Highly Secure and Efficient Routing

loannis Avramopoulos, Hisashi Kobayashi
Dept. of Electrical Engineering

Abstract— In this paper, we consider the problem of routing
in an adversarial environment, where a sophisticated advesary
has penetrated arbitrary parts of the routing infrastructu re
and attempts to disrupt routing. We present protocols that ae
able to route packets as long as at least one non-faulty path
exists between the source and the destination. These protis
have low communication overhead, low processing requirenmgs,
low incremental cost, and fast fault detection. We also premt

Randolph Wang

: Dept. of Computer Science Dept. of Computer Science
School of Engineering and Applied Science

Princeton University, Princeton, NJ 08544
{iavramop, hisashi@ee.princeton.edu, rywang@cs.princeton.edu

Arvind Krishnamurthy

Yale University
New Haven, CT 06520
arvind@cs.yale.edu

application layer, may relax the stringent requirements on
the underlying hardware and software, and result in more
efficient and less costly designs.

e Coping with adversaries is increasingly important as more

critical tasks, such as financial, medical, and military
applications, utilize the network infrastructure. In such
scenarios, it is only safe to treat the behavior of faulty

extensions to the protocols that penalize adversarial rogrs by
blocking their traffic.
Key words: security, routing, networking, system design, taph

components as Byzantine.
e Strong distributed mechanisms that monitor and maintain
connectivity in a highly decentralized global environment

theory.
may mitigate detrimental effects of strategic conflicts be-
I. INTRODUCTION tween service providers. For a treatment of the issues that
Routing failures can disrupt the operation of critical May arise in such a diverse and competitive environment,

Internet applications. Aaultin a link or a router (i.e., anode) ~ the reader may refer to [2].
can be attributed to either benign or malicious causes. Ha@— Overview
ware faults, software bugs, and network mis-configurations
are examples of the former type, whereas an attacker whd/Ve present protocols that are able to route packets from
penetrates the routing infrastructure is an example of the lati@rsource to a destination, provided that a non-faulty path
It is the responsibility of routing protocdigo mitigate the €xXists between them. The protocols are efficient, in that they
impact of such faults. However, most of existing work ofl) can route over a single path, rather than using several
routing has focused on providing robustness when the behawgths concurrently,(2) can support links of bandwidth on
of faulty components igail-stop. In this paper, we considerthe order of Gbps at low incremental cost, (3) have low
faulty components with arbitrary, dyzanting behavior that Processing requirements on both data and control packets, as
is possibly controlled by an adversary. they rely on Message Authentication Codes for authentication,
An adversary or attacker may, for example, inject falsend (4) detect faults fast, as faults are detected on a per packet
routing information into the network, make arbitrary routindasis, rather than, for example, being detected via a periodic
decisions, or congest routers by flooding the network wigxternal probing mechanism.
spurious packets. It can also modify, replay, or simply discard Our main contributions are:
packets coming from other routers. Consequently, such a miss We synthesize a basic routing protocol with Byzantine
behaving router can subvert the routing operation throughout robustness using well-known components such as source
the network [1]. routing, destination acknowledgements, fault announce-
ments, reserved buffers, and authentication.
« We propose protocol enhancements to reduce the crypto-
A routing protocol that is resistant to Byzantine adversaries graphic computational overheads and also mitigate the ad-
is important because: versary's ability to delay packets without being detected.
e Despite recent advances in fault-tolerant hardware ands We observe that there is a fundamental uncertainty that
software systems, and in software engineering methodolo- arises in detecting faults and discuss how this uncertainty
gies, the observed behavior of faulty network components reduces the viability of both sharing information regard-
can be arbitrarily complex. Coping with such failures at the ing faults and blocking traffic from faulty nodes.
network layer, in addition to masking such failures at the « We show that sharing fault knowledge is a hard problem
in its general form. We then propose efficient methods
for deploying fault sharing in a limited form.
« We show that straightforward attempts to block traffic
from faulty nodes could have the unpleasant side-effect

A. Motivation

loannis Avramopoulos and Hisashi Kobayashi are supportqghit by the
New Jersey Center for Wireless and Internet Security (NJSYIN

Randy Wang is supported by NSF grants CCR-9984790 and CCRA83.

Arvind Krishnamurthy is supported by NSF grants CCR-99853aNI-
0207399, and CCR-0209122.

1we use the term in its broad sense to refer to protocols aedcivith
the routing operation.

2Multipath routing, as an optimisation, can be supported straightfor-
ward manner. However multipath routing is not required forrectness.

of blocking non-faulty nodes as well. We then develop Herzberg and Kutten [4] have proposed the combined use of
correct protocols for blocking traffic from faulty nodes. acknowledgements, timeouts, and fault announcements to de-
In Section Il, we discuss related work on the subject. liect packet forwarding faults and have recognized its potential
Section IIl, we present a routing protocol with Byzantinéo detect Byzantine faults. They present one communication-
robustness and detection. In Section 1V, we outline attackstimal and one time-optimal protocol, as well as protocols
against the protocol of Section Il and how this protocdghat trade off communication and time optimality. The proto-
copes with those attacks. The possible attacks also in peets are presented in an abstract model. This model, however,
motivate possible protocol refinements in Sections V arglaves open many issues crucial to its realization. These
VII. In Section V, we present two additional fault detectiorinclude issues such as the precise nature of the authentication
protocols. The first improves the performance of the protocsiechanism, how this protocol copes with replay attacks, and
of Section Il when no faulty routers are present in the pathow this protocol copes with DoS attacks. Our basic protocol
while the second further restricts the adversary’s ability ®@f Section Il addresses these issues.
inflict harm. In Section VI, we show that the obvious way to Herzberg and Kutten also proposed the floodingliston-
share fault detection state among different sources leads tonagtion notificationsvhen faults are discovered in the system.
NP-complete problem that is also unlikely to have efficiem®ur work indicates that naive handling of such notifications
approximate solutions. We also present efficient techniquasuld be manipulated by faulty nodes to discredit non-faulty
for limited sharing of fault detection state. In Section Vllelements. This conclusion is based on the observation that a
we present a method to penalize faulty routers by blockigulty source could induce a non-faulty node to drop packets
their traffic. Finally, in Section VIII, we conclude and preseni order to guard against replay attacks. On the other hand,
directions for future work. for the case where fault notifications are handled properly,
Il. RELATED WORK with, for example, recipients taking into consideration that

he source itself could be faulty, we show that nodes cannot

. Periman [3] cIaSS|f|e§ netvvork_ fallures_ Into two types: (xploit this additional information using tractable polynomial-
simple and (2) Byzantine. A simple failure is one Wherﬁ'me algorithms

some network component (consisting of one or more nodesB dl L5 | for d . q
and/or links) simply becomes inoperative, whereas in a Byzan- radley et al. [5] propose a protocol for detecting an

tine failure, a component becomes faulty, and yet continu@é()iqin_g routers that_are dropping or mis-routing (but not
to operate (incorrectly). We say that a routing protocol odifying) packets. It is based on (1) link state routing and (2)

Byzantine robusif it is capable of delivering any packett e “conservation of flow” principle. The conservation of flow

from a source to a destination as long as a non-faulty patf'" be tested iIf we let the routers count the number of bytes
exists between them. We also say that a routing protoé%T'Ch enter and leave their interfaces and they announce this
y information periodically. Their approach requires that there

has Byzantine detectionf faulty network components can . ;
sy at least one good neighbor to an adversarial router that

be identified. Perlman proposes two types of secure routi i _ o
protocols/network layers. mgay drop packets. Protection against traditional DoS attacks,

