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Abstract

The Border Gatewvay Protocol, BGR is currently the
only interdomainrouting protocol employedon the Inter-
net. As required of any interdomain protocol, BGP al-
lows policy-basedmetricsto override distance-basedet-
rics andenablessad autonomousystemnto independently
defineits routing policies with little or no global coori-
nation. Varadhanet al. [11] have shownthat there are
collectionsof routing policiesthat togetherare not safein
the sensethat they can causeBGP to diverge. Thatis, an
unsafecollectionof routing policiescanresultin someau-
tonomousystemsxchangingBGProutingmessgesindef-
initely, withoutever corverging to a setof stableroutes.In
this paperwe presentsuficient conditionson routing poli-
ciesthat guaranteeBGP safety We usea new formalism,
calledthe Simple Path VectorProtocol(SPVP) that is de-
signedto captue theunderlyingsemantic®f anypathvec-
tor protocol sud as BGP. We identify a certain circular
setof relationshipshetweerrouting policiesat variousau-
tonomoussystemghat we call a disputecycle. WWe show
that systemswith no disputecyclesare guaranteedto be
safe While theseinclude systemsvhosepoliciesare con-
sistentwith shortespathsundersomeink metric,theclass
of systemsvith no disputecyclesis strictly larger.

1 Intr oduction

BGP[9, 7, 10] allows eachautonomousystemnto inde-
pendenthformulateits routing policies,andit allowsthese
policiesto overridedistancemetricsin favor of policy con-
cerns.In contrasto puredistance-ectorprotocolssuchas
RIP[8], Varadharetal. [11] have shovn thattherearerout-
ing policiesthatareunsafein the sensehatthey cancause
BGPtodiverge. Althoughit seemshatBGPdivergencehas
notyetoccurredn practice,jt couldpotentiallyintroducea
greatdealof instability into the globalroutingsystem.

Thegoalof this papeiis to clarify thenatureof BGPpol-
icy inconsistenciethatcangiveriseto protocoldivergence.
Our maincontritutionscanbe summarizeasfollows. We

introducea generafformalism, calledthe SimplePath Veec-
tor Protocol (SPVP),thatis designedo capturethe under
lying semanticof any path vector protocol suchas BGP
We definea disputecyclewhosearcscorrespondo a cer
tain type of policy dispute. We shaw that systemswith no
disputecycles are guaranteedo be safe. While thesein-
clude systemswhosepolicies are consistentwith shortest
pathsundersomelink metric, the classof systemswith no
disputecyclesis strictly larger

Thepaperis organizedasfollows. In Section2 we define
the Simplified Path-\ector Protocol (SPVP).In an SPVP
specificationeachnode (representingan autonomoussys-
tem) hasa list of permittedpathsto a destinationfogether
with a rankingof thesepaths. Solutionsto suchspecifica-
tionsaredefinedto beroutingtreesthat satisfycertainsta-
bility conditions.We definea modelof dynamicevaluation
whosestablestatescorrespondo suchsolutions.

In Section3 we definetwo equivalentstructuresthedis-
putewheelandthe disputecycle thatcapturea certaintype
of circular policy inconsisteng. We showv that an SPVP
specificationwith no disputecycle (no disputewheel) al-
wayshasa uniquesolution. In addition,we shav thatsuch
aspecificatioris safeandsoits dynamicevaluationwill al-
waysarrive at a stablestate.

BGP is differentfrom shortestpath routing for several
reasonsFirst, therelative rankingof routesin BGPis not,
in general basedon pathlengths,or ary otheruniversally
agreeduponcostfunction. Secondgachautonomousys-
tem canrejectpathsarbitrarily (even shortestpaths)based
on policy considerationsEvenso, it seemsa naturalques-
tion to askwhich policiesare consistentvith an edgecost
function. We explore this questionin Section4. We in-
troducethe conceptof an SPVP specificationbeing con-
sistentwith a given edgecostfunction. Evenin this case,
one may find routing treesthat are not shortestpathtrees
with respecto the costfunction. However, we shav that
ary SPVPspecificatiorthatis consistentith a costfunc-
tion without non-positve cycleswill be safe. An immedi-
ateconsequencef this is thatBGP configurationghatare
simply basedon “hop count” aresafe(evenwith “padding”
of AS-paths). On the otherhand,we shav that BGP-like



systemsanactuallyviolate “distancemetrics”andremain
safe. Finally, Section5 suggestsomeproblemsfor fu-
turework. Full proofsfor thoseomittedherecanbefound
in [5].

1.1 RelatedWork

Bertsekast al. [1] prove corvergencefor a distributed
versionof the Bellman-Ford shortestpath algorithm. Be-
causeof the differencesbetweenBGP and shortestpath
routing mentionedabove, theseresultsdo not directly ap-
ply to a protocolsuchasBGP

In Varadharet al. [11], the corvergencepropertiesof
an abstractiorof BGP is studied. They describea system
similar to our BAD GADGET, for instance,asa simple
exampleof policieswhich leadto divergence.In their set-
ting, anodemustupdateeachtime it recevesa new route-
to-origin “advertisementfrom one of its neighbors. This
is in contrastto our modelwherethe updatesequencele-
termineswhennodesprocesgheir neighbors pathchoices.
They alsodefinethe notion of an auxiliary graph,calleda
returngraph to studycorvergence.Returngraphsarede-
fined only for systemswith a particulartopology namelya
ring topology andarestrictedsetof allowablepathsateach
node,namelyonly counterclockwisg@aths.A returngraph
is definedasfollows. For anodev andtwo permittedpaths
P, @ fromwv to 0, wedefineanarc(P, Q) if whenstoringP
atv, andupdatingthe nodesclockwisearoundthering, the
nodev adoptsy) whenw is onceagainreached.

