
Highly Secure and Efficient Routing
Ioannis Avramopoulos, Hisashi Kobayashi,

Dept. of Electrical Engineering
Randolph Wang,

Dept. of Computer Science
School of Engineering and Applied Science
Princeton University, Princeton, NJ 08544

{iavramop, hisashi}@ee.princeton.edu, rywang@cs.princeton.edu

Arvind Krishnamurthy
Dept. of Computer Science

Yale University
New Haven, CT 06520

arvind@cs.yale.edu

Abstract— In this paper, we consider the problem of routing
in an adversarial environment, where a sophisticated adversary
has penetrated arbitrary parts of the routing infrastructure
and attempts to disrupt routing. We present protocols that are
able to route packets as long as at least one non-faulty path
exists between the source and the destination. These protocols
have low communication overhead, low processing requirements,
low incremental cost, and fast fault detection. We also present
extensions to the protocols that penalize adversarial routers by
blocking their traffic.

Key words: security, routing, networking, system design, graph
theory.

I. INTRODUCTION

Routing failures can disrupt the operation of critical
Internet applications. A fault in a link or a router (i.e., a node)
can be attributed to either benign or malicious causes. Hard-
ware faults, software bugs, and network mis-configurations
are examples of the former type, whereas an attacker who
penetrates the routing infrastructure is an example of the latter.

It is the responsibility of routing protocols1 to mitigate the
impact of such faults. However, most of existing work on
routing has focused on providing robustness when the behavior
of faulty components is fail-stop. In this paper, we consider
faulty components with arbitrary, or Byzantine, behavior that
is possibly controlled by an adversary.

An adversary or attacker may, for example, inject false
routing information into the network, make arbitrary routing
decisions, or congest routers by flooding the network with
spurious packets. It can also modify, replay, or simply discard
packets coming from other routers. Consequently, such a mis-
behaving router can subvert the routing operation throughout
the network [1].

A. Motivation

A routing protocol that is resistant to Byzantine adversaries
is important because:
• Despite recent advances in fault-tolerant hardware and

software systems, and in software engineering methodolo-
gies, the observed behavior of faulty network components
can be arbitrarily complex. Coping with such failures at the
network layer, in addition to masking such failures at the

Ioannis Avramopoulos and Hisashi Kobayashi are supported in part by the
New Jersey Center for Wireless and Internet Security (NJWINS).

Randy Wang is supported by NSF grants CCR-9984790 and CCR-0313089.
Arvind Krishnamurthy is supported by NSF grants CCR-9985304, ANI-

0207399, and CCR-0209122.
1We use the term in its broad sense to refer to protocols associated with

the routing operation.

application layer, may relax the stringent requirements on
the underlying hardware and software, and result in more
efficient and less costly designs.

• Coping with adversaries is increasingly important as more
critical tasks, such as financial, medical, and military
applications, utilize the network infrastructure. In such
scenarios, it is only safe to treat the behavior of faulty
components as Byzantine.

• Strong distributed mechanisms that monitor and maintain
connectivity in a highly decentralized global environment
may mitigate detrimental effects of strategic conflicts be-
tween service providers. For a treatment of the issues that
may arise in such a diverse and competitive environment,
the reader may refer to [2].

B. Overview

We present protocols that are able to route packets from
a source to a destination, provided that a non-faulty path
exists between them. The protocols are efficient, in that they
(1) can route over a single path, rather than using several
paths concurrently,2 (2) can support links of bandwidth on
the order of Gbps at low incremental cost, (3) have low
processing requirements on both data and control packets, as
they rely on Message Authentication Codes for authentication,
and (4) detect faults fast, as faults are detected on a per packet
basis, rather than, for example, being detected via a periodic
external probing mechanism.

Our main contributions are:

• We synthesize a basic routing protocol with Byzantine
robustness using well-known components such as source
routing, destination acknowledgements, fault announce-
ments, reserved buffers, and authentication.

• We propose protocol enhancements to reduce the crypto-
graphic computational overheads and also mitigate the ad-
versary’s ability to delay packets without being detected.

• We observe that there is a fundamental uncertainty that
arises in detecting faults and discuss how this uncertainty
reduces the viability of both sharing information regard-
ing faults and blocking traffic from faulty nodes.

• We show that sharing fault knowledge is a hard problem
in its general form. We then propose efficient methods
for deploying fault sharing in a limited form.

• We show that straightforward attempts to block traffic
from faulty nodes could have the unpleasant side-effect

2Multipath routing, as an optimisation, can be supported in a straightfor-
ward manner. However multipath routing is not required for correctness.

of blocking non-faulty nodes as well. We then develop
correct protocols for blocking traffic from faulty nodes.

In Section II, we discuss related work on the subject. In
Section III, we present a routing protocol with Byzantine
robustness and detection. In Section IV, we outline attacks
against the protocol of Section III and how this protocol
copes with those attacks. The possible attacks also in part
motivate possible protocol refinements in Sections V and
VII. In Section V, we present two additional fault detection
protocols. The first improves the performance of the protocol
of Section III when no faulty routers are present in the path,
while the second further restricts the adversary’s ability to
inflict harm. In Section VI, we show that the obvious way to
share fault detection state among different sources leads to an
NP-complete problem that is also unlikely to have efficient
approximate solutions. We also present efficient techniques
for limited sharing of fault detection state. In Section VII,
we present a method to penalize faulty routers by blocking
their traffic. Finally, in Section VIII, we conclude and present
directions for future work.

II. RELATED WORK

Perlman [3] classifies network failures into two types: (1)
simple and (2) Byzantine. A simple failure is one where
some network component (consisting of one or more nodes
and/or links) simply becomes inoperative, whereas in a Byzan-
tine failure, a component becomes faulty, and yet continues
to operate (incorrectly). We say that a routing protocol is
Byzantine robust if it is capable of delivering any packet
from a source to a destination as long as a non-faulty path
exists between them. We also say that a routing protocol
has Byzantine detection if faulty network components can
be identified. Perlman proposes two types of secure routing
protocols/network layers.

The first type is based on the use of (1) a flooding-
based routing protocol, (2) reserved buffers, and (3) digital
signatures. Flooding-based routing ensures that a packet will
traverse every link and hence reach its intended destination,
as long as a non-faulty path exists. Reserved buffers, together
with digital signatures, ensure that packets will not be dropped
because of congestion of a node by excessive traffic (which
may arise, for instance, in a DoS attack): digital signatures
authenticate the source of each packet, and a buffer should
be specifically allocated to accommodate a packet from its
intended source. Thus, this routing protocol of Perlman is
Byzantine robust in the sense defined above.

The second type of secure routing protocol by Perlman is
based on the use of (1) a link state routing protocol, (2) re-
served buffers, and (3) digital signatures. The reserved buffers
and digital signatures serve the same purpose as in the first
protocol. Unlike the the flooding-based routing protocol, all
routers now have explicit knowledge of the network topology.
If we assume that there will be no more than k failures in
the network, then forwarding a packet over k + 1 disjoint
routes should guarantee successful delivery of the packet.
Note, however, that this routing protocol is not Byzantine
robust: the existence of a non-faulty path does not necessarily
imply the existence of k + 1 disjoint routes.

Herzberg and Kutten [4] have proposed the combined use of
acknowledgements, timeouts, and fault announcements to de-
tect packet forwarding faults and have recognized its potential
to detect Byzantine faults. They present one communication-
optimal and one time-optimal protocol, as well as protocols
that trade off communication and time optimality. The proto-
cols are presented in an abstract model. This model, however,
leaves open many issues crucial to its realization. These
include issues such as the precise nature of the authentication
mechanism, how this protocol copes with replay attacks, and
how this protocol copes with DoS attacks. Our basic protocol
of Section III addresses these issues.