The first type is based on the use of (1) a floodindl’here misbehaving routers congest the network, is also not

based routing protocol, (2) reserved buffers, and (3) digit pnsidered. In contrast, our proposed sche_me can detect nodes
signatures. Flooding-based routing ensures that a packet Wt COrrupt packets and can also cope with DoS attacks.
traverse every link and hence reach its intended destinationAwerbuch et al. [6] propose a protocol that detects packet
as long as a non-faulty path exists. Reserved buffers, togetffgvarding faults and routes around faults. This protocol
with digital signatures, ensure that packets will not be droppéélizes Message Authentication Codes in a way similar to that
because of congestion of a node by excessive traffic (whighour protocol. Here, probes and acknowledgements (ACKs)
may arise, for instance, in a DoS attack): digital signatur@se used not only by the destination but also by intermediate
authenticate the source of each packet, and a buffer shodffles. Only the source can verify the authenticity of the ACKs.
be specifically allocated to accommodate a packet from 4 encryption step prevents malicious routers from tampering
intended source. ThUS, this routing protoco' of Perlman Yyth individual ACKS, which could otherwise cause non'faulty
Byzantine robust in the sense defined above. nodes or links to be identified as being faulty. Protection
The second type of secure routing protocol by Perlman @gainst traditional DoS attacks, where misbehaving routers
based on the use of (1) a link state routing protocol, (2) réongest the network, is not considered. In Section IV we
served buffers, and (3) digital signatures. The reserved bufféfw a vulnerability of this protocol, and we also present an
and digital signatures serve the same purpose as in the fa&endment to address the vulnerability.
protocol. Unlike the the flooding-based routing protocol, all Other work in secure routing (such as [7], [8], [9], [10],
routers now have explicit knowledge of the network topology11], [12]), is about protecting topology (route) discovery that,
If we assume that there will be no more tharfailures in although important, is not the focus of this paper. We do
the network, then forwarding a packet over+ 1 disjoint note that Byzantine nodes could try to appear in valid routing
routes should guarantee successful delivery of the packgdths during route discovery in order to misbehave during data
Note, however, that this routing protocol is not Byzantingansfers. Our proposed techniques are intended to be used
robust: the existence of a non-faulty path does not necessatilyconjunction with the secure route discovery protocols to
imply the existence ok + 1 disjoint routes. enhance the robustness of the system.

Fig. 1. An example of the operation of the routing protocolSefction Il1.
Sources attempts to communicate with destinationRouterm is malicious
and drops packets. The source first attempts to use eyt m,5,t) to
transfer a packet. Both nodesand2 set a timeout to receive either an ACK
from ¢ or an FA from an intermediate router. Router drops the packet
without informing any other nodes. Routgtimes out when it fails to receive
an ACK. It generates and propagates an FA about (kn) to s. Node s
deletes this link from its topological map and attempts te asother route
by calculating the shortest path to the destination in teis map. Eventually,
s attempts to use routés, 1,4, 5, ¢) and succeeds.

In this section we present a routing protocol with Byzantin@_

B Asic PRoTOCOL

in order to reach the intended destination. Intermediate
nodes read this source-specified route from each packet
and forward the packet accordingly.

Destination acknowledgementBhe destination of every
data packet acknowledges its receipt to the source and
every intermediate node. One acknowledgement packet
is generated that traverses in reverse direction the path
traversed by the corresponding data packet.

Timeouts.The source and every intermediate node set for
every data packet a timeout to receive either a destina-
tion acknowledgement or a “fault announcement” for this
packet.

Fault announcementdVhen a timeout expires at a node,
the node generates a fault announcement (FA) (for the
packet triggering the timeout) for the downstream link
in the packet’s route, and propagates this announcement
upstream. The FA is to be interpreted and acted upon only
by the source of the data packet. The reason is explained
in Section IlI-C.

Figure 1 illustrates an example of the protocol operation.
this example, a malicious routemj that drops a packet

robustness and detection. We first give a definition of whi{99€rs the generation of an FA by its upstream neighboring
constitutes a faulty component and then justify this definitiofouter €). The sources) responds to the FA by recalculating

A faulty node is a node that: a

e does not follow our protocol, or
e can be impersonated by another node.
The first part of the definition captures a node that 5
controlled by an adversary or executes buggy code. The secd
part of the definition is not obvious: we usually associate fau
with the notion of malice or harm but, in this case, the behaviof
of the faulty node is not necessarily malicious or harmful.®

route to the destinatiort)(and eventually succeeds. Pseu-

docode for the protocol is given in Figure 2.

The simple fault behavior illustrated in the example of

igure 1 exercises only a subset of the mechanisms of the
agic protocol. In order to provide Byzantine robustness and
gletection, we also need the following mechanisms:

data and control packet authentication,
a-priori reserved buffers,

(The impersonator may be malicious but the impersonate®f Monotonically increasing non-wrapping sequence num-

may not be.) A faulty node can be impersonated if, for

bers,

example, its secret keys used in the routing protocol have be@nround-robin scheduling of packet transmission, and
compromised by the adversary through cryptanalysis or othdr calculation of appropriate timeout values. _
means. Such faulty nodes, even if they operate correctly, aréVhile none of the individual mechanisms of the basic
not guaranteed to be able to successfully communicate witfptocol described in this section (lll-A) is novel, we note

other nodes.
A faulty link is a link that:
e drops packets, or
e is incident to a faulty node.
Ideally, we would have like to be able to accurately pinpoilﬁ'
a faulty component. However, from a correctly functioning

that it is the combinationof them that delivers the desired
robustness and efficiency. We provide the details of some of
these mechanisms next.

Authentication

Authentication of data packets safeguards against modifi-

router, we cannot always tell with certainty whether a link atation and ensures that allocated resources, namely reserved
the downstream router is faulty, although we do not preclud@ffers, as explained later, are utilized by the intended sources.
certain cases where this is possible. If a link is detected Authentication of control packets prevents impersonation: it
be faulty by our protocol, then one or more of the followingrevents malicious nodes from forging ACKs and FAs on

statements are true:
e The upstream router is faulty.
e The link is faulty.

behalf of non-faulty nodes.

As authentication must be performed for each packet at each

node, and the speed of authentication may bound the effective

e The downstream router is faulty. link bandwidth, the performance of the authentication mech-
anism is crucial. We considered the following alternatives.
e Digital signatures.Using digital signatures would have
The packet forwarding protocol utilizes the following mech- been the most straightforward authentication mechanism,
anisms. which we have decided against due to its poor perfor-
e Source routingThe source specifies in every data packet mance. Digital signatures may be useful, however, for key

the sequence of nodes that the packet should traversesetup.

A. Packet Forwarding with Fault Detection

// This function is called on reception of an authentic data packet from a
// higher-level protocol by the source.
source(data_packet p)
p.route = select_route(p.destination);
p.seqno = seqno++;
p.auth_tag = authTag(p.route + p.seqno + p.payload, p.route);
set_timeout(p.route.first_link, p.segno);
schedule(p);
//This function is called when the source receives an authentic ACK.
source(ACK a)
if (timeout_pending(a.seqno))
cancel_timeout(a.seqno);
else
drop(a);
//This function is called when a timeout at the source fires.
source(link e)
map.delete(e);
//This function is called when the source receives an authentic FA.
source(FA fa)
if (timeout_pending(fa.seqno) and fa.link is first downstream to fa.source)
cancel_timeout(fa.seqno);
map.delete(fa.link);
else
drop(fa);
//This function is called when an intermediate node receives an authentic packet.
intermediate(data_packet p)
source = p.source
if (p.seqno > source.max_seqno)
source.max_seqno = p.seqno;
fa = new FA;
fa.route = reverse(prefix(p.route, source, this_node)); fa.seqno = p.seqno;
fa.auth_tag = (fa.route + fa.seqno, fa.route);
set_timeout(p.seqno);
schedule(p);
else
drop p
//This function is called when an intermediate node receives an authentic ACK.
intermediate(ACK a)
if (timeout_pending(a.seqno))
cancel_timeout(a.seqno);
schedule(a);
else
drop(a);
//This function is called when a timeout at an intermediate node fires.
intermediate(source s, SeqNo n)
fa = retrieve_FA(s,n)
schedule(fa)
//This function is called when an intermediate node receives an authentic FA.
intermediate (FA fa)
if (timeout_pending(fa.seqno) and fa.link is first downstream to fa.source)
cancel_timeout(fa.seqno);
schedule(fa);
else
drop(fa);
// This function is called on reception of a data packet p by the destination
// after the authenticity of p has been verified.
destination(data_packet p)
source = p.source;
if (p.seqno > source.max_seqno)
deliver(p);
source.max_seqno = p.seqno;
a = new ACK;
a.route = reverse(p.route); a.seqno = p.seqno;
a.auth_tag = authTag(a.route + a.seqno, a.route);
schedule(a);
else
drop(p);