GoudaandSchneideff2, 3] have studiedmetricswhich
always have a maximaltreeg thatis, a treein which every
nodehasits ‘favorite’ pathto the origin, containedin the
tree. Their notion of a maximaltreeis differentfrom the
centralnotionof astabletreeintroducedn Section2.2. The
latter is basedon reachinga local, asopposedo a global,
equilibrium. Roughlyspeakinga metricin their work cor-
responds$o amethodfor rankingpathsbasedn edgecosts.
They characterizenetricswhich admita maximaltreefor
ary graphandany possiblecostfunction.

2 A Simple Path-Vector Protocol

This sectionintroducesa framework, calledthe Simple
Path Vector Protocol (SPVP),that is designedto capture
the underlyingsemanticof any pathvectorprotocolsuch
asBGR Theintentis to stripawayall buttheessentialérom
BGR leaving only the basicnotionsof permittedpathsto a
destinatiorandtherankingof thosepaths.We seekto study
thesafetyof routingpoliciesin amanneiindependentf the
detailsusedto implementhosepolicies(for example BGP
attributesandimport andexport transformations)in mod-
eling BGPwe malke severalsimplifying assumptionskirst,
we ignoreall issuesrelatingto internal BGP (iBGP). As a

corollaryto this, we assumehat thereis at mostonelink
betweenrary two autonomousystems.Secondwe ignore
addressaggreyation. We believe that thesesimplifications
arenot of fundamentalmportance andwe adoptthemin
orderto improve the clarity of the statementsndproofs.

2.1 BGP Route Selection

In orderto motivatethe SPVPformalism,we briefly re-
view the route selectionprocessof BGP [9, 7, 10]. BGP
employs alargenumberof attributesto corvey information
abouteachdestination. For example, one BGP attribute
recordsthe path of all autonomousystemshat the route
announcemerttastraversed.For thesereason8BGPis of-
tenreferredto asapathvectorprotocol. TheBGPattributes
areusedby import policiesandexport policiesat eachau-
tonomoussystemn orderto implementts routingpolicies

In BGR route announcementare recordsthat include
thefollowing attributes.

nlri :  network layerreachabilityinformation
(addresdlock for a setof destinations)

next_hop next hop (addres®f next hoprouter)
as_path orderedist of verticestraversed
local_pref local preference
med multi-exit discriminator
c_set setof communitytags

Thelocal preferencattributelocal_pref is notpassedbe-
tweenautonomousystemsbut is usedinternallywithin an
autonomousystemo assignalocal degreeof preference.
Eachrecordr is associatedvith a4-tuple,rank-tuplégr),
definedas
1 1 1

| r.as_path |’ r.med’ r.next_hop

).

For agivendestinatiord, therecords- with d = r.nlri are
ranked using lexical orderingon rank-tuplgr). The best
routeselectionprocedurdor BGP[9] picksrouteswith the
highestrank. In otherwords,if two routerecordsshare
the samenlri value, thenthe recordwith the highestlo-

cal preferencas mostpreferred.If local preferenceralues
areequal,thentherecordwith the shortests_path is pre-
ferred. If thesepathshave the samelength,thentherecord
with the lowestmed valueis preferred. Finally, ties are
brokenwith preferencegivento therecordwith the lowest
IP addresdor its next_hop value. Note thatthis ordering
is “strict” in the sensethatif two recordsry, rs areranked
equally thenr; .next_hop = r;.next_hop. Routeselec-
tion basedon highestrankis alwaysdeterministicsinceat
ary timethereis at mostonerouterecordwith a givennlri

andagivennext_hop.

A routetransformatior/” is afunctiononrouterecords,
T(r) = r', thatoperatedy deleting,inserting,or modi-
fying the attribute valuesof r. If T(r) = () (the empty
record) thenwe saythatr hasbeenfilteredoutby 7.

(r.ocal pref,



Supposer andw are autonomousystemswith a BGP
peeringrelationship. As a recordr movesfrom w to u it
undepgoesthreetransformations.First,r; = exportu «
w, r) representshe applicationof export policies (defined
by w) to r. Second,rs = PVT(u <+ w,r1) is the
BGP-specifigpathvectortransformatiorthataddsw to the
as_path of r; andfilters outtherecordif its as_path con-
tainsw. Finally, rs = import(u < w,rs) representshe
applicationof import policies (definedat u) to r». In par
ticular, thisis the functionthatassignsalocal _pref value
for r3. We call thecompositiorof thesetransformationshe
peeringtransformationpt(u < w, r), definedas

import(u < w, PVT(u < w, export(u < w,r))).

Supposeautonomoussystemuyg is originating a destina-
tion d by sendinga route recordry with rg.nlri = d to
(someof) its peers. If ug is an autonomoussystemand
P = up ug_1---u1 ug is a simple pathwhereeachpair
of autonomousystemsu;.1, u; are BGP peers,thenwe
definer(P), therouterecod receivedat uy fromug along
path P, to be

Pt(us < ur—1, Pllug—1 & ugp—2, - - ptlur < uo,75))).

We saythat P is permittedat ux whenr(P) # (). We
canthendefinea ranking function A% (P), on AS-paths
permittedatuy asA¥* (P) = lex-rank(rank-tuplgr(P))).

