

- Query determines a path to a copy of the file
- On the return path:
 - Each node caches a copy of the file
 - Each node remembers the source from which the file was obtained
- Local state on each node:
 - File cache: could be managed as LRU
 - Routing table cache: could also be managed as LRU

Lookup Analysis

- Paper claims the following effects:
 - Nodes eventually specialize in locating sets of similar keys
 - If a node is listed in a routing table, it will get queries for related keys
 - Will gain more "experience" in answering those queries
 - Nodes become similarly specialized in storing files having related keys
 - Popular data will be transparently replicated and will exist closer to requestors
 - As nodes process requests, connectivity increases
 - Nodes can discover other nodes in the network
- Caveat: lexicographic closeness of filenames does not imply key-closeness

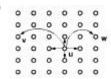
Analysis of insertion

- Newly inserted files are placed on nodes already possessing files with similar keys
 - Reinforces clustering
- New nodes can use inserts as a supplementary means of announcing their existence
- Attempts by attacker to supplant existing files with junk:
 - Initially insert performs a query
 - Query results in expanding the boundary of what is known
 - Eventually a conflict arises and insert cannot proceed
 - Surprising result: original file is more widely known!

Small World Property

- Original experiments by Milgram:
 - Distance between two randomly selected persons is small
 - The path can be discovered in a distributed manner
- Experiment (1967):
 - 160 letters given to randomly chosen people in Omaha, Nebraska
 - Their target was a stockbroker in Boston
 - Can pass along the letter only through friends
 - 42 made it. Average length: 5.5 hops
- More generally, the setting is:
 - Clustered systems: most of the neighbors of an element are neighbors themselves
 - Still achieve a low diameter

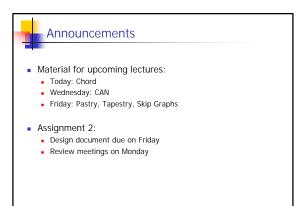

Formal Analysis of Small World Property

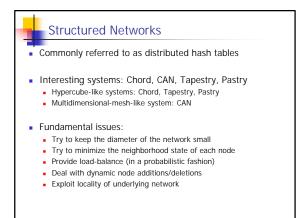

- Diameter of uniformly random graphs is not too relevant
- Watts and Strogatz:
 - Rewired ring networks
 - . Some short range connections
 - Some long range connections
 - Showed that it has low diameter
 - Number of systems have similar properties
 - Connections among neurons in certain species
 - Power grid in the western US
 - Hyperlink graph of the web
- Kleinberg's study:
 - Addresses the second question: can there be a distributed algorithm that discovers these low distance paths?

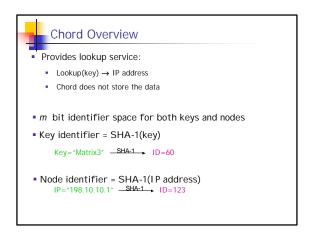
Kleinberg's Results

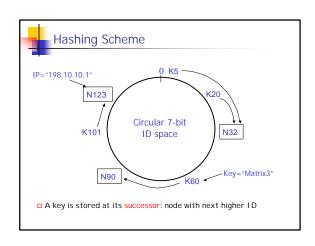
Studied two-dimensional grids

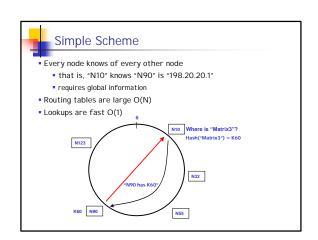
- Assume that you have a budget for long links
 - Assume that the probability of a long link is some inverse-power of the number of lattice steps
- Distributed algorithm exists only when:
 - Probability is proportional to (lattice steps)-2


Using Small World Property in Freenet


• Question: is it possible to make a rigorous use of the small world property in Freenet?




Unstructured Networks


- Summary:
 - Connections between nodes are arbitrary
 - Files/keys are stored on arbitrary nodes
 - New routing table entries are created in a dynamic fashion
- Advantages of unstructured networks:
 - Algorithms tend to be simple
 - Can optimize for other properties: locality, quality of connections, etc.
- Disadvantage of unstructured networks:
 - Hard to make performance guarantees
 - Might result in query failures even though the object exists