Fig. 2. Pseudocode for the basic protocol of Section lll.He tode, FAs
are generated upon reception of data packets and schedul&@rfsmission
later, if necessary. The function “authTag” creates anemiibation tag whose
details are described in Section IlI-B. The calculation feé timeout values
are described in Section IlI-C.

the tag verifies at the first downstream router but doesn’t
verify at subsequent routers, resulting in imprecise fault
detection. Furthermore, as Canetti et al. claim, the main
cryptographic savings of this mechanism are with respect
to authentication tag verification, whereas the limiting
factor in secure data packet forwarding is authentication
tag generation, since ACKs and FAs must be generated
per packet.

e Tesla [14]. Tesla is a broadcast authentication protocol
that relies on loose clock synchronization and delayed key
disclosure. In Tesla, messages are first transmitted with
authentication tags that contain a MAC computed using
an as yet undisclosed key. The key is then subsequently
disclosed, at which point the messages that were sent
earlier could be verified. Tesla keys are elements of one-
way hash chains that are used to authenticate released keys.
Using Tesla as the authentication mechanism is an open
problem. We identify the following limitations that must
be overcome for Tesla to be a viable solution for secure
data packet forwarding:

e Delayed authentication is vulnerable to a DoS attack
where a malicious router floods a victim router with
spurious MACs, exhausts the victim’s memory re-
sources, and causes legitimate packets to be dropped.

e If two nodes have not communicated securely for a
substantial period of time, then the nodes do not have
recent enough Tesla keys to efficiently authenticate
newly released keys. The system would then incur ei-
ther a heavy computational overhead for authenticating
keys or a large communication overhead corresponding
to periodic flooding of Tesla keys.

e MACs based on pairwise secret keysis is the authenti-
cation mechanism that we adopt. Its details are described
next.

Our scheme requires a secret key for every pair of nodes.
The authentication tag for a message comprises of a sequence
of MACs computed using the keys shared between the source
and each one of the nodes in the source-determined path
to the destination. Figure 3 illustrates the structure of the
authentication tag. Given a patB,...,n;,n;1,...,t), the
computation of the MAC for node,; receives as input both
the message and the MACs for nodes, . ..,t. MACs are
therefore computed sequentially from destination to the first
intermediate node. The same structure is used for data packets,
ACKs, and FAs.

o The multicast authentication construction of Canetti et al. If the computed MAC of each node only included as
[13]. In this construction, each node is associated wifiPut the message, then a malicious router could trigger an
a set of keys obtained from a global pool of keys. ThEA for a non-faulty link. For example, in Figure 3, if,
probability that all the keys of a given node are coverefjére a malicious router and tampered with the MACrgf
by a corrupt coalition is kept small and is configurable. TH&@en ns would have dropped the packet as not authentic,
authentication tag computed by a source node consists ¢l consequently,; would have generated an FA for link
message authentication code (MAC) for each key held %2, 73), although none of, n,, ns and physical linkns, ns)
the source and is verified by each recipient using the ket faulty. As a result of using our MAC structure, however,
that the source and recipient share. This authenticatibriz1 tampers with the MAC ofu3, the tampering is detected
mechanism, when used to secure data packet forwardify, 2, Which drops the packet. Consequently, liftk;, n2)
is vulnerable to an adversary that tampers with only @0d/or link (s, n1) are invalidated, as both are faulty.
subset of the authentication tags such that, for examplePacket processing mainly consists of verifying the authentic-

(We further discuss our planned approach to innocuous packet

g_’%_’%_'%_'o ____________ drops in the future work section of VIII.)
T T In order to accomplish the aforementioned goals, we employ
an a-priori buffer reservation (which ensures that packets are
Packet H MA‘i“) H MAC (n,) ‘ MAC (ne) ‘ MAC (ny) never dropped because of congestion), round-robin scheduling

(to minimize the “interference” between sourcégnd time-

outs equal to the worst case round-trip-time to the destination
(which attempts to ensure that FAs are not triggered because of
Fig. 3. Computation of authentication tags. Sousceends to destination congestion). A timeout at the source node can identify whether

t \{'ﬁ t?e_tpat?ﬁ,m,nﬁvrs%ﬁ% Each ;egeivin? tQOdﬁffigs to verify theg path is faulty. Timeouts at intermediate nodes pinpoint the
authenticity o e packet. e computation o e I recelves as elocations Of faUItS

input the secret key that shares withn;, the packet (or message), and th) .
MACs for n;11,...,t. The choice of the number of outstanding packets allowed

per source node involves a trade-off between throughput
and recovery time. As the number of outstanding packets

ity of the packet and generating either an ACK or an FA. Thiacreases, throughput also increases. However, an increase in
ACK or the FA can be generated immediately upon receptighis parameter results in delayed fault detection and, therefore,
of the packet, possibly by a dedicated processor on the limicreased recovery time, because we must use a larger timeout
that the packet arrived from. FAs can then be scheduled f@ilue to allow a larger number of potentially queued packets
transmission later, after the corresponding timeout has fireto drain. Due to round-robin scheduling, an increase in the

If we restrict the maximum permissible path length to tenumber of outstanding packets of one source does not affect
hops, then at most eleven MAC computations are required. Tihe timeouts of other sources.
upper bound on the network bandwidth is then calculated byReserving buffers for sources can be vulnerable to replay
setting the time to receive one packet to the time of calculatiagtacks if we do not exercise sufficient care: malicious nodes
eleven MACs. We consider some quantitative examples of theat have stored other sources’ previous packets may replay
link bandwidth that this authentication scheme can supp@fiem at a later time and “crowd out” new packets from those
by assuming that there is dedicated hardware for computisgurces. The protocol provisions against this attack by utilizing
the authentication tags. (The incremental cost of assigningmanotonically increasing non-wrapping sequence numbers.
Pentium processor or even special purpose cryptographic hanghen the source inserts a new packet into the network, it also
ware to each direction of every link is small when comparéfcludes in the packet a new sequence number, greater than
to the cost of a Gbps IP router.) The performance of the 64f the sequence numbers that this source has used before.
bit authentication tag UMAC [15] on a Pentium Il is 2.2Furthermore, intermediate nodes maintain, for each incident
cycles per byte on 256B packets and 1.2 cycles per byte @wnstream link and for each source, a window of sequence
1500B packets. If all packets are of the latter length, then theambers that the source can legitimately send. (The endpoints
aforementioned calculation reveals that a 1GHz Pentium 8f this window are dictated by the source and constitutes a
can support a 600Mbps link. If packets are of variable lengfitomise from the source that messages will carry sequence
between 256B and 1000B, then this processor can suppginbers only within the specified range.) This window al-
roughly a 100Mbps link. lows the protocol to accommodate out-of-order arrival of the

In order to compare the performance with digital signaturegutstanding legitimate packets from a source at any given
we measured the time that it takes for a 865MHz Pentium kilme, while detecting and dropping illegitimate packets that
to compute and verify one RSA signature using code frogre due to either replays or faulty sources. A similar window
cryptlib 3.0 (http://www.cryptlib.orion.co.nz) and OpenSSlmechanism is also used at the destination.
0.9.7a (http://www.openssl.org/). Signature computation takesa ramification of the sequence number-based mechanism is
approximately 7.6 msec, whereas signature verification tak@at fault announcements should only be relevant to the source
approximately 0.5 msec. After normalizing the signature coraf the packet that triggered the announcement. The reason is
putation time to a 1GHz Pentium IlI, we see that for 1500khat faulty sources can cause packets to be dropped at non-
packets the upper bound on link bandwidth becomes less thagity links by, for example, using wrong sequence numbers
2Mbps. or dictating incorrect timeout values.

