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ABSTRACT

Following the long-held belief that the Internet is hierarchical, the
network topology generators most widely used by the Internet re-
search community, Transit-Stub and Tiers, create networks with
a deliberately hierarchical structure. However, in 1999 a seminal
paper by Faloutsos et al. revealed that the Internet’s degree distri-
bution is a power-law. Because the degree distributions produced
by the Transit-Stub and Tiers generators are not power-laws, the
research community has largely dismissed them as inadequate and
proposed new network generators that attempt to generate graphs
with power-law degree distributions.

Contrary to much of the current literature on network topology
generators, this paper starts with the assumption that it is more im-
portant for network generators to accurately model the large-scale
structure of the Internet (such as its hierarchical structure) than to
faithfully imitate its local properties (such as the degree distribu-
tion). The purpose of this paper is to determine, using various
topology metrics, which network generators better represent this
large-scale structure. We find, much to our surprise, that network
generators based on the degree distribution more accurately cap-
ture the large-scale structure of measured topologies. We then seek
an explanation for this result by examining the nature of hierarchy
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in the Internet more closely; we find that degree-based generators
produce a form of hierarchy that closely resembles the loosely hi-
erarchical nature of the Internet.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Network Archi-
tecture and Design—Network topology; 1.6.4 [Simulation and M od-
eling]: Model Validation and Analysis

General Terms
Performance, Measurement

Keywords

Network topology, hierarchy, topology characterization, topology
generators, structural generators, degree-based generators, topol-
ogy metrics, large-scale structure

1. INTRODUCTION

Network protocols are (or at least should be) designed to be in-
dependent of the underlying network topology. However, while
topology should have no effect on the correctness of network pro-
tocols, topology sometimes has a major impact on the performance
of network protocols. For this reason, network researchers often
use network topology generators to generate realistic topologies
for their simulations.! These topology generators do not aspire to
produce exact replicas of the current Internet; instead, they merely
attempt to create network topologies that embody the fundamental
characteristics of real networks.

The first network topology generator to become widely used in
protocol simulations was developed by Waxman [48]. This gen-
erator is a variant of the classical Erdos-Renyi random graph [6];
its link creation probabilities are biased by Euclidean distance be-
tween the link endpoints. A later line of research, noting that real
network topologies have a non-random structure, emphasized the
fundamental role of hierarchy. The following from [51] reflects
this observation:

L1t should be noted that sometimes topology generators are used
to tickle subtle bugs in protocols. However, for this purpose the
emphasis is not on finding realistic topologies but on finding hard
cases.



...the primary structural characteristic affecting the paths
between nodes in the Internet is the distinction be-
tween stub and transit domains... In other words, there
is a hierarchy imposed on nodes...

This reasoning quickly became accepted wisdom and, for many
years, the network generators resulting from this line of research,
Transit-Stub [10] and Tiers [14], were considered state-of-the-art.
In what follows, we will refer to these as structural generators be-
cause of their focus on the hierarchical structure of networks.

These structural generators reigned supreme until the appearance
of a seminal paper by Faloutsos et al. [17] in 1999. In that paper,
the authors used measurements of the router-level and AS-level In-
ternet graphs—the former having routers as nodes and the latter
having ASs as nodes—to investigate (among other issues) the node
degree, which is the number of connections a node has. They found
that the degree distributions of these graphs are power-laws.?

The aforementioned structural generators do not produce power-
law degree distributions. Many in the field seem to have concluded
that this disparity, by itself, proved that structural generators were
unsuitable models for the Internet. Subsequently, there have been
an increasing number of proposals for topology generators that are
designed primarily to match the Internet’s degree distribution and
do not attempt to model the Internet’s hierarchical structure; for
example, see [23, 28, 2, 31, 1, 8]. These degree-based topology
generators embody the implicit assumption that it is more important
to match a certain local property—the degree distribution—than to
capture the large-scale hierarchical structure of the Internet. The
rapid adoption of these degree-based generators suggests that this
belief, while not often explicitly stated, is widely held.

This paper starts with a very different premise. We believe that it
is more important for topology generators to accurately model the
large-scale structure of the Internet (such as its hierarchical struc-
ture) than to faithfully reproduce its local properties (such as the
degree distribution). In particular, we believe that the scaling per-
formance of protocols will be more effected by these large-scale
structures than by purely local properties.

While we cannot prove the correctness of our belief, this paper is
devoted to exploring its implications. That is, we wish to determine
which topology generators—degree-based or structural—produce
better models of the large-scale structure of the Internet. Some
have argued that this question is vacuous, because networks that do
not match local properties of the Internet cannot possibly match its
large-scale structure. But we claim the two properties—Ilocal and
global—are separable. Consider, for example, a tertiary tree, a two-
dimensional grid, and degree-four random network; each of these
networks have exactly the same degree distribution (all nodes hav-
ing degree four) but they obviously have very different large-scale
structure. Similarly, one can define trees with any desired degree
distribution (in particular, the one matching the Internet’s degree
distribution), and yet not alter the tree-like large-scale structure.

Thus, we believe, in contrast to much of the research commu-
nity, that it is still an open question as to which network topology
generators best model the Internet. This paper is devoted to ad-
dressing this issue. More specifically, after reviewing related work
in Section 2, this paper proceeds to ask two questions.

2There is some disagreement about whether these are true power
laws or are Weibull distributions or perhaps something else. For
our purposes we don’t care about the exact mathematical form of
the distribution, merely that it can be closely approximated by a
power-law or similar very long-tailed distributions.

Question #1  Which generated networks most closely model the
large-scale structure of the Internet? To answer this question we
must first determine what the Internet is and then decide how to
measure the degree of resemblance between it and the generated
networks. As we describe in Section 3.1 we use two representa-
tions of the Internet. The first representation is at the Autonomous
System (AS) level, where ASs are nodes and edges represent peer-
ing relationships between ASs. We use BGP routing tables to de-
rive the AS graph. The second representation is at the router level,
where routers are nodes and an edge indicates that the correspond-
ing routers are separated by one IP-level hop. The router graph
comes from the SCAN project [20] which uses a series of tracer-
oute measurements to map the Internet. The router graph represents
the Internet at a much finer level of granularity, and has roughly 17
times more nodes and links than the AS-level graph. While they
both are representations of the Internet, it isn’t clear that, as graphs,
they would have much in common. Thus, we consider these two
measured graphs as distinct entities in our analysis, and separately
ask which generated networks most resemble the AS-level graph
and which most resemble the router-level graph. We should note
that the structural topology generators were originally intended to
model the router-level graphs, while the degree-based generators
were not explicitly targeted at one or the other level of granularity.

Even though our topology data is the best we could obtain, it is
clear that both of these measured graphs—the AS graph and the
router graph—are far from perfect representations of the Internet.
Not only are they subject to errors and omissions, but they also
only reflect the topology and do not contain any information about
the speed of the links. We do, however, approximately model an
aspect of reality that has been shown to impact path lengths [43,
38] in Internet topologies—policy routing.

