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ABSTRACT
As network demand increases, data center network operators
face a number of challenges including the need to add capac-
ity to the network. Unfortunately, network upgrades can be
an expensive proposition, particularly at the edge of the net-
work where most of the network’s cost lies.

This paper presents a quantitative study of alternative ways
of wiring multiple server links into a data center network.
In it, we propose and evaluate Subways, a new approach
to wiring servers and Top-of-Rack (ToR) switches that pro-
vides an inexpensive incremental upgrade path as well as de-
creased network congestion, better load balancing, and im-
proved fault tolerance. Our simulation-based results show
that Subways significantly improves performance compared
to alternative ways of wiring the same number of links and
switches together. For example, we show that Subways of-
fers up to 3.1× better performance on a MapReduce shuffle
workload compared to an equivalent capacity network.

CCS Concepts
•Networks→ Data center networks;

Keywords
Data center network; Datacenter fabric

1. INTRODUCTION
Keeping pace with ever increasing network demand is an

ongoing challenge for data center operators. Network de-
mand is surging at a rapid rate due to faster and more capa-
ble servers, increasing application network-to-compute ra-
tios [17], and kernel bypass techniques [8, 26]. For example,
Google recently reported that it increased the bisection band-
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width of its data center networks by three orders of magni-
tude between 2004 to 2012, on average doubling every 10
months [32]. Making matters worse, the network is a large
and growing portion of the total cost of the data center [17].
Because many data center applications are highly sensitive
to tail latencies, networks must be configured with relatively
low average link utilization, further increasing costs.

Operators often prefer an incremental approach to adding
capacity while the existing network continues to carry traf-
fic [7, 32]. While it is also possible to take down the data cen-
ter and forklift in a new faster network, this process can re-
quire extensive downtime. Instead, adding multiple network
links per server has become one way to support upgrades. In
principle, a network operator could double capacity by dou-
bling the amount of network hardware, wiring each server in
parallel to dual Top-of-Rack (ToR) switches; those switches
in turn can be wired in parallel to a replicated aggregation
layer, and so forth.

In this paper, we present the counterintuitive result that
it is possible to achieve better than a proportional perfor-
mance improvement when upgrading a data center network
for typical workloads. In other words, a doubling of network
capacity can result in much better than a 2× performance
improvement on the same hardware. A key insight is that
nearby servers exhibit communication locality, where physi-
cally co-located servers often communicate at the same time,
both with each other and with the rest of the network [9, 22,
31], making a denser local interconnect attractive.

Our approach, Subways, is a co-design of the network
wiring, routing, and load balancing algorithms when there
are multiple links per server. Instead of always wiring servers
to switches within a physical rack, we cross-wire some server
links to the ToR switches of adjacent racks in an overlapping
pattern. We similarly cross-wire ToR switches of adjacent
racks into different locations in the aggregation layer. This
has four benefits. First, we can arrange a larger number of
nodes to be reachable within a locality region, e.g., to be
able to directly communicate through a single ToR switch,
thereby reducing traffic load and congestion at the aggrega-
tion layer. Second, by wiring correlated servers into distinct
parts of the data center network fabric, we achieve better sta-
tistical multiplexing properties than more basic wiring pat-



terns. Third, in our topology, differential load balancing be-
comes more effective than in a standard FatTree topology,
allowing Subways to reduce hotspots at the ToR and aggre-
gation switch layer. Finally, our topology allows servers to
detour traffic to remote ToRs without using the data center
backbone. Because of this, servers can utilize the uplink ca-
pacity of many ToRs—not just their own.

Our goal is to characterize the space of Subways-style
topologies and show how addressing, routing, and load bal-
ancing can be accomplished in these networks. The options
offer a range of tradeoffs in complexity and performance,
and we aim to quantify the performance benefits of the dif-
ferent choices. Using a simulation-based methodology, we
show that Subways offers substantial performance benefits
for popular application workloads: up to a 3.1× speedup in
MapReduce and a 2.5× throughput improvement in mem-
cache for a fixed average request latency, relative to an equi-
valent-bandwidth network that differs only in its wiring.

Of course, network cost is as important as network perfor-
mance. It is beyond the scope of the paper to fully character-
ize the installation and operational costs of a Subways net-
work. In practice, these costs depend on proprietary volume
discounts for optical and electrical cables, switches, network
interfaces, etc. However, the largest added cost for Subways
is likely to be the added cable length from the server to
the adjacent ToR switches. We develop a set of wiring al-
gorithms that show that physical wire lengths can be kept
short enough to be implemented with copper and also made
relatively easy to install.

2. BACKGROUND AND MOTIVATION
Data centers can vary greatly from one deployment to an-

other, sometimes even within the same company. Even so,
there are several features that are common among most state-
of-the-art data centers. These best practices are necessitated
by scalability, cost, and practical limitations.