The SPVPformalismdefinedbelow is basedon the no-
tion of permittedpathsandrankingfunctionsonthesepaths.
In termsof BGP, we canthink of SPVP as capturingthe
semanticghattranslatehe appaentrouting policiesat au-
tonomoussystenmuy, (theimportandexportpoliciesdefined
atuy) into the actualrouting policiesat ug. Notethatthe
actualrouting policies at uy, arethe resultof the interac-
tion betweerrouting policiesof mary, possiblydistant,au-
tonomoussystems.

2.2 SPVPSpecifications

A simple,undirectedconnectedyraphG = (V, E) rep-
resentsa network of nodesV = {0,1,2,...,n} connected
by edgesE. For ary nodeu, peergu) = {w | {u,w} € E}
is the setof pees for u. We assume&hat node0, called
theorigin, is specialin thatit is the destinatiorto whichall
othernodeswill attemptto establisha path.

A pathin G isasequencey, vg_1, ... v1, vg, Of nOdes
suchthatfor eachi > 0, {v;,v;—1} is anedgein E. The
emptypathis writtene. We assumehatall non-emptypaths
P = vg,v5_1,-..,v1, v implicitly have a directionfrom
thefirst nodew;, to thelast nodewv,. Suppose = {u,v}
isanedgein E. If nodew is thefirst nodeof path P, then
(u,v) P denoteshepaththatstartsatnodeu, traversesedge
e, andthenfollows path P.

If P and@ arenon-emptypathssuchthatthefirst node
in @ isthesameasthelastnodein P, thenP(@ denoteghe
pathformedby the concatenatiomf thesepaths.We extend
this with the corventionthateP = Pe = P, for ary path

P. ForasimplepathP = vg,vg_1,-..,v1, 19 andfor ary
i,j with k > i > j > 0 we denoteby P[v;, v;] thesubpath
Vi Vi—1y--.,Uj.

For eachv € V — {0}, let P be the setof permitted
pathsfrom v to theorigin (node0). If P is apathfromv to
theoriginandP ¢ P*, thenP is saidto berejectedatnode
v. If P =wv,vg,...,v1,v9 = 0isin P?, thenthe nodewy
is calledthe next hopfor pathP. LetP = |J, ., P* bethe
setof all permittedpathsto the origin.

For eachv € V — {0}, thereis a non-neyative, integer
valuedrankingfunctionA? : P representindiow nodev
ranksits permittedpaths. If P, P, € PY andA?(P;) <
AY(P), then P is said to be preferred over P;. Let
A= {) | v eV -{0}}. An SPVPspecification
S = (G, P, A), isagraphtogethemwith the permittedpaths
at eachnon-zeronodeandthe ranking functionsfor each
non-zeronode.

We imposethefollowing restrictionson A andP.

vEV

(empty path is permitted) for eachw € V', e € P?,

(empty path is lowestranked) for eachv € V, X\%(e) =
01

(strictness) if AY(P) = AY(P), thenP; = P, or thereis
aw suchthat P, = (v, u)P| andP; = (v, u)P; (paths
P, and P, have the samenext-hop).

(simplicity) if pathP € P*, thenP is a simplepath(no
repeatedhodes),

(consistencyof permitted paths) If P € PYandw # 0 is
in P, thenP[w, 0] € Pv.

Pathscorrespondo BGP’s as_path attribute. Unlike
BGP however, in SPVPthe numberu is prependedo all
pathsatnodeu. This merelysimplifiesthe exposition. The
“consisteng of permittedpaths”is also not an essential
condition,sinceary specificatiorthatdoesnotsatisfyit can
easilybetransformednto onethatdoes.

LetS = (G,P, A) bean SPVPspecification A routing
treeT = (P, Ps,---, P,) is avectorof pathswith P; €
Pt, suchthat the union of thesepathsis a tree. Note that
someof the P; may be the empty path. Node: is stable
with respecto this treeif A¥((¢,5)P;) < A*(P;) wheneer
(i,5)P; € P.. AtreeT = (P, B,---,P,) is stableif
every nodeis stable.

An SPVPspecificationS = (G, P, A) is calledsolvable
if thereexists a stableroutingtreefor S. Otherwise,S is
calledunsolvable A stableroutingtreeT is calleda solu-
tion for the specifications.
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Figure 1. Examples of SPVP specifications.

Griffin and Wilfong [6] have shavn that statically de-
tecting solvability for real-world BGP is NP-hard. Simi-
larly, [5] shawvsthatthe basicquestionof solvability is still
NP-completdor themoreabstracmodelof SPVP

Figurel (a) presentan SPVPspecificatiorcalledcoobp
GADGET. Therankingfunctionfor eachnon-zeronodeis
depictedasa verticallist next to the node,with the highest
rankedpathatthetop goingdown to thelowestrankednon-
emptypathatthebottom.Theroutingtree

((130), (20), (30), (430))

is a solutionfor this specification,andit is illustratedin
Figurel (b). Thedynamicmodelof SPVR definedbelow,
will alwayscorvergeto this solution. Also, thisis the only
solutionfor GOOD GADGET sinceary otherroutingtreeis
notstable.For example,in thetree

((10), (20), (30), (430)),

nodes1 and 2 would both prefer to changetheir paths
to onesof higherrank. A modificationof Goob GAD-

GET, calledNAUGHTY GADGET, is shawvn in Figurel (c).

NAUGHTY GADGET addsonepermittedpath (3 4 2 0) for

node3, yetit hasthe sameuniquesolutionasGoob GAD-

GET. However, asis explainedbelow, the dynamicevalua-
tion of this specificatiorcandiverge. Finally, by reordering
therankingof pathsat node4, we producea specification
calledBAD GADGET, presenteth Figurel (d). Thisspecifi-
cation,whichis similarto examplesof [11], hasno solution
andits dynamicevaluationwill alwaysdiverge.