To measure the properties of the Internet graphs and the gener-
ated graphs, we use a set of three topology metrics described in
Section 3.2. These metrics are intended to capture the large-scale
structure of networks. Our methodology for picking these metrics
was simple and, admittedly, ad-hoc. We computed eight different
topology metrics (either reported in the literature or of our own
definition) on the network topologies. Of these, we find that three
basic metrics maximally distinguish our topologies: the addition of
more metrics does not further distinguish between our topologies,
but the removal of one or more of these three blurs some distinc-
tions. Thus, the conclusions we draw are supported by all eight
metrics (not all of our own design), but can be presented with only
three of them. For space reasons, we present these basic three met-
rics and refer the reader to [42] for a complete discussion of all
metrics.

While we are not aware of extensive prior work in the design of
metrics to measure large-scale network properties, and while we
have borrowed liberally from the work that exists, we fully rec-
ognize that our metrics may not adequately characterize network
topologies and that additional work is urgently needed in this area.
Moreover, the distinctions we draw from these metrics are rather
qualitative in nature (we often are left asking do these curves have
roughly the same shape?) and thus are subject to different interpre-
tations.

These caveats notwithstanding, we use these metrics to compare
the generated and measured networks. Our results, presented in
Section 4 and augmented by additional results [42], suggest two
findings. First, we find that the AS and router graphs have similar
properties. One might expect (as did we) that, since they describe
the Internet at such different levels, the AS and router graphs would
have quite different characteristics; our results indicate otherwise.
Second, we find that the degree generators are significantly better



at representing the large-scale properties of the Internet, at both the
AS and router levels, than the structural generators. Since our met-
rics measure large-scale structure and the degree generators focus
only on very local properties, we expected the structural generators
would easily be superior; again, our results indicate otherwise. This
leaves us with the seeming paradox that while the Internet certainly
has hierarchy, it appears that the large-scale structure of the Inter-
net graphs is better modeled by network generators that completely
ignore hierarchy! Resolving this paradox leads us to our second
question.

Question #2 Do the degree-based generator produce networks
with hierarchy and, if so, how? In Section 5 we introduce a mea-
sure of hierarchy, and use it to investigate the nature of hierarchy in
the generated and measured graphs. We find that while the degree-
based generators do not explicitly inject hierarchy into the network,
the power-law nature of the degree distribution results in a sub-
stantial level of hierarchy—not as strict as the hierarchy present in
structural generators, but significantly more hierarchical than, say,
random graphs. This relatively loose form of hierarchy, produced
merely by the presence of the power-law degree distribution, more
accurately reflects the nature of hierarchy in the Internet than the
strict hierarchy produced by the structural generators.

In summary, then, we find that the prevailing wisdom that degree-
based generators are better models for Internet topologies, to which
we had taken exception, is indeed correct. However, these degree-
based generators are better models of the Internet not just because
they slavishly imitate the degree-distribution but because this de-
gree distribution (and the fairly random connection of nodes) leads
to a loose form of hierarchy very similar to that in the Internet.

2. RELATED WORK

We have already mentioned several important areas of related
work: the Waxman, Transit-Stub and Tiers topology generators,
and Faloutsos et al.’s observations of power-law degree distribu-
tions in the Internet. We have also mentioned in passing several
new degree-based generators [23, 28, 2, 31, 1]. They all attempt
to generate networks with power-law degree distributions, but dif-
fer in the way in which nodes are connected. We describe some of
these generators in slightly more detail in [42].

Perhaps closest in spirit to the work presented in this paper is the
pioneering exploration of topology properties by Zegura et al. [51].
Their study considered various properties (biconnectivity and var-
ious kinds of network diameters) of random graphs (and variants
thereof) and structural generators. We follow their lead but ex-
tend their study using a larger collection of metrics, adding mea-
sured networks and degree-based generators, and explicitly ana-
lyzing the degree of hierarchy. More recently, Barabasi et al. [3]
have attempted to quantify the attack and error tolerance of random
graphs and real-world “scale-free” networks. Finally, van Mieghem
et al. [45] have shown that the Internet’s hop count distribution
(the distribution of path lengths in hops) is well modeled by that
of a random graph with uniformly or exponentially assigned link
weights. Some of the topology metrics used in our paper are based
on the metrics introduced in these papers.

Also directly relevant is the work of Medina et al. [29]. They too
compare random graph generators (such as Waxman), and hierar-
chical generators (such as Transit-Stub) to degree-based generators
(such as the BRITE generator [28]). Their metrics for compari-
son include the tests in [17] for power law exponents of the de-
gree distribution, the degree rank, the hop-plot and the eigenvalue
distribution. They conclude that the degree and degree-rank ex-
ponents are the best discriminators between topologies among the

metrics they considered. Using these metrics, they conclude that
the BRITE generator was better than the Transit-Stub and Waxman
generators in modeling the Internet. However, using the degree and
degree-rank exponents as metrics means that topologies are evalu-
ated solely on how well their degree distribution matches the degree
distribution of the Internet. It is well known that Transit-Stub and
other structural generators do not produce power-law degree distri-
butions, and so it is no mystery that BRITE and other degree-based
generators do a better job of matching the degree and degree-ranked
exponents. However, the question we pose in this paper is: which
class of generators most closely resemble the Internet when look-
ing at the large-scale properties of the Internet? We believe this
question has not been addressed by the work in [29] or elsewhere
in the literature because networks with similar degree distributions
can have very different large-scale properties (Section 1).

Two other recent pieces of work examine local properties of net-
work topologies. Bu and Towsley [8] find that degree-based gener-
ators differ significantly in their clustering coefficients [47]. Their
work proposes an alternative degree-based generator that more closely
matches the clustering behavior of the measured AS graph. For
completeness, we have incorporated both the clustering metric and
the proposed generator in our analyses (Section 4). Vukadinovic et
al. [46] evaluate the Laplacian eigenvalue spectrum of a variety of
graphs, and conclude that the multiplicity of eigenvalues of value 1
differentiates AS graphs from grids and random trees. However, as
claimed in [46], this measure of the spectrum reflects purely local
properties of the graph (the number of degree 1 nodes, the number
of nodes attached to degree 1 nodes etc.), while our work focuses
on the large-scale structure. However, their result is consistent with
our findings (and with the commonly held intuition that the AS
graph is neither mesh-like nor tree-like).

Also relevant to our work is recent work on the analysis of graph
measurements. Broido and Claffy [7] find that various properties
of real-world graphs, including the degree distribution, are well-
modeled by a Weibull distribution. Using extensive measurements
of the AS graph, Chang et al. [12] show that the degree distribution
of the AS graph deviates significantly from a strict power-law fit.
As we have discussed in Section 1, our work merely assumes that
the degree distribution is well approximated by a heavy tail and
does not depend on the exact mathematical form of the distribution.
Finally, Magoni et al. [27] study various graph theoretic and time
evolution properties of the AS topology.

Our work would not have been possible without developments
in Internet router-level topology discovery. Early work in this area
used traceroutes from a small set of sources to several thousand
hosts to compute a router-level map [32]. Subsequent work im-
proved the coverage of the Internet address space by randomly se-
lecting IP addresses [39], randomly selecting addresses from route
entries in BGP tables [9], using a precomputed set of Web sites [13],
or using heuristics to infer addressable parts of the IP space [20].
This last work also documents several techniques for improving
completeness of the inferred topologies.