The first is that servers and the network switches that con-
nect them are stacked in physical racks to simplify installa-
tion and management. The second is that data center network
switches are constructed using mass-produced merchant sil-
icon switching chips, each with only a tiny fraction of the
required network switching capacity. These chips are pack-
aged to provide various port counts and speeds, subject to
the constraints of the underlying chip. Because these build-
ing blocks have limited capacity, the third common feature
is a multi-level, multi-rooted tree of switches. Typically, this
tree is some variant of a Folded-Clos topology [5, 14]. The
canonical version has three layers: (1) ToR switches, which
connect a single physical rack of several dozen servers, (2)
aggregation switches, which connect the ToRs of tens of
racks into a single cluster, and (3) core switches, which con-
nect the clusters of the data center together. Each layer has
many physical switches operating in parallel.

Typically, inexpensive electrical cables are used between
servers and ToRs, even for the high-bandwidth connections

needed by modern servers. In addition, some data center net-
works are wired with a single, fast link between each server
and the ToR switch; others wire links in parallel from each
server to the ToR switch, using Link Aggregation Groups
(LAGs) to spread packets as evenly as possible across the
links and allowing the parallel links to behave as a virtual
fast link. Likewise, two or more ToR switches with identi-
cal down and up connectivity can be grouped together into a
larger virtual switch using Multi-Chassis LAGs (MC-LAGs).

More expensive fiber optic links are used in the network
fabric: from ToR nodes to the aggregation layer, and from
there to the core. This is because electrical signalling is not
feasible for cables that need to span the data center, or even a
cluster. Because optical connections are expensive, the tree
is often thinned immediately above the ToR level. That is,
the aggregate bandwidth from servers into a ToR is often a
small multiple of that of the ToR’s optical uplinks. Higher
levels of the tree are often even more oversubscribed, again
for cost reasons [14, 32].

2.1 Inter-rack Communication is Growing
With oversubscription at higher levels of the tree, one ap-

proach to job scheduling is to keep communication local
where possible. For instance, if we could pack all nodes from
a MapReduce job into a single rack, shuffle traffic would
never need to traverse the oversubscribed core network. In-
deed, this technique can be quite successful—75% of mea-
sured traffic in one network stayed within a rack [9].

Despite this, inter-rack communication is often unavoid-
able. Sometimes, this distribution is by design, e.g., network
storage blocks are often stored across power failure domains
for fault tolerance. More commonly, jobs are often too large
to fit within a single rack [31]. In a recent Google trace [29],
63% of the workload was for jobs that required multiple
racks, even assuming optimal bin-packing. The increased
prevalence of large analytics implies that inter-rack commu-
nication will continue to grow at a very fast pace [17].

2.2 Server Traffic is Often Correlated
Data center traffic is very bursty, particularly on links closer

to the edge [6, 9, 16]. This is partly a consequence of the de-
sire to preserve traffic locality. To reduce inter-rack commu-
nication, multiple servers in the same rack can be assigned
to the same job, but by virtue of performing related tasks,
when they do send inter-rack traffic, they are more likely to
do so simultaneously.

A second reason is that servers/jobs with similar purposes
are often placed in the same rack. Facebook, for example,
expands its memcache and web frontend infrastructure by
rolling out an entire rack of servers that are optimized for
that particular service [25]. Although this approach signif-
icantly reduces operational complexity, it implies that the
traffic patterns of servers within a rack can be correlated;
as traffic increases, all of them get hot simultaneously.

Correlated server behavior is a problem because of over-



subscription. The aggregate capacity of the uplinks from the
ToR switch define how much the servers in that rack can
send or receive at any time, gating application performance.

2.3 ToRs Are a Single Point of Failure
In addition to demand growth, the network is also becom-

ing a fault tolerance bottleneck. Data center operators go to
great lengths to ensure that their systems are resilient to fail-
ures. In fact, it is common to see techniques such as redun-
dant power supplies, a great deal of network path diversity,
and even redundant SDN controllers. In most data centers
(e.g., those without MC-LAGs), there is no such redundancy
for the ToR switch—it remains as one of the few remain-
ing single points of failure in the data center. This is par-
ticularly important as ToRs have relatively high failure rates
compared to other network devices [13].

3. DESIGN OVERVIEW
We introduce Subways, a family of data center edge in-

terconnect architectures that use redundant links between
servers and ToRs. Common among these designs is a wiring
pattern where servers in a rack are wired to adjacent ToRs
in addition to their own.1 Clever usage of multiple server-
ToR connections can mitigate many fundamental issues in
today’s data centers:

• Simpler upgrades: A typical edge capacity upgrade re-
quires large amounts of up-front investment and/or rewiring
of both server-ToR links and links in the backbone. By
augmenting connectivity and allowing servers to connect
to adjacent ToRs, we enable cheap, potentially incremen-
tal upgrades that reduce or eliminate the need for rewiring.

