

- Each message size: O(n)
- Number of messages in each step: O(m)
 - Each node sends distance vector to all of its neighbors
- Convergence time?

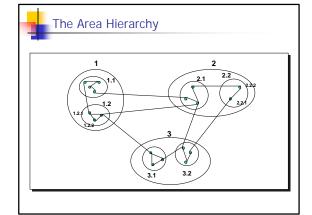
Link State Protocol: Basic Steps

- Start condition
 - · Each node assumed to know state of links to its neighbors
- Periodically, each node creates a link state packet containing:
 - Node ID
 - List of neighbors and link cost
 - Sequence number
 - Needed to avoid stale information from flood
 - Time to live (TTL)
 - Node outputs LSP on all its links
- Step 1
 - Each node broadcasts its state to all other nodes
- Reliable flooding mechanism
- Step 2
 - Each node locally computes shortest paths to all other nodes from global state
 - Dijkstra's shortest path tree (SPT) algorithm

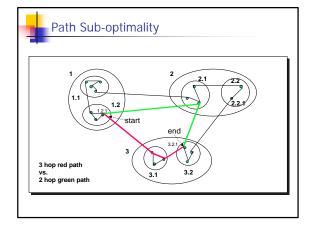
Complexity

- Message size of message from node k:
 - O(number of edges attached to node k)
- Number of messages for each broadcast: O(m)
- Total number of messages: O(nm)

Summary: LS vs. DV


- In DV send everything you know to your neighbors
- In LS send info about your neighbors to everyone
- Msg size: small with LS, potentially large with DV
- Space requirements:
 - LS maintains entire topology
 - DV maintains only neighbor state
- Robustness: DV can have cycles

Routing Hierarchies


- Flat routing doesn't scale
 - Each node cannot be expected to have routes to every destination (or destination network)
- Key observation
- Need less information with increasing distance to destination
- Two radically different approaches for routing

 - The area hierarchyThe landmark hierarchy
- Area hierarchy:
 - Divide network into areas
 - · Areas can have nested sub-areas
 - . Constraint: no path between two sub-areas of an area can exit that
 - Hierarchically address nodes in a network
 - · Sequentially number top-level areas
 - Sub-areas of area are labeled relative to that area

- Within area
 - Each node has routes to every other node
- Outside area
 - Each node has routes for other top-level areas only
 - Inter-area packets are routed to nearest appropriate border router
- Can result in sub-optimal paths

Internet's Area Hierarchy

- What is an Autonomous System (AS)?

 - A set of routers under a single technical administration
 using an *interior gateway protocol (IGP)* and common metrics to route packets within the AS, and
 - using an exterior gateway protocol (EGP) to route packets to other AS's
- Each AS assigned unique ID
- AS's peer at network exchanges