time, 
node I sends an advertisement along the loop-free path P 
to A, thus ShE -- ShE(to) and d~ = diD(to). 

At time tl ,  node A receives the advertisement. The se- 
quence number for a destination is a non-decreasing function 
with time, so sn~( t l )  > BuD(to). 

In the case where sn~(to) > sn~(to), A cannot accept 
the advertisement because ShE < ShE(t1). 

In the case where shAD(to) = sum(to) = shAD(t1), we 
know that  d~ _> d~(to) >_ fd~(to)  > fall(to). Because 
the feasible distance is a non-increasing function with time 
for the same sequence number, f d~ ( t i )  < fd~(to) ,  so d~ _> 
f d~  (tl). By NDC, node A cannot accept the advertisement. 

In the case where shAD(to) = sn~(to) < sn~(t i ) ,  we have 
ShE < sn~( t l )  and A cannot accept the advertisement. • 

We now consider several lemmas that  show LDR success- 
fully terminates route calculations in several event contexts 
that  span the route calculation space. Theorem 5 combines 
the lemmas to show that  LDR terminates a route discovery 
successfully in an error-free and. stable connected network. 

In our analysis of the route calculation process, we have 
to make certain assumptions about the network. No rout- 
ing protocol can converge if there are certain errors or if the 
network topology changes frequently enough. A route dis- 
covery process will also fail if no node exists that  can satisfy 
the route, such as in a partitioned network. We will thus 
impose three conditions on our analysis arguments when we 
consider a node A initiating a route discovery: (1) There 
exists a node B, perhaps equal to D, such that node A and 
B are connected and B's  route to D is feasible for every 
node along the path from A to B; (2) node A sends the 
solicitation with large enough time-to-live that  it may reach 
a node capable of sending a feasible advertisement back to 
A; and (3) relay nodes follow Procedure 2. 

LEMMA 3. If  a single node A initiates a route discovery 
for destination D identified by (A, IDA)  in an error-free sta- 
ble connected network, LDR guarantees that each solicitation 

for a route is answered with a feasible advertisement for the 
destination. 

Proof: We consider the case of the first advertisement 
*A to reach A response to (A, IDA).  If there are multiple 
advertisement, it does not affect the fact that  A terminates 
successfully based on the first advertisement; A may improve 
its route. 

Let node A send a solicitation for destination D, and let 
that solicitation traverse the path P ---- {hi . . .  n k - i }  before 
arriving at node nk (possibly equal to D) which satisfies 
SDC. Node nk issues an advertisement for D with terminus 
A. We show that  the way in which nodes relay advertise- 
ments ensures that  any solicited advertisement is usable by 
the relaying nodes. It is usable by A by virtue of satisfy- 
ing SDC. By Procedure 2, we know any advertisement sent 
in response to (A, ID)  will follow the reverse path of the 
solicitation, so it will follow the path P from nk to A. 

Let us first consider the case in which no node along the 
solicitation path P is affected by another route discovery 
event for D during the computation period. In this case, no 
node along P can satisfy A's invariants and has an active 
route; otherwise, such a node would have responded to the 
solicitation instead of node nk. Each node n E P matches 
one of three cases: (i) n has no information about D, (it) 
n's information is invalid, or (iii) the invariants of A are 
stronger than n's invariants. 

In case (i), node n may use any advertisement sent by nk. 
In case (iii), the advertisement sent by nk will satisfy the 
invariants at n because it satisfies A. 

For case (it), we show by induction that  the advertisement 
issued by nk in response to node A's solicitation will satisfy 
all nodes along P if they followed Procedure 2. Let us first 
consider node nl ,  being the immediate neighbor of node A. 
If sn~ 1 > snD ~, then node ni has an invalid route to desti- 
nation D and placed its own sequence number and feasible 
distance in the advertisement. Because the sequence num- 
ber increased, node A may use any solicited advertisement. 
If sn~ 1 -- snD ~, then node n relayed the solicitation with the 
minimum feasible distance of nodes A and hi ,  which ensures 
that  nodes nl and A may use the solicited advertisement. 
Otherwise, node A had a higher sequence number than node 
hi ,  and any solicited advertisement will be usable by node 
h i .  