• Less backbone traffic: An overlapping connection pattern
creates shorter paths for more destinations, keeping traffic
off the data center backbone.

• Smoother hot spots: Traffic is very bursty, particularly at
the ToRs. By connecting servers to multiple, differently-
loaded ToRs and clusters rather than just one, we gain bet-
ter load balance.

• Fault tolerance: Redundant server-ToR links remove one
of the remaining single-points-of-failure in data centers.

The Subways design varies on two dimensions, which we
discuss in the following sections. First is topology: how are
the server links distributed among ToRs, and how are those
ToRs distributed into clusters? These choices have a large
impact on reducing and smoothing traffic at each layer. The
second dimension is load balancing: Subways can work with
uniform load balancing mechanisms like ECMP, but it can
also benefit from adaptive mechanisms that shift traffic away
from overloaded ToR switches and from detour routing, which
shunts traffic to remote ToRs.
1In our work, different servers in the same physical rack can
be wired to different sets of ToR switches. We refer to the set
of servers wired identically as a logical rack, and we use the
term rack to refer to a logical rack unless otherwise specified.

Var. Definition

N # of end hosts in the data center
p # of ports per server
q # of downward facing ports per ToR switch
r # of servers per logical rack ( qp )
c # of clusters over which a loop is mapped (Type 2)
l # of racks in a single Subways loop (Types {1,2})

Table 1: The variables that define a Subways architecture. Some
only apply to a subset of the wiring methodologies in Sec. 4.

Core

Aggregation

ToR

Cluster

Figure 1: A FatTree with Type 0 Subways, p = 2. Three layers of
switches connect servers together. Each server has two ports that
are both connected to the same ToR switch.

As every data center instantiation may have different num-
bers of links per server or servers per rack, we parameterize
our discussion using the notation sketched in Table 1. Be-
cause Subways is an edge architecture, it is compatible with
any aggregation and core topology, although for concrete-
ness we concentrate on FatTrees in this paper.

4. WIRING TYPES
We begin by describing a baseline topology, Type 0 Sub-

ways, corresponding to the current, industry-standard ap-
proach to using a p-port server where all ports are connected
to the same switch. We then introduce two new wiring types
that link servers to adjacent ToRs. To keep the discussion
concrete, we assume for now that all topologies use a simple
ECMP-like load balancing algorithm; we relax that assump-
tion in the next section. We defer a discussion of the impli-
cations of Subways for physical cable lengths until Sec. 7.

4.1 Starting Point: Type 0 Subways
The simplest wiring model is to trunk p connections from

each server to the same ToR switch, as shown in Fig. 1. A
Link Aggregation Group (LAG) can be used to treat the mul-
tiple physical links as a single logical connection using a
protocol like LACP. This simplifies routing but requires the
entire trunk to terminate at a single, physical switch.

As a result, although the network core has ample redun-
dant paths for load balancing and fault tolerance, all paths to
and from a rack feed through a single ToR switch. Likewise,
the server itself has redundant links, but if the switch fails or
is overloaded, all p connections suffer.

When using Type 0 Subways as an upgrade path, opera-
tors are required to rewire many existing connections. For
instance, let us assume she wants to double capacity while
keeping the number of servers (Ns) and oversubscription ra-
tio constant. Any such upgrade requires Ns new server-ToR



connections and double the number of switches in the net-
work. In addition, Type 0 requires her to rewire Ns

2 of the
existing server-ToR links so that all links from a single server
go to the same switch, and then to rewire/expand the exist-
ing interconnect to ensure that new ToRs have connectivity
to the old ones.

Perhaps most importantly, most trunking protocols are lim-
ited to links of the same speed. This prevents heterogeneous
upgrades, e.g., where a 25 Gbps link is added to an exist-
ing 10 Gbps server connection, something allowed with the
wiring patterns we discuss next.

4.2 Type 1: Shared ToRs Within a Cluster
One way to improve fault tolerance is to wire the p ports

of each server to p different ToR switches at the top of the
physical rack. With a multihoming approach like MC-LAG,
these multiple physical switches can be aggregated into a
single, virtual ToR. To make routing and failover completely
transparent, the physical switches are typically wired identi-
cally into the network fabric.

Instead, we propose to wire each group of servers to a dis-
tinct, overlapping set of nearby ToR switches. In doing so,
we gain an extra degree of freedom and, as we describe later,
considerable performance improvement relative to both Type
0 and multihoming. For example, with p = 2, we wire each
server to its ToR plus the one for the closest (logical) rack
to the left. In this way, neighboring logical racks share at
least one ToR. With Type 1, each server is connected to ToR
switches that connect into the same aggregation-level clus-
ter; we relax this assumption for Type 2.