Several papers have addressed the impact of topology on pro-
tocol performance. For example, Phillips et al. [35] showed that
graphs with exponentially increasing neighborhood sizes (i.e., num-
ber of nodes within a certain radius increases exponentially with ra-
dius) approximately obey the Chuang-Sirbu multicast scaling law.
In closely related work, Almeroth and Chambers [11] considered a
variety of metrics for the efficiency of multicast trees. Wong and
Katz [49] found that the amount of multicast state from randomly
placed receivers differs qualitatively with different topologies. Ra-
doslavov et al. [36] found similar results for other kinds of protocol
performance questions.



Although there is a large literature on routing hierarchies, we are
not aware of much work that has attempted to measure (as opposed
to create, or utilize) hierarchy in network topologies. Two notable,
and related, examples [18, 40], describe techniques for inferring hi-
erarchical relationships (e.g., provider-customer) in the AS topol-
ogy. The latter work also classifies ASs into a five-level hierarchy.

Somewhat orthogonal to the questions considered in this paper
is recent work attempting to explain the origin of power-law degree
distributions. Ferrer i Cancho et al. [22] and Fabrikant et al. [16]
have independently shown that, under certain conditions, power-
law degree distributions can arise as a consequence of optimizing
an objective function. Tangmunarunkit et al. [41] argue that, for
the AS graph, the high variability of the degree distribution follows
from the high variability of the distribution of AS sizes.

There has also been significant work in the non-networking lit-
erature exploring the properties of real-world networks. We do not
intend to be exhaustive in our coverage of this work, but will men-
tion some oft-referenced work. Watts and Strogatz [47] found that
many real-world networks, such as the actor collaboration network
and a section of the power grid, are well-modeled by the small-
world phenomenon. Kileinberg et al. [25] analyzed properties of
the World-Wide Web graph and proposed a new family of random
graph models. Aiello et al. [1] proposed a random graph model for
massive graphs and showed that this model captures some aspects
of the AT&T call graph. Our work has been influenced by some of
this work, but focuses primarily on communication network topolo-
gies.

3. NETWORKSAND METRICS

We now describe the topology generators and measured networks
we analyze, and the set of topology metrics we use to do so.

3.1 Networks

We analyze three categories of network graphs: measured net-
works, generated networks, and canonical networks.

3.1.1 Measured Networks

We use two measured network topologies. Our first is the AS
topology, representing inter-autonomous system (AS) connectivity,
obtained from AS path information in backbone BGP routing ta-
bles. Nodes in this topology represent ASs, and links represent
peering relationships between them. The particular topology we
present in this paper was obtained from the Route Views archive
(rout evi ews. or g).

Our second measured topology is the Internet router-level (RL)
topology. This is derived by inferring router adjacencies [20] in
the Internet from traceroutes to carefully chosen sections of the
IP address space. Nodes in this topology represent routers, and
links connect routers that are one IP-level hop from each other. In
passing, we note that this definition of a link does not distinguish
shared media from point-to-point links. The former usually appear
as completely connected subgraphs in the network topology.

Although these topologies are related, they reflect Internet con-
nectivity at rather different scales. For example, the AS topology
abstracts many details of physical connectivity between ASs and
each AS represents a grouping of several (sometimes hundreds)
topologically contiguous routers. Thus, these two graphs could
have had very different properties, but, as we show in Section 4,
they behave quite similarly with respect to our topology metrics.

Both these topologies are incomplete, to different degrees. They
may not capture all the nodes in the network and, for the nodes
that do appear in the topology, they may not include all adjacencies
at each node. We hope, however, that the qualitative conclusions

we draw in this paper will be fairly robust to minor methodolog-
ical improvements in topology collection. A more serious prob-
lem is that these measured networks merely represent connectiv-
ity between nodes and links. In particular, neither the RL nor the
AS graph contains any indication of the capacity of the underly-
ing transmission link (or shared medium). Although techniques for
estimating link capacities along a path are known ([15, 26]), they
are reported to be fairly time consuming and, to our knowledge, no
one has attempted to annotate the router-level graph of the entire
Internet with link capacity information. We don’t know how our
conclusions would change if such an annotated graph were avail-
able.

These topologies are also, obviously, time varying. We have
computed our topology metrics for at least three different snap-
shots of both topologies, each shapshot separated from the next by
several months.® We find that the qualitative conclusions we draw
in this paper hold across these different snapshots. Finally, we have
also been careful to incorporate the effects of policy routing in com-
puting our topology metrics. We use a variant of a simple routing
policy (Section 3.2.1) that has been shown to match actual routing
path lengths reasonably well [43]. In Section 4, we describe the
impact of policy on our conclusions.

3.1.2 Generators

We consider three classes of network generators in this paper.
The first category, random graph generators, is represented by the
Waxman [48] generator. The classical Erdos-Renyi random graph
model [6] assigns a uniform probability for creating a link between
any pair of nodes. The Waxman generator extends the classical
model by randomly assigning nodes to locations on a plane and
making the link creation probability a function of the Euclidean
distance between the nodes.

The second category, the structural generators, contains the Transit-

Stub [10] and Tiers [14] generators. Transit-Stub creates a number
of top-level transit domains within which nodes are connected ran-
domly. Attached to each transit domain are several similarly gener-
ated stub domains. Additional stub-to-transit and stub-to-stub links
are added randomly based upon a specified parameter. Tiers uses
a somewhat different procedure. First, it creates a number of top-
level networks, to each of which are attached several intermediate
tier networks. Similarly, several LANs are randomly attached to
each intermediate tier network. Within each tier (except the LAN),
Tiers uses a minimum spanning tree to connect all the nodes, then
adds additional links in order of increasing inter-node Euclidean
distance. LAN nodes are connected using a star topology. Addi-
tional inter-tier links are added randomly based upon a specified
parameter.

Both Transit-Stub and Tiers have a wide variety of parameters.
Although we present our results for one instance of these topolo-
gies, [42] lists the sets of parameters we have explored. Section 4.4
discusses the impact of our parameter space exploration on our con-
clusions.

The third category is that of degree-based generators. The sim-
plest degree-based generator, called the power-law random graph
(PLRG) [1], works as follows. Given a target number of nodes N,
and an exponent 3, it first assigns degrees to NV nodes drawn from
a power-law distribution with exponent 3 (i.e., the probability of
a degree of k is proportional to k%). Let v; denote the degree
assigned to node 4. Solely for the purposes of assigning links be-
tween nodes, the PLRG generator makes v; copies of each node 1.

3 Aug 1999, April 2000 and May 2001 for the RL maps. March
1999, December 2000, April 2000, and May 2001 for the AS maps.



Type Topology Number of Nodes | Avg. Degree Comment
Measured RL 170589 2.53 May 2001
AS 10941 4.13 May 2001
Generated PLRG 9230 4.46 2.246
Transit-Stub (TS) 1008 2.78 30060.5560.3290.248
Tiers 5000 2.83 1501050040520201201
Waxman 5000 7.22 5000 0.005 0.30
Canonical Mesh 900 3.87 30x30 grid
Random 5018 4.18 Link prob = 0.0008
Tree 1093 2.00 k=3,D=6

Figure 1: Table of network topologies used. See[42] for a description of parametersfor the generated networks.