If by the inductive assumption, all nodes A . . .  hi-1 may 
use the advertisement, then we show that  the actions at node 
ni do not affect predecessors, and ni will be satisfied. Node 
nl may only increase the sequence number or, keeping the 
sequence number the same, decrease the feasible distance; 
nl cannot invalidate the usability of the advertisement for 
any predecessor node. Node ni will relay invariants to be 
the stronger of its own or those already in the solicitation 
and ensure that  it may use the advertisement. • 

LEMMA 4. Considering the case of Lemma 3, let there be 
one or more other nodes mi ~ P that go active for D during 
the calculation (A, IDA).  LDR guarantees that each solici- 
tation for a route is answered with a feasible advertisement 
for the destination. 

Proof: By symmetry, if we show A's route calculation 
successfully terminates, the other calculations for set m suc- 
cessfully terminate. We thus restrict ourselves to considering 
A's calculation. 
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Because the relaying of a solicitation does not change the 
invaxiants stored at a node or the information cached for 
calculation (A, IDA) ,  we only need to consider the interac- 
tion of advertisements. Let *j be the set of advertisements 
generated by the calculations (mi,  IDm~). For these adver- 
tisements to affect (A, IDA)  they must intersect {A, P}. 

If one or more of *j intersect A before *A, then A's cal- 
culation (A, IDA)  terminates in success. By Lemma 3, the 
first ~j to reach A is feasible at A. 

Let , E ~j intersect some node n E P before *A. By 
Lemma 3, * is feasible at n and n may relay it toward the 
appropriate active node. The sequence number and feasible 
distance at n could only have remained the same or been 
strengthened by *. 

If they remained the same, ~A will be usable because there 
was no change. It could be that  n changed from an inactive 
to an active route, but that  does not affect the feasibility of 
~A a t n .  

If the invariants at n were strengthened by *, then either 
(1) some node in {A, P )  has stronger invaxiants, or (2) n's 
invariants became stronger than the strongest in {A,P}.  
In case (1), *A is stronger than n, so it will supersede the 
route at n and continue as per Lemma 3. In case (2) n 
will follow Procedure 4. It will discard *A and issue a new 
advertisement ~A with the stronger invaxiants. • 

LEMMA 5. Considering the case of Lemma 3, let there be 
one or more other nodes m~ E P that go active for D during 
the calculation (A, IDA) .  LDR guarantees that each solici- 
tation for a route is answered with a feasible advertisement 
for the destination. 

Proof: A node n E P going active for destination D 
does not change the cached information from the engage- 
ment (A, IDA)  nor does it change the invariants at n. It 
follows from Lemma 4 that  any advertisements sent in re- 
sponse to calculation (n, IDa)  cannot interfere with calcu- 
lation (A, IDA) .  • 

THEOREM 5. I f  node A initiates a route discovery for des- 
tination D identified by ( A, IDA)  in an error-free stable con- 
nected network, LDR guarantees that A receives a feasible 
advertisement for D. 

Proof: Considering the set of possible events, we must 
have the situation described in Lemma 3, Lemma 4, Lemma 5 
or both Lemmas 4 and 5. The first three situations follow 
from the Lemmas. The four situation, being nodes both on 
and off P go active for D during the calculation (A, IDA) ,  
also follows from the Lemmas. No matter  how many other 
nodes go active for D during A's calculation, the other cal- 
culations cannot affect the cached information at nodes en- 
gaged in (A, IDA)  and by Lemma 4, any advertisements 
generated by those other calculations must have invaxiants 
at least as strong as necessary to complete (A, IDA)  if they 
are to interfere with it. • 

4. P E R F O R M A N C E  
We present results that  show LDR out-performs other 

routing protocols over varying loads and mobility. Simu- 
lations are run in GlomoSim [1] for LDR, AODV, DSR, and 
OLSR. They follow the parameters in [13]. There are packet 
j i t ter problems in the OLSR code from INRIA for Linux [14], 
and we introduce a new FIFO ji t ter queue to OLSR. The 

FIFO ji t ter queue adds a uniformly c:hosen inter-packet j i t ter 
between 0 and 15ms and maintains FIFO packet order. The 
modified code performs substantially better  than the base 
OLSR. We use the DSR implementation from GlomoSim, 
which implements DSR Draft 3. 