C. Reserved Buffers, Timeouts, and Sequence Numbers Route Selection

When packets are dropped, the fault detection mechanisrrhOute selection utilizes:
triggers fault announcements. One of the reasons that routeys, topological map '
drop packets is congestion, i.e., when the queues that stofec it announceme’nts
packets are fuII. On one hanq, since ma"CiOL!S nodes €30 the number of buffers’ available to this source at each link,
incur congestion by overwhelming the network with their OWN ' ink bandwidth. and
packets, it is desirable to be able to deliver packets despite tr;epreﬁx spans a{s explained below
presence of such malicious sources. On the other hand, it Is ’ |
desirable to be able to disassociate fault announcements Wity oy one buffer is reserved per source per link, then Fife@esluling

congestion, since congestion is not inherently a network faulill suffice.

INITIALIZE -SINGLE-SOURCEG, s)
{
for each node € V[G]
dohfv] + 0
d[v] < o0
forh < 1to H
dod[v, h] + oo
m[v, h] < nil
ds]« 0
hls] + 0
}

RELAX (1, v, w,1)

the link. We first define the problem formally.

We are given a directed grapf(V, E), with a distance
functionw : E — R and a prefix span functian: £ — Z7.
The distance of a path = (vg, v1,...,vx) is the sum of the
distances of its edges. Lét,(vo,v;) denote the number of
hops from nodey, to nodew; in pathp. We say that pattp
respects the prefix span functiénf for everyi = 1,...,k,
hp(vo,vi) < U(vim1,v;).

We now give the pseudocode in Figure 4 for an algorithm
that, given a graply, functionsw, I, and a source nodec V,
calculates the shortest paths to all destinations that regpect

In the pseudocodell is the maximum prefix span over all
if hlu] < i(u,v) andd[v] > d[u] + w(u,v) edges.

thenh[v] < hlu] + 1 . . . i
do] dlu] + w(u,v) The complexity of the algorithm is equal to that of Bellman

d[v, h[v]] < dJv] Ford, i.e.O(H - |E|) and, sinceH < |V|, alsoO(|V|- |E]).
,r[v: h[]] < u The correctness proof, which we omit for brevity, is similar to
} that of Bellman-Ford [16]. The intuition is that since Bellman-

Ford calculates shortest distance paths for all hops [17], it can

PREFIX-SPAN-BELLMAN -FORD(G, w, [, 5) be modified to calculate prefix span shortest paths by forcing

{ i i ans
INITIALIZE -SINGLE-SOURCE(G, 3) relaxations on edges to respect the prefix spans.
fori«1toH IV. THE ADVERSARY
do for each edgéu,v) € E[G
do REL A)??Z Z)w 1)[] In this section, we review various attacks that an adversary
} Y may mount to prevent communication and how our protocol

copes with these attacks. (In general, the types of attacks
Fig. 4. Pseudocode of the modified Bellman-Ford shortest agiorithm. against a protocol depend on the details of the protocol.) Our

protocol is designed to withstand these attacks so that it can

continue to deliver packets as long as a non-faulty path exists.
In particular, the links corresponding to valid fault announcép/e also discuss the extent to which an adversary can impede,
ments are deleted from the topological map of the soureather than prevent, communication.
(Mechanisms for restoring such links are part of ongoing The adversary can create spurious unauthenticated traffic.
research (Section VIII).) Links that lack available buffer§Vve require authentication to work at line speed, and therefore,
for this source due to currently outstanding packets (packeftsauthenticated traffic cannot block authenticated traffic at
that have been neither acknowledged nor timed out) are atssn-faulty routers.
temporarily deleted from the topological map until buffers The adversary can create spurious authenticated traffic. Such
become available again. We rurshortest path algorithnfior spurious traffic cannot block authenticated traffic from non-
the graph consisting of the remaining links. faulty sources at non-faulty routers, since non-faulty sources

In Section IlI-B, we mentioned that by restricting the maxare ensured buffers (through a-priori reservations) and link
imum path length, we can guarantee a certain link bandwidtiandwidth (through round-robin scheduling).
given a certain MAC-based authentication speed. FurthermoreThe adversary can replay authenticated traffic that has
the shorter the maximum path is, the greater the link bandkiginated from other non-faulty sources. Such replayed traffic
width that can be supported for a given processor speed. Noéenot block pending authenticated traffic from non-faulty
that the path length restriction pertains to a restriction on tkeurces, since pending traffic carries sequence numbers that
prefix of a path (as intermediate nodes are burdened with the larger than those of replayed traffic and priority is given
task of generating FAs that traverse the prefix of a path® packets with larger sequence numbers.
Different links are, therefore, capable of supporting different The adversary can mis-route packets. Mis-routed packets
prefix “spans” and can, therefore, be employed at differeate dropped at the next non-faulty router, if the router does
distances from the source along paths to a destination. Ti® appear in the source-specified path. The adversary could,
use of prefix spans is clearly desirable for maximizing tHeowever, mount the following form of attack. The adversary,
throughput of packets sent through a link, but the schemdthout obstructing the normal flow of a packet, could create
trades-off reliability as it prevents certain links from being copy and route it through a faster detour (consisting possibly
used by sources that are far away from the link, thereloy adversarial nodes only) to the destination. The destination
reducing the number of usable paths in the system. would then reply with an ACK that is sent in the reverse direc-
We present an algorithm based on the Bellman-Ford shortésh of the source-specified path. The router that is adjacent to

path algorithm that calculates shortest paths in a netwdte destination will drop the ACK since the router has not seen
where the links have different bandwidths and prefix spartbe data packet for which the ACK is being sent. When the
Bandwidth is factored in the computation by setting the weigbtiginal packet reaches this router, it would forward this packet
or distance on an edge to be the inverse of the bandwidthtofthe destination, but the destination would drop the packet

as a duplicate, thereby causing its neighbor to generate an FA
about a non-faulty link. This behavior is clearly undesirable.
If nodes can authenticate the transmitter of a packet (in a fixed
infrastructure network, for example, by the interface that the
packet arrived from, or with a MAC computed with a secret
key that the transmitter and receiver share), then the above
attack scenario could be defeated.

Note: In the protocol proposed by Awerbuch et al. [6] we
believe that the encryption step in the computation of the
authentication tag of a packet at the source protects against this
attack. This protocol is vulnerable, however, to the foIIowinéE- 5. An example of a faulty source)(causing a non-faulty route)

. . generate an FA about non-faulty link, @) by simultaneously routing two
attack. The adversary, without obstructing the normal flow @hckets with sequence numberg00 and 2000 respectively in overlapping

a packet, sends a spurious ACK to a non-faulty router thatites (we assume that one buffer is reserved per link).eSi#s are only
has already forwarded the packet. If the non-faulty routsglevant to the corresponding source, Byzantine robustisesot violated.
has no means to verify the identity of the originator of the

ACK (which is the case in an ad hoc network that is lacking 5
a protection mechanism), it will accept the spurious ACK
and later drop the legitimate ACK as a duplicate. The final
consequence is that the source will detect the (non-faulty)
link that is incident on the aforementioned non-faulty router
as faulty. This vulnerability can be amended if transmissions
(possibly between probed nodes only) are protected with a
MAC, with such protection also serving as an alternative
solution to the encryption step.

The adversary can modify packets. Modifying the conterly. 6. An example of a faulty (intermediate) routé) ¢ausing a non-faulty
protected by the authentication tag is equivalent to droppiffyter &) to generate an FA about non-faulty lirik, 5) by first dropping a
the corresponding packet. Modifying the MACs of upstrea%ﬁeéq(xahcseﬁﬁgﬁ Q;J’t’;f;“?;fgkg{“;'hgegigg‘jfe{;“?hg' Fi{”;;ﬁ@;;gw
routers has no effect, since those MACs are not further utilizgghckets are dropped, Byzantine robustness is not violated.