Links are then assigned by randomly picking two node copies and
assigning a link between them, until no more copies remain.* For
most of the rest of the paper, we focus almost exclusively on PLRG
as the sole degree-based generator. However, the results for other
degree-based generators, presented in Section 4.4, are qualitatively
similar to those of PLRG.

3.1.3 Canonical Networks

Finally, our study also includes three canonical networks: the
k-ary Tree, the rectangular grid or Mesh, and an Erdos-Renyi Ran-
dom graph. We include these admittedly unrealistic networks be-
cause they help calibrate, and explain, our results on measured and
generated networks.

3.2 Maetrics

The goal of topology generators is not to produce exact replicas
of the current Internet, but instead to produce graphs whose proper-
ties are similar to the Internet graph. In this paper we evaluate the
quality of a topology generator by how well its generated networks
match the large-scale properties of the Internet (both the AS and
RL topologies) as measured by several topology metrics. The hard
question, though, is: what properties are relevant to this compari-
son?

There is no single answer to this question, as the relevant prop-
erties may well depend on how the generated networks are being
used. Moreover, even for a given purpose it is a matter of judge-
ment as to what network properties are the most relevant. Thus, we
recognize that the metrics we chose are in no way definitive, but
merely reflect our own intuition.

Our list of metrics, which include many that have been reported
in the networking literature and some graph-theoretic metrics that
have plausible networking interpretations, are listed below:

e Neighborhood size (or expansion) [35].

e Resilience, the size of a cut-set for a balanced bi-partition [24].

e Distortion, or the minimum communication cost spanning
tree [21].

Node diameter (or eccentricity) distribution [51].
Eigenvalue distribution [17].

Size of a vertex cover [33].

Biconnectivity (number of biconnected components) [51].

component under random failure (when nodes are removed
from the graph randomly) or under attack (when nodes are
removed in order of decreasing degree) [3].

“This generator is not guaranteed to give a connected graph al-
though, for reasonable values of 3, it produces one large connected
component. We pick this connected component for our analyses.
Furthermore, this procedure can produce self-loops and multiple
links between nodes. We ignore these superfluous links in our
graphs.

The average pairwise shortest path between nodes in the largest

After computing these metrics on our topologies, we found that
three (expansion, resilience and distortion) formed the smallest set
of metrics that qualitatively distinguished our set of topologies into
well-defined categories. We describe these metrics in this section,
and discuss these qualitative distinctions in Section 4. We present
the results for all of our other metrics in [42]. The fact that these
three metrics also qualitatively differentiate between our canonical
graphs—mesh, tree and the random graph (Section 3.2.1) serves as
a simple sanity check for our methodology. Intuitively, we know
that these canonical graphs are quite different from each other in
ways that would be very important to networks, and therefore it is
important that our metrics at least clearly differentiate them.®

We made one important assumption in deciding how to com-
pute these metrics on our topologies—that they should be designed
to ignore superficial differences, like differences in size. Our two
measured topologies differ by an order of magnitude in size, and
it is more convenient to compare the two against a set of gener-
ated and canonical networks. We describe our approach to this, a
technique called ball-growing, in the next section.

3.21 TheThreeBasic Metrics

Rate of spreading: Expansion One key aspect of a tree is that
the number of sites you can reach by traversing h hops grows expo-
nentially in k. We capture this behavior with our expansion metric,
denoted by E(h). E(h) is the average fraction of nodes in the
graph that fall within a ball of radius h centered at a node in the
topology. More precisely, for a given originating node v we com-
pute the number of nodes that can be reached within A hops (the
reachable set). We calculate the size of the reachable set for each
node in the graph, average the result, and then normalize by the
total number of nodes in the graph.

This definition is similar® to the reachability function described
in [35] and to the hop-pair distribution defined in [17]. In fact,
[35] has analyzed the expansion of some, but not all, of the topolo-
gies described in Section 3.1. We repeat those analyses here for
completeness.

For our other metrics we use a technique, called ball-growing,
based on these balls of radius h. We measure some quantity in a
ball of radius h and then consider how that quantity grows as a
function of h. This allows us to compare graphs of different sizes.
The result of each such metric is not a single value but a function of
h, and the dependence on A reflects the behavior of the quantity in
question at different scales. We will use this technique in our other
two metrics; expansion is merely the measure of the size (in terms

5Many of the other metrics used in the literature are not as success-
ful in differentiating these three canonical graphs.

5Unlike [35], E(h) is expressed as a fraction of the total number
of nodes in the graph, thus making it easier to compare graphs of
different sizes in Section 4.



of the number of nodes that reside in the ball), and our other two
metrics will measure other properties of the subgraph that resides
within balls of radius h.

Implicitly, in computing balls of radius A, our definition includes
all nodes to whom the shortest path from the center of the ball is
less than or equal to h. For the AS and RL graphs, we extended
this in a simple way to account for policy routing. In computing a
policy-induced ball of radius A, we include all nodes to whom the
policy path from the center of the ball is less than or equal to A, and
only include links that lie on policy-compliant paths to those nodes.
To do so, we use a policy model that is slightly more sophisticated
than the one reported in [43]. At the AS level, this policy model
computes the shortest AS path between two nodes that does not
violate provider-customer relationships (an example of a path that
would violate these relationship is one that traverses a provider,
followed by a customer and then back to another provider). We
use the results in [18] to infer provider-customer relationships. To
compute the policy path in the RL graph, we first compute the cor-
responding AS level policy path, and then use shortest-paths within
the sequence of ASs to determine a router-level policy path. We
discuss policy-induced ball growing in greater detail in [42].

There is an important caveat about ball growing that is worth
mentioning. We have said that ball growing allows us to study a
graph at different scales. However, for some graphs, computing a
metric on balls of different sizes is not equivalent to evaluating the
metric on graphs of comparable sizes. A random graph is a good
example of this; a ball of size V of a random graph may not itself
be a random graph. However, balls of radius A from, respectively,
a random network of size IV and a random network of size 2NV will
be similar, as long as the diameters of both networks is larger than
h. This is why we adopted the ball-growing approach.

The expansion metric allows us to easily distinguish the mesh
from our other two canonical networks. For a mesh with V nodes,
E(h) x ’}V—z while for the k-ary tree or a random graph of aver-
age degree k, E(h) % Thus, the mesh has a qualitatively
lower expansion than the tree and the random graph. In passing,
we note that our definition of expansion is different from the tra-
ditional graph-theoretic definition of expander graphs’ which, for
reasons we don’t have space to explain here, is not appropriate for
the task at hand.

Existence of alternate paths: Resilience If you cut a single link
in a tree, the graph is no longer connected. In contrast, it typically
requires many cut links to disconnect a random graph. Our second
metric, resilience measures the robustness of the graph to link fail-
ures. In its definition we use a standard graph-theoretic quantity:
the minimum cut-set size for a balanced bi-partition of a graph. For
a graph with n nodes, this is the minimal number of links that must
be cut so that the two resulting components have approximately %
nodes. We define the resilience R(n) to be the average minimum
cut-set size within an n-node ball around any node in the topol-
ogy®. We make R a function of n not h—the number of nodes in
the ball, not the radius of the ball itself—to factor out the fact that

“An N node bipartite graph from a vertex set A to a vertex set B
is said to be an (a, b) expander if, every set of n < aN nodes in A
has at least m > bN neighbors in B [34].