This simple act of sharing ToRs has far-reaching benefits.
Using p = 2 as an example, two adjacent logical racks are
connected to three ToRs, instead of just two. Each server has
a high-capacity path to 50% more servers than before, im-
proving performance and reducing the traffic reaching the
oversubscribed data center network. When those servers do
need to send data through the backbone, they have, in aggre-
gate, 50% more peak throughput than with Type 0.

Topology. Conceptually, each logical rack still has an asso-
ciated ToR. However, instead of connecting servers to their
own ToR p times, servers connect to their own ToR and their
p− 1 closest ToRs exactly once. This overlapping chain of
racks and ToRs is wrapped around to eventually form a loop
of l racks/ToRs, where each server is connected to its own
ToR, the b p−1

2 c ToRs clockwise, and d p−1
2 e ToRs counter-

clockwise from it. A loop is thus a connected component in
the server-ToR topology. In the degenerate case where the
number of server links equals the loop size, p = l, we have
multihoming. We show that performance improves with in-
creased loop size, but there are practical limitations due to
physical wiring constraints that we discuss in Sec. 7. For
simplicity, we assume a single loop length l for all loops in
the data center. Fig. 2 shows a single loop of 3-port servers
and a length of 9. Fig. 3a shows two loops where the loops
are the same size as the clusters.

ToR Switch

Server

Figure 2: Example of the server-ToR connection in Type 1 with a
single loop of 9 3-port servers. Bold links/switches are added to
upgrade from a 2-port to a 3-port configuration without rewiring.

Upgrades. One of the interesting things about Subways-style
server-ToR connections is that adding capacity to servers
does not require rewiring their existing connections. Fig. 2
shows an example of this, where an upgrade from 2 ports
to 3 requires adding new ToRs, but leaves the existing ToR
connections untouched. Note, however, that to make room
for the added ToRs, an operator may still need to rewire the
upper layers of the data center network to ensure that all of
a server’s ToRs are contained within the same cluster.

Routing. In vanilla Type 1, we keep routing similar to to-
day’s data centers, implemented entirely with existing pro-
tocols. In particular, because all of a server’s ToRs are con-
tained within a single cluster, routing in most of the network
does not change—traffic to a particular server still flows to a
single cluster, typically through longest-prefix matching.

Servers and aggregation switches have an additional re-
sponsibility to assign connections randomly to the available
ToRs. This can be done using ECMP [33]. In ECMP, rout-
ing table entries can map to multiple possible output ports,
to which connections are randomly assigned. Assignment is
done on a per-connection basis to avoid packet reordering.

Only nodes that are directly connected to ToRs (i.e., servers
and aggregation switches) need to install extra ECMP rules.
Servers only need one such rule with p options: one for each
ToR. Aggregation switches need t rules with p options each,
where t is the number of racks in its cluster; they do not need
any rules for traffic destined for other clusters beyond what
is needed today.

4.3 Type 2: ToRs in Different Clusters
Subways provides one more degree of freedom: adjacent

ToR switches in the same loop can be wired into different
clusters. In a traditional multi-rooted tree, there is no benefit
to declustering. In our case, however, it can spread load more
evenly across clusters, and it increases the number of servers
that can be reached without going through the core layer.
These shortcuts allow a greater degree of oversubscription,
for a given level of performance, or equivalently, less con-
gestion for those jobs whose traffic must traverse the core.

Topology. Every server in a Type 2 Subways is connected
to multiple clusters as evenly as possible. The number of
clusters that are connected to a single loop is configurable
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(c) Type 2 (alternate representation)

Figure 3: A two cluster topology for Type 1 (a) and Type 2 (b, c) with p = 3 and l = 3 and 9, respectively. We omit the core layers and
color/number ToRs according to their cluster.

and depends on factors such as how much mixing is needed,
loop length, and physical constraints.

Let us assume that we have c clusters whose ToRs should
be connected to a single Subways loop. In order to find a
mapping between the ToRs in Fig. 2 and the clusters’ ToRs,
pick an arbitrary ToR and assign it to the first cluster. Move
to the next ToR in clockwise order and assign it to the second
cluster. Continue assigning each ToR to a cluster in this man-
ner, looping back to cluster 1 after assigning a ToR to cluster
c. Note that the position within a cluster does not matter as
all ToRs within a cluster are logically equivalent. It also does
not matter that a server is not necessarily connected to all c
clusters, as long as assignment is as even as possible.

Fig. 3b and Fig. 3c show two equivalent examples where
c = 2. Note that servers still only connect to nearby ToRs
(Fig. 3b), and at the same time, the cluster topology is still
amenable to cable bundling (Fig. 3c)—we only change the
interface between these two topologies.