Modifying the MACs of downstream routers is equivalent to
dropping the corresponding packet, as the MAC of the first

incident downstream router protects the MACs of all othefation received the packet. For example, consider the route
downstream routers. (s,n,t). If n can impersonate nodg thenn may reply with

The adversary can drop packets. The protocol’s correctnegs acknowledgement te that appears to have originated
in this case, which implies its Byzantine robustness, is argugdm ¢. However, the attempt to communicate with faulty
by the following theorem: a packet transmission from a nogtestinations cannot result in non-faulty links being deleted at
faulty source will result in either the reception of a destinationon-faulty sources. Similarly, in the route, n, na, t), if n4
acknowledgement or the deletion of a faulty link at thean impersonate node, thenn, can reply with an FA about
source’s topological map. The proof is easy by induction dimk (n.,t) to s, which does not violate Byzantine robustness
the number of links and it is omitted for brevity. since the compromised nodg is considered faulty according

The adversary may generate false FAs in an attempt ttoour definition.
cause non-faulty links to be excluded by non-faulty sources.An adversary may attempt to degrade communication
Such false FAs are dropped by non-faulty routers because thiesoughput by holding up packets while remaining undetected.
cannot pass the MAC-based authentication check. In Section lll, the timeout parameters are set to the worst

Being a faulty source, the adversary may use wrong sgase round-trip time when, for example, all routers are fully
guence numbers (among other means) in an attempt to cateegested. Such a large value of the timeout, however, allows
non-faulty routers to drop packets and to cause FAs to Hee adversarial router to emulate local congestion or even con-
generated upstream of these non-faulty routers. Such an ggstion in the downstream path without triggering timeouts,
ample is shown in Figure 5. The protocol dictates that FABus avoiding detection. In Section V, we present an extension
are only interpreted and acted upon by sources, so these Fathe protocol of Section Il to restrict the adversary’s ability
have no effect at any non-faulty routers. Furthermore, faulty emulate congestion.
intermediate routers can cause non-faulty routers to generat&@he packets that the adversary inserts, possibly optimized
FAs about non-faulty links by replaying old packets. Sucto inflict harm, directly affect the goodput (good work) per-
an example is shown in Figure 6. These FAs have no efféotmance of the network. In Section VII, we present a method
at non-faulty routers either since FAs for replayed traffic atbat attempts to block the adversary. The task is non-trivial as
dropped at non-faulty routers. the protocol identifies faulty links rather than routers.

We should also point out that the reception of a destinationOne important measure of performance is beovery time
acknowledgement does not necessarily imply that the destf-the protocol, namely, the elapsed time from the moment

2000

that communication is interrupted by, for example, packétes, it deletes the first link from the topological map. The
drops at one or more faulty routers, until the moment thauthentication tag of normal packets and their ACKs, as well
communication is resumed. The recovery time of our protoca$ query packets, and their ACKs, and FAs, bears the same
is generally small in a moderate size network with sufficierstructure as that in Section 111-B.
bandwidth, as faults are detected on a per-packet basis, rathén the above protocol, the fault detection time is approxi-
than by a periodic external probing mechanism. The recovenately doubled, as two packets from a source are required to
time, however, can become significantly worse for certajinpoint one faulty link. As explained earlier, the advantage
conditions (such as a large network). Enhancing the protoadlthis protocol is that in the normal case, where no packet
to improve recovery time is part of our ongoing research. drop occurs, intermediate routers need only to compute/verify
one MAC for the packet and one MAC for its ACK.
V. PROTOCOL EXTENSIONS We proceed to show how to improve performance of nor-

In this section, we present two protocol extensions. The fiigtal packets even further. The key observation is that the
one allows us to lower cryptographic overhead and, therefoggithentication tag of the packet can be computed on a shorter
also improve communication bandwidth under “normal opemessage than the original message while preserving Byzantine
ations” at the expense of slower fault detection. The secodétection. Note that MAC computation of a 64B message is
one allows us to limit the ability of a malicious router to delayhree to four times faster than MAC computation of a 15008
packets without being declared faulty. message.

More specifically the source computes a MAC of the source
) _ ~route and sequence number only, for intermediate routers, and

In Section 11I-B, we have given a MAC-based authenticatiog fy|| MAC for the destination. When the packet reaches the
mechanism that allows us to pinpoint a faulty link. Althouglestination it may, therefore, have been modified in transit by
much faster than using simple digital signatures, this mechamagjicious router that is present in the path. The destination
nism requires the computation and verification of one MAgan however, detect the modification and, so that the faulty
for each node for each data, ACK, or FA packet. These MAfqk will be pinpointed, it generates and propagates upstream
computations bound the communication bandwidth that We, Ack that contains a hash of the modified packet. Upon
can achieve with the basic protocol. _ reception of such an ACK, an intermediate router computes

To improve this bound, we introduce an extension to the hash of the corresponding packet, which it had previously
basic protocol of Section IIl so that FAs are generated ondyored. If the hashes agree, it propagates the ACK upstream. If
after a fault has occurred, instead of being generated on a RRE hashes don't agree, it drops the ACK, and when the query
packet basis. This modification allows intermediate nodes [5‘écket arrives, it generates an FA for its downstream link.
compute and verify only one MAC for the data packet and Note that in this extension routers are required to store
one MAC for its ACK under “normal” fault-free conditions, packets until the corresponding ACK is received or a timeout
thus improving communication bandwidth. fires. Due to the use of reserved buffers, this requirement does

Under this modification, we distinguish between two typ&sot impose any additional overhead. If memory consumption
of packets: “normal” and “query.” In normal packets, we retaigecomes an issue, then the hash can be computed on reception
the source routing, destination ACK and timeout mechanisms. the packet at the expense of extra cryptographic overhead

However, when a timeout fires at an intermediate router, thighen the path is fault-free. In this case the cryptographic
router does not propagate an FA upstream, but only records §aings are for the source only.

packet number and source that resulted in the timeout. When o
a timeout fires at the source router, the first incident link is n§t Delay Mitigation
deleted, but a query packet is sent downstream, and a timeoul malicious router may intentionally hold onto packets and
is set for receiving a query ACK or an FA. delay their transmission to emulate the effects of local or
Upon reception of a query packet, an intermediate routdownstream congestion (which could be the cumulative effect
either drops the query, if the corresponding packet has rat multiple downstream routers). To maximize its negative
been received, or propagates the query downstream and &afsact, such a router would attempt to introduce a maximum
a timeout to receive an ACK for the query or an FA. Upodelay but still keep it below the threshold that would trigger a
reception of a query packet, the destination either drops tteout upstream. (If triggered, such a timeout would initiate
query, if the corresponding packet has not been received,aoroute recalculation at the source, which would in turn cause
generates an ACK for the query that propagates upstream. Ifthe malicious router to be bypassed.)
intermediate router receives a query ACK, then if the timeout While we cannot prevent a malicious router from delaying
for the corresponding packet has fired, it propagates an BAckets, what we can do is to have enough detailed accounting
upstream. Otherwise it propagates the ACK upstream. If tbédelays so that we can pinpoint the locations where excessive
source router receives a query ACK, it deletes the first link mhelays are being introduced. This is a natural extension of the
the route from the topological map. If an intermediate rout@rotocols that we have discussed so far: while the previous
receives an FA, it propagates the received FA upstream. If tliiscussions focus on pinpointing the locations of packeps
source receives an FA, it deletes the link in the FA from thend attempts to bypass these locations, this extension focuses
topological map. If the timeout at an intermediate router firesen pinpointing the location of excessive packktlaysand
it propagates an FA upstream. If the timeout at the soursenilar attempts of bypass these as well.