8For each node in the network, we grow balls with increasing ra-
dius. For the subgraph formed by nodes within a ball, we compute
the number of nodes n as well as the resilience of the subgraph. We
repeat this computation for all (for larger subgraphs, we repeated
the computation for sufficiently large number of randomly chosen
nodes, in order to keep computation times reasonable) other nodes,
then average the sizes and resilience values of all subgraphs of the
same radius.

graphs with high expansion will have more nodes in balls of the
same radius.

Computing the minimal cut-set size for a balanced bi-partition of
a graph is NP-hard [24]. We use the well-tested heuristics described
in [24] for our computations of R(n).

A random graph with average degree k has R(n) o kn and a
mesh has R(n) « /n. The tree, of course, has R(n) = 1. Thus,
the tree has qualitatively lower resilience than the other two graphs.

Tree-like behavior: Distortion While it appears somewhat un-
natural and unmotivated, our final metric, distortion, comes from
the graph theory literature [21]. Consider any spanning tree 7' on a
graph G, and compute the average distance on 7" between any two
vertices that share an edge in G. This number measures how T dis-
torts edges in G, i.e., it measures how many extra hops are required
to go from one side of an edge in G to the other, if we are restricted
to using 7'. We define the distortion of G to be the smallest such
average over all possible T's. Intuitively, distortion measures how
tree-like a graph is. This definition is a special case of minimum
communication cost spanning trees defined in [21].

For a given graph, distortion is a single number. As we did
with resilience, we define the distortion D(n) for a topology to
be the average distortion of a subgraph of n nodes within a “ball”
around a node in the topology. Computing the distortion can be
NP-hard [37]. For the results described in this paper, we use the
smallest distortion obtained by applying our own heuristics.®

The tree has R(n) = 1. The random graph and the mesh each
have R(n) o log n [19].

Summary To more fully understand the distinctions made by our
three metrics, we consider two other standard networks: a fully-
connected network and a linear chain. A fully-connected network
has extremely high expansion (E(h) = 1) and resilience (R(n) «
n), and low distortion (D(n) = 2). A chain (linear) network (with
N nodes) has extremely low values on all three: E(h) = %,
R(n) « 1, and D(n) = 1. We don’t use these for calibration be-
cause they have trivial expansion properties (all nodes within one
hop, or one node at each hop) that doesn’t work well with our ball-
growing metric, but they are useful here.

If we divide behavior for each metric into high (H) and low (L),
we can construct the following table which lists the properties of
our five representative networks:

Topology | Expansion | Resilience | Distortion
Mesh L H H
Random H H H
Tree H L L
Complete H H L
Linear L L L

Notice that each of the five networks has its own low/high signa-

9For each node in the network, we grow balls with increasing ra-
dius. For the subgraph formed by nodes within a ball, we compute
the number of nodes in the ball. We then use an all-pairs shortest
path computation on the ball. The node through which the highest
number of pairs traverse is deemed to be the “center” of the ball.
The subgraph’s distortion value is determined by the distortion of
the BFS tree rooted at the center. We repeat this computation for all
(for larger subgraphs, we repeated the computation for sufficiently
large number of randomly chosen nodes, in order to keep compu-
tation times reasonable) other nodes, then average the sizes and
distortion values of all subgraphs of the same radius. We also use a
simple divide and conquer algorithm suggested by Bartal [5]. This
approach is known to compute distortions to within O(log(n)) of
the optimal solution. We should note that for all the topologies ex-
cept mesh our own heuristics resulted in smaller distortion values
than that obtained using this heuristic.



ture. Thus, this set of metrics is successful at distinguishing be-
tween the canonical networks.

We have not been able to find a canonical network with the LHL
pattern. In fact, the complete graph is the only example we have of
any network with high-resilience and low-distortion. The complete
graph shows that these two properties (resilience and distortion)
are not redundant (i.e., they refer to different aspects of network
structure). However, the artificiality of the complete graph, and the
lack of simple examples of high-resilience and low-distortion net-
works might lead us to suspect that networks with high-resilience
and low-distortion are unlikely to occur in practice. In fact, we find
in Section 4 that the two Internet graphs have these properties.

Also missing are the combinations LLH and HLH. We conjecture
that high distortion implies high resilience so these combinations
are impossible.

4. RESULTS

We now describe the results of applying our three basic metrics
to specific instances of measured, canonical, and generated net-
works (Figure 1). Some of the network generators allow a variety
of input parameters. For these, we use particular instances of gener-
ated networks, whose parameters are described in Figure 1. In Sec-
tion 4.4 we discuss the sensitivity of our results to parameter vari-
ations. Of the generated and canonical networks, only the PLRG
qualitatively captures the degree distribution of the measured net-
works [42].

4.1 Expansion

Figures 2(a,d,g) plot the expansion E (k) for our measured, gen-
erated, and canonical networks. Following our discussion in Sec-
tion 3.2.1, Figure 2(a) shows that Tree and Random expand expo-
nentially (up until the regime where almost all nodes are reached),
although at slightly different rates. Mesh exhibits a qualitatively
slower expansion. AS and RL also expand exponentially,®® and
their behavior doesn’t qualitatively change when policy is consid-
ered. Of the generated networks, Transit-Stub (TS), PLRG, and
Waxman expand exponentially, but Tiers shows a markedly slower
expansion similar to Mesh.

In summary, then, we can categorize our networks into two classes,
those that expand exponentially, and those that expand more slowly.
Using our low/high terminology of Section 3.2.1, we say that Mesh
and Tiers have low expansion, and all other networks exhibit high
expansion.

Consistent with our initial assumptions (Section 3.2.1), we have
drawn qualitative (and therefore somewhat subjective) distinctions.
We ignore quantitative differences in metric values, such as differ-
ent constants or slopes. We also do not use sophisticated curve-
fitting techniques to infer the mathematical form of E(h) for some
of the measured and generated networks.

4.2 Resilience

Figures 2(b,e,h) plot the resilience function R(n) for our mea-
sured, generated, and canonical networks. Of our canonical net-
works, Tree has the lowest resilience (Figure 2(b)). The minor vari-
ations in this function can be attributed to the heuristics we use to
determine the cut-set. The resilience of Mesh increases with ball
size, but more slowly than Random.

The measured networks exhibit a high resilience that is com-
parable with that of Random. However, RL and AS differ from

10The finding that the expansion of the RL graph is exponential is
not universally accepted [17]. However, at least two other studies
agree with our conclusions [35, 44].

each other quantitatively. Also, when policy routing is taken into
account, the resilience of the RL and AS graphs decreases (the for-
mer by almost a factor of two), although its qualitative behavior as
a function of ball size remains unchanged for both graphs. Of the
generated networks, Waxman closely resembles Random, and Tiers
closely resembles Mesh. TS has low R(n)™, similar to Tree.”? Fi-
nally, PLRG has high resilience, like Random, although it does not
match Random as closely as Waxman does.

Following our low/high classification of Section 3.2.1, we then
say that TS and Tree have low resilience, and all the other networks
have high resilience.