Upgrades. Because we no longer require all of a server’s
ToRs to be in the same cluster, an upgrade in Type 2 does
not actually require any rewiring of existing links. In the
case of augmentation with a parallel backbone, we do not
even need to touch the existing core layer. In the absence of
rewiring, it is possible to perform a capacity upgrade with-
out any disruption in service. Further, the upgrades can be
heterogeneous.

As an example, in an entirely 10 GbE data center, an op-
erator could choose a single cluster of servers and augment
them with a parallel 25 GbE FatTree, cross-wired so that
each logical rack of servers connects to a different, over-
lapping pair of 10 GbE and 25 GbE ToR switches. Instead
of wiring every server in a physical rack to the same two
10 and 25 GbE switches, we wire half of the servers to one
25 GbE switch (at the top of the physical rack) and half to
the 25 GbE switch at the top of the neighboring rack.

Addressing/Routing. Regardless of whether servers are con-
nected to parallel interconnects or different clusters in the
same interconnect, the networks are configured as they are
today. Each interconnect has its own address space, and each
of its clusters has a subnet within that space. Routing tables

can be set up for longest-prefix matching with no increase in
size. The primary change is that each server has p addresses.

Servers spread flows over possible paths using a simple,
static version of ECMP or WCMP [36]. For example, servers
with parallel 10 and 25 GbE connections would place flows
on those networks with probability 2⁄7 and 5⁄7, respectively.

5. ADAPTIVE LOAD BALANCING
Wiring servers to ToRs in an overlapping pattern is by it-

self enough to provide significant performance benefits, but
it also opens up the possibility of more advanced load bal-
ancing. In this section, we introduce two load balancing mech-
anisms; they can be combined with either Type 1 or Type 2
topologies. For simplicity, we assume l > p in this section.

As a motivating example, consider the case where p = 2
and two adjacent racks are simultaneously hot—a situation
that could be more likely as jobs are placed to take advan-
tage of short paths in Subways. With ECMP, the shared ToR
between the racks would have twice the load of the two
non-shared ToRs. This hurts tail latency: flows placed on
the shared ToR take twice as long as the other flows. Using
adaptive load balancing, we can equalize utilization across
all three ToRs. Note that with Type 0, ToR switches can be-
come overloaded, but load balancing does not help: all paths
to the same set of servers lead through the same ToR, and in
the absence of a switch or link failure, all paths are identical.

We introduce two possible solutions: a multipath transport-
layer protocol or controller-based scheduling. We describe
both approaches, but our evaluation assumes the latter.

5.1 Multipath Transport-layer Protocols
Transport-layer protocols like MPTCP [35] allow each

end host to utilize multiple paths through the network to
maximize resource usage. Like TCP, MPTCP detects con-
gestion and varies the amount of traffic sent along a given
path. However, the specific protocol is orthogonal to our de-
sign, as long as it is able to utilize multiple paths effectively.

In the context of Subways, a multipath transport-layer pro-
tocol would allow the system to adaptively balance load over
all available paths. This is done in a distributed fashion at



each end host and thus can adapt to changes in load relatively
quickly and at a fine granularity. In the example described
above where adjacent racks are hot, a multipath protocol
would let each server split all connections over both ToRs.
Instead of a situation where some connections have half the
throughput of others, every connection would receive an ap-
proximately equal portion of the available bandwidth—a 50%
decrease in tail latency.

Exposing multiple paths to the servers. To support MPTCP,
we need to expose the multiple paths to each server. For each
server-server pair, there are up to p2 combinations of ToRs
through which a path can pass—p ToRs at the source and p
at the destination. Note that we assume path diversity in the
core interconnect is handled separately.

The source ToR is chosen by directing traffic out of the
associated physical port. The destination ToR is chosen by
giving each server p addresses, just as in Sec. 4.3. This is
necessary regardless of whether the topology is Type 1 or 2;
in Type 1, however, each address will come from the same
subnet so that routing in the middle of the network remains
the same.

5.2 Weighted-ECMP
An alternative approach that does not require changes to

the end host TCP implementation is to use a locally adap-
tive variant of the previous work on Weighted-ECMP [4, 10,
23, 36]. In these proposals, senders periodically obtain cur-
rent utilization information from a centralized controller and
use that information to change the probability that flows are
placed on a given next hop.

The problem is much simpler here. Because the ToR tends
to be the bottleneck, we only need to look at ToR utilization
(and not entire paths) when making traffic engineering deci-
sions. Because of this, load balancing calculations are local;
ToR utilization information can be maintained by a sharded
set of controllers, rather than a single centralized server. This
makes statistic collection and load balancing calculations
faster and more efficient. Loops in particular represent a nat-
ural sharding boundary.