Herzberg and Kutten also proposed the flooding of discon-
nection notifications when faults are discovered in the system.
Our work indicates that naive handling of such notifications
could be manipulated by faulty nodes to discredit non-faulty
elements. This conclusion is based on the observation that a
faulty source could induce a non-faulty node to drop packets
in order to guard against replay attacks. On the other hand,
for the case where fault notifications are handled properly,
with, for example, recipients taking into consideration that
the source itself could be faulty, we show that nodes cannot
exploit this additional information using tractable polynomial-
time algorithms.

Bradley et al. [5] propose a protocol for detecting and
avoiding routers that are dropping or mis-routing (but not
modifying) packets. It is based on (1) link state routing and (2)
the “conservation of flow” principle. The conservation of flow
can be tested if we let the routers count the number of bytes
which enter and leave their interfaces and they announce this
information periodically. Their approach requires that there
is at least one good neighbor to an adversarial router that
may drop packets. Protection against traditional DoS attacks,
where misbehaving routers congest the network, is also not
considered. In contrast, our proposed scheme can detect nodes
that corrupt packets and can also cope with DoS attacks.

Awerbuch et al. [6] propose a protocol that detects packet
forwarding faults and routes around faults. This protocol
utilizes Message Authentication Codes in a way similar to that
of our protocol. Here, probes and acknowledgements (ACKs)
are used not only by the destination but also by intermediate
nodes. Only the source can verify the authenticity of the ACKs.
An encryption step prevents malicious routers from tampering
with individual ACKs, which could otherwise cause non-faulty
nodes or links to be identified as being faulty. Protection
against traditional DoS attacks, where misbehaving routers
congest the network, is not considered. In Section IV we
show a vulnerability of this protocol, and we also present an
amendment to address the vulnerability.

Other work in secure routing (such as [7], [8], [9], [10],
[11], [12]), is about protecting topology (route) discovery that,
although important, is not the focus of this paper. We do
note that Byzantine nodes could try to appear in valid routing
paths during route discovery in order to misbehave during data
transfers. Our proposed techniques are intended to be used
in conjunction with the secure route discovery protocols to
enhance the robustness of the system.

s

t

3
2

1

4

m

6

5

s

t

3
2

1

4

m

6

5

s

t

3
2

1

4

m

6

5

s

t

3
2

1

4

m

6

5

s

t

3
2

1

4

m

6

5

s

t

3
2

1

4

m

6

5

s

t

3
2

1

4

m

6

5

s

t

3
2

1

4

m

6

5

Fig. 1. An example of the operation of the routing protocol of Section III.
Source s attempts to communicate with destination t. Router m is malicious
and drops packets. The source first attempts to use route 〈s, 2, m, 5, t〉 to
transfer a packet. Both nodes s and 2 set a timeout to receive either an ACK
from t or an FA from an intermediate router. Router m drops the packet
without informing any other nodes. Router 2 times out when it fails to receive
an ACK. It generates and propagates an FA about link (2, m) to s. Node s
deletes this link from its topological map and attempts to use another route
by calculating the shortest path to the destination in this new map. Eventually,
s attempts to use route 〈s, 1, 4, 5, t〉 and succeeds.

III. BASIC PROTOCOL

In this section we present a routing protocol with Byzantine
robustness and detection. We first give a definition of what
constitutes a faulty component and then justify this definition.

A faulty node is a node that:
• does not follow our protocol, or
• can be impersonated by another node.

The first part of the definition captures a node that is
controlled by an adversary or executes buggy code. The second
part of the definition is not obvious: we usually associate faults
with the notion of malice or harm but, in this case, the behavior
of the faulty node is not necessarily malicious or harmful.
(The impersonator may be malicious but the impersonated
may not be.) A faulty node can be impersonated if, for
example, its secret keys used in the routing protocol have been
compromised by the adversary through cryptanalysis or other
means. Such faulty nodes, even if they operate correctly, are
not guaranteed to be able to successfully communicate with
other nodes.

A faulty link is a link that:
• drops packets, or
• is incident to a faulty node.

Ideally, we would have like to be able to accurately pinpoint
a faulty component. However, from a correctly functioning
router, we cannot always tell with certainty whether a link or
the downstream router is faulty, although we do not preclude
certain cases where this is possible. If a link is detected to
be faulty by our protocol, then one or more of the following
statements are true:
• The upstream router is faulty.
• The link is faulty.
• The downstream router is faulty.

A. Packet Forwarding with Fault Detection

The packet forwarding protocol utilizes the following mech-
anisms.
• Source routing. The source specifies in every data packet

the sequence of nodes that the packet should traverse

in order to reach the intended destination. Intermediate
nodes read this source-specified route from each packet
and forward the packet accordingly.

• Destination acknowledgements. The destination of every
data packet acknowledges its receipt to the source and
every intermediate node. One acknowledgement packet
is generated that traverses in reverse direction the path
traversed by the corresponding data packet.

• Timeouts. The source and every intermediate node set for
every data packet a timeout to receive either a destina-
tion acknowledgement or a “fault announcement” for this
packet.

• Fault announcements. When a timeout expires at a node,
the node generates a fault announcement (FA) (for the
packet triggering the timeout) for the downstream link
in the packet’s route, and propagates this announcement
upstream. The FA is to be interpreted and acted upon only
by the source of the data packet. The reason is explained
in Section III-C.

Figure 1 illustrates an example of the protocol operation.
In this example, a malicious router (m) that drops a packet
triggers the generation of an FA by its upstream neighboring
router (2). The source (s) responds to the FA by recalculating
a route to the destination (t) and eventually succeeds. Pseu-
docode for the protocol is given in Figure 2.

The simple fault behavior illustrated in the example of
Figure 1 exercises only a subset of the mechanisms of the
basic protocol. In order to provide Byzantine robustness and
detection, we also need the following mechanisms:
• data and control packet authentication,
• a-priori reserved buffers,
• monotonically increasing non-wrapping sequence num-

bers,
• round-robin scheduling of packet transmission, and
• calculation of appropriate timeout values.

While none of the individual mechanisms of the basic
protocol described in this section (III-A) is novel, we note
that it is the combination of them that delivers the desired
robustness and efficiency. We provide the details of some of
these mechanisms next.

B. Authentication

Authentication of data packets safeguards against modifi-
cation and ensures that allocated resources, namely reserved
buffers, as explained later, are utilized by the intended sources.
Authentication of control packets prevents impersonation: it
prevents malicious nodes from forging ACKs and FAs on
behalf of non-faulty nodes.

As authentication must be performed for each packet at each
node, and the speed of authentication may bound the effective
link bandwidth, the performance of the authentication mech-
anism is crucial. We considered the following alternatives.
• Digital signatures. Using digital signatures would have

been the most straightforward authentication mechanism,
which we have decided against due to its poor perfor-
mance. Digital signatures may be useful, however, for key
setup.

// This function is called on reception of an authentic data packet from a
// higher-level protocol by the source.
source(data_packet p)
 p.route = select_route(p.destination);
 p.seqno = seqno++;
 p.auth_tag = authTag(p.route + p.seqno + p.payload, p.route);
 set_timeout(p.route.first_link, p.seqno);
 schedule(p);
//This function is called when the source receives an authentic ACK.
source(ACK a)
 if (timeout_pending(a.seqno))
 cancel_timeout(a.seqno);
 else
 drop(a);
//This function is called when a timeout at the source fires.
source(link e)
 map.delete(e);
//This function is called when the source receives an authentic FA.
source(FA fa)
 if (timeout_pending(fa.seqno) and fa.link is first downstream to fa.source)
 cancel_timeout(fa.seqno);
 map.delete(fa.link);
 else
 drop(fa);
//This function is called when an intermediate node receives an authentic packet.
intermediate(data_packet p)
 source = p.source
 if (p.seqno > source.max_seqno)
 source.max_seqno = p.seqno;
 fa = new FA;
 fa.route = reverse(prefix(p.route, source, this_node)); fa.seqno = p.seqno;
 fa.auth_tag = (fa.route + fa.seqno, fa.route);
 set_timeout(p.seqno);
 schedule(p);
 else
 drop p
//This function is called when an intermediate node receives an authentic ACK.
intermediate(ACK a)
 if (timeout_pending(a.seqno))
 cancel_timeout(a.seqno);
 schedule(a);
 else
 drop(a);
//This function is called when a timeout at an intermediate node fires.