4.3 Distortion

Figures 2(c,f,i) plot D(n) for our measured, generated and canon-
ical networks. The distortion of the Tree is low, whereas that for
Mesh and Random are high.

By our reckoning, the measured networks (Figure 2(h)) have low
distortion, more so when policy routing is taken into account. Their
distortion, although it increases with n, appears qualitatively differ-
ent from Mesh or Random. The same is true of most of the gener-
ated networks, with the sole exception of Waxman.

From this discussion, we conclude that Random, Mesh and Wax-
man all have high distortion. All other networks have low distor-
tion.

4.4 Discussion

The preceding discussion reveals the following low/high classi-
fications for our measured and generated networks:

Topology Expansion | Resilience | Distortion Comment
Mesh L H H
Random H H H
Tree H L L
Complete H H L
Linear L L L
AS, RL, PLRG H H L Like complete graph
Tiers L H L No counterpart
TS H L L Like Tree
Waxman H H H Like Random

Both measured graphs have rapid expansion, high resilience, and
relatively low distortion; that is, these networks can be seen as tree-
like, except that they are resilient. Policy routing does not change
this classification. Even though there is no a priori reason to as-
sume that the AS and RL topologies would be qualitatively similar,
our metrics suggest that they are quite similar, at least in terms of
the properties measured by our metrics.®®

11T has many parameters, one of which is the fraction of redundant
transit-to-stub or stub-to-stub links. We tried varying this parameter
(from 1% to 60%) in an attempt to increase the resilience of TS.
When we do so, however, the distortion of TS increases to match
that of the random graph.

2Notice that there are minor irregularities in R(n) for TS. We at-
tribute this to the observation that, of two balls of slightly differing
size, a larger ball can have a lower resilience. For example, con-
sider this contrived example of two completely connected networks
each with n nodes joined by a single link. A ball of radius 1 cen-
tered on any node has a resilience of n; a ball of radius 3 centered
on any node has a resilience of 1.

13The results presented here contain one instance of each of the AS
and RL graphs. In fact, we computed these metrics for at least two
other instances, generated more than six months apart from each
other (see footnote 3 for dates). Moreover, the RL graph of August
1999 was approximately a factor of two larger than the later graphs
(the size difference is due to the difference in the duration of exe-



Expansion

Expansion

Expansion

1 T v
><»><»><><><><><'X'x'><x ’
01
001 |
0.001 %
0.0001 -
1e05 | Tree —+—
Mesh —-x—
1006 Random -
o . . h f
0 5 10 15 20 25 30 35
Ball Radius

(a) Expansion, Canonical

01} x
0.01 +
0001 |
00001 §

1e-05

AS
AS(Policy)

1e-06

01}
001t ¥ X

0001 1

0.0001

1e-05 ¢

1e-06

*
8
0 5 10 15 20 25 30 35

Ball Radius

(d) Expansion, Measured

TS ——
Tiers -
Waxman --%
) ) , PLRG —&
0 5 10 15 20 25 30 35
Ball Radius

(9) Expansion, Generated

B-A ——
Brite >
BT %
Inet -~
PLRG -—u---
0 5 10 15 20 25 30 35

Ball Radius

(j) Expansion, Degree-Based Generators

1e+06

100000 +

10000 +

Resilience

100

10 -

1000

10 100 1000 10000 100000
Bal Size

(b) Resilience, Canonical

1e+06

100000 +

10000 ¢

Resilience

100 ¢

10 ¢

1000

1e+06

100000 +

10000 ¢

Resilience

100 ¢

10 ¢

1e+06

Resilience
s B § F

i
S]

(k) Resilience, Degree-Based Generators

10 100 1000 10000 100000
Bal Size

(e) Resilience, Measured

1000

TS ——

Tiers -
Waxman -
PLRG &

1 10 100

1000 10000 100000
Bal Size

(h) Resilience, Generated

Brite -
BT %
Inet &
PLRG »

1 10

100 1000 10000 100000
Bal Size

Distortion

Distortion

Distortion

Distortion

Tree ——
Mesh ——x-—
6 | Random - #
#
5 g F
£
X
4 £
X
¥ *
3 X /
X
#
2 I
X *
1 AT ) . .
1 10 100 1000 10000 100000
Ball Size
(c) Distortion, Canonical
7 T
RL(Policy) -
6 AS %
AS(Policy) &
5
4
3
2 P
,.r><.:3§~><">§fﬁjx =
. =3
1 = H n
1 10 100 1000 10000 100000
Ball Size
(f) Distortion, Measured
7 T T
TS ——
Tiers -
6 | Waxman --x ¥
PLRG &
5 *
4
3 i
2 x&wgﬁfn
1 <,

o

() Distortion, Degree-Based Generators

10 100 1000 10000 100000
Ball Size

(i) Distortion, Generated

B-A ——
Brite -
BT %
Inet -~

PLRG --=

10 100 1000 10000 100000
Ball Size

Figure2: Our threemetrics. Expansion, Resilience and Distortion



Among the standard graphs, only the complete graph has the
same low-high signature* as these measured graphs. Moreover,
two of the generated graphs resemble a canonical network. TS re-
sembles the Tree, and Waxman closely models Random. Tiers does
not have a canonical counterpart; it resembles Mesh in two metrics,
but has low distortion unlike the Mesh.

When comparing our measured graphs to the generated ones, we
find that three of the generated graphs differ from the measured
graphs in one particular metric: Tiers has low expansion, TS has
low resilience, and Waxman has high distortion. Only the PLRG
matches the measured graphs in all three metrics. Thus, we contend
that PLRG produces graphs that are better qualitative matches to
the Internet graphs than those produced by the other generators.

This conclusion holds for all other degree-based generators we
tested. Figure 2(j-1) shows our three metrics for four other proposed
degree-based generators: Brite version 1.0 [28], BA [4], BT [8] and
Inet [23]. All of these can be classified, along with the PLRG, as
having high expansion and resilience, and low distortion. These
generators all produce graphs with a power-law degree distribu-
tion, but differ in the way nodes are connected together. In [42], we
investigate other ways of connecting nodes, and find that our con-
clusions are robust to variations in node connectivity, provided the
connectivity method incorporates some notion of random connec-
tivity and the generated graph’s degree distribution is qualitatively
similar to that of the measured graphs.

These conclusions about generated networks hold for a wide va-
riety of parameters [42]. While for most parameter values the re-
sults are in agreement with what we have presented here, it is pos-
sible to drive these generators to different operating regimes us-
ing extreme choices for parameters. For the Waxman generator, it
is possible to introduce extreme geographic bias, thereby dramat-
ically reducing the likelihood of having links between two nodes
that are far apart. This also reduces the likelihood of obtaining a
connected graph. In this regime, the largest connected component
of the Waxman network has low expansion, low resilience and low
distortion. It then resembles a minimum spanning tree overlaid on
points on a plane, where edge weights are proportional to Euclidean
distance. For two-level TS hierarchies with a large transit portion,
TS tends toward a random graph. Finally, with Tiers, the average
degree parameter can be reduced to the point where it starts to re-
semble a minimum spanning tree.

