
1

Leader Election

Arvind Krishnamurthy
Fall 2003

Leader Election in Rings

n Under different models:
n Synchronous vs. asynchronous
n Anonymous vs. non-anonymous (knowledge of unique id)
n Knowledge of “n” (non-uniform) vs. no knowledge (uniform)

n Impossibility result: there is no synchronous, non-uniform
algorithm if the processors are anonymous.
n Implies that there are no uniform algorithms as well
n Implies that there are no asynchronous algorithms as well

Outline

n Leader election in asynchronous rings:
n An O(n^2) messages algorithm
n An O(n logn) messages algorithm

n Brief mention of a lower bound
n Synchronous model:

n Breaking the O(n logn) barrier by abusing the synchronous model
n For both uniform and non-uniform systems

n Leader election in arbitrary topologies
n Using simultaneous DFS traversals

Asynchronous model: simple algorithm

Upon receiving no message:
send my_id in clockwise direction

Upon receiving “m”:
case

m.id < my_id: send m in clockwise direction
m.id > my_id: discard m
m.id == my_id:

leader = my_id
send <terminate, my_id> in clockwise direction
terminate

Upon receiving <terminate, id>:
leader = id;
send <terminate, id> in clockwise direction
terminate

Complexity

n Time complexity: O(n)
n Message complexity:

n Clearly less than n^2 messages are sent
n And Ω(n^2) is sent in the following worst case scenario

0

1

2

3

n-1

n-2

Hirschenberg-Sinclair Algorithm

n For bidirectional, asynchronous rings: achieve a O(n logn)
message complexity

n Each node operates in phases:
n In each phase, nodes that are still active send out their uid in both

directions
n In phase k, the tokens travel a distance of 2^k and return back to

their points of origin
n A token might not make it back if it encounters a node with lower

uid
n A node makes it to the next phase only if it receives its tokens back

from the previous round

2

Detailed Description

Upon receiving no message
if asleep then

asleep = false
phase = 0
send [my-id, out, 1] to left and right

Upon receiving [id, out, h] from left:
Case

id < my-id and h > 1: send [id, out, h-1] to right
id < my-id and h==1: send [id, in, -] to left
id = my-id: leader = my-id

Upon receiving [my-id, in, -] from left and right:
phase = phase + 1
send [my-id, out, 2^phase] to left and right

Upon receiving [not-my-id, in, -] from left or right:
send [not-my-id, in, -] to right or left

Correctness

n Messages from node with lower id is never discarded

n Messages from nodes with higher id eventually reach the
node with the lowest id and gets discarded

n Therefore the correct leader is elected (safety)

n Liveness: eventually the node with the lowest id reaches
phase log(n) and sends its id throughout the entire ring

Communication Complexity

n In phase 0, every processor sends a message:
n Maximum of 4n messages

n In phase k+1:
n Only processors that send tokens are those that “won” in the

previous phase
n There is at most one winner for every 2^k + 1 processors

n Winners after phase k: n/(2^k + 1)
n Tokens travel a distance in phase k+1 of: 2^(k+1)
n Total number of messages in phase k+1:

4*2^(k+1)*n/(2^k + 1) < 16n
n Total number of phases: 1 + log n
n Number of messages: O(n log n)

Question:

n What is the time complexity?

Lower bound

n AW has a lower bound proof:
n Asynchronous networks require O(n log n) messages to perform

leader election

n Proof sketch:
n Provide a lower bound for a constrained leader election problem:

n Elects the node with the minimum id
n Everyone should know the identity of the winner

n Construct an “open schedule” for a ring:
n Open schedule is not complete; it is a prefix of an admissible

execution
n Open execution corresponds to taking a ring, blocking one of its

channels, but allowing all other events to proceed as normal

Lower bound (contd.)

n AW prove the following:
n Every ring of size n, has an open schedule that sends at least the following

number of messages M(n)
n When n=2, M(n) = 1 (easy to show)
n For higher n, M(n) = 2 M(n/2) + ½(n/2 – 1)

n Assume that an open schedule exists for n/2 sized rings
n Then show that there is an open schedule for n-sized rings:
n The two scenarios are not distinguishable

n Wait for the two rings to reach a quiescent state
n Show that a further ½(n/2 – 1) messages will be sent if one of the two

channels is unblocked

3

Announcements

n Will post some “homework” questions on chapter 2 from
AW

n Send me email if you are still looking for a partner

Synchronous rings

n Leader election with fewer than O(n logn) messages is
possible
n Can convey information by not sending a message:

“if you do not hear from me, then assume that …”

n Assume that:
n Uids are positive integers
n Can be manipulated using arbitrary arithmetic operations

n Two algorithms: TimeSlice, VariableSpeeds
n TimeSlice:

n n is known to all processors (non-uniform)
n Unidirectional communication is sufficient
n O(n) messages

TimeSlice Algorithm

n Recall that a round in synchronous networks is:
n Deliver all messages, have every processor take one compute step

n Define the notion of a phase
n Each phase consists of “n” rounds
n In phase k >= 0

n If no one is elected yet
n Processor with uid k:

n Declares itself as the leader
n Sends token with its uid around

n Message complexity: n
n Time complexity: n*(minimum uid value)

VariableSpeeds Algorithm

n Uniform algorithm: “n” is not known
n Unidirectional communication is sufficient
n Still achieves the O(n) messages bound
n Assumes there are two kinds of processors:

n Those that are awake and participating in the leader election
n Those that are non-participants and simply serve as relays

n Message life cycle:
n A message is in phase one:

n Until it is received by an awake processor
n Forwarded immediately

n A message is in phase two:
n Once received by an awake processor
n Forwarded after (2^message-uid – 1) rounds

Algorithm (contd.)

n When participant receives a message
n If message.id > my-uid or the minimum message-id seen so far:

n Swallow it
n Else:

n Delay for 2^(message.id – 1) rounds

n For a relay:
n If message.id > minimum message-id seen so far, swallow it
n Else, delay for 2^(message.id – 1) rounds

n If a processor gets its message back, it elects itself as the
leader

n Correctness:
n No processor will swallow the message with minimum uid
n A message has to go through all processors before a leader is

elected

Complexity

n By the time UIDmin goes around the ring, the second
smallest UID has gone only half way, third smallest a
fourth of the way, etc.

n Forwarding the token carrying UIDmin has caused more
messages than all the other tokens combined

n Message complexity: O(n)
n Time complexity: n*2UID-min

4

General Networks

n What if a network has arbitrary topology?

n Here is a simple algorithm based on DFS algorithm

n DFS algorithm from a specified root:
n When a node first receives a message M

n Send accept to sender

n For each child:
n Send M
n Wait for accept or reject before considering next child

n When a node later receives a message M
n Send reject to sender

General networks (contd.)

n Start DFS spanning tree algorithm from all nodes
n In addition:

n Send node’s uid along with M
n When two DFS traversals collide, the copy with the lower uid wins
n The other DFS stalls – no response is sent to the sender

n The sender waits forever
n Only the processor that has the minimum uid gets a response from

all of its children

n Message complexity: O(n * m)
n Time complexity: O(m)
n See text for details