intermediate(source s, SeqNo n)
 fa = retrieve_FA(s,n)
 schedule(fa)
//This function is called when an intermediate node receives an authentic FA.

intermediate (FA fa)
 if (timeout_pending(fa.seqno) and fa.link is first downstream to fa.source)
 cancel_timeout(fa.seqno);
 schedule(fa);
 else
 drop(fa);
// This function is called on reception of a data packet p by the destination
// after the authenticity of p has been verified.
destination(data_packet p)
 source = p.source;
 if (p.seqno > source.max_seqno)
 deliver(p);
 source.max_seqno = p.seqno;
 a = new ACK;
 a.route = reverse(p.route); a.seqno = p.seqno;
 a.auth_tag = authTag(a.route + a.seqno, a.route);
 schedule(a);
 else
 drop(p);

Fig. 2. Pseudocode for the basic protocol of Section III. In the code, FAs
are generated upon reception of data packets and scheduled for transmission
later, if necessary. The function “authTag” creates an authentication tag whose
details are described in Section III-B. The calculation of the timeout values
are described in Section III-C.

• The multicast authentication construction of Canetti et al.
[13]. In this construction, each node is associated with
a set of keys obtained from a global pool of keys. The
probability that all the keys of a given node are covered
by a corrupt coalition is kept small and is configurable. The
authentication tag computed by a source node consists of a
message authentication code (MAC) for each key held by
the source and is verified by each recipient using the keys
that the source and recipient share. This authentication
mechanism, when used to secure data packet forwarding,
is vulnerable to an adversary that tampers with only a
subset of the authentication tags such that, for example,

the tag verifies at the first downstream router but doesn’t
verify at subsequent routers, resulting in imprecise fault
detection. Furthermore, as Canetti et al. claim, the main
cryptographic savings of this mechanism are with respect
to authentication tag verification, whereas the limiting
factor in secure data packet forwarding is authentication
tag generation, since ACKs and FAs must be generated
per packet.

• Tesla [14]. Tesla is a broadcast authentication protocol
that relies on loose clock synchronization and delayed key
disclosure. In Tesla, messages are first transmitted with
authentication tags that contain a MAC computed using
an as yet undisclosed key. The key is then subsequently
disclosed, at which point the messages that were sent
earlier could be verified. Tesla keys are elements of one-
way hash chains that are used to authenticate released keys.
Using Tesla as the authentication mechanism is an open
problem. We identify the following limitations that must
be overcome for Tesla to be a viable solution for secure
data packet forwarding:
• Delayed authentication is vulnerable to a DoS attack

where a malicious router floods a victim router with
spurious MACs, exhausts the victim’s memory re-
sources, and causes legitimate packets to be dropped.

• If two nodes have not communicated securely for a
substantial period of time, then the nodes do not have
recent enough Tesla keys to efficiently authenticate
newly released keys. The system would then incur ei-
ther a heavy computational overhead for authenticating
keys or a large communication overhead corresponding
to periodic flooding of Tesla keys.

• MACs based on pairwise secret keys. This is the authenti-
cation mechanism that we adopt. Its details are described
next.

Our scheme requires a secret key for every pair of nodes.
The authentication tag for a message comprises of a sequence
of MACs computed using the keys shared between the source
and each one of the nodes in the source-determined path
to the destination. Figure 3 illustrates the structure of the
authentication tag. Given a path 〈s, . . . , ni, ni+1, . . . , t〉, the
computation of the MAC for node ni receives as input both
the message and the MACs for nodes ni+1, . . . , t. MACs are
therefore computed sequentially from destination to the first
intermediate node. The same structure is used for data packets,
ACKs, and FAs.

If the computed MAC of each node only included as
input the message, then a malicious router could trigger an
FA for a non-faulty link. For example, in Figure 3, if n1

were a malicious router and tampered with the MAC of n3,
then n3 would have dropped the packet as not authentic,
and consequently, n2 would have generated an FA for link
(n2, n3), although none of s, n2, n3 and physical link (n2, n3)
are faulty. As a result of using our MAC structure, however,
if n1 tampers with the MAC of n3, the tampering is detected
by n2, which drops the packet. Consequently, link (n1, n2)
and/or link (s, n1) are invalidated, as both are faulty.

Packet processing mainly consists of verifying the authentic-

tn1s n2 n3

MAC (t) MAC (n3) MAC (n2) MAC (n1)Packet

tn1s n2 n3 tn1s n2 n3

MAC (t)MAC (t) MAC (n3)MAC (n3) MAC (n2)MAC (n2) MAC (n1)MAC (n1)Packet

Fig. 3. Computation of authentication tags. Source s sends to destination
t via the path 〈s, n1, n2, n3, t〉. Each receiving node needs to verify the
authenticity of the packet. The computation of the MAC for ni receives as
input the secret key that s shares with ni, the packet (or message), and the
MACs for ni+1, . . . , t.

ity of the packet and generating either an ACK or an FA. The
ACK or the FA can be generated immediately upon reception
of the packet, possibly by a dedicated processor on the link
that the packet arrived from. FAs can then be scheduled for
transmission later, after the corresponding timeout has fired.

If we restrict the maximum permissible path length to ten
hops, then at most eleven MAC computations are required. The
upper bound on the network bandwidth is then calculated by
setting the time to receive one packet to the time of calculating
eleven MACs. We consider some quantitative examples of the
link bandwidth that this authentication scheme can support
by assuming that there is dedicated hardware for computing
the authentication tags. (The incremental cost of assigning a
Pentium processor or even special purpose cryptographic hard-
ware to each direction of every link is small when compared
to the cost of a Gbps IP router.) The performance of the 64-
bit authentication tag UMAC [15] on a Pentium III is 2.2
cycles per byte on 256B packets and 1.2 cycles per byte on
1500B packets. If all packets are of the latter length, then the
aforementioned calculation reveals that a 1GHz Pentium III
can support a 600Mbps link. If packets are of variable length
between 256B and 1000B, then this processor can support
roughly a 100Mbps link.

In order to compare the performance with digital signatures,
we measured the time that it takes for a 865MHz Pentium III
to compute and verify one RSA signature using code from
cryptlib 3.0 (http://www.cryptlib.orion.co.nz) and OpenSSL
0.9.7a (http://www.openssl.org/). Signature computation takes
approximately 7.6 msec, whereas signature verification takes
approximately 0.5 msec. After normalizing the signature com-
putation time to a 1GHz Pentium III, we see that for 1500B
packets the upper bound on link bandwidth becomes less than
2Mbps.

C. Reserved Buffers, Timeouts, and Sequence Numbers

When packets are dropped, the fault detection mechanism
triggers fault announcements. One of the reasons that routers
drop packets is congestion, i.e., when the queues that store
packets are full. On one hand, since malicious nodes can
incur congestion by overwhelming the network with their own
packets, it is desirable to be able to deliver packets despite the
presence of such malicious sources. On the other hand, it is
desirable to be able to disassociate fault announcements with
congestion, since congestion is not inherently a network fault.

(We further discuss our planned approach to innocuous packet
drops in the future work section of VIII.)

In order to accomplish the aforementioned goals, we employ
an a-priori buffer reservation (which ensures that packets are
never dropped because of congestion), round-robin scheduling
(to minimize the “interference” between sources),3 and time-
outs equal to the worst case round-trip-time to the destination
(which attempts to ensure that FAs are not triggered because of
congestion). A timeout at the source node can identify whether
a path is faulty. Timeouts at intermediate nodes pinpoint the
locations of faults.

The choice of the number of outstanding packets allowed
per source node involves a trade-off between throughput
and recovery time. As the number of outstanding packets
increases, throughput also increases. However, an increase in
this parameter results in delayed fault detection and, therefore,
increased recovery time, because we must use a larger timeout
value to allow a larger number of potentially queued packets
to drain. Due to round-robin scheduling, an increase in the
number of outstanding packets of one source does not affect
the timeouts of other sources.