In addition to our three basic metrics, we have evaluated five
other metrics [42].® Some of these were of our own devising, but
many were taken from the literature. In all cases the results were
consistent with the findings above. In many cases the metrics did
not distinguish between different graphs, but whenever there was a
clear distinction it was consistent with the grouping found by our
three basic metrics. In fact, the three metrics stood out clearly be-
cause of their superior ability to distinguish between the various
networks. We conclude that, even by these additional metrics, the
PLRG resembles the AS and the RL graphs, the Waxman resem-

cution of the topology discovery software). Despite the differences
in size and time of generation, these other measured graphs did not
change our conclusions.
1\We do not mean to suggest that the AS and RL graphs resemble
the complete graph. The latter exhibits an extreme expansion be-
havior (all nodes are reachable within one hop) that the AS and RL
do not.
151n addition to the metrics described in [42], we also tested many
others (of our own devising), including the average path length be-
tween any two nodes in a ball of size n, and the expected max-flow
between the center of a ball of size n and any node on the surface
of the ball. These metrics, too, do not contradict our findings but
do not add to them either.

bles Random, and TS*® qualitatively matches the tree, modulo the
observation that extreme choices of parameters can alter the prop-
erties of the generated graphs. The PLRG is the only generator
with a power-law distribution of the rank of positive eigenvalues,
a signature of the AS topology [17]. (The RL graph was too large
to obtain its eigenvalue spectrum.) The diameter distributions have
a similar bell-curve shape (with the Tree as the sole exception, as
discussed in footnote 16), although with different magnitudes. The
error tolerance [3] plots for all the graphs are qualitatively similar,
but with different magnitudes. However, the measured networks
have a peaked attack tolerance [3], a characteristic shared by PLRG
and Tiers. The vertex cover metric of all graphs are quite similar to
each other, and the biconnectivity metric of all graphs has a similar
behavior with the exception of Mesh, Random, and Waxman.

In addition to these various metrics that are intended to measure
large-scale structure, we did compute the clustering metric used in
[8] on our various graphs. Using our ball-growing technique and
looking at the overall curve’s behavior, the PLRG graph had a be-
havior similar to that of the AS graph, but different from that of
all other graphs including the RL. However, when merely looking
at the value of the clustering coefficient computed on the whole
graph, the PLRG (and the structural generators) exhibited signif-
icantly different clustering coefficients compared to either the AS
or the RL. We conclude that while PLRG captures the large-scale
properties of our measured graphs, it may not capture the local
properties of these graphs.

5. HIERARCHY

We are now faced with a paradox. There seems little doubt that
the Internet has a significant degree of hierarchy; at the router level
network engineers routinely speak of backbones and at the AS level
ISPs are broken into different “tiers.” However, our results in Sec-
tion 4 indicate that these hierarchical networks—both AS and RL—
are better modeled by generators that make no attempt to create hi-
erarchical structure. This section is devoted to resolving this para-
dox.

Our first task is to better understand what hierarchy is and how
it might be measured. The notion of hierarchy revolves around the
intuition that there is a set of backbone links that carry the traffic
from many source-destination pairs; that is, the traffic is not evenly
spread out among the links but instead is funneled into more central
backbones. We therefore conjecture that a symptom of hierarchical
structure is that some links are used more often than others. Here
we are not referring to the level of traffic, which is a function of the
sending patterns of individual hosts, but rather usage as measured
by the set of node pairs (source-destination pairs) whose traffic tra-
verses the link when using shortest path routing; we call this the
link’s traversal set.”’

The most natural measure of hierarchy would be the size of the
traversal set. This simple measure turns out to be misleading; for
instance, access links (i.e. links with a single node on one end)
have a traversal set of size N — 1 (where IV is the number of nodes
in the network), which turns out to be a relatively large traversal
set. We therefore chose instead to measure the (weighted) vertex
cover of the traversal set. The vertex cover of a traversal set is the
minimum number of nodes that need to be removed to eliminate
at least one node from each pair in the traversal set. For instance,
access links have a vertex cover of 1, since eliminating the singleton

16 The diameter distribution for the tree is one-sided, but neverthe-
less resembles Transit-Stub.

17Recall that a “link” in a topology graph might represent various
forms of shared media in the underlying Internet.
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node eliminates all pairs from the set. Intuitively, the vertex cover
counts the smallest set of nodes affected by removal of the link.
A link for which this number is high is more important (i.e. more
nodes depend on this link) than links for which the number is low.
We tested this hierarchy metric on several small example networks,
and it produced results which coincided with our intuitive notion
of the hierarchy in those graphs. To use this metric in the presence
of multiple shortest paths, we had to use a weighted vertex cover.'®
We use well-known approximation algorithms [30] for computing
weighted vertex covers.

For all topologies, we compute link values using shortest path
routing. In addition, for the AS and RL topologies, we use the sim-
ple policy model described in Section 3.2.1 to evaluate link values
using policy-constrained paths.

We expect that backbone links will have higher values than pe-
ripheral links.*® Thus, the distribution of these link values is our
measure of hierarchy; if all links have similar values then there is
no hierarchy because usage is spread out evenly, and if only a few
links have high link values then there is a small and well-defined
backbone on which usage is concentrated (where, again, usage is
not measured by the level of traffic but by the nature of the traversal
set).

5.1 Link ValueDistribution

Figures 3(a)-(c) show the link value distributions for the canon-
ical, generated, and measured networks. In these plots, the z-axis
plots the rank of a link according to its value (a higher rank indicat-
ing a higher value), normalized by the number of links in the topol-

18First, we generalize the definition of the traversal set to include
weights associated with node pairs. The weight w(u, v,1) assigned
to a node pair (u,v) for a link [ is the fraction of the total number
of equal cost shortest paths between u and v that traverse link 1.
Thus, if there are multiple shortest paths between a node pair, the
contribution of the node pair is accordingly weighted. Consider
now the bipartite graph formed by the traversal set. To each vertex
w in this graph, we assign a vertex weight W (u, ) which is simply
the average w(u, v, ) such that (u, v) belongs to the traversal set.
We define a link’s value to be the minimum weighted vertex cover
in the bipartite graph.

19\We have actually verified, for several of our topologies, that this
expectation holds: the highest valued links in TS are in the transit
cloud; in Tiers they are in the WAN; in the AS graph, they connect
well-known national backbone, and in the RL graph they occur in,
or between, these backbones. This provided a sanity check on our
approach to measuring hierarchy.

ogy. The y-axis depicts the link value normalized by the number
of nodes in the network. Figures 4(a)-(c) plot the same data but on
different scale. By examining these figures, we conclude that there
exist three classes of hierarchy in our graphs: strict, moderate, and
loose.

Consider Figure 3 first. These plots emphasize the distribution
the highest valued links in the network. In terms of the magnitude
of link values, the data reveals that the highest link values in Tree,
TS, and Tiers are significantly higher than all the other topologies,
and their link value distributions fall off rapidly. For the Tree and
TS some links have link values above 0.3 but only about 10% have
link values above 0.005. The distribution in Tiers falls off equally
sharply, even though the highest link value is only 0.25. We say, by
this measure, that these topologies have a strict hierarchy.

