

CAN: multiple nodes per zone

- Each zone is occupied by multiple nodes
- Nodes is aware of:
 - All nodes in the zone
 - Picks closest neighbor from its neighboring zone

CAN: Distributed Binning

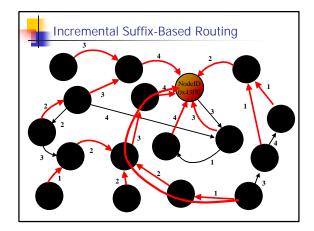
- Avoid randomization of nodes to zones
- Use landmark beacons to identify zones
 - Divide coordinate space into k! regions using k beacons
 - Based on relative ordering of the closest beacons
- Effects:
 - Improves locality
 - Destroys load balance
 - Highly dependent on the choice of beacons

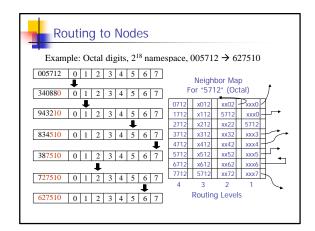
DHT general discussion

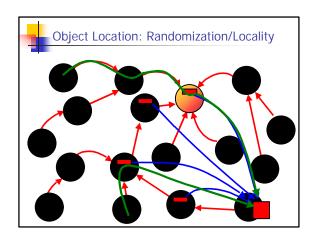
- DHTs provide a simple interface:
 - Insert(key, info)
 - Lookup(key) → info
- DHTs have been used to build file systems
- Is DHT the right abstraction? Should we replace kazaa by DHT-like systems for file sharing?

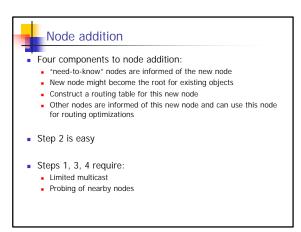
Announcements

- Assignment 2 design due today
 - Signup for design review meetings on Monday/Tuesday
- First of two quizes:
 - Scheduled for October 13th (Monday)


Tapestry


- System developed at Berkeley
 - Motivated by the OceanStore project (a world-wide file system)
- Basics
 - Similar to CAN and Chord in hashing keys and nodes
 - Key-id space is large (say 2¹⁶⁰)
 - Interpret Ids has a sequence of digits
 - For example:
 - Key "3AB8" is a key using hex digits
 - Number of digits and size of each digit is customizable




Single Node's Neighbors

- Neighbors at level "j":
 - Match suffix for j-1 digits
 - Try to find all possible variations for the jth digit
- For instance, consider node: 0321
 - Level 1 neighbors: 2300, 0321, 1002, 3213
 - Level 2 neighbors: 1201, 1311, 0321, 3231
 - Level 3 neighbors: 2021, 1121, 1221, 0321
 - Level 4 neighbors: 0321, 1321, 2321, 3321