Initial flow placement. Like traditional FatTree routing, the
source will prefer shorter paths if available. If there are one
or more paths that pass through a shared ToR (and avoid us-
ing the data center backbone), the source will choose one
of them with equal probability. Otherwise, it must route the
flow through one of its ToRs and one of the destination’s
ToRs. Each is chosen independently and the decision is based
on current congestion information. The source ToR is always
chosen by the source server, while the destination ToR is
chosen by the destination-side aggregation switch or source
server in Type 1 and Type 2 topologies, respectively.

Setting weights for source ToRs. The probability that a
flow is placed on any particular ToR is based on the remain-
ing capacity of that ToR. For the choice of source ToR, we
care about the remaining capacity in the outbound direction.

More formally, each server obtains from its loop’s con-
troller the values [U1,U2,..,Up]. These represent, for each
of the server’s ToRs, an exponentially-weighted moving av-
erage of the fraction of the ToR’s uplinks that are utilized.
From utilization, we can calculate the remaining capacity on
each ToR: Vx = Bx (1−Ux ), where Bx is the total uplink ca-
pacity of ToR x. The probability of placing a new flow on
ToR i is then simply Vi∑p

j=1Vj
.

Setting weights for destination ToRs. The main difference
between choosing a destination ToR and a source ToR is that
we care about inbound traffic, rather than outbound. In par-
ticular, for each destination, we have [D1,D2,..,Dp], the per-
ToR downlink utilization of the Aggregation-ToR links.

The resulting weights for a server’s ith ToR is Ei∑p
j=1 E j

,

where Ex is the remaining downlink capacity, Bx (1− Dx ).
In Type 2, these weights are provided to each server for
each communication partner. In Type 1, they are provided
to each aggregation switch for their own cluster. Alterna-
tively, these could be implemented using pushback mecha-
nisms like pause frames and ECN.

Subsequent load balancing. We periodically reschedule ex-
isting flows to adapt to changing traffic conditions in the
presence of long-lived flows. Each end host and/or aggrega-
tion switch will rebind all existing connections every Trebind .

The first step in this process is to calculate a target uti-
lization for each ToR, which for the outgoing direction, is

Utarget =
∑p

i=1 BiUi∑p
i=1 Bi

, i.e., the total amount of traffic divided by
the total bandwidth. With these targets in mind, a server will
shift its current utilization to achieve a more even split.

Specifically, let [u1,u2,..,up] be the current fraction of traf-
fic the server is sending over each ToR. Based on the target
ToR utilization and the server’s current split, it will calculate
a target split for its own traffic. Toward ToR i, its target is
ti = cui

Utarget
Ui

+ (1− c)ui , where c is a scaling factor that de-
termines the aggressiveness our algorithm. In our evaluation,
we use c = 0.5.

The probability that a flow is rebound to the ith ToR is
then P[i] = ti∑p

j=1 t j
. Note that the target traffic split might

not be possible due to the bandwidth of the server-ToR link,
bi . Ignoring short paths for simplicity, this happens when
P[i](
∑p

j=1 u jbj ) > bi . In this case, we set P[i] = bi∑p
i=1 uib j

and spread the excess load evenly over the remaining links.
Also note that reordering can be prevented by waiting for
flowlet inactivity gaps [20].

6. DETOUR ROUTING
An interesting side effect of the Subways wiring pattern is

that each loop is a connected graph even without the use of
the inter-ToR network. Because of this, whenever a server’s
ToRs are overloaded, it is possible for servers to detour traf-
fic through adjacent racks (using only Subways links) in or-
der to shunt excess load to remote ToRs.
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Figure 4: A rack-level diagram showing the detour paths of a single
hot rack of servers R. Boxes represent racks. Colors differentiate
the direction of the detour (red for left, blue for right).

As an extreme example, consider the topology in Fig. 4.
Assume that rack R has 20 servers and all of them wish to
fully utilize their three 10 GbE links. Despite R’s 600 Gbps
of demand, its ToRs A, B, and C have only 40 Gbps of to-
tal uplink capacity apiece—a 15:1 oversubscription ratio.
Even with adaptive load balancing, the ToRs can satisfy at
most 1/5th of R’s offered load. If R instead bounced traffic
through adjacent racks, it could enlist its neighbors to handle
all 600 Gbps. Here, some portion of the offered load would
be sent through A, B, and C while the remainder is detoured
away from the loaded racks, i.e., through R′ and R′′. This
happens recursively, with each successive ToR egressing a
portion of the remaining traffic until all of it is handled.

In the common situation where just a single rack is hot,
the only limit to the amount of traffic we can detour is the
rack’s NIC capacity. In other words, if all server-ToR links
have the same capacity, detouring can, in principle, achieve
full burst bandwidth to/from the loaded rack regardless of
the network’s oversubscription ratio.