By examining Figure 4, our two other groupings become evident.
From this figure, we see that RL%, AS, and PLRG can be well de-
scribed as having a moderate hierarchy.?> These graphs have the
property that, like the strict hierarchy graphs, the distribution of
link values falls off quickly (less than 10% of the nodes have link
values greater than 0.005) but the highest value links are signifi-
cantly lower than those in the strict hierarchy graphs.

In contrast, the Mesh, Random graph and Waxman have a signif-
icantly more well spread link value distribution. Even though the
highest link values are comparable to that of graphs in the previous
category, almost 70% of the links in these graphs have link values
about 0.05 and the distribution is very flat. We say that graphs in
this category have a loose hierarchy (at best). This is consistent
with generally accepted wisdom about the lack of significant hier-
archy in the mesh and the random graph.

Finally, note that accounting for policy in computing the link
values does not qualitatively alter our groupings. As expected, with
policy routing since paths are more concentrated, the highest link
values are larger than with shortest path routing, both for AS and
RL.

The table below depicts these qualitative groupings.

20Computing the link values for the full RL graph is computation-
ally expensive. Therefore, we compute the link values of the core
topology (generated by recursively removing degree 1 nodes) in-
stead. In previous work, we have found that link values (computed
in aslightly different way) computed on the core map correlate well
with link values obtained from a full map.

2HIn fact, the other degree-based generators that we evaluated in
Section 4.4 also fall into this category (see [42]).



01 01 ¢

\
0.01 g

001 ¢ 3 .
&, RL(Policy)

0.001 ¢ 0.001

Normalized Link Value
Normalized Link Value

0.0001 - 1 0.0001 |

. M.
AS(Policy) e

01
\
0.01

\\
0.001 ¢

Normalized Link Value

0.0001 +

1e-05 1e-05

0 010203040506070809 1
Normalized Link Rank

(a) Canonical

L L L L L L L ",
0 010203040506070809 1
Normalized Link Rank

(b) Measured

1805 S S S
0 010203040506070809 1

Normalized Link Rank

(c) Generated

Figure4: Thelink valuerank distribution (x-axison linear scale)

Topology Strict | Moderate | Loose
Mesh X
Random X
Tree X
AS, RL, PLRG X
Tiers X
TS X
Waxman X

From these groupings we make two important observations.

e The structural generators construct a much stricter form of
hierarchy than is present in the measured graphs. This sug-
gests a possible explanation for why they do not qualitatively
match the measured networks by our topology metrics (Sec-
tion 4).

e PLRG qualitatively models the hierarchy present in AS and
RL graphs, even with policy routing accounted for. This re-
solves our paradox to some extent. Although not explicitly
hierarchically constructed, PLRG does capture the moderate
hierarchy in our measured networks. A question remains:
what aspect of PLRG graphs is responsible for this hierar-
chy? We address this in the next subsection.

5.2 Correlation between link usageand degree

To better understand the hierarchical structure of these graphs,
we compute the correlation between a link’s value and the lower
degree of the nodes at the end of the link. A high correlation be-
tween these two indicates that high-value links connect high degree
nodes. Figure 5 shows the correlations for the nine networks under
consideration.

The PLRG has extremely high correlation. There is absolutely
no explicit structure built into this graph. The only links that have
(relatively) high values are the ones that connect two nodes with
(relatively) high degrees. In the PLRG graph the long-tailed nature
of the power-law degree distribution means that there are numerous
nodes with very high degrees. One can think of these high-degree
nodes as “hubs” and the high value links—the backbone links—are
those that connect two hubs. In this sense, the hierarchy in a PLRG
arises entirely from the long-tailed nature of its degree distribution.

The Random graph also has a relatively high correlation. In this
graph, there is absolutely no explicit structure built in. The only
links that have (relatively) high values are the ones that connect two
nodes with (relatively) high degrees. However, the Random graph
has a very limited distribution of degrees, and so the spread of link
values is similarly limited, resulting in very limited hierarchy.

Correlation

PLRG
Waxman
Random
AS
AS(Policy)
TS

Mesh
Tiers

RL

Tree
RL(Policy)

Figure5: Correlation between minimum degree and link value

In contrast, the Tree has the lowest level of correlation. Unlike
the PLRG, the Tree’s hierarchy comes from the structure—from the
deliberate way in which the nodes are connected—and not from the
degree distribution. The correlation that is present is because the
leaves have a lower degree than the other nodes, and the associated
links have the lowest link values in the tree.

The AS and Waxman graphs have relatively high correlation,
while the Mesh, TS, Tiers, and RL have relatively low levels of
correlation. This is consistent with our reasoning above, that the
hierarchy in the structural generators (Tiers and TS) arises, like the
Tree, from the deliberate placement of links. The fact that the AS
graph has higher correlation than the RL graph, even though they
have very similar levels of hierarchy, may indicate that the hier-
archy in the RL graph is due to the deliberate placement of links
while in the AS graph the hierarchy is more related to the degrees
of the nodes (that is, to the peering relationships between the highly
connected ASs that form the “backbone” of the AS graph).

In summary, given the high correlation between link value and
degree of the attached nodes, we surmise that the hierarchy in degree-
based generators arises from their long-tailed degree distribution.
Structural generators show no such correlation, and the hierarchy
arises from explicit construction. The RL graph shows less correla-
tion, suggesting that its hierarchy is deliberately constructed, even
though its link value characteristics are quite similar to the PLRG.



6. DISCUSSION

We began this paper by questioning the widely accepted belief
that degree-based generators, by the very fact that they match the
degree distribution of the Internet, are superior to structural gener-
ators. We claimed that it is more important that topology genera-
tors capture the large-scale structure of the Internet than to repro-
duce the purely local properties such as the degree distribution. We
further argued that, despite the widespread acceptance of degree-
based generators, it was still an open question as to which family
of generators—structural or degree-based—would better capture
these large-scale properties. The goal of this paper was to answer
this question.

Our preliminary results suggest that:

e Degree-based generators capture the large-scale structure of
the measured networks surprisingly well, at least according
to our metrics, and are significantly better than structural
generators.

e The hierarchy present in the measured networks is looser and
less strict than in the structural generators, and this is well
captured by the hierarchical structure in degree-based gener-
ators. This may explain why these generators better match
our measured topologies in terms of our metrics.

e The hierarchy in degree-based generators arises from the long-

tailed distribution of degrees, and the backbone links are merely

the links connecting two high-degree nodes. The hierarchy
in the RL graph is not highly correlated with degree (and thus
is due to the deliberate placement of links) while there is a
higher correlation in the AS graph.

These results should not be interpreted as obviating the struc-
tural generators. The focus in this paper has been on which family
of generators best model the large-scale structure of the Internet,
which has restricted our attention to rather large graphs (the small-
est generated graph had 1000 nodes). Choosing a small (less than,
say, 100 node) topology on which to run network simulations is
an entirely separate question. As noted in [50], a power-law dis-
tribution is almost meaningless if the number of nodes is small.
With only a few nodes, it is unlikely that the degree distribution
will be able to create the implicit hierarchy necessary for modeling
networks. It may well be that the current structural generators, or
ones yet to be devised, are better choices for small-scale simulation
studies. Finally, structural generators might be more appropriate
for topology models that incorporate bandwidth, topology or geog-
raphy.
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