Reserving buffers for sources can be vulnerable to replay
attacks if we do not exercise sufficient care: malicious nodes
that have stored other sources’ previous packets may replay
them at a later time and “crowd out” new packets from those
sources. The protocol provisions against this attack by utilizing
monotonically increasing non-wrapping sequence numbers.
When the source inserts a new packet into the network, it also
includes in the packet a new sequence number, greater than
all the sequence numbers that this source has used before.
Furthermore, intermediate nodes maintain, for each incident
downstream link and for each source, a window of sequence
numbers that the source can legitimately send. (The endpoints
of this window are dictated by the source and constitutes a
promise from the source that messages will carry sequence
numbers only within the specified range.) This window al-
lows the protocol to accommodate out-of-order arrival of the
outstanding legitimate packets from a source at any given
time, while detecting and dropping illegitimate packets that
are due to either replays or faulty sources. A similar window
mechanism is also used at the destination.

A ramification of the sequence number-based mechanism is
that fault announcements should only be relevant to the source
of the packet that triggered the announcement. The reason is
that faulty sources can cause packets to be dropped at non-
faulty links by, for example, using wrong sequence numbers
or dictating incorrect timeout values.

D. Route Selection

Route selection utilizes:
• a topological map,
• fault announcements,
• the number of buffers available to this source at each link,
• link bandwidth, and
• prefix spans, as explained below.

3If only one buffer is reserved per source per link, then FIFO scheduling
will suffice.

INITIALIZE-SINGLE-SOURCE��� ��
�
for each node � � � ���
do ����� �
���� ��
for �� � to �
do ���� �� ��

���� �� � 	
�

����� �
����� �
�

RELAX��� �� � ��
�
if ���� � ���� �� and ���� � ���� � ��� ��
then ���� � ���� � �

����� ���� � ��� ��
���� ����� � ����
���� ����� � �

�

PREFIX-SPAN-BELLMAN-FORD���� �� ��
�
INITIALIZE-SINGLE-SOURCE��� ��
for
� � to �

do for each edge ��� �� � ����
do RELAX��� �� � ��

�

Fig. 4. Pseudocode of the modified Bellman-Ford shortest path algorithm.

In particular, the links corresponding to valid fault announce-
ments are deleted from the topological map of the source.
(Mechanisms for restoring such links are part of ongoing
research (Section VIII).) Links that lack available buffers
for this source due to currently outstanding packets (packets
that have been neither acknowledged nor timed out) are also
temporarily deleted from the topological map until buffers
become available again. We run a shortest path algorithm for
the graph consisting of the remaining links.

In Section III-B, we mentioned that by restricting the max-
imum path length, we can guarantee a certain link bandwidth,
given a certain MAC-based authentication speed. Furthermore,
the shorter the maximum path is, the greater the link band-
width that can be supported for a given processor speed. Note
that the path length restriction pertains to a restriction on the
prefix of a path (as intermediate nodes are burdened with the
task of generating FAs that traverse the prefix of a path).
Different links are, therefore, capable of supporting different
prefix “spans” and can, therefore, be employed at different
distances from the source along paths to a destination. The
use of prefix spans is clearly desirable for maximizing the
throughput of packets sent through a link, but the scheme
trades-off reliability as it prevents certain links from being
used by sources that are far away from the link, thereby
reducing the number of usable paths in the system.

We present an algorithm based on the Bellman-Ford shortest
path algorithm that calculates shortest paths in a network
where the links have different bandwidths and prefix spans.
Bandwidth is factored in the computation by setting the weight
or distance on an edge to be the inverse of the bandwidth of

the link. We first define the problem formally.
We are given a directed graph G(V,E), with a distance

function w : E → R+ and a prefix span function l : E → Z+.
The distance of a path p = 〈v0, v1, . . . , vk〉 is the sum of the
distances of its edges. Let hp(v0, vi) denote the number of
hops from node v0 to node vi in path p. We say that path p
respects the prefix span function l if for every i = 1, . . . , k,
hp(v0, vi) ≤ l(vi−1, vi).

We now give the pseudocode in Figure 4 for an algorithm
that, given a graph G, functions w, l, and a source node s ∈ V ,
calculates the shortest paths to all destinations that respect l.
In the pseudocode, H is the maximum prefix span over all
edges.

The complexity of the algorithm is equal to that of Bellman-
Ford, i.e. O(H · |E|) and, since H < |V |, also O(|V | · |E|).
The correctness proof, which we omit for brevity, is similar to
that of Bellman-Ford [16]. The intuition is that since Bellman-
Ford calculates shortest distance paths for all hops [17], it can
be modified to calculate prefix span shortest paths by forcing
relaxations on edges to respect the prefix spans.

IV. THE ADVERSARY

In this section, we review various attacks that an adversary
may mount to prevent communication and how our protocol
copes with these attacks. (In general, the types of attacks
against a protocol depend on the details of the protocol.) Our
protocol is designed to withstand these attacks so that it can
continue to deliver packets as long as a non-faulty path exists.
We also discuss the extent to which an adversary can impede,
rather than prevent, communication.

The adversary can create spurious unauthenticated traffic.
We require authentication to work at line speed, and therefore,
unauthenticated traffic cannot block authenticated traffic at
non-faulty routers.

The adversary can create spurious authenticated traffic. Such
spurious traffic cannot block authenticated traffic from non-
faulty sources at non-faulty routers, since non-faulty sources
are ensured buffers (through a-priori reservations) and link
bandwidth (through round-robin scheduling).

The adversary can replay authenticated traffic that has
originated from other non-faulty sources. Such replayed traffic
cannot block pending authenticated traffic from non-faulty
sources, since pending traffic carries sequence numbers that
are larger than those of replayed traffic and priority is given
to packets with larger sequence numbers.

The adversary can mis-route packets. Mis-routed packets
are dropped at the next non-faulty router, if the router does
not appear in the source-specified path. The adversary could,
however, mount the following form of attack. The adversary,
without obstructing the normal flow of a packet, could create
a copy and route it through a faster detour (consisting possibly
of adversarial nodes only) to the destination. The destination
would then reply with an ACK that is sent in the reverse direc-
tion of the source-specified path. The router that is adjacent to
the destination will drop the ACK since the router has not seen
the data packet for which the ACK is being sent. When the
original packet reaches this router, it would forward this packet
to the destination, but the destination would drop the packet

as a duplicate, thereby causing its neighbor to generate an FA
about a non-faulty link. This behavior is clearly undesirable.
If nodes can authenticate the transmitter of a packet (in a fixed
infrastructure network, for example, by the interface that the
packet arrived from, or with a MAC computed with a secret
key that the transmitter and receiver share), then the above
attack scenario could be defeated.

Note: In the protocol proposed by Awerbuch et al. [6] we
believe that the encryption step in the computation of the
authentication tag of a packet at the source protects against this
attack. This protocol is vulnerable, however, to the following
attack. The adversary, without obstructing the normal flow of
a packet, sends a spurious ACK to a non-faulty router that
has already forwarded the packet. If the non-faulty router
has no means to verify the identity of the originator of the
ACK (which is the case in an ad hoc network that is lacking
a protection mechanism), it will accept the spurious ACK
and later drop the legitimate ACK as a duplicate. The final
consequence is that the source will detect the (non-faulty)
link that is incident on the aforementioned non-faulty router
as faulty. This vulnerability can be amended if transmissions
(possibly between probed nodes only) are protected with a
MAC, with such protection also serving as an alternative
solution to the encryption step.

The adversary can modify packets. Modifying the content
protected by the authentication tag is equivalent to dropping
the corresponding packet. Modifying the MACs of upstream
routers has no effect, since those MACs are not further utilized.
Modifying the MACs of downstream routers is equivalent to
dropping the corresponding packet, as the MAC of the first
incident downstream router protects the MACs of all other
downstream routers.