In our simulations, the performance of DSR is poor with 
mobility and load. In most delivery ratio figures, the DSR 
plot is substantially below other protocols. We reprogrammed 
our simulations in Qualnet 3.5.2, which implements DSR 
draft 7, but we observed similar results. Fig. 6 for Qualnet 
has the same mobility and traffic load patterns as Fig. 3 in 
GlomoSim. The performance of DSR is slightly better, but 
still shows the same downward trend with increasing mo- 
bility. The AODV implementation in Qualnet also showed 
poor performance in the 120 packet-per-second scenario. Al- 
though we only present one graph, DSR performance in 
other Qualnet runs mirrored GlomoSim over all tested sce- 
narios. 

We use the following optimizations to LDR: 
M u l t i p l e  R R E P s :  A node may relay multiple RREPs  

for the same (originator, rreqid) pair as long as only RREPs  
with stronger invaxiants cross over time. 

R e q u e s t  as e r r o r :  If node A receives a solicitation for 
destination D from neighbor B and A has an active route 
for D with next hop B, it is likely that  B no longer has a 
valid route to D. If fdD ~ > dAD -- leAs, then B should have 
answered the query if it had an active route. 

R e d u c e d  d i s t a n c e :  Because of mobility and link fail- 
ures, it is often desirable in an ad hoc network to use non- 
optimal bounds. A node may place in a R R E Q  an answering 
distance extension, which is any distance no greater than the 
node's feasible distance. Nodes use the answering distance 
to test SDC. We use a factor of 0.8, t runcated to the lowest 
integer no less than 1. 

M i n i m u m  l i f e t ime :  A node should not respond to a 
RREQ if the lifetime remaining in its active route is less than 
a threshold. We use 1/3 the A C T I V E . . R O U T E _ T I M E O U T ,  
or 1 second using default values. If a node receives such a 
RREQ, it relays the RREQ. 

O p t i m a l  T T L :  The initial TTL of a R R E Q  should be 
set according to the known distance and R R E Q  feasible dis- 
tance. Here, let FD be the value, possibly lowered by the re- 
duced distance optimization, given in the RREQ. The initial 
TTL should be T T L  = D - F D  + 1 + L O C A L _ A D D _ T T L .  

There are two main sets of simulations, one on a 50-node 
network over a 1500m x 300m terrain, and one on a 100- 
node network over a 2200m x 600m terrain with 10-flow 
and 30-flow traffic loads using 512 byte packets at 4 packets 
per second per flow. The simulations use the 802.11 MAC 
layer with a 275m transmission range. The simulations run 
for 900 seconds. Nodes move between 1 m/ s  and 20 m/s.  
Flows have a mean length of 100 seconds, chosen from an 
exponential variate. We repeat each configuration (nodes, 
number of sources, routing protocol, and pause time) for 
10 trials using different random number seeds. The LDR 
results reflect using the suggested optimizations. 

We present six metrics. A "transmitted" packet count 
includes all hop-wise transmissions. An "initiated" packet 
count only includes the first transmission of a packet. The 
delivery ratio is the fraction of CBR data packets received at 
destinations. The network load is the total number of con- 
trol packets (RREQ, RREP, RERR,  Hello, TC, etc.) trans- 
mit ted divided by total number of received data packets. 
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The RREQ Load is the total  number of RREQs transmit-  
ted per received da ta  packet. ' rhe data latency is the mean 
latency of da ta  packets. The RREP Init is the number of 
RREPs ini t iated per RREQ initiated. The RREP Reev is 
the number of hop-wise usable RREPs  received per RREQ 
initiated. A RREP may be usable at multiple nodes along 
its path  to the RREQ origin. In the graphs, the vertical 
error bars represent the 95% confidence interval for all mea- 
surements. Table 1 summarizes the results by averaging over 
all pause times and both 50-node and 100-node scenarios for 
a given number of flows. The columns show the mean value 
and the 95% confidence interw~l range. 