2.3 A Simple Dynamic Model

We now presenasimplifiedmodelof distributedevalua-
tion thatignoresthe implementatiordetailsrelatedto mes-
sagequeuesand messagegassing. This model was used
in [6], but with a different specificationlanguage. This
modelis equivalentto a specialcaseof amoregenerames-
sagepassingmodel, whereit is assumedhat eachnode
performsan atomic stepthat processesll of its message
gueuescomputesry changeso bestroutes,andsendsup-
datemessage® all of its peers.

A statefor a specificationS = (G, P, A) is a vector
s = (Py,...,P,_,) of pathswhere P, € P!. Note that
statesdo not alwaysrepresentrees.We saythatpath P; is
storedat nodes in this state andwe alsosaythatthetrivial
pathQ is alwaysstoredat node0. The systemmaovesfrom
stateto stateasnodesupdate Whena nodeupdatest can
replaceits currentpathwith a pathof higherrank,if sucha
pathis available. It canalsoloseits path,if it is nolonger
availablefrom its next hop, andbe forcedto accepta path
of lowerrank.

To formalize this, we definethe setof choicesthat a
nodehaswhenit updateshow it choosesa bestpath,and
how it updates. The choiceof pathsfor nodew in state
s = (P1,...,Pp_1) is thesetChoices(u, s), which is de-
finedto be all P € P* suchthateitherP = (u,0) and
{u,0} € E or P = (u,v)P, for some{u,v} € E. There
is one bestchoicein ary states, Best(u, s), definedto be
theuniqueP € Choices(u, s) suchthatA*(P) is maximal,
if Choices(u, s) is notempty Otherwise Best(u, s) is the
emptypath.

In orderto modelasynchronousoutingprocessewe al-
low multiple nodesto updatesimultaneouslylLet A C V
be non-emptyands = (Py,...,P,_1) beastate. Then
states’ = (P{,...,P,_;) is reacedfrom s by updating
thenodesof A if

P; if i & A, (¢ doesnotupdate)
P =

Best(i,s) otherwise.
We usethe notations i> s' to denotethis statetransition.
For example,

((10), (20), (30), & = ((130), (210), (30), )

is a statetransitionfor BAD GADGET.

A states = (P,...,P,_1) is stableif for eachi €
V —{0} wehaveBest(i, s) = F;, orequialently if s Ny
for every set A. Informally, in a stablestatethereis no
nodethatcouldpick a pathbetterthanits currentpath.lt is
easyto shav thatary stablestatemustcontaina solution(a
stableroutingtree).



Figure 2. A strongly connected component
from the evaluation digraph of NAUGHTY GAD-
GET.

The evaluation digraph of a specification § =
(G,P,A), denotedEval(S), is a labeleddirectedgraph

having onenodefor eachpossiblestate. If s 4, s', then
thereis anarcfrom thenoderepresenting to thenoderep-
resentings’ labeledA. A cycleC in Eval(S) is asequence
of states

S1 i>.32 383"'14487”4_1

wheres; = sy,+1. Thiscycleis non-trivial if it containano
selfloops. It is clearthatif Eval(S) containsa non-trivial
cycle,thenthe specificationS candiverge.

An updatesequence is afunctionsuchthato(t) C V,
for eacht > 0. Fromary startingstates, the functiono

definesaninfinite pathin Eval(S) composef arcss; 7
St+1. Wewrite o(sg, t) to denotes;.

A specificationS is saidto corverge with updatese-
qguences andinitial statesg, written S(sg,0) J, if there

is sometime ¢ suchthato(so, t) is a stablestate. Other
wise, S is saidto diverge with ¢ andinitial statesg, written
S(s0,0) 1. An updatesequencer is fair if eachnodew,
u € o(t) for infinitely mary ¢'s. A systemS is saidto be
safeif S(sg, o) | for everyfair o andeveryinitial statesy.
The specificationcoob GADGET is safe. On the other
hand,NAUGHTY GADGET is solvable, but not safe. The
evaluation digraph of NAUGHTY GADGET has 81 states.
Figure 2 shows a strongly connecteccomponentfrom this
digraph.For readabilitywe have notlabeledarcs,andwe do

notshaw parallelarcsnor selfloops(s 4, s). Any update
sequencéhatremainswithin this stronglyconnectedom-
ponentwill diverge.Finally, BAD GADGET will divergefor

ary updatesequence.

3 Sufficient Conditions

In this sectionwe developa sufficient conditionthatwill
guaranteg¢hatan SPVPspecificatiorhasa uniquesolution
andis safe. The sufficient conditionconcernghe absence
of a circularsetof relationshipdetweerrankingfunctions
that we call a disputecycle The structureof disputecy-
clesis furtherelucidatedvith thedefinitionof anequivalent
structurecalleda disputewheel

3.1 The Dispute Digraph

For ary specificationS = (G, P, A) we constructa di-
rectedgraph,DD(S), calledthe disputedigraph For each
permittedpath P of S thereis anodein DD(S) labeledP.
Therearetwo kinds of arcsin the disputedigraph,trans-
missionarcsanddisputearcs

P = (u,v)P[v,0]

s “ ma.
(u,v)@ Pw,0] | 7
v X

Figure 3. Conditions for dispute arc @ — P.