The adversary can drop packets. The protocol’s correctness
in this case, which implies its Byzantine robustness, is argued
by the following theorem: a packet transmission from a non-
faulty source will result in either the reception of a destination
acknowledgement or the deletion of a faulty link at the
source’s topological map. The proof is easy by induction on
the number of links and it is omitted for brevity.

The adversary may generate false FAs in an attempt to
cause non-faulty links to be excluded by non-faulty sources.
Such false FAs are dropped by non-faulty routers because they
cannot pass the MAC-based authentication check.

Being a faulty source, the adversary may use wrong se-
quence numbers (among other means) in an attempt to cause
non-faulty routers to drop packets and to cause FAs to be
generated upstream of these non-faulty routers. Such an ex-
ample is shown in Figure 5. The protocol dictates that FAs
are only interpreted and acted upon by sources, so these FAs
have no effect at any non-faulty routers. Furthermore, faulty
intermediate routers can cause non-faulty routers to generate
FAs about non-faulty links by replaying old packets. Such
an example is shown in Figure 6. These FAs have no effect
at non-faulty routers either since FAs for replayed traffic are
dropped at non-faulty routers.

We should also point out that the reception of a destination
acknowledgement does not necessarily imply that the desti-

2000

s

t

3
2

1

4

u

6

5

1000

1000

2000

2000

2000

F A

Fig. 5. An example of a faulty source (s) causing a non-faulty router (2)
to generate an FA about non-faulty link (2, u) by simultaneously routing two
packets with sequence numbers 1000 and 2000 respectively in overlapping
routes (we assume that one buffer is reserved per link). Since FAs are only
relevant to the corresponding source, Byzantine robustness is not violated.

s

t

3
2

1

4

u

6

5

1000

t

F A

s
3

2

1

4

u

6

5

2000

2000

2000

2000

1000

1000

Fig. 6. An example of a faulty (intermediate) router (1) causing a non-faulty
router (4) to generate an FA about non-faulty link (4, 5) by first dropping a
packet (with sequence number 1000) and then replaying it. Since FAs carry
the sequence number of the packet that triggered the FA and FAs for old
packets are dropped, Byzantine robustness is not violated.

nation received the packet. For example, consider the route
〈s, n, t〉. If n can impersonate node t, then n may reply with
an acknowledgement to s that appears to have originated
from t. However, the attempt to communicate with faulty
destinations cannot result in non-faulty links being deleted at
non-faulty sources. Similarly, in the route 〈s, n1, n2, t〉, if n1

can impersonate node n2, then n1 can reply with an FA about
link (n2, t) to s, which does not violate Byzantine robustness
since the compromised node n2 is considered faulty according
to our definition.

An adversary may attempt to degrade communication
throughput by holding up packets while remaining undetected.
In Section III, the timeout parameters are set to the worst
case round-trip time when, for example, all routers are fully
congested. Such a large value of the timeout, however, allows
the adversarial router to emulate local congestion or even con-
gestion in the downstream path without triggering timeouts,
thus avoiding detection. In Section V, we present an extension
to the protocol of Section III to restrict the adversary’s ability
to emulate congestion.

The packets that the adversary inserts, possibly optimized
to inflict harm, directly affect the goodput (good work) per-
formance of the network. In Section VII, we present a method
that attempts to block the adversary. The task is non-trivial as
the protocol identifies faulty links rather than routers.

One important measure of performance is the recovery time
of the protocol, namely, the elapsed time from the moment

that communication is interrupted by, for example, packet
drops at one or more faulty routers, until the moment that
communication is resumed. The recovery time of our protocol
is generally small in a moderate size network with sufficient
bandwidth, as faults are detected on a per-packet basis, rather
than by a periodic external probing mechanism. The recovery
time, however, can become significantly worse for certain
conditions (such as a large network). Enhancing the protocol
to improve recovery time is part of our ongoing research.

V. PROTOCOL EXTENSIONS

In this section, we present two protocol extensions. The first
one allows us to lower cryptographic overhead and, therefore,
also improve communication bandwidth under “normal oper-
ations” at the expense of slower fault detection. The second
one allows us to limit the ability of a malicious router to delay
packets without being declared faulty.

A. Faulty Link Detection by Query

In Section III-B, we have given a MAC-based authentication
mechanism that allows us to pinpoint a faulty link. Although
much faster than using simple digital signatures, this mecha-
nism requires the computation and verification of one MAC
for each node for each data, ACK, or FA packet. These MAC
computations bound the communication bandwidth that we
can achieve with the basic protocol.

To improve this bound, we introduce an extension to the
basic protocol of Section III so that FAs are generated only
after a fault has occurred, instead of being generated on a per-
packet basis. This modification allows intermediate nodes to
compute and verify only one MAC for the data packet and
one MAC for its ACK under “normal” fault-free conditions,
thus improving communication bandwidth.

Under this modification, we distinguish between two types
of packets: “normal” and “query.” In normal packets, we retain
the source routing, destination ACK and timeout mechanisms.
However, when a timeout fires at an intermediate router, this
router does not propagate an FA upstream, but only records the
packet number and source that resulted in the timeout. When
a timeout fires at the source router, the first incident link is not
deleted, but a query packet is sent downstream, and a timeout
is set for receiving a query ACK or an FA.

Upon reception of a query packet, an intermediate router
either drops the query, if the corresponding packet has not
been received, or propagates the query downstream and sets
a timeout to receive an ACK for the query or an FA. Upon
reception of a query packet, the destination either drops the
query, if the corresponding packet has not been received, or
generates an ACK for the query that propagates upstream. If an
intermediate router receives a query ACK, then if the timeout
for the corresponding packet has fired, it propagates an FA
upstream. Otherwise it propagates the ACK upstream. If the
source router receives a query ACK, it deletes the first link in
the route from the topological map. If an intermediate router
receives an FA, it propagates the received FA upstream. If the
source receives an FA, it deletes the link in the FA from the
topological map. If the timeout at an intermediate router fires,
it propagates an FA upstream. If the timeout at the source

fires, it deletes the first link from the topological map. The
authentication tag of normal packets and their ACKs, as well
as query packets, and their ACKs, and FAs, bears the same
structure as that in Section III-B.

In the above protocol, the fault detection time is approxi-
mately doubled, as two packets from a source are required to
pinpoint one faulty link. As explained earlier, the advantage
of this protocol is that in the normal case, where no packet
drop occurs, intermediate routers need only to compute/verify
one MAC for the packet and one MAC for its ACK.

We proceed to show how to improve performance of nor-
mal packets even further. The key observation is that the
authentication tag of the packet can be computed on a shorter
message than the original message while preserving Byzantine
detection. Note that MAC computation of a 64B message is
three to four times faster than MAC computation of a 1500B
message.

More specifically the source computes a MAC of the source
route and sequence number only, for intermediate routers, and
a full MAC for the destination. When the packet reaches the
destination it may, therefore, have been modified in transit by
a malicious router that is present in the path. The destination
can, however, detect the modification and, so that the faulty
link will be pinpointed, it generates and propagates upstream
an ACK that contains a hash of the modified packet. Upon
reception of such an ACK, an intermediate router computes
a hash of the corresponding packet, which it had previously
stored. If the hashes agree, it propagates the ACK upstream. If
the hashes don’t agree, it drops the ACK, and when the query
packet arrives, it generates an FA for its downstream link.

Note that in this extension routers are required to store
packets until the corresponding ACK is received or a timeout
fires. Due to the use of reserved buffers, this requirement does
not impose any additional overhead. If memory consumption
becomes an issue, then the hash can be computed on reception
of the packet at the expense of extra cryptographic overhead
when the path is fault-free. In this case the cryptographic
savings are for the source only.