Figs. 2, 3, 4, 5 show the delivery ratio. In practically 
all cases, LDR has a higher delivery ratio than the other 
protocols. The exception is at high load and high mobility, 
where AODV sometimes performs better ,  and at high load 
and low mobility, where DSR sometimes performs better.  
In the low-load, 40pps, scenarios, LDR maintains a very 
high delivery ratio at all mobility speeds. The minimum 
delivery ratio is 98.5% for the 200s pause t ime in Fig. 4 
(100-node, 10-flow, 40pps). The average LDR delivery ratio 
for all pause times and all 10-flow scenarios is 0.992 ::t: 0.002. 
The next-best  protocol in terms of delivery ratio is AODV, 
but  in many cases it is almost identical to OLSR. For 30- 
flows, LDR, AODV and OLSR are statist ically identical on 
the average over all mobili ty pause times. 

Fig. 7 shows the mean destination sequence number for 
LDR and AODV for low load and high load. LDR with 10- 
flows has a maximum mean sequence number of 0.8 and with 
30-flows has a maximum of 15.8. AODV, on the other hand, 
has a 10-flow maximum of 104 and a 30-flow maximum of 
108. 

In terms of delay from Table 1, we see tha t  OLSR and 
LDR have statist ically identical latencies (overlapping con- 
fidence intervals), although at 10-flows they barely overlap. 
DSR and AODV have significantly higher latency. In terms 
of load from Table 1, LDR and AODV have statistically 
identical network load for 10-flows. LDR, AODV, DSR, and 
OLSR are equivalent for 30-flows. Looking at the RREQ 
load, LDR transmits  about  1/3 fewer broadcast RREQs. 
LDR initiates about 39% fewer I:tREPs per RREQ packet 
for 10 flows and 8% fewer for 30 flows than AODV. Yet, 
LDR has a higher number of received RREPs per RREQ 
packet. 

5. CONCLUSION 
We have presented LDR, a novel on-demand loop-free 

routing protocol using a new distance label invariant based 
on DUAL and a messaging structure based on AODV. LDR 
removes the requirement of AODV for nodes to indepen- 
dently increase other node's  sequence numbers, placing firm 
control of a sequence number with the owning node. LDR 
avoids loops by introducing a second routing invariant, the 
feasible distance. If the s tar t  distance of an advertisement 
is less than a node's  feasible distance, there can be no loop, 
even if the measured distance increases. Destination se- 
quence numbers play the role of resets for feasible distances 
and allow nodes to increase their feasible distance along 
paths. Through simulation, we showed tha t  LDR exhibits 
bet ter  packet delivery ratios than AODV, DSR, and OLSR, 
except at 3 out of 32 da ta  points. At times, LDR's deliv- 
ery ratio is significantly higher than other protocols and is 
never significantly worse. Our da ta  also shows that  LDR's 

network load is less than or comparable to the loads of other 
protocols. In terms of mean latency of da ta  packets, LDR 
is second to OLSR at low load and comparable to OLSR at 
high load. 
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Table 1: P e r f o r m a n c e  a v e r a g e  ove r  a l l  p a u s e  t i m e s  
I flows I protocol I delivery ratio I Net load I RREQ load latency (sec) RREP Init RREP Recv 

10 LDR 0.992 ::1= 0.003 0.464 ::i: 0.132 0.410 ::1:0.121 0.066 ::1= 0.034 3.379 ± 0.129 1.335 ::k 0.020 
10 AODV 0.962 :k 0.017 0.777 :k 0.203 0.609 :k 0.136 0.731 :k 0.538 5.641 ± 1.356 1.303 :i: 0.006 
10 DSR 0.736 ± 0.087 8.337 ± 3.719 0.043 ::k 0.015 2.111 :t: 0.831 
10 OLSR 0.904 ± 0.026 5.773 ± 2.040 0.029 ::1:0.004 
30 LDR 0.857 ± 0.044 2.063 ± 0.759 1.532 ::k 0.556 0.656 ::1= 0.113 7.183 ::1= 0.998 1.642 ± 0.105 
30 AODV 0.822 ::1= 0.028 2.353 :t= 0.623 1.746 ± 0.455 1.030 ± 0.105 7.775 =1::0.774 1.533 ± 0.158 
30 DSR 0.603 =1:0.094 3.270 ::1= 1.625 0.033 ::1:0.011 3.837 :t: 1.567 
30 OLSR 0.799 ± 0.044 2.680 ± 1.009 0.489 ::1= 0.146 
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