Design overview. To ensure that detours are both efficient
and do not interfere with adjacent servers, we rely on a per-
loop scheduler in the same mold as the one in Sec. 5. These
can be one in the same. When a group of servers is bottle-
necked by oversubscription in the network, the scheduler can
allocate a set of detour paths for them. These detours can ex-
tend to as many remote ToRs as necessary, limited in 3 ways:

• Loop size: detours can only use remote ToRs in the same
loop.

• Other hotspots: for simplicity, multiple distinct hotspots
are not allowed to detour through the same remote ToR.

• Path dilation: operators can limit the associated increase
in latency and additional server utilization by imposing a
cap on path length.

The scheduler will provide each server with an equal share
of the available capacity, but will limit the usable uplink ca-
pacity of each remote ToR based on their current utilization.
In our experiments, we set the usable capacity to be 60% of
the remaining bandwidth (before any detours) so as to pro-
vide sufficient headroom for momentary spikes in traffic.

Note that for simplicity, we focus on outbound detours in
this section; the process for inbound detours is similar. Also
note that we start by assuming isolated hotspots and discuss
groups of adjacent, hot racks at the end of this section.

When to detour. The scheduler initiates a detour whenever
there is persistent congestion at the ToR level. Persistent
congestion is measured by gathering pre-detour ToR utiliza-
tion statistics every Tdetect ms. Whenever a ToR is using
> 60% of its total uplink capacity (incoming or outgoing)
over an entire period, it is considered “hot” for a minimum
of Tdurat ion ms. If all of a source rack’s ToRs are hot in
the outgoing direction, the rack is considered “hot” and war-
rants detour paths. Likewise, when all of a destination rack’s
ToR uplinks are hot in the incoming direction, the scheduler
will allocate detour paths and notify the sources of the traf-
fic. Notifications continue to arrive every Tdetect ms until the
congestion subsides.

Computing detour paths. As an example, consider Fig. 4.
In this case, we have a hot rack of servers and wish to shunt
traffic through neighboring racks. To shunt traffic left, neigh-
boring racks will take traffic from their rightmost h = b p2 c
ToRs and forward it along their leftmost h ToRs. Similarly,
neighboring ToRs will take traffic from their rightmost h
connected racks and forward it to their leftmost h racks.
Rightward detours proceed in a similar fashion. Each inter-
mediate ToR egresses a portion of the detoured traffic until
all of it exits the Subways server-ToR network.

More concretely, from the ToR utilizations, a per-loop sche-
duler should be able to deduce the set of overloaded racks
and the uplink utilization of every ToR in the loop. A hot
rack of servers will manifest itself as p contiguous, heavily-
utilized ToRs. From this information, it can determine the set
of rack-level detour paths and the usable capacity on each:
1. Consider each group of hot ToRs.
2. Take the 2 ToRs on either side of the set under consider-

ation. These ToRs will be used as egress points for some
number of detour paths.

3. If one of the ToRs is already being used for a detour, do
not consider it or any further ToRs in that direction.

4. Otherwise, for each of these edge ToRs, calculate the
set of detour paths that should use the ToR’s spare up-
link capacity. We can do this by iteratively backtracing
the paths and pruning based on a maximum path length.
Specifically, the left ToR should be fed by its rightmost
b
p
2 c connected racks, which should in turn be fed by their

rightmost b p2 c connected ToRs. The detours are allowed
to use a total of 60% of the measured residual capacity.
The paths split this usable capacity equally.

5. Repeat 2-4 for every group of hot ToRs.
6. Repeat 2-5 until we either run out of capacity on the orig-

inal sources’ server-ToR links or no additional ToRs are
under consideration.
Servers source route along these paths using recursive en-

capsulation with headers that specify the next hop in re-
verse order. Forwarding can be implemented using software
switches that are increasingly common (e.g., Open vSwitch
[27]) and with NICs that are beginning to include similar
functionality for forwarding among VMs [18]. While these



Cold Aisle

To opposite rack To opposite rack

Figure 5: An example physical topology for Type 1 and up. Blue
links are part of the initial 1-port configuration. Orange links and
outlined switches denote hardware that is added as part of the up-
grade to 2 ports. The main image is the frontal view of a row of
racks, while the inset is an aerial view of the entire Subways loop.

solutions are primarily aimed at providing a communica-
tion bridge among various virtual machines executing on a
server, they also have the capability to switch among server
NIC ports. In Sec. 8.8, we test the software overhead of for-
warding and show that it is small.

Detouring for groups of racks. As in Sec. 5, shortcut-aware
job scheduling policies can lead to cases where multiple ad-
jacent racks are simultaneously loaded. The scheduler can
detect this case when it notices that more than p contiguous
ToR switches are heavily loaded. When this occurs, a couple
of modifications must be made to the above algorithm.