B. Delay Mitigation

A malicious router may intentionally hold onto packets and
delay their transmission to emulate the effects of local or
downstream congestion (which could be the cumulative effect
on multiple downstream routers). To maximize its negative
impact, such a router would attempt to introduce a maximum
delay but still keep it below the threshold that would trigger a
timeout upstream. (If triggered, such a timeout would initiate
a route recalculation at the source, which would in turn cause
the malicious router to be bypassed.)

While we cannot prevent a malicious router from delaying
packets, what we can do is to have enough detailed accounting
of delays so that we can pinpoint the locations where excessive
delays are being introduced. This is a natural extension of the
protocols that we have discussed so far: while the previous
discussions focus on pinpointing the locations of packet drops
and attempts to bypass these locations, this extension focuses
on pinpointing the location of excessive packet delays and
similar attempts of bypass these as well.

Routers measure and record round-trip times (RTTs) of the
packets that they forward. Routers also measure and record
delays experienced by packets and their ACKs inside these
routers. Upon request, routers report recorded RTTs and delays
to upstream routers. The request can be a “query” packet
similar to that of the above section. Recorded RTTs and
delays can be appended in the query ACK. Because these
timing statistics reports are protected by the same MAC-
based authentication mechanism, a malicious router cannot
impersonate another router in its reporting and it cannot tamper
with others’ reporting. It can, however, falsify reports of delays
experienced by packets inside itself. (If none of the routers
falsify their reports, it is easy to pinpoint the location(s) of
excessive delays and we do not further discuss this case.)

Suppose a router has measured the RTT experienced by a
packet downstream as T . It receives a report from downstream
routers that indicates that the delay experienced by each
downstream router ni is ti. After an approximate accounting
for wire transmission delays (determined largely by the speed
of light), if T exceeds

∑
i ti “significantly” (by a policy-

determined threshold), we conclude that the incident down-
stream link from this router is faulty, and we propagate an
FA upstream from this router. (FAs do not need to bear any
information on delays.) This approach of removing routers that
falsify delay reports, however, may be unnecessarily harsh (as
unnecessary as immediately removing routers that innocuously
drop a packet once in a while). For example, a route that ex-
periences falsified congestion and falsified delay reports might
still be preferable to a network partition. The same mechanism,
namely, a continuous fault metric (in Section VIII), that we
plan to introduce to cope with innocuous drops (among other
issues), is also applicable to the problem of delay mitigation.

The above protocol requires each router to authenticate the
reported delay to every upstream router. We now show how
delay mitigation can be achieved with negligible additional
cryptographic overhead even if packets are “normal” per
Section V-A.

Upon reception of a packet a router, appends to the packet,
in an unauthenticated form, the delay that the previous packet
experienced inside this router and, furthermore, stores the
delays reported by upstream routers. The destination reflects
in its ACK the recorded delays. Upon reception of the ACK, a
router authenticates the ACK and compares the list of recorded
delays in the ACK with the list of stored delays. If they agree,
and after a successful comparison with the RTT it forwards
the ACK upstream. Otherwise, it drops the ACK and when
the query packet arrives it generates an FA for its downstream
link.

This technique is generic and permits the establishment of a
low-bit-rate stream from downstream routers to the source with
small cryptographic overhead that can be used for conveying
control information.

VI. SHARING FAULT DETECTION STATE

Fault announcements are only relevant to the source of
the packet that triggered the announcement. The reason is
that, as described earlier, faulty sources can trigger fault

announcements for non-faulty links. Faulty links are, there-
fore, independently detected by different sources that attempt
to make use of such links. It would be beneficial if fault
knowledge could be shared among sources. We first show that
in the general case the problem is difficult. We then show two
methods for limited sharing of fault knowledge.

A. The Difficulty

One possibility of sharing fault knowledge would be by the
following three-stage process:
• Nodes announce links that they have detected as faulty

from the fault detection mechanism of Section III.
• Each node maintains a list L of (node, link) pairs, where

(n, l) ∈ L if and only if link l has been announced to be
faulty by node n.

• Each node calculates paths that “conform” to their list L.
Given two equivalent definitions of the same path: p being
a list of nodes 〈n1, . . . , nk〉, and p′ being a list of links
〈(n1, n2), . . . , (nk−1, nk)〉, we say p (or p′) conforms to
list L if (n, l) ∈ L implies that n �∈ p and/or l �∈ p′.

The correctness of this method is argued by the fact that if
node n announces link l as faulty, either n or l is faulty.
• If n is not faulty, then l is faulty, as the fault detection

mechanism of Section III only detects faulty links, if
employed by a non-faulty source.

• If l is not faulty, then n is faulty: either the fault detection
mechanism of Section III had output a fault for a non-
faulty link, which is only possible for faulty sources; or n,
without necessarily being a source, arbitrarily announced
l to be faulty, which is only possible if n is faulty.

The difficulty of employing this method lies in the com-
plexity of calculating conforming paths. In particular, the
problem of deciding the existence of a path that connects a
given source and destination that also conforms to a given
list of fault announcements is NP-complete. The reduction
from the Impossible Pairs Path (IPP) problem of [18] is
straightforward.4 We also note that the IPP problem is not
only hard to solve, but also hard to find approximate solutions
for [19], [20], [21]. Our problem is likely to be as hard to
find approximate solutions for as IPP (although we have not
verified the conjecture).

B. Efficient Sharing Between Neighboring Routers

Fault knowledge can be efficiently shared between neigh-
boring routers, while preserving the Byzantine robustness
property. We propose the following changes to the protocol
of Section III.

We call the first link of a route the lead link. Detected faults
are associated with the lead links traversed by the packets that
lead to the corresponding fault announcements: we record a
lead link along with the corresponding fault(s), and we say
that this lead link detects the downstream faulty link(s). Given
a lead link (s, r), if it detects a faulty link e, then node s
may share with node r this fault knowledge. A router only

4In the IPP problem, we are given a source s, a destination t, and a list L
of pairs of nodes. The objective is to decide whether a path p consisting of
nodes 〈n1, . . . , nk〉 exists between s and t such that if (n1, n2) ∈ L, then
n1 �∈ p and/or n2 �∈ p.

shares such fault knowledge with the neighbor through which
the corresponding faulty link(s) have been detected. Node r,
for example, the receiver of the shared fault knowledge, may
use this information in its route calculation. Node r deduces
that node s, link e, or both must be faulty, and if s is faulty,
so is (s, r). Therefore, node r concludes that a fault-free
route cannot contain both (s, r) and e. One way of using this
information, when a node performs route calculation, is to
calculate routes for each of its incident links separately, and
for the incident link that is its turn, delete the faulty links
that the incident link detects from the topological map, so, for
example, during r’s route calculation, when it considers the
incident link (s, r), it excludes e from consideration.

C. Efficient Sharing Between Non-Neighboring Routers

If router s detects link (u, v) as faulty, it may announce this
to u and v. Nodes u and v deduce that node s, link (u, v), or
both must be faulty, and, therefore, a fault-free route cannot
contain both s and (u, v). Such information can be used in
route calculation by calculating routes for each incident link
separately, and for the link that is its turn, delete the nodes that
have announced this link as faulty. For example, in u’s route
calculation, when it considers link (u, v), it excludes node s.

VII. PENALIZING FAULTY ROUTERS

So far, we have focused on avoiding using faulty
components—we have not discussed any attempts to block
traffic coming from faulty components. There are, however,
several reasons why such blockage may be desirable. First,
traffic from a faulty node may have an unforeseeable impact
on a non-faulty node. Although a design goal of our protocol
is to guarantee that a non-faulty node can not be declared
faulty by other non-faulty nodes solely because of the actions
of faulty nodes, a faulty node might nevertheless try to exploit
other vulnerabilities in nodes that are currently non-faulty. For
example, traffic from faulty nodes may be able to trigger dor-
mant software bugs in a non-faulty node. Thus, blocking traffic
from faulty nodes provides an additional level of protection
against such vulnerabilities. Second, traffic from faulty nodes
is likely to be a waste of resources. Third, trying to maximize
the damage, multiple malicious faulty nodes may well need to
communicate among themselves to coordinate their actions.
Blocking or reducing their ability to communicate may limit
such concerted efforts.

A. Challenges and A Naive Solution

There are at least two challenges in “correctly” penalizing
faulty routers. The first challenge is the difficulty of exactly
identifying the faulty routers. The fault detection mechanism
of Section III only identifies faulty links—it does not necessar-
ily pinpoint the exact faulty routers. If a link is detected to be
faulty by a non-faulty router, then one or more of the following
components are faulty: the upstream router, the link, and/or
the downstream router. A faulty upstream router may have
generated a false FA; a faulty link may be dropping packets;
and a faulty downstream router may be dropping or delaying
packets. Despite this difficulty, however, as we shall see, it

s
l0

n1

l1
n2

l2

t

Fig. 7. An example route. Nodes s and t are the source and destination
respectively.

is possible to modify the protocol to gradually isolate faulty
routers by accumulating fault knowledge over time.

The second challenge in penalizing faulty routers lies in
our goal of maintaining Byzantine robustness: if we do not
exercise care, the process of blocking faulty nodes may result
in the unintended side effect of blocking non-faulty nodes.

We now consider a simple design and show how it fails to
achieve this goal. In this design, if a router detects a link to
be faulty, it blocks all packets that have the given link at the
first position in their source routes. Suppose that s sends a
packet with source route 〈s, . . . , u, v, . . .〉. Router v is faulty
and drops the packet. Router u generates an FA about link
(u, v) that propagates to s. Router s then detects link (u, v) to
be faulty and blocks all packets with (u, v) at the first position
in their source routes. Suppose now that u sends a packet with
source route 〈u, v, . . . , r, s, . . .〉. Router s blocks this packet,
and r generates an FA about link (r, s) that propagates to u.
Router v lets the FA pass, and therefore u detects link (r, s)
to be faulty, although none of s, r, u and (r, s) are faulty. The
non-faulty router u will now block packets that originate from
non-faulty routers r and s, violating Byzantine robustness.

B. A First Protocol for Blocking Faulty Traffic

We introduce the following changes to the basic protocol
of Section III. As in Section VI, we refer to the first link of a
route as the lead link. If a router detects a link to be faulty, it
blocks all packets that have the given link as a lead link and
for each such packet it generates and propagates upstream a
blocking announcement (BA). Upon reception of a BA, the
source deduces that the lead link cannot be used together in a
route with the generator of the BA. Route computation should
take this knowledge into account by calculating routes for each
incident link separately, and for each link that is its turn, delete
the generators of BAs for this link. Furthermore, the receiver
of a BA should block the generator of the BA, if the generator
attempts to use the corresponding link.

C. A Second Protocol for Blocking Faulty Traffic

We again refer to the first link of a route as the lead link;
we associate detected faults with the lead links traversed by
the packets that lead to the corresponding faults; and we say
that this lead link detects the downstream faulty link(s). Under
this new protocol, we introduce two types of packet drops:
inbound drops and outbound drops; furthermore, we also need
to modify the route re-calculation algorithm to accommodate
these extra packet drops.

Inbound drops: a router blocks (i.e., drops) a packet arriving
from an incident link if this incident link detects the lead link
traversed by this packet as being faulty. Consider the example

topology in Figure 7. If a packet arrives at n2 via l1 and
l1 detects l0 as faulty, n2 drops the packet. (Intuitively, this
blockage makes sense because we know that at least one of
l0 and l1 must be faulty.)

Outbound drops: a router blocks an arriving packet that
intends to leave this router via an incident link if this incident
link detects the lead link as being faulty. Furthermore, this
router generates an FA and propagates it upstream, declaring
this incident link to be faulty. In the example route of Figure 7,
if a packet intends to leave n2 via l2 and l2 detects l0 as faulty,
n2 drops the packet and propagates an FA about l2 upstream
toward s.

Route re-calculation: the protocol must be further modified
to account for these extra packet drops. Consider the outbound
drop example in the last paragraph. Under the basic protocol
of Section III, the FA from n2 unambiguously signals to
s that l2 is faulty and l2 should be excluded in any route
computation performed by s. Under the new protocol designed
to block faulty routers, however, the FA from n2 only signals
that at least one of l0 and l2 must be faulty. Responding to
this FA, node s can no longer simply exclude l2 from route
calculations. Instead, node s needs to ensure that none of
the routes it chooses can contain both l0 and l2. One way
of ensuring this property is for the source node (such as s)
to calculate routes for each of the source’s incident links
separately, and for the incident link that is its turn (such as l0),
delete from the topological map the link(s) that this incident
link detects as faulty (such as l2).

One may notice that the route re-calculation algorithm
above is similar to that given for sharing fault knowledge
(Section VI-B). This is not surprising, since in both cases,
the source acquires supposed link fault knowledge that is not
necessarily true. Indeed, we may integrate the fault knowledge
sharing mechanism given in Section VI-B with the route re-
calculation mechanism given in this section. This resulting
integrated mechanism is different from the mechanism of
Section VI-B in only one crucial way: in Section VI-B, the
FAs propagated to a source from downstream are unambiguous
and only the fault knowledge acquired from neighboring nodes
is deemed ambiguous; whereas in the integrated mechanism,
all fault knowledge, including FAs propagated to a source
from downstream and knowledge acquired from neighbors, is
deemed ambiguous.

1) The Necessity of FA Generation for Outbound Blockage:
In the protocol description, we note that a crucial difference
between the way we perform “inbound drops” and “outbound
drops” is the generation of an FA in the latter case. To
understand why, we consider what would happen if we remove
this FA from the protocol in handling the following example.

Suppose that s sends a packet with source route
〈s, r, . . . , v, u〉. Router v, which is faulty, generates an FA
about link (u, v) that propagates to s. Link (s, r) of router s
detects link (u, v) as faulty. Suppose now that u sends a packet
with source route 〈u, v, . . . , r, s, . . .〉. Router s will block the
packet and r will propagate an FA about link (s, r) to u. Link
(u, v) of router u detects link (s, r) as faulty. If r sends a
packet with source route 〈r, s, . . . , w, u, v, . . .〉, u will block it,

and w will generate an FA about link (w, u) that will propagate
to r. Link (r, s) of router r then detects link (w, u) as faulty,
although none of routers s, r, w, u and links (s, r), (w, u) are
faulty.

D. Protocol Characteristics

In the proposed protocols, if a faulty router r drops all
packets of a non-faulty router s, s will block r. The traffic
of r will not be affected by other non-faulty routers that have
not detected r’s misbehavior: this can happen, for example,
if r obeys the protocol when handling these other routers’
packets. In short, the degree of penalty imposed on a rogue
router by the protocol (and the network) is, in some sense,
proportional to the degree of its malice.

Whether this gradual and partial blockage is a desirable
characteristic depends on one’s point of view. In a positive
view, one may deem a router that continues to operate correctly
for some routes, for example, more preferable than a router that
is shut down by the protocol immediately upon the first sign
of error and therefore works for no route. In a negative view,
a malicious router, for example, may exploit this characteristic
by picking and choosing which entities it wishes to be able to
communicate with in order to maximize its negative impact.

The advantage of the protocol of Section VII-C with respect
to that of Section VII-B is that it requires less work on the
part of the blocker. Inbound drops are performed fast without
any cryptographic computations (compare this with the BA
generation of the first protocol). In this way FA generation
is outsourced to upstream routers that can use the first link
of the route for forwarding their own packets. Notice that
the work performed on behalf of a router is, in some sense,
inversely proportional to the degree of its malice. Outbound
drops require the generation of an FA from the blocker. This
adheres to the aforementioned principle as well, as the inbound
link can still forward packets through the lead link.

The protocol proposed in Section VII-C may degrade re-
covery time, the elapsed time from the moment that commu-
nication is interrupted to the moment that communication is
resumed. The reason is that each router may detect the same
link as faulty several times, once for each of its incident links.
In the protocol of Section VII-B and in the basic protocol of
Section III, each router detects a link to be faulty only once.
The impact, however, depends on many factors, such as the
topology of the network, the location(s) of the fault(s), the
number of faulty routers, etc. Improving recovery time is part
of our continuing research.

The protocol of Section VII-C may also have a negative
impact from a network management perspective. Without the
proposed changes, if an FA about link l = (u, v) is delivered
to router s, then the network components that need to be
investigated are the routers s, u, v, and the link l. With the
proposed changes, if a link l1 = (u, v) has been detected as
faulty by link l2 = (s, r), then the network components that
need to be investigated are the routers s, r, u, v and links l1,
l2.

We should, finally, mention that, in the proposed protocols,
as a result of blocking faulty traffic, non-faulty traffic may be
temporarily blocked as well. However, Byzantine robustness

is not violated and, therefore, if a packet is dropped by non-
faulty routers, then it contains at least one faulty link, and,
furthermore, route computation will converge to non-faulty
routes.

VIII. SUMMARY AND FUTURE WORK

We have presented a routing protocol with Byzantine robust-
ness and detection. The protocol can be seen as a combination
of several components. While none of these is novel by itself, it
is the integration of them that is crucial for the correctness and
efficiency of the protocol. These components are source rout-
ing, destination acknowledgements, timeouts, fault announce-
ments, authentication, reserved buffers, sequence numbers, and
round-robin scheduling. Removing any of the components
gives the adversary the ability to discredit non-faulty elements
and, therefore, cause the Byzantine robustness property to
be violated. One reason to stress this observation are the
vulnerabilities exhibited by previous systems (some of which
we point out) that omit any of the components.

We have discussed route selection and have presented an
algorithm that calculates “prefix-span” constrained shortest
paths. Links with different prefix span constraints are use-
ful for improving performance at the expense of potentially
decreasing reliability.

We have introduced two extensions to the basic fault de-
tection protocol. The first improves performance of “normal”
operation at the expense of longer fault detection time. The
second restricts the adversary’s ability to emulate congestion.

We have shown that sharing fault knowledge is, in general,
a difficult problem. We have presented efficient methods of
limited sharing of fault knowledge.

We have shown how to isolate/penalize misbehaving routers
by blocking their traffic, potentially improving both perfor-
mance and robustness of the network. This approach, however,
may potentially increase fault recovery time. We are contin-
uing research on improving our protocol to reduce recovery
time. One promising direction is to leverage the time optimal
fault detection protocol of Herzberg and Kutten [4].

One important thread of our ongoing research stems from
the need of a mechanism that re-incorporates into the network
components that have been previously declared faulty and
therefore removed. This issue is also related to how we address
innocuous packet drops (drops that are not due to faults). Our
proposed solution is to replace a binary faulty vs. non-faulty
verdict with a more continuous fault metric: a single packet
drop should not result in the outright removal of a link, for
example; instead, repeated offenses would gradually degrade
the “worthiness” of a link, making it less and less desirable
and ultimately removed. A previously removed link, on the
other hand, can rehabilitate itself by proving its “worthiness”
over time. This continuous fault metric needs to be integrated
into the route selection/calculation mechanism and, potentially,
even congestion control mechanisms as well.

We are investigating the scalability of this protocol. One
line of development is to extend it for the case that the nodes
of the network are “Autonomous Systems,” rather than routers.
We believe that it is feasible to consider secure routes as
a class of policy routes in the Interdomain Policy Routing

Architecture [22], [23]. Such secure protocols would also be
candidates for effective protection against Distributed Denial
of Service attacks.

ACKNOWLEDGMENTS

We would like to thank Prof. Robert Tarjan and Spyridon
Triantafyllis for numerous helpful discussions. We would also
like to thank Antonis Ellinas for pointing out reference [2].
We would finally like to thank the anonymous reviewers for
their helpful comments.

REFERENCES

[1] P. Papadimitratos and Z. Haas, “Securing the internet routing infrastruc-
ture,” IEEE Communications Magazine, pp. 60–68, Oct. 2002.

[2] Kenneth A. Oye, Ed., Cooperation Under Anarchy, Princeton University
Press, 1986.

[3] R. Perlman, Network Layer Protocols with Byzantine Robustness, Ph.D.
thesis, Massachusetts Institute of Technology, Aug. 1988.

[4] A. Herzberg and S. Kutten, “Early detection of message forwarding
faults,” SIAM J. Comput., vol. 30, no. 4, pp. 1169–1196, 2000.

[5] K. Bradley et al, “Detecting disruptive routers: A distributed network
monitoring approach,” IEEE Network Magazine, Sept./Oct. 1998.

[6] B. Awerbuch, D. Holmer, C. Nita-Rotaru, and H. Rubens, “An on-
demand secure routing protocol resilient to byzantine failures,” in Proc.
2002 ACM Workshop on Wireless Security, Atlanta, GA, Sept. 2002.

[7] R. Hauser, T. Przygienda, and G. Tsudik, “Lowering security overhead
in link state routing,” Computer Networks, vol. 31, no. 8, pp. 885–894,
Apr. 1999.

[8] P. Papadimitratos and Z. Haas, “Secure routing for mobile ad hoc
networks,” in Proc. Communication Networks and Distributed Systems
Modeling and Simulation Conference, San Antonio, TX, Jan. 2002.

[9] S. Murphy and M. Badger, “Digital signature protection of the ospf
routing protocol,” in Proc. Symposium on Network and Distributed
System Security, NDSS ’96, San Diego, CA, 1996.

[10] Y. Hu, A. Perrig, and D. Johnson, “Ariadne: A secure on-demand
routing protocol for ad hoc networks,” in Proc. 8th Annual International
Conference on Mobile Computing and Networking, Atlanta, GA, Sept.
2002.

[11] B. Smith, S. Murthy, and J. Garcia-Luna-Aceves, “Securing distance-
vector routing protocols,” in Proc. Symposium on Network and Dis-
tributed System Security, NDSS ’97, San Diego, CA, 1997.

[12] B. Smith and J. Garcia-Luna-Aceves, “Securing the border gateway
routing protocol,” in Proc. Global Internet ’96, London, UK, Nov. 1996.

[13] R. Canetti et al., “Multicast security: A taxonomy and some efficient
constructions,” in Proc. IEEE Infocom 1999, New York, NY, Mar. 1999.

[14] A. Perrig, R. Canetti, D. Song, and D. Tygar, “Efficient and secure
source authentication for multicast,” in Proc. Network and Distributed
System Security Symposium, NDSS ’01, San Diego, CA, 2001.

[15] http://www.cs.ucdavis.edu/˜ rogaway/umac/.
[16] T. Cormen, C. Leiserson, and R. Rivest, Introduction to Algorithms,

MIT Press, 1990.
[17] R. Guerin and A. Orda, “Computing shortest paths for any number

of hops,” IEEE/ACM Transactions on Networking, vol. 10, no. 5, Oct.
2002.

[18] H. Gabow, S. Maheshwari, and L. Osterweil, “On two problems in the
generation of program test paths,” IEEE Trans. Software Engineering,
vol. 2, no. 3, Sept. 1976.

[19] P. Crescenzi and V. Kann, A Compendium of NP Optimization Problems,
http://www.nada.kth.se/˜ viggo/problemlist/compendium.html.

[20] V. Kann, “Polynomially bounded minimization problems that are hard
to approximate,” Nordic J. Comp., vol. 1, pp. 317–331, 1994.

[21] P. Berman and G. Schitger, “On the complexity of approximating the
independent set problem,” Inform. and Comput. 96, pp. 77–94, 1992.

[22] D. Estrin, M. Steenstrup, and G. Tsudik, “A protocol for route
establishment and packet forwarding across multidomain internets,”
IEEE/ACM Trans. Networking, vol. 1, no. 1, pp. 56–70, Feb. 1993.

[23] D. Estrin, Y. Rekhter, and S. Hotz, “Scalable inter-domain routing
architecture,” in Proc. ACM SIGCOMM, Baltimore, MD, Aug. 1992.