Supposghatnodesu andv arepeerslf @ is apermitted
pathatv and P is a permittedpathat «, thena disputearc
from path() to pathP, denotedy — P, representalocal
policy disputebetweenpeersu andv concerningthe rela-
tive rankingof pathsP and@. Informally, it representthe
factthatnodev couldincreasethe rank of its bestpathby
abandonindP[v, 0] andadopting?, while thisactionwould



forceu to abandompathP andselectasits bestpathonethat
could potentiallyhave lower rankthan P. More formally,
Q — P isadisputearcif andonly if thefollowing condi-
tionshold:

1. Pisapermittedpathfrom « to 0 with next-hopw,

2. @ isapathfromv to 0, permittedatv,

3. path(u,v)Q isrejectedatu, or X ((u, v)Q) < A\*“(P),
4. 3 (P[v,0]) < X*(Q).

Figure3 illustratestheseconditions.

Thereis atransmissiorarc from v P to (u, v)P, denoted
vP ---> (u,v)P, whennodesu andv are peers,vP is
permittedat v, and (u, v)P is permittedat . Informally,
vP - - > (u,v)P mightbereadas“nodewv permitspathv P,
whichallows« to permitpath(u, v) P”. Figure4 shavsthe
disputedigraphsfor the specification®f Figure1l. Again,
the dottedarcsare transmissiorarcs, while the solid arcs
aredisputearcs.

20 1 420] 1210} 10
(2) $

430 [ 30} 1130]

20 [420] [210] 10 |/
e ¢

430 [ 30 | 1130/ 342

20 [420)] (210 10|/
© f v

430 [ 30 | 1130/ 342

Figure 4. Dispute digraphs for (a) coobp , (b)
NAUGHTY, and (C) BAD GADGET.

A directedpathin DD(S) is of theform

T=Poa Pray - Pp_1ap_1Fp,

whereF; € P, andeachP; a; P;,, representadisputearc
or atransmissiorarc. A directedpath containsa cycle if
P; = P; for somei # j. We usuallyreferto cyclesin the
disputedigraphasdisputecycles

Lemma 3.1 Any disputecycle mustcontain at leasttwo
disputearcs.

From Figure 4 we see that the dispute digraph of
GOOD GADGET hasno cycles, while the disputedigraph
of NAUGHTY GADGET containghe simplecycles

(3420) — (430) — (3420)
and
(130) — (210) — (420) -->(3420) — (130).

The secondcycle is alsocontainedn the disputedigraph
of BAD GADGET.

3.2 Dispute Wheels

We now giveanalternataepresentatioof disputecycles
in termsof structurescalleddisputewheels While dispute
cyclesarebuilt from local relationshipshetweenthe rank-
ing functionsof peers,dipute wheelsare basedon “long
distancerelationships.

A disputewheel, Il = (U, Q,R), of sizek, is a set
of nodesU = {ug,uq,---up—1}, andsetsof paths@ =
{Q0,Q1,---Qr—1} andR = {Ry, Ry, - Rp_1}, such
that for each0 < i < k — 1 we have (1) R; is a path
fromu; touiy1, (2) Qs € P, (3) RiQiy1 € P¥, and(4)
A% (Q;) < A% (R;Q;:+1). Whendiscussinglisputewheels,
all subscriptsareto beinterpretedmodulok. SeeFigure5
for anillustrationof a disputewheel.Sincepermittedpaths
aresimple,it followsthatthe sizeof ary disputewheelis at
least2.

Figure 5. A dispute wheel of size k.

The rim of a disputewheel II is the (possibly non-
simple) path RoR; --- Rr_1, which is a (possibly non-
simple)cycle in the graphG. A rim fragmentis ary path
of theform R;R; 1 --- Rity, Where0 < ¢ < k —1and
0<m<k-2



A disputewheelll’ = (U’, Q',R'), is a sub-wheebf a
disputewheelll if U’ C U, Q' C @, andeachR € R’ isa
rim fragmentof II.

A minimal disputewheelis onein which for each0 <
i < k—1, eitherR;R;1Q;2 iS not permittedat u;, or
A4 (R;Ri11Qiv2) < A% (R;Q41). Notethatary dispute
wheelof size2 is minimal.

Lemma 3.2 Everydisputewheelcontainsa minimal sub-
wheel.

Proof: SupposehatIl is a disputewheelthatis not min-
imal. Thenfor somew; in II we have A% (R;Q;11) <
A (R;R;11Q;12). Createa sub-wheelof sizek — 1 by
deletingu;+1 and @;+1, andreplacingpath R; with rim
fragmentR; R;.1. Repeatinghis procesanusteventually
arrive ata minimal sub-wheelm

We now show thatdisputewheelsareequialentto dis-
putecycles. We can extendthe notion of a disputearcto
“distantdisputes”in thefollowing way. Let P = P, P, be
apathpermittedatu, wherepP; is a pathpermittedat some
nodewv. Supposehat() is alsopermittedatv, andwe have

1. pathP; Q isrejectedatu, or \%(P, Q) < A% (P ),
2. X(PR) < A°(Q).
We write (Q ~ P whentheseconditionshold.

Lemma3.3 If @ ~ P, thenthereis a pathin the dispute
digraphfrom@ to P of length| P, |.

Corollary 3.4 SupposehatIl = (U, Q,R) is a minimal
disputewheelof sizek. Then

RoQ1 ~ Rp—1Qo - RiQiy1 ~ Ri—1Qi - - ~ RoGh
andsothereis a directedcyclein thedisputedigraph.

Lemma 3.5 If thedisputedigraphDD(S) containsacycle
thenS hasa disputewheel.

Corollary 3.6 A specificationS hasa disputewheelif and
onlyif thedisputedigraphDD(S) containsa cycle

3.3 Two Treesimply a Dispute Wheel

In general,an SPVPspecificationmay have morethan
onesolution. We shaw thatin this casethe disputedigraph
hasacycle.