The first is that not all servers can detour in all directions.
For some, their detours would pass through other loaded
racks, which would create contention. As a result of this re-
striction, only the b p2 c leftmost racks in a contiguous group
can detour traffic to the left, while the b p2 c rightmost racks
can detour traffic to the right.

The second modification concerns fairness. Because only
the edges of the group can utilize detours, we can achieve a
slightly more even division of capacity by forcing the edges—
those racks that can utilize detours—to not send any traffic
through directly connected ToRs that other members of the
group could use. Doing so can improve tail job completion
time for the entire group.

7. PHYSICAL CONSIDERATIONS
As with any topology, physical design considerations can

affect the practicality of an architecture. While every data
center instantiation has unique physical constraints, we pre-
sent here one example of how a data center could be up-
graded with Subways links while keeping wire lengths short
and complexity low. Other wiring patterns (including one
with much shorter wire lengths) and a more general discus-
sion of physical concerns can be found in our tech report [1].

Upgrades. Fig. 5 shows an example physical topology. Blue
links are the initial connections, while orange links and swit-
ches represent hardware that is added during the upgrade.

This design takes advantage of the fact that, in a real data
center, servers have multiple ToRs that are physically “adja-
cent”—not just those in the next rack in the row.

More concretely, this design starts simply: operators con-
nect all servers in a rack to a ToR switch in the same rack.
ToRs are placed at the top of the rack just as they are today,
with an empty 2U slot at the other end. When upgrading, the
operator will install a new ToR in each rack that is used to
connect either (1) adjacent racks within a row of racks or
(2) racks that are separated by a cold aisle. In this way, an
operator creates a Subways loop using two parallel rows of
racks.This example is optimized for expansion to p = 2, but
similar techniques can be used to handle higher port counts.
With three or more switches per physical rack, it is possible
to weave a loop along a single row of racks (without cross-
ing any aisles) while still only using connections between
adjacent racks [1].

Wire length. Assuming a rack height of 2 m and cold aisle
width of 1.2 m [2], the longest intra-row wire is about 2 m. If
we also assume we can place wires on both overhead trays
and beneath a raised floor, then the length of the cross-aisle
wires will be ∼ 2.2 m. These lengths are not much more than
is required for a single rack and, for all currently available
link speeds, are easily implemented using copper cables.

Cabling Complexity. An advantage of this design is that the
initial configuration requires little to no work beyond what is
done today: racks can still be preconfigured and there are no
cross-rack wires. The upgrade step requires some additional
cable installation beyond what is traditional; however, this is
such a structured, symmetric topology that we anticipate this
complexity to be manageable. Further, it can be simplified
by bundling the wires between racks into a single cable and
connector in a manner similar to the pin headers in modern
desktop computers.

8. EVALUATION
To evaluate Subways, we implemented the following:

• A packet-level simulator that we used to test medium to
large deployments of Subways.

• A small Cloudlab [30] testbed to validate our simulator.
• A server detour implementation to test the feasibility of

software-based detouring through servers.

In this section, we denote Subways variants with adaptive
load balancing as Type 1LB and 2LB, while detour variants
are denoted as Type 1D and 2D. Our evaluation attempts to
illustrate the key aspects of Subways, but our results are lim-
ited to the specific workloads and parameters that we tested.
A complete assessment of workload and parameter sensitiv-
ity is left for future work.

8.1 Simulator Implementation
We used a modified version of a packet-level simulator

that we previously used in the evaluation of other systems [23,
28]. It implements both low-level switch behavior and all of



Type 0 Type 1

Testbed 179.1 s 47.5 s
Simulator 171.3 s 47.6 s

Table 2: Comparison of the tail flow completion time of the simula-
tor and the testbed with the same topology and workload. Type 1 is
faster because senders and receivers share ToRs for this workload.

our Subways protocols. The Layer-3 switches use drop-tail
queues and flow-level ECMP. The queues are per-port with
size based on the bandwidth-delay product of the network.
Switching latency along with network propagation delays to-
tal to 60µs per hop. Our workload varies by experiment. For
experiments that use TCP, we implemented TCP New Reno
in the end hosts using the MPTCP codebase [35] as a refer-
ence.

We simulate a standard 3-layer FatTree topology in which
ToR switches have 36 10 GbE ports and all other switches
have 12 10 GbE ports. Each cluster consists of 12 racks and
up to 6 aggregation switches. In some of the following ex-
periments, we evaluate the sensitivity of Subways to differ-
ent configurations by beginning with a default configuration
and varying one parameter at a time.

Our default configuration has two ports per server and 15
servers per rack. For Type 0, we wire both ports to the same
ToR switch; for Type 1 and Type 2, we wire servers to over-
lapping ToRs with a loop size of 12—the size of an entire
cluster. The ToR layer has a 5:1 oversubscