
Towards Continuous Availability of Internet Services
through Availability Domains

Nicholas Bowen1 Daniel Sturman1 Tina Ting Liu2

1IBM T.J. Watson Research Center
30 Saw Mill River Rd.
Hawthorne, NY 10532

2265 CSRL, MC 228
University of Illinois at Urbana-Champaign

1308 W. Main St.
Urbana, IL 61801

E-mail: fbowen|sturmang@us.ibm.com ting@crhc.uiuc.edu

Abstract

The increasing number of Internet users has caused a
dramatic increase in electronic commerce. This growth
is outpacing technologies for dependability causing tradi-
tional views of high availability to come under question. In
particular, Internet failures are a phenomenon external to
the owner of a commerce site that must be dealt with, and
therefore, geographically distributed servers are a basic
availability requirement for e-commerce sites. Geographic
distribution provides an opportunity to view users in differ-
ent roles based on those distributed components they must
access. This paper presents an approach based on parti-
tioning on-line function into domains, each of which pro-
vides service to users in a specific role. Coordination be-
tween domains is eliminated as much as possible by ex-
ploting application-specific knowledge. Once partitioned,
availability techniques may be applied to each domain in-
dependently. We argue such an approach is necessary to
deal with the geographic distribution of system components
imposed by the nature of the Internet and maps well onto
real e-commerce deployments.

1. Introduction

The Internet continues to grow at a rapid rate in terms of
both the number of users and the number of Internet sites.
With the increased number of users has come an increase in
the amount of commerce being done over the Internet. The
business need for electronic commerce (e-commerce) has
been so compelling that its growth has outstripped the de-
velopment of technologies for dependability. As a result, e-
commerce has become a two edged sword, bringing a huge
opportunity for reaching new customers but also creating a
huge marketing liability in the event of outages which often

become highly publicized.

Electronic commerce presents new challenges for high
availability. Much of the network is out of the control of the
individual business so the scope of any high availability so-
lution must include these effects. The characteristics of the
workloads are extremely non-uniform over time with many
reports of peak load to average load ratios between 5:1 to
10:1. Workload variance is quite dependent on the nature
of the business. For example, online financial services of-
ten experience a surge when the market opens or when a
major event that impacts the market occurs. As people’s
home become more integrated into the Internet, there will
be a strong correlation between effective advertisement and
web traffic. Since availability is a function of the web server
being able to handle these peak loads, businesses often pur-
chase additional capacity above the peak loads.

The classical thinking of a single clustered server to pro-
vide high availability and scaling needs to be rethought. Ge-
ographic distribution has become a standard approach to In-
ternet availability. For example, in the Nagano Olympics,
IBM used geographically distributed servers to deal with
these issues [4, 5]. Large software companies such as
Netscape, Microsoft, and Sun employ extensive use of “mir-
rored” web sites [12, 3]. The use of multiple sites provides
the ability for a business to avoid outages due to local Inter-
net failures - either real failures or load induced outages that
could be caused by high traffic to the web site in question.

However, companies are starting to provide electronic
business functions such as sales, support, order processing,
and supply-chain automation. These functions require co-
ordination between disparate components, not all of which
may be simply mirrored to provide geographic distribution.
Traditional views of high availability designs and availabil-
ity analysis come under question in this new environment.
First, the complexity of the end-to-end solution make an
overall availability model very difficult. The notion of a

0-7695-0707-7/00 $10.00 � 2000 IEEE

availability measure for the web server (e.g., 99.9% avail-
ability) does not necessarily provide the true availability for
all end users. Further, given that a single server may be
involved in both B2C (Business to Consumer such as on-
line sales), B2B (Business to Business such as supply-chain
automation), and internal operations (such as order process-
ing) then the availability must be mapped to these different
environments. There are several important observations to
make. First, Internet failures and load induced failures mean
that geographically distributed servers are a basic require-
ment. Second, we must delineate the availability discussion
with respect to the roles of various user segments (e.g., the
B2B and B2C end users). Third, after these roles have been
defined, their particular behavior may be leveraged to re-
move dependencies and enable geographic distribution.

In this paper, we present an approach to Internet avail-
ability based on partitioning on-line function into domains
each of which provides service to users in a specific role.
Coordination between domains is eliminated as much as
possible. Where coordination cannot be eliminated, we use
application-specific knowledge to convert synchronous op-
erations into asynchronous operations. Once this partition
is performed, availability techniques may be applied to each
domain independently, according to acceptable expense and
business need.

2. Environment

The Internet provides a unique set of challenges for
building a dependable system. Central to these challenges is
the fact that there is no central administration of the Internet.
Because any individual can only directly control a small
portion of the total infrastructure, traditional end-to-end de-
sign and failure analysis techniques cannot be applied. For
example, using N-way active replication techniques to en-
sure constant server availability provides limited additional
dependability when the service provider contracted to pro-
vide network access does not provide a similar level of re-
silience.

It has been shown that network failures, on average, out-
number and tend to be of longer duration than server fail-
ures [9, 10]. Specifically, network related outages can ac-
count for over half of Internet server unavailability [9]. This
problem is likely to be further exacerbated given the growth
patterns of the Internet [6]. As a result, Internet applications
must have the following characteristics:

� Geographic distribution: geographic distribution of In-
ternet interfaces is essential not just for response time,
but minimize the impact of regional network outages.

� Loose coupling between components: A consequence
of geographic distribution is that high network laten-
cies make traditional transactional consistency tech-

niques impractical. Asynchronous communication,
such as transactional messaging, is a preferred ap-
proach. Transactional messaging systems provide a
transactional guarantee for senders that messages have
been sent, and for receivers that messages have been
received, but do not include the entire message flight as
part of a transaction. Using a transactional messaging
system, messages may be guaranteed to be delivered
“exactly-once”, but their delivery is asynchronous and
may be delayed due to system failures en route.

Where components cannot be geographically dis-
tributed, usually because of inherent synchronization,
then other subsystems must be designed to operate as
long as possible in the face of the components failure.
Consequently, applications must be analyzed in terms
of different roles such that, although one group may
experience a failure, other groups may continue to op-
erate. Thus, the system is never all-down, but may be
down for users in particular roles in the organization.

3. System Design and Architecture

This section describes our proposed system design and
architecture. First an example of the architecture is pre-
sented followed by a formal description of the architecture.
We build off the observations about Internet services made
in Section 2 and show, first with an example and then more
generally, how highly available services may be built de-
spite this environment.

3.1. Example

To illustrate our approach to factoring web applications,
consider the example of an on-line store shown in Figure 1.
The figure illustrates the traditional mechanism for deploy-
ing a scalable web application. A series of web servers han-
dle requests from customers. The web servers process these
order requests and modify two databases: one for order re-
quests, and another tracking available inventory. Order han-
dlers obtain lists of orders to be processed by accessing the
databases directly.

Increased customer load is handled by increasing the
number of web servers in the cluster (Database Manage-
ment System (DBMS) capacity may also be scaled in a sim-
ilar manner, but is not shown here). Increasing the number
of servers also improves availability. However, as we will
show in Section 4, Internet availability becomes the dom-
inant factor in total system availability and, therefore, im-
proving the availability of the web servers or DBMS alone
has little impact on total system availability.

The monolithic nature of this system presents some limi-
tations in terms of scaling and availability. In terms of scal-
ability, static web requests can achieve a much higher raw

0-7695-0707-7/00 $10.00 � 2000 IEEE

DBMS

Cluster

Handler

Restocker

Order

Shopper
Web

Web Server

Web Server

Web Server

Pending Orders
DB

Inventory DB

Figure 1. A traditional scalable web applica-
tion deployed on a cluster.

performance (e.g., units of work per second) that database
oriented work. We calibrate this statement with some refer-
ences to industry standard benchmarks. A Dell PowerEdge
6350 4-way SMP server has been benchmarked at 386 tpc-c
transactions per second1 [8]. The same hardware has been
benchmarked at 13,000 SpecWeb requests per second. In
this example, a comparable server is capable of performing
36 times more for static web requests than database trans-
actions.

This difference in capability, coupled with the variabil-
ity of workloads, creates significant challenges in scaling
up the overall capability of web sites, i.e. the ratio be-
tween static web requests driven by browsers and DBMS
activity driven by purchasing is nearly impossible to pre-
dict. This often leads to an application design where the
database application is hosted on a different physical server
than the web server. In this case, the application design uses
a form of remote synchronous communications between the
servers, e.g., SQL’s Distributed Relational Database Archi-
tecture (DRDA). The complexity of scaling this type of
system often leads to a complicated system design where
the availability of the web service is dependent on multi-
ple physical servers and multiple software subsystems (e.g.,
web servers plus database servers). In an environment
where geographic distribution is mandatory, these types of
highly synchronous approaches become untenable.

Instead we propose the factored solution shown in Fig-
ure 2. Specific knowledge of the application allows us to ge-
ographically distribute components without reducing total
system availability. In particular, we exploit the following
characteristics of this application to convert synchronized
interactions into asynchronous ones.

� The two database systems are used in different, non-
overlapping, roles, and therefore maybe decoupled.

� Allowing some variability in inventory control allows
the web servers to be decoupled from the inventory

123,187.90 tpc-c/minute

Web Server

Web Server

Web Server

Order

Restocker

Handler

Web
Shopper

Inventory DBDBMS

DB
Pending OrdersDBMS

Figure 2. A factored version of the web appli-
cation shown in Figure 1. Application char-
acteristics are exploited to allow decoupling
of components.

database. This may be done in one of two ways. Ei-
ther small units of inventory may be periodically al-
located to each web server or business rules may be
derived through analysis of the business process that
allow web servers to optimistically sell items much as
airline flights may be overbooked today. In either case,
the need for a transactional database operation is elim-
inated.

Asynchronous operations are carried out over the Inter-
net using a transactional messaging system. Examples of
such systems include IBM’s MQSeries [2] and Microsoft’s
MSMQ [7]. Such systems guarantee the eventual delivery
of a message despite transient network outages and node
failures. Guaranteed messaging systems provide a program-
mer the simple semantics of “PUT a message on a named
queue” or “GET a message from a named queue.” Program
control is returned to the programmer immediately even if
there are failures in other parts of the system, including fail-
ures of the link, the remote system or the receiving appli-
cation. These systems use database logging techniques to
ensure these qualities of service. That is, if either the re-
mote system or the link has failed when a program attempts
to PUT a message to a remote application, the message will
be transactionally logged on the local system. When the
link recovers and the remote system reconnects, the mes-
sage will be delivered. The message delivery protocol pro-
vides an “exactly-once” guarantee that the message does not
get lost in transit.

The use of guaranteed message causes the programmer
to restructure the application in a fairly dramatic manner
as we will discuss in Section 3.2. However, once this is
done the implementors have significant flexibility in the im-
plementation of the system. For example, Figure 3 shows
a system that has multiple front end systems and multiple
back end systems. The front end structure provides in-
creased capacity and allows the system to tolerate Internet

0-7695-0707-7/00 $10.00 � 2000 IEEE

Systems

Paris

Messaging
Transactional

New York

Chicago

London

Web Server

DBMS Pending Orders
DB

DBMS Pending Orders
DB

Web Server Web ServerWeb Server

Figure 3. A web application partitioned into
two availability domains. Each availability do-
main has a replicated sub-domain.

related outages. The multiple back end systems are for sim-
ple business reasons; that there is a requirement for a US
based and European based distribution center. In addition
to satisfying a business need, this back end structure could
also be used to increase availability.

There are many web sites that are using geographic dis-
tribution of servers to achieve scalability. This work ad-
vances the state of the art by formalizing an architecture
that

� Independently considers the availability needs of var-
ious user communities based on their roles. That is,
the Internet users have different requirements than the
accountants or the order handler. Many current sys-
tems view the availability of the system as the refer-
ence point while we argue that the system should be
decomposed into independent units.

� The end-to-end system has faulty components. We
claim that the quest to create a single highly available
system is fruitless, the structure and dynamics of the
Internet bring out new conditions such as load surges
and network failures that require new thinking.

� Geographic distribution is a fundamental requirement
for scale and availability.

3.2. System Architecture

We now propose a new architecture for highly available
web sites that is based on several key principles.

� A system is partitioned into availability domains to
serve the availability needs of each unique user com-
munity.

� One must independently consider the roles of various
users groups.

� An information architecture that maps the aggregate
data of the enterprise into availability domains.

� A strong reliance on application behavior allows a de-
coupling of domains and the use of guaranteed mes-
saging technology to interconnect the availability do-
mains in the information architecture.

Availability Domains are defined as a collection of re-
sources (both computation and information) that are solely
required to satisfy the availability requirements for a partic-
ular collection of roles. That is, availability domains are de-
fined so that availability analysis for a particular role should
be limited to the implementation of a single availability do-
main. The system architecture consists of a collection of
availability domains that are interconnected through a per-
sistent, transactional messaging system.

Information Architecture In situations where the infor-
mation of the enterprise maps directly into the availability
domains, the result is a collection of completely indepen-
dent systems connected by a transactional messaging sys-
tem. Unfortunately, most real life systems cannot be parti-
tioned in such a manner.

Domain

Information

Domain
Availability Availability

Figure 4. When information is shared across
two availability domains, it creates an avail-
ability dependency that must be removed.

We define the Information Space as the total amount of
data across all availability domains. An important issue is
the mapping of the Information Space to availability do-
mains. The easiest case is when the information can be par-
titioned to map completely inside an availability domain.
For example, a particular set of static web pages is easily
limited to a single availability domain: when two availabil-
ity domains must share a common set of web pages, they

0-7695-0707-7/00 $10.00 � 2000 IEEE

are easily copied and treated as two sets of resources. In
the cases when a file system is shared by multiple avail-
ability domains, distributed file systems such as DFS [11]
can be used. DFS provides a weak consistency guarantee of
eventual consistency and therefore may scale over a campus
or city. The complicated situation arises when operational
data, such as that stored in a relational database, overlaps
multiple availability domains as is shown in Figure 4.

In general, data with high consistency guarantees re-
quires a greater amount of synchronization and, therefore,
becomes more problematic when shared across availability
domains. The dependencies of such synchronization result
in availability dependencies across availability domains.
In such cases, our methodology dictates that application-
specific information be exploited to break the dependency,
that is, convert a tightly synchronous interaction on into a
loosely synchronous or asynchronous one. Synchronous re-
mote access techniques violate our basic principles of no
synchronous dependencies between availability domains, as
discussed in Section 3.1.

Web Shopper Domain

Restocker Domain

Order Handler Domain

Web Server

Web Server

Web Server

Restocker

Handler

Web
Shopper

Inventory DBDBMS

DB
Pending OrdersDBMS

Order

Figure 5. The factored version of the web ap-
plication partitioned into three domains. The
web shopper domain contains several inde-
pendent web server sub-domains.

In Figure 5 we illustrate a business with three availability
domains: webshopper, order handler, restocker. The web-
shopper role consists of the end users on the Internet. Order
handlers process pending orders, bill the customer, and ship
product. The restocker role periodically evaluates inventory
and orders items from suppliers. The domains are designed
to eliminate information dependencies between them to as
great a degree as possible. For example, the webshopper
is only dependent on the web cluster and failures in other
availability domains will have no impact on the webshop-
per.

The other important aspect of defining availability do-
mains is that each group has very different availability re-
quirements. Although this is not a new observation, current
monolithic systems are designed for the maximum of all
availability requirements. In our example, the webshopper

has the highest availability requirements with an objective
of 24x7 dial tone availability. The order handler has much
weaker availability requirements. In fact, we could envi-
sion that the order handler has a PDA with enough orders
queued up that an outage of the main system for several
hours would not have an impact. Role based availability
requirements fundamentally improve the overall availabil-
ity in a manner that would not have been possible building
around a monolithic system structure.

Sub-Domains are defined as a building block compo-
nent of an availability domain. These are independent units
(they could be large scalable clusters) that can be easily
added into an existing availability domain to provide addi-
tional capacity, increased availability, or geographical pres-
ence (e.g., in the case of a new distribution center). A sub-
domain can be the result of properly structuring the infor-
mation architecture between the associated availability do-
mains. In Figure 3, we show a case where the availabil-
ity domain for the webshopper has been decomposed into
two subdomains and placed in separate geographic loca-
tions. The design objective is to be able to achieve linear
horizontal scaling when adding additional subdomains.

4. Analysis

Internal links have 100% availability

.9966 Availability as a single link

Each web server has .9960 availability

Each web server has .9960 availability

.9966 Availability considered individually

Web Server

Web Server

Web Server

Cluster

Shopper

Shopper
Web

Inventory DBDBMS

DB
Pending OrdersDBMS

Web Server

Web Server

Web Server

Pending Orders
DB

Inventory DB

DBMS

Web

Figure 6. Parameters for analysis of the ex-
ample shown in Section 3.1.

0-7695-0707-7/00 $10.00 � 2000 IEEE

To demonstrate the effectiveness of our approach, we an-
alyze the example discussed in Section 3.1. Two scenarios
are modeled: web servers deployed in a centralized cluster,
and web servers deployed in a geographically distributed
configuration.

For these scenarios, we are primarily concerned with
failures that cause web servers to be universally inaccessible
to clients. That is, we are primarily concerned with a failure
of the wide-area network, that portion of the network servic-
ing our servers, or the failure of the servers themselves. We
do not model the failure of those network resources servic-
ing a particular client or group of clients. This assumption is
justified in two ways based on the nature of the webshopper
role. Our primary reason is that we assume a large enough
number of clients that unavailability of any one client is not
significant. Our secondary reason is that we are primarily
concerned with presenting a high quality of service for busi-
ness services. Consequently, client-end network failures are
of less concern as they not only deny client’s access to our
servers, but to any competing servers.

We model the Internet connection to the cluster as a sin-
gle network link, where the entire connection is either all
up, or all down. The clustered servers are considered to be
available when the network connection is available and at
least one server in the cluster is available. For purposes of
this analysis, we will ignore the availability of the DBMS
(assume 100%). The availability of the cluster solution is
shown in Equation 1.

Acluster = Anet(1� (1�Aserver)
N) (1)

Conversely, for the distributed case, the network connec-
tion to each distributed server is assumed to fail indepen-
dently of all others. The distributed servers are considered
to be available when there is at least one available server
whose network connection is also available. The availabil-
ity of the distributed solution is shown in Equation 2.

Adist = 1� (1�Anet �Aserver)
N (2)

Values for 1 to 5 web servers in both scenarios are shown
in Table 1 . We assume a network availability of 0.9966.
Server availability was 0.9960. These values were derived
from [9] by consolidating various classes of network fail-
ures and server failures.
The table illustrates that the limit of Equation 2 is 100%
availability, but that the limit of Equation 1 is Anet.

The advantage of defining independent availability do-
mains is more pronounced when you consider the availabil-
ity interactions between the web servers and the DBMS. In
the synchronous case, failure of the DB impacts the avail-
ability of a web server. This relationship is shown in Equa-
tion 3.

Servers Cluster Availability Distributed Availability
1 0.992614 0.992614
2 0.996584 0.999945
3 0.996600 0.999996
4 0.996600 0.999999997
5 0.996600 0.99999999998

Table 1. Sample values for the availability of
the webshopper domain.

Acluster = AnetADBMS(1� (1�Aserver)
N) (3)

In the case of the factored solution, however, the DBMS
availability may be assumed to be 100% since failures of
the DBMS do not affect users in the webshopper role. Ta-
ble 2 shows the reduced availability of the cluster solution
for three web servers based on several values for DBMS
availability:

DBMS Availability Cluster Availability
0.9 0.89694

0.99 0.98663
0.999 0.99560

0.9999 0.99650
0.99999 0.99659

Table 2. Availability of the webshopper do-
main in a cluster based on DBMS availability.

The level of availability achievable through the dis-
tributed solution is only possible because the database was
decoupled from the web servers, and this decoupling was
possible only because application specific information was
exploited. By using either business rules or pre-fetching of
inventory (as discussed in Section 3.1), we are able to pro-
vide clients in the web shopper role with a highly available
service.

We now examine the order handler role to see if we can
improve its availability in a similar manner. For this role,
things are more complicated: geographically distributing a
database is fundamentally more difficult than the relatively
stateless web servers. However, we can exploit the follow-
ing facts:

1. We “own” the application for the order handlers. Con-
sequently, we can impose more of the burden for de-
coupling on the order handlers than we did for the web
shoppers.

0-7695-0707-7/00 $10.00 � 2000 IEEE

2. There are fewer order handlers and each makes re-
quests against the database less frequently. Thus, inter-
mittent failures are much less of a problem than long
duration failures.

Based on these observations, we propose an application-
specific solution. A process at the order DB periodically
pushes work out the various order handlers (via a transac-
tional messaging system). Each order processor stores work
assignments in a local database so that they are not lost due
a crash failure. Order processing completion is sent back to
the DB and the DB uses this information to measure each
order processor’s service rate. Enough work is advanced
to each order processor to allow for failure and recovery of
the DB. A balance must be struck between continued avail-
ability for the order processor (having enough work to do)
and centralized control and load balancing order process-
ing jobs to minimize order processing time. For example,
each incoming order could be immediately farmed out to
an order processor, thereby providing optimal resilience to
DB failures. However, if an order processor crashed in this
case, those jobs would be marooned until the order proces-
sor recovered. Availability for this role is measured as the
ability for the order processors to keep working and, to a
lesser degree, adequate response time to orders placed.

5. Conclusion

In this paper we have presented an approach to building
highly available, scalable web services. This approach is
built around the observation that, fundamentally, traditional
availability techniques are poorly suited to these applica-
tions because the Internet cannot be made more reliable by
any single application developer. Instead, developers must
use geographic distribution to improve service availability.

Applications are divided into availability domains, each
of which independently provides an available service to
a particular role of participants using the Internet ser-
vice. Synchronization between availability domains must
be reduced to a minimum to avoid availability dependen-
cies between domains. In some cases, this naturally falls
out from the application, but in other cases application-
specific knowledge must be exploited to reduce a tightly
synchronous interaction to a loosely synchronous or asyn-
chronous one.

This work is complementary to other approaches to
building web services such as the WebOS [14]. WebOS pro-
vides operating systems services such as naming, persistent
storage, and security to applications on wide-area networks.
Having universal underlying services of this nature would
simplify the implemenation of availability domains.

This work is an initial step towards Internet service avail-
ability and, as such, opens many questions. A better un-
derstanding and model of Internet availability would be

particularly useful. Specifically, a study comparing fail-
ure patterns based on geography would be especially use-
ful in evaluating our approach. Such a study would provide
a better understanding of the performance implications of
creating availability domains and using persistent messag-
ing techniques for communication. This analysis becomes
more complex when the trend to augment traditional point-
to-point messaging with many-to-many communication [1]
is taken into account.

Within this work we have illustrated our ideas with one,
fairly typical, example. We prototyped the factored applica-
tion described in this paper. The prototype uses IBM Web-
Sphere and DB2, with asynchronous transaction messaging
provided by MQSeries. In the future, we intend to use this
system evaluate our ideas against a wider number of real-
world deployments. Evaluation against upcoming practices
is also of interest. For example, push-based information
distribution is particularly promising for certain application
areas [13]. However, Internet failures may be particularly
damaging to such applications. The ability to make such
services highly available will significantly impact the speed
of their adoption.

References

[1] G. Banavar, T. Chandra, R. Strom, and D. Sturman. A case
for message oriented middleware. In Proceedings DISC ’99,
1999.

[2] B. Blakeley, H. Harris, and R. Lewis. Messaging & Queuing
Using the MQI. McGraw-Hill Series on Computer Commu-
nications. McGraw Hill, New York, New York, 1995.

[3] V. Cardellini, M. Colajanni, and P. S. Yu. Dynamic load
balancing on web-server systems. IEEE Internet Computing,
3(3):28–39, May-June 1999.

[4] J. Challenger, A. Iyengar, and P. Dantzig. A scalable and
highly available system for serving dynamic data at fre-
quently accessed web sites. In Proceedings of ACM/IEEE
Supercomputing ’98 (SC98), Orlando, Florida, November
1998.

[5] J. Challenger, A. Iyengar, and P. Dantzig. A scalable system
for consistently caching dynamic web data. In Proceedings
of IEEE INFOCOM’99, New York, New York, March 1999.

[6] R. Govindan and A. Reddy. An analysis of internet inter-
domain topology and route stability. In Proceedings of IN-
FOCOM ’97, volume 2, pages 850–857, 1997.

[7] A. Homer and D. Sussman. Professional MTS and MSMQ
With VB and ASP. Wrox Press Ltd., 1998.

[8] I. International. Ideas top performers - tpc-c.
http://www.ideasinternational.com/benchmark/tpc/tpcc.html.

[9] M. Kalyanakrishnan, R. K. Iyer, and J. U. Patel. Reliabil-
ity of internet hosts: A case study from the end user’s per-
spective. In Proceedings of the International Conference
on Computer Communications and Networks, Las Vegas,
Nevada, 1997.

[10] C. Labovitz, A. Ahuja, and F. Jahanian. Experimental study
of internet stability and backbone failures. In Proceedings fo

0-7695-0707-7/00 $10.00 � 2000 IEEE

the Twenty-Ninth Annual International Symposium on Fault-
Tolerant Computing (FTCS-29), pages 278–285, Madison,
Wisconsin, June 1999.

[11] E. Levy and A. Siberschatz. Distributed file systems: Con-
cepts and examples. ACM Computing Surveys, 22(4):321–
374, December 1990.

[12] D. Mosedale, W. Foss, and R. McCool. Lessons learned
administering netscape’s internet site. IEEE Internet Com-
puting, 1(2):28–35, Mar.-Apr. 1997.

[13] V. Technologies. ebusiness: Extending the enterprise. White
Paper, 1999. http://www.vitria.com.

[14] A. Vahdat, T. Anderson, M. Dahlin, E. Belani, D. Culler,
P. Eastham, and C. Yoshikawa. Webos: Operating system
services for wide area applications. In Proceedings of the
Seventh IEEE Symposium on High Performance Distributed
Computing, July 1998.

0-7695-0707-7/00 $10.00 � 2000 IEEE