A. Faulty Link Detection by Query

Routers measure and record round-trip times (RTTs) of taeanouncements for non-faulty links. Faulty links are, there-
packets that they forward. Routers also measure and recfok, independently detected by different sources that attempt
delays experienced by packets and their ACKs inside thasemake use of such links. It would be beneficial if fault
routers. Upon request, routers report recorded RTTs and deligswledge could be shared among sources. We first show that
to upstream routers. The request can be a “query” packethe general case the problem is difficult. We then show two
similar to that of the above section. Recorded RTTs amdethods for limited sharing of fault knowledge.
delays can be appended in the query ACK. Because these -
timing statistics reports are protected by the same MA%‘-‘ The Difficulty
based authentication mechanism, a malicious router cannoPne possibility of sharing fault knowledge would be by the
impersonate another router in its reporting and it cannot tamgeiowing three-stage process:
with others’ reporting. It can, however, falsify reports of delayse Nodes announce links that they have detected as faulty
experienced by packets inside itself. (If none of the routers from the fault detection mechanism of Section III.
falsify their reports, it is easy to pinpoint the location(s) of® Each node maintains a lidt of (node, link) pairs, where
excessive delays and we do not further discuss this case.) (n,!) € L if and only if link I has been announced to be

Suppose a router has measured the RTT experienced by afaulty by noden.
packet downstream & It receives a report from downstream ® Each node calculates paths that “conform” to their list
routers that indicates that the delay experienced by each Given two equivalent definitions of the same patfiieing

downstream routen; is ;. After an approximate accounting @ list of nodes(ny, ..., ny), andp’ being/ a list of links
for wire transmission delays (determined largely by the speed <_(n1, ﬂz), ces (nkf;,nk_)% we sayp (or p) conforms to
of light), if T exceedsY,t; “significantly” (by a policy- list L if (n,l) € L implies thatn ¢ p and/orl & p'.

determined threshold), we conclude that the incident dowhbe correctness of this method is argued by the fact that if
stream link from this router is faulty, and we propagate dtPden announces link as faulty, eithem or [is faulty.
FA upstream from this router. (FAs do not need to bear ang If n is not faulty, theni is faulty, as the fault detection
information on delays.) This approach of removing routers that mechanism of Section Il only detects faulty links, if
falsify delay reports, however, may be unnecessarily harsh (as €mployed by a non-faulty source.
unnecessary as immediately removing routers that innocuousty If ¢ is not faulty, them is faulty: either the fault detection
drop a packet once in a while). For example, a route that ex- mechanism of Section Ill had output a fault for a non-
periences falsified congestion and falsified delay reports might faulty link, which is only possible for faulty sources; or
still be preferable to a network partition. The same mechanism, Without necessarily being a source, arbitrarily announced
namely, a continuous fault metric (in Section VIII), that we [to be faulty, which is only possible if is faulty.
plan to introduce to cope with innocuous drops (among otherThe difficulty of employing this method lies in the com-
issues), is also applicable to the problem of delay mitigatioplexity of calculating conforming paths. In particular, the
The above protocol requires each router to authenticate ff@blem of deciding the existence of a path that connects a
reported delay to every upstream router. We now show hé&iyen source and destlnatlon_ that also conforms to a given
delay mitigation can be achieved with negligible additiondist of fault announcements is NP-complete. The reduction
cryptographic overhead even if packets are “normal’ p&iom the Impossible Pairs Path (IPP) problem of [18] is
Section V-A. straightforward® We also note that the IPP problem is not
Upon reception of a packet a router, appends to the packtly hard to solve, but also hard to find approximate solutions
in an unauthenticated form, the delay that the previous pack®t [19], [20], [21]. Our problem is likely to be as hard to
experienced inside this router and, furthermore, stores #ad approximate solutions for as IPP (although we have not
delays reported by upstream routers. The destination refle¥géified the conjecture).
in its ACK the recorded delays. Upon reception of the ACK, 8 Efficient Sharing Between Neighboring Routers
router authenticates the ACK and compares the list of recorde
delays in the ACK with the list of stored delays. If they agree, . : . X
and after a successful comparison with the RTT it forwar ring routers, while preserving the Byzantine robustness
the ACK upstream. Otherwise, it drops the ACK and whehroperty. We propose the following changes to the protocol

. - . Section Ill.
the query packet arrives it generates an FA for its downstrefﬂfrw . . .
Iinkq yp 9 e call the first link of a route thkead link Detected faults

This technique is generic and permits the establishment ofs associated with the _Iead links traversed by th_e packets that
%ad to the corresponding fault announcements: we record a

ault knowledge can be efficiently shared between neigh-

low-bit-rate stream from downstream routers to the source wifi d link along with the corresponding fault(s), and we say
small cryptographic overhead that can be used for convey t this lead linkdetectghe downstream faulty link(s). Given

control information. a lead link (s, r), if it detects a faulty linke, then nodes
VI. SHARING FAULT DETECTION STATE may share with node this fault knowledge. A router only

Fault announcements are only relevant to the source ?f'”_the IPP problem, we are given a souscea destinatior?, and a listL
the packet that trigaered the announcement. The reaso o&.ggurs of nodes. The objective is to decide Wheth_er a pationsisting of
p g9 : Thddes(n1, ..., ny) exists betweers andt such that if(n1,n2) € L, then

that, as described earlier, faulty sources can trigger fault¢ p andiorns ¢ p.

shares such fault knowledge with the neighbor through which

the corresponding faulty link(s) have been detected. Ngde lo |

for example, the receiver of the shared fault knowledge, may O—>0000000—1>
use this information in its route calculation. Nodededuces ng n
that nodes, link e, or both must be faulty, and i is faulty,
so is (s,r). Therefore, noder concludes that a fault-free
route cannot contain botfs,) ande. One way of using this
information, when a node performs route calculation, is to

calculatg routes for each _of its incident links separately, apd possible to modify the protocol to gradually isolate faulty
for the |_nC|_dent I!nk that is its turn, delete t_he faulty linksouters by accumulating fault knowledge over time.

that the mmdgnt I,mk detects from.the topolog|cal map, so, for The second challenge in penalizing faulty routers lies in
example, during”’s route calculation, when it considers th&,,; goal of maintaining Byzantine robustness: if we do not
incident link (s,), it excludese from consideration. exercise care, the process of blocking faulty nodes may result
in the unintended side effect of blocking non-faulty nodes.

We now consider a simple design and show how it fails to

If router s detects link(u, v) as faulty, it may announce this achieve this goal. In this design, if a router detects a link to
to v andv. Nodesu andv deduce that nods, link (u,v), or e faulty, it blocks all packets that have the given link at the
both must be faulty, and, therefore, a fault-free route canrfgkt position in their source routes. Suppose thaends a
contain boths and (u, v). Such information can be used iNpacket with source routés, ..., u,v,...). Routerv is faulty
route calculation by calculating routes for each incident lingnd drops the packet. Routergenerates an FA about link
separately, and for the link that is its turn, delete the nodes that) that propagates te. Routers then detects linKu, v) to
have announced this link as faulty. For exampleyu#route be faulty and blocks all packets with, v) at the first position
calculation, when it considers link:, v), it excludes node. in their source routes. Suppose now thatends a packet with
source routdu,v,...,r,s,...). Routers blocks this packet,

VIl. PENALIZING FAULTY ROUTERS andr generates an FA about linf, s) that propagates ta.