Althougha solutionis not alwaysa spanningree, it of-
ten simplifies proofsto assumehat all solutionsof S are
spanningtrees. For ary specificationS we can construct
an essentiallyequi/alentspecification§‘ all of whosesolu-
tionsarespanningrees. Add a nev nodev* adjacento 0
for whichv*0 is its only permittedpath. Also addthe edge

{u,v*} for eachu € V andmale (u, v*,0) theuniquepath
whoseu-rankingis greaterthan A%(e), and modify A* so
thatthisis lessthanall otherpathsin P*. This allows usto
usethefollowing fact.

Fact 3.7 For anyspecificationS thereis a 1-1 mappingbe-
tweenits solutionsand thoseof 3. Namely for for each
solutionT for S thereis a uniquesolution?” for § such that
T is asubteeof ',

Theorem 3.8 If a specificationS hasmore than one solu-
tion, thenit hasa disputewheel.

Proof:  SupposeS has two distinct solutions P =
(P, s Pp1) and Q = (Q1,...,Qn-1). We repre-
sentthetwo stableconfigurationdP, Q astwo treesTy, T,
rootedatthenode0. UsingFact3.7,we assumehatT;, T
arespanningLet H bethegraph(V, E(T1)NE(T1)) which
is inducedby theintersectiorof thesetwo trees.Now let T’
be the componenbf H containingthe origin. Thusevery
edgeof H enteringV (T is eitherin E(T) — E(T3) or
E(Ty) - E(Ty).

We now constructa disputewheel. SinceV — V(T') is
nonempty(otherwiseT; = T,) we may choosean edge
{ug,v0} € T1, whereug ¢ V(T') andvy € V(T'). Onthe
otherhand,ug hasapathto theoriginin T5. This pathmust
be of the form Ry (uy,v1)@Q1 where(i) uy & V(T),v; €
V(T) and@); is theuniquepathin T from v, to theorigin,
(il) Ry isapathfromug towu, in T3 butentirelycontainedn
thenodesetV —V (T') and(iii) Ry hasatleastoneedge(for
otherwiseoneof T, T, would notbestable).We repeathis
procesatu; , exceptwe now examinea pathfrom u tothe
origin in thetreeT;. Continuingto alternatdn thisfashion
we musteventuallyrepeatsomenode, which without loss
of generalityis uo.

To seethatthis is a disputewheel,we needonly shav
thatfor each,

A% ((wi, v4)Qs) < XY (Ri(Uit1, vig1)Qig1)-

Without lossof generality assumehat (u;, v;)@Q; isin ;.
If theinequalitydid not hold, thenwe would have

AU (R (i1, Vig1) Qi) < A ((ug, v3)Q5),

whichwould meanthatT5 is notstable m

NotethatNAUGHTY GADGET illustratesthefactthatthe
converseof this resultdoesnot hold. NAUGHTY GADGET
hasa uniquesolutionbut is not safe,andso hasa cycle in
its disputedigraph.

3.4 No Dispute WheelImplies a Solution

Theorem 3.9 Let S bean SPVPspecification.If S hasno
disputewheelthensS is solvable



Proof: Using Fact 3.7, we canassumehat ary solution
for S will beaspanningree. SupposéhatT is atree(not
necessarilgpanning)n G, rootedat0, suchthateachnode
of T is stablewith respectto T'. If u € V — V(T) and
P € P, thenP is saidto be consistenwith T if it can
be writtenas P = Py (u1,v1)@Q1, where P, is a pathin
V-V (T), v € V(T), Q istheuniquepathfrom v, to the
originin T', and{uy,v1} € E. Sucha P is calledadirect
pathto T if P, is emptyandu = u;. Let D(T") betheset
of nodesu € V — V(T') thathave adirectpathto T'. Note
thatif V —V(T) is notempty thenD(T') is notempty(G is
connected)Let H(T") bethesetof nodesu € D(T") whose
highestranked path consistenwith T is a direct path. If
V — V(T is not empty let F(T') be the tree formed by
addingthe nodesof H(T") to T' togetherwith their highest
rankeddirectpaths.

LetTy = {0} bethetrivial treerootedattheorigin. If T;
is suchthatV — V (T;) is notempty thendefine

F(T;) if H(T;) isnotempty
Tipr =

error otherwise

Notethatif all nodesof T; arestablewith respecto T;, then
all nodesof T3, arestablewith respecto T;,1. Thus,if
thereexistsans with V(T;) = V, thenT; is a solutionfor
S, sinceit is stable.

On the other hand, supposeahereexists an ¢ suchthat
Ti;+1 = error. Letug beany nodein D(T;) andlet Qo €
P4 pe adirectpath. Note that theremustbe a path 7,
permittedat uo and consistentwith T3, which hashigher
rankthan@g. SinceP, is consistentvith T; it hastheform
Py = Ry(u1,v1)Q1 whereRy is a pathfrom ug to uy in
V —V(T3), v1 € V(T3), Q1 is theuniquepathfrom v; to
0inT;, and{uy,v:} € E. Notethatv; € D(T3), andsince
H(T;) is emptywe canrepeatthis processwith u,. If we
continuein this mannerit is clearthat we will eventually
form adisputewheel.m

3.5 Divergencelmplies a Dispute Wheel

Supposehat C is a non-trivial cycle in the evaluation
digraph. A nodeu is changingin a cycleC if thereareat
leasttwo distinctstatesof C in whichu hasdifferentpaths.
SinceC is non-trivial, thereis at leastonenodechanging
in C. Let values(C,u) be the setof pathsthatu adopts
in C. Let F(C) bethe setof nodesthat storea fixed path
throughoutC. Notethat0 € F(C), sothis setis never
empty

Lemma3.10 SupposeP € P* is adoptedby u in C,
and let v be the first fixed node of P. Thenead node
w € Plu,v], storesthe path P[w, 0] in somestateof C.
In particular, v stores P[v, 0] throughoutC'.

Proof: Let Plu,v] = (v = %o, Z%1,...%t—1,%t = v). The
resultholdsby assumptiorior g, sosupposehatfor some
i > 0, andfor eachj < i, z; adoptsthe path P[z;,0] in
somestateof C. If ¢ = ¢, theresultis proved. Otherwisez;
is changingin C andadoptsthe path P[z;,0]; thusat this
pointin the cycle, z;1; musthave P[z;,;,0] stored. The
resultfollows by induction.m

Theorem 3.11 If theris a non-trivial cyclein the evalua-
tion digraph,thenS containsa disputewheel.

Proof: Let C be a non-trivial cycle in Eval(S). LetU
bethe subsebf nodesu changingin C' suchthatthereis a
path(u,w)@ € values(C,u) wherew € F(C). Thatis, u
adoptsa pathin C thatleadsdirectly to a fixed node. By
Lemma3.10,U cannotbeempty

We now constructa disputewheel. Let ug beanodein
U. Let Qo beug's directpathto F(C), (ug,wo)@p. It is
easyto checkthat @)y is unique,andthat of all pathsin
values(C, ug) the path Qg is of lowestrank. Let Hy €
values(C, ug) be the adoptedpath of highestrank at ug.
Lemma3.10tells us that we canwrite this pathas Hy, =
Ry(Q)1, whereRy is apathfrom ug to u; of changinghodes,
up € U, and@; = (uy,w;)Q] for somew, € F(C). We
cannow performthe sameconstructionfor u;. Repeating
this processn the obviousway resultsin a disputewheel.
[ |

Corollary 3.12 If S hasno disputewheel,thenthe evalu-
ation graphEval(S) hasno non-trivial cycles,andso S is
safe

The corverseof this resultdoesnot hold. For example,
BAD BACKUP presentedn Figure6 is theresultof a slight
modificationto BAD GADGET (the path (40) is addedand
madethe highestranked pathat node4). This specification
hasa disputewheelbut the evaluationgraphhasno cycles.
In otherwords, the disputewheel of BAD BACKUP is not
dynamicallyrealizablein our simple modelof evaluation.
Notethatif the edge{0,4} is deleted(modelinglink fail-
ure),thenthis systembecome®AD GADGET.

Figure 6. The specification BAD BACKUP.



4 SPVPand ShortestPaths

Varadhanet al. [11] first obsered that BGP policies
couldinteractin away thatresultsin protocoldivergence.
Their examplesalways include autonomoussystemsthat
choosdongerpaths(in termsof “hop count”) over shorter
ones.They stated'We believethat only shortestpathroute
selectionis provablysafe” Theresultsof the previoussec-
tionswill be usedto explore this statement.We interpret
it to meanthatary classof policiesnot basedon shortest
pathroute selectionwill not be provably safe. Notice that
implicitly, the conjecturds suggestinghat systemsvhose
policiesare basedon shortestpath route selectionwill, in
fact,besafe.

We begin by formalizingafairly liberalnotionof “short-
estpathroute selection"that seemsappropriatefor proto-
colssuchasBGP. We thenshav thatany SPVPspecifica-
tion thatis consistentith shortespathrouteselectionwill
indeedbe safe. However, we shav thatthe corverseis not
true. Hence,BGP-like systemscan actually violate “dis-
tancemetrics”andremainsafe.

As is standardor undirectedgraphs,we work with an
associatearientationof it; we think of anundirectededge
e = {a, b} asbeingreplacedy two arcs,e~ = (a,b) and
et = (b,a). We arealsogivencostsc(et) andc(e™) asso-
ciatedwith traversingtheedgee in thetwo directions.Thus
¢ inducesa costfunctionon ary directedpath P in there-
sulting orientedgraph: ¢(P) = > ,c 4(p) ¢(a). The cost
functionc is positveif for eacharca, c(a) > 0.

Thereare several possiblewaysto formalizethe notion
of “shortestpathrouteselection’for acostfunctione. Since
anodeu in anSPVPspecificatioris notrequiredto treatall
possiblepathsto the origin as permittedpaths,we cannot
insistthatu take the shortestpath. However, it seemgea-
sonableo insistthatif u hasa choicebetweerntwo permit-
tedpathsandthesepathshave differentcosts thenu cannot
preferthe higher costpath over the lower cost path. For-
mally, we saythatthe S = (G,P,A) is consistentwith
the costfunction¢ if for eachw and P, P, € P*, (1)
if A¥(P) < A¥(P), thene(P:) < e(Pyr), and (2) if
)\w(Pl) = )\w(PQ), thenC(Pg) = C(Pl).

If S is consistenwith a costfunction ¢, thenthereare
only two sourcesfor policy disputes. First, not all paths
have to be permittedat ary given node. Second ranking
functionsforcetiesto be broken,andthis maybe donedif-
ferentlyat differentnodes Bothreasonsrecapturedn the
following lemma.

Lemmad4.1 If specificationS is consistentvith costfunc-
tion ¢, and Q — P is a disputearc, whee P € P
and Q € P%. Theneither (a) (u,w)Q ¢ P or (b)
(@) = c(Plw, 0)).