So far, we have focused on avoiding using faultiRouterv lets the FA pass, and thereforedetects link(r, s)
components—we have not discussed any attempts to bldekoe faulty, although none of r, u and(r, s) are faulty. The
traffic coming from faulty components. There are, howeveion-faulty router. will now block packets that originate from
several reasons why such blockage may be desirable. Firgin-faulty routers- and s, violating Byzantine robustness.
traffic from a faulty node may have an unforeseeable impact]])
on a non-faulty node. Although a design goal of our protoc&- A First Protocol for Blocking Faulty Traffic
is to guarantee that a non-faulty node can not be declaredVe introduce the following changes to the basic protocol
faulty by other non-faulty nodes solely because of the actions Section Ill. As in Section VI, we refer to the first link of a
of faulty nodes, a faulty node might nevertheless try to explaibute as thdead link If a router detects a link to be faulty, it
other vulnerabilities in nodes that are currently non-faulty. Fimocks all packets that have the given link as a lead link and
example, traffic from faulty nodes may be able to trigger dofer each such packet it generates and propagates upstream a
mant software bugs in a non-faulty node. Thus, blocking traffidocking announcement (BA). Upon reception of a BA, the
from faulty nodes provides an additional level of protectiosource deduces that the lead link cannot be used together in a
against such vulnerabilities. Second, traffic from faulty nodesute with the generator of the BA. Route computation should
is likely to be a waste of resources. Third, trying to maximizeake this knowledge into account by calculating routes for each
the damage, multiple malicious faulty nodes may well need iacident link separately, and for each link that is its turn, delete
communicate among themselves to coordinate their actiotige generators of BAs for this link. Furthermore, the receiver
Blocking or reducing their ability to communicate may limitof a BA should block the generator of the BA, if the generator
such concerted efforts. attempts to use the corresponding link.

|2 oooooo—}O
t

2

Fig. 7. An example route. Nodes and ¢t are the source and destination
respectively.

C. Efficient Sharing Between Non-Neighboring Routers

A. Challenges and A Naive Solution C. A Second Protocol for Blocking Faulty Traffic

There are at least two challenges in “correctly” penalizing We again refer to the first link of a route as tlead link
faulty routers. The first challenge is the difficulty of exactlyve associate detected faults with the lead links traversed by
identifying the faulty routers. The fault detection mechanisthe packets that lead to the corresponding faults; and we say
of Section Il only identifies faultyinks—it does not necessar-that this lead linkdetectshe downstream faulty link(s). Under
ily pinpoint the exact faultyouters If a link is detected to be this new protocol, we introduce two types of packet drops:
faulty by a non-faulty router, then one or more of the followingnbound dropsandoutbound dropsfurthermore, we also need
components are faulty: the upstream router, the link, andtor modify the route re-calculation algorithm to accommodate
the downstream router. A faulty upstream router may hatleese extra packet drops.
generated a false FA; a faulty link may be dropping packets;Inbound dropsa router blocks (i.e., drops) a packet arriving
and a faulty downstream router may be dropping or delayifigm an incident link if this incident link detects the lead link
packets. Despite this difficulty, however, as we shall see,tiaversed by this packet as being faulty. Consider the example

topology in Figure 7. If a packet arrives at via [; and andw will generate an FA about linkw, «) that will propagate
l; detectsly as faulty,no drops the packet. (Intuitively, this to r. Link (r, s) of routerr then detects linKw, v) as faulty,
blockage makes sense because we know that at least onaltifough none of routers r, w, v and links(s, r), (w,u) are

lp andl; must be faulty.) faulty.

. Outbound drops:a router _blocks an arriying pgclget _tharD' Protocol Characteristics

intends to leave this router via an incident link if this incident)

link detects the lead link as being faulty. Furthermore, this In the proposed protocals, if a _faulty router drops a_‘"
router generates an FA and propagates it upstream, declaRAGKetS of a non-faulty routey, s will block . The traffic
this incident link to be faulty. In the example route of Figure 72f 7 Will not be affected by other non-faulty routers that have
if a packet intends to leavee, via I» andl» detectd, as faulty, not detected-'s misbehavior: this can happen, for example,

ns drops the packet and propagates an FA abpufpstream if r obeys the protocol when handling these other routers’
toward s. packets. In short, the degree of penalty imposed on a rogue

Route re-calculationthe protocol must be further modifiedrou'[er by the protocol (and the network) is, in some sense,

: praportional to the degree of its malice.
to account for these extra packet drops. Consider the outbodn hether this gradual and partial blockage is a desirable

drop example in the last paragraph. Under the basic pmto(c:%aracteristic depends on one’s point of view. In a positive

of Section lll, the FA fromny unambiguously signals to . .
. 4 view, one may deem a router that continues to operate correctly
s that [, is faulty andly should be excluded in any route
. . for someroutes, for example, more preferable than a router that
computation performed by. Under the new protocol designed

to block faulty routers, however, the FA frony only signals Is shut down by the protocol immediately upon th_e flrs_t sign
: of error and therefore works faro route. In a negative view,
that at least one of, and i, must be faulty. Responding to o e o
. . a malicious router, for example, may exploit this characteristic
this FA, nodes can no longer simply exclude from route o : ' AN
. y picking and choosing which entities it wishes to be able to
calculations. Instead, node needs to ensure that none o) o oo o
. . communicate with in order to maximize its negative impact.
the routes it chooses can contain bdghand l>. One way

of ensuring this property is for the source node (suchsas The advantage of the protocol of Section VII-C with respect

to calculate routes for each of the source’s incident IinIE(s) that of Section VII-B is that it requires less work on the

separately, and for the incident link that is its turn (suckys part of the blocker. Inbound drops are performed fast without

delete from the topological map the link(s) that this incider}Y cryptogr?prr:lc ft_:omputatlor;s Ecorﬁ_p are th|§ AW'th the .BA
link detects as faulty (such ds). generation of the first protocol). In this way generation

i) .. is outsourced to upstream routers that can use the first link
One may notice that the route re-calculation algorithgk yhe route for forwarding their own packets. Notice that

above is similar to that given for sharing fault knowledgg,e \ork performed on behalf of a router is, in some sense,
(Section VI-B). This is not surprising, since in both caseg, ersely proportional to the degree of its malice. Outbound
the source acquires supposed link fault knowledge that is ngh s require the generation of an FA from the blocker. This

nece_ssarlly true._lndegd, we may integrate th? fault knowledggeres to the aforementioned principle as well, as the inbound
sharing mechanism given in Section VI-B with the route rgq can still forward packets through the lead link.

calculation mechanism given in this section. This resulting 1o protocol proposed in Section VII-C may degrade re-

integrated mechanism s different from the mechanism gf ey time, the elapsed time from the moment that commu-
Section VI-B in only one crucial way: in Section VI-B, thepication is interrupted to the moment that communication is
FAs propagated to a source from downstream are unambiguu§,med. The reason is that each router may detect the same
and only the fault knowledge acquired from neighboring nodggy a5 faulty several times, once for each of its incident links.
is deemed ambiguous; whereas in the integrated mechanigife protocol of Section VII-B and in the basic protocol of
all fault knowledge, including FAs propagated to & SOUrGggction |11, each router detects a link to be faulty only once.
from downstr(_aam and knowledge acquired from neighbors,4§,o impact, however, depends on many factors, such as the
deemed ambiguous. topology of the network, the location(s) of the fault(s), the
1) The Necessity of FA Generation for Outbound Blockagguimber of faulty routers, etc. Improving recovery time is part
In the protocol description, we note that a crucial differencsf our continuing research.
between the way we perform “inbound drops” and “outbound The protocol of Section VII-C may also have a negative
drops” is the generation of an FA in the latter case. Tienpact from a network management perspective. Without the
understand why, we consider what would happen if we remoggoposed changes, if an FA about lihk= (u,v) is delivered
this FA from the protocol in handling the following exampleto router s, then the network components that need to be
Suppose thats sends a packet with source routénvestigated are the routeks u, v, and the linki. With the
(s,r,...,v,u). Routerv, which is faulty, generates an FAproposed changes, if a link = (u,v) has been detected as
about link (u,v) that propagates te. Link (s,r) of routers faulty by link iy = (s,r), then the network components that
detects link(u, v) as faulty. Suppose now thatsends a packet need to be investigated are the routers, u, v and linksl,
with source routgu,v,...,r,s,...). Routers will block the 5.
packet and- will propagate an FA about links, r) to . Link We should, finally, mention that, in the proposed protocols,
(u,v) of routeru detects link(s,r) as faulty. If » sends a as a result of blocking faulty traffic, non-faulty traffic may be
packet with source rout@, s, ..., w, u,v,...), u will block it, temporarily blocked as well. However, Byzantine robustness

is not violated and, therefore, if a packet is dropped by noA+schitecture [22], [23]. Such secure protocols would also be
faulty routers, then it contains at least one faulty link, andandidates for effective protection against Distributed Denial
furthermore, route computation will converge to non-faultgf Service attacks.
routes.
ACKNOWLEDGMENTS
VHI. SUMMARY AND FUTURE WORK We would like to thank Prof. Robert Tarjan and Spyridon

We have presented a routing protocol with Byzantine robustriantafyllis for numerous helpful discussions. We would also
ness and detection. The protocol can be seen as a combinailkanto thank Antonis Ellinas for pointing out reference [2].
of several components. While none of these is novel by itselfMie would finally like to thank the anonymous reviewers for
is the integration of them that is crucial for the correctness atttkir helpful comments.
efficiency of the protocol. These components are source rout-
ing, destination acknowledgements, timeouts, fault announce-
ments, authentication, reserved buffers, sequence numbers, &jdP. Papadimitratos and Z. Haas, “Securing the internating infrastruc-

_ ; ; ; ture,” IEEE Communications Magazinpp. 60-68, Oct. 2002.
r(.)und robin schedullng. R.emovm.g any. of the component] Kenneth A. Oye, Ed.Cooperation Under AnarchyPrinceton University
gives the adversary the ability to discredit non-faulty elements” press, 1986.
and, therefore, cause the Byzantine robustness property [8 R. Perlman,Network Layer Protocols with Byzantine Robustné¥s.D.
be violated. One reason to stress this observation are the hesis, Massachusetts Institute of Technology, Aug. 1988.

s - . . A. Herzberg and S. Kutten, “Early detection of messagevémding
vulnerabilities exhibited by previous systems (some of which " fayits” s1AM J. Comput.vol. 30, no. 4, pp. 11691196, 2000.

we point out) that omit any of the components. [5] K. Bradley et al, “Detecting disruptive routers: A distited network
We have discussed route selection and have presented g]nmon'to””g approach,1EEE Network MagazineSept./Oct. 1998.

. w . " . 4 B. Awerbuch, D. Holmer, C. Nita-Rotaru, and H. Rubens, n“An-
algorlthm that _Calcglates prefl_x-span ConStra_'ned shortest” gemand secure routing protocol resilient to byzantinaifes.” inProc.
paths. Links with different prefix span constraints are use- 2002 ACM Workshop on Wireless Secyritflanta, GA, Sept. 2002.

; ; ; 7] R. Hauser, T. Przygienda, and G. Tsudik, “Lowering seéguwverhead

ful for Improvmg .performance at the expense of potentlall)l in link state routing,”Computer Networksvol. 31, no. 8, pp. 885-894,
decreasing reliability. Apr. 1999.

We have introduced two extensions to the basic fault de8] P. Papadimitratos and Z. Haas, “Secure routing for neolitl hoc

; ; ; « » networks,” inProc. Communication Networks and Distributed Systems
teCtlon. protocol. The first IMProves performance. of _normal Modeling and Simulation Conferenc8an Antonio, TX, Jan. 2002.
operation at_the expense of Ionger_fault detection time. Th@] S. Murphy and M. Badger, “Digital signature protectiofi the ospf
second restricts the adversary’s ability to emulate congestion. routing protocol,” in Proc. Symposium on Network and Distributed
; e i System Security, NDSS ;98an Diego, CA, 1996.

We. have shown that sharlng fault knOW|e.dge IS, In gener@f)] Y. Hu, A. Perrig, and D. Johnson, “Ariadne: A secure amdnd
a difficult problem. We have presented efficient methods routing protocol for ad hoc networks,” Broc. 8th Annual International
limited sharing of fault knowledge. Conference on Mobile Computing and Networkikglanta, GA, Sept.

; : ; ; 2002.
We have shown how to isolate/penalize misbehaving rout?ﬁ] B. Smith, S. Murthy, and J. Garcia-Luna-Aceves, “Semyrdistance-

by blocking their traffic, potentially impr9Ving both perfor- vector routing protocols,” irProc. Symposium on Network and Dis-
mance and robustness of the network. This approach, however, tributed System Security, NDSS ;%an Diego, CA, 1997.

; i ; ibL2] B. Smith and J. Garcia-Luna-Aceves, “Securing the borgateway
may potentlally increase fault recovery time. We are Cont"[]l routing protocol,” inProc. Global Internet '96London, UK, Nov. 1996.

Lfing research on impr.ovinlg our protocol to redu_ce reCOVefds) R. Canetti et al., “Multicast security: A taxonomy andnse efficient
time. One promising direction is to leverage the time optimal constructions,” inProc. IEEE Infocom 1999MNew York, NY, Mar. 1999.
i [14] A. Perrig, R. Canetti, D. Song, and D. Tygar, “Efficiemdasecure
fault de.teCtlon protocol of Herzberg "’.‘“d Kutten [4] source authentication for multicast,” roc. Network and Distributed
One important threqd of our ongoing resea_rch stems from System Security Symposium, NDSS %4n Diego, CA, 2001.
the need of a mechanism that re-incorporates into the netw@i http://iwww.cs.ucdavis.edu/” rogaway/umac/ _ _
components that have been previously declared faulty alél L-”TC%T;SQQ' 1Cg.9|6e|serson, and R. Rivesintroduction to Algorithms
Fherefore removed. This issue is also related to how we addr9$§ R. Guerin and A. Orda, “Computing shortest paths for amynber
innocuous packet drops (drops that are not due to faults). Our of hops,” IEEE/ACM Transactions on Networkingol. 10, no. 5, Oct.
ian i i) 2002.
proppsed_ solution is to rgplace a bmary ff.ilflty V.S' non-faul 8] H. Gabow, S. Maheshwari, and L. Osterweil, “On two pesht in the
verdict with a more Cont|nuous faylt metric: a Smgle. pack generation of program test pathdEEE Trans. Software Engineering
drop should not result in the outright removal of a link, for vol. 2, no. 3, Sept. 1976.
. P. Crescenzi and V. Kan#, Compendium of NP Optimization Problems
exarpple, I.nSteE},d’ repgated Oﬁ?nse.s would gradually qegré&% http://www.nada.kth.se/~ viggo/problemlist/compemdibtml.
the quthlness of a link, mak'ng it less and Ie;s desirablgo; v, Kann, “Polynomially bounded minimization problentsat are hard
and ultimately removed. A previously removed link, on the to approximate,’Nordic J. Comp.vol. 1, pp. 317-331, 1994.
i ; ; [T ; 21] P. Berman and G. Schitger, “On the complexity of appmading the
other _hand, can reh_ab|I|tate itself by_provmg its Wo_rthlnessl independent set problemihform. and Comput. Q6pp. 77.94, 1092,
over time. This continuous faul_t metric nee_ds to be mtegrat?g] D. Estrin, M. Steenstrup, and G. Tsudik, “A protocol fooute
into the route selection/calculation mechanism and, potentially, establishment and packet forwarding across multidomaterriets,”
; ; IEEE/ACM Trans. Networkingvol. 1, no. 1, pp. 56-70, Feb. 1993.
even Conge.zstlon.cor.]trol meChamsr.n.S as We.”' EZS] D. Estrin, Y. Rekhter, and S. Hotz, “Scalable inter-dom routing
_ We are 'nveSUgat'_ng the Scala_-b”'ty of this protocol. On architecture,” inProc. ACM SIGCOMM Baltimore, MD, Aug. 1992.
line of development is to extend it for the case that the nodes
of the network are “Autonomous Systems,” rather than routers.
We believe that it is feasible to consider secure routes as

a class ofpolicy routesin the Interdomain Policy Routing

REFERENCES