If a costfunctionc¢ hasnegative directedcycles,thenS

Figure 7. NAUGHTY GADGET with negative link
costs

canbeconsistentvith ¢ andyetnot safe.For example,con-
siderthe costsattachedo theedgesof NAUGHTY GADGET
in Figure7, wherethecostof traversinganedgeis thesame
in eachdirection. NAUGHTY GADGET is consistentwith
this costfunction,but we know from Section? thatthis sys-
temis notsafe.Notethatthis graphcontainsa cycle of cost
—16. Also, noticethatary S will be consistentwith the
costfunction ¢ thathascost0 for every arcandso, in par
ticular, NAUGHTY GADGET will be consistentith sucha
costfunction. Thuswe restrictourselesto SPVPspecifica-
tions consistentvith costfunctionsthatdo not realizeary
directedcyclesof costat most0.

Defineacostfunctione to becoheentif it doesnotresult
in ary non-positve directedcycles. Notethatary positive
costfunctionis coherent.

Theorem4.2 If S is consistenwith a coheentcostfunc-
tion, thenS hasno disputewheel.

Proof: Supposethat ¢ is a coherentcostfunction, S is
consistentvith ¢, and.S containsa disputewheelof sizek.
Forary 0 < i < k — 1 wehae X (Q;) < X (RiQi1),
andsoc(R;Qiy1) = ¢(B;) + c(Qit1) < ¢(Qs). Summing
theseinequalitieswve obtain

k—

ZC(Ri) + c(Qit1) < .

3=

-
B
|
-

©
Il
=)

After cancellatiorthisimpIiesZi.:O1 ¢(R;) < 0. Thusthe
rim of the disputewheelis a cycle of costat most zero,
whichis acontradictionm

FromCorollary3.12,we canconcludehatary S consis-
tentwith a positive costfunctionis safe.In particulay rout-
ing policiesbasednhop-coun{evenwith AS-paddingare
alwayssafe.In addition,it canbeshowvn thatif all pathsare
permittedthenthis resultsin a shortest-pathoutingtree.

We now shaw thatthe converseof Theorem4.2 is not
true. The specificationiNCOHERENT of Figure 8 hasan
agyclic disputedigraph and henceis safe. However, it
is not consistentwith ary coherentcostfunction. To see
this, supposethat we are given arc costse(1,2) = A,



c(2,3) = B, ¢(3,1) = C, ¢(1,0) = D, ¢3,0) = E
andc(4,3) = F. The costfor ary other arc is arbi-
trary. SUpPpPOS@NCOHERENT is consistentvith thesecosts,
thenthe fact that nodel preferspath[1l 2 3 0] over path
[1 0] meansthat A + B + E < D. Also the fact that
node4 preferspath[4 3 1 0] over path[4 3 0] meansthat
F + C+ D < F + E. Adding theseinequalitiestogether
weobtanA+B+C+D+E+F <D+ E+ F.
By cancellationwe arrive at A + B + C < 0, sothere
is a nonpositve cycle (123). Thatis, INCOHERENT is not
consistentvith any coherentostfunction. Noticethatthe
disputedigraphof INCOHERENT, asshown in Figure8, is
agyclic andhencelNCOHERENT is safe.

In summarythe classof specificationsvith agyclic dis-
putedigraphsis provably safe,yet it is strictly largerthan
thosebasedn shortespaths.
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Figure 8. INCOHERENT and its dispute digraph.

5 Discussionand Future Work

Is it possibleto guaranteghat BGP will not diverge?
Broadlyspeakingthis problemcanbeaddresseditherstat-
ically or dynamically A staticsolutionwould rely on pro-
gramsto analyzerouting policies to verify that they do
not containpolicy conflictsthat could leadto protocoldi-
vergence. This is essentiallythe approachadwocatedin
Govindanetal. [4]. However, therearetwo practical chal-
lengedacingthisapproachFirst,autonomousystemsur-
rently do not widely sharetheir routing policies, or only
publishincompletespecifications. Second,even if there
were completeknowledgeof routing policies, Griffin and
Wilfong [6] have recentlyshawvn that checkingfor various
globalcorvergenceconditionds eitherNP-completer NP-
hard.Thereforeastaticapproachwouldmostlikely require
the developmentof new heuristicalgorithmsfor detecting
this classof policy conflict.

A dynamic solution to the BGP divergence problem
would be somemechanisnto suppres®r completelypre-
ventat “run time” thoseBGP oscillationsthat arisefrom
policy conflicts. Using routeflap dampenind12] asa dy-
namicmechanisnto addresghis problemhastwo distinct
drawbacks. First, route flap dampeningcannoteliminate
BGP protocoloscillations,it will only make theseoscilla-
tionsrunin “slow motion”. Secondyouteflap dampening
eventsdo not provide network administratorsith enough
informationto identify the sourceof the routeflapping. In
otherwords, routeflappingcausedy policy conflictswill
look the sameasrouteflapping causeddy unstablerouters
or defectve network interfaces. Soit seemshatary dy-
namicsolutionwould requirean extensionto the BGP pro-
tocol to carry additionalinformationthatwould allow pol-
icy disputedo bedetectedandidentifiedatrun time

Theproofof TheorenB.11containsaanalgorithmfor ex-
tracting disputewheelsfrom dynamiccyclesin the eval-
uationgraph. This may provide a key to the designof a
dynamicsolution. It might be possibleto extendthe BGP
protocolin suchaway thatthis “extraction” canbe donein
a distributedmanner This could allow for the suppression
of routesinvolvedin policy-basedoscillationsandfor the
identificationof theautonomousystemsnvolved.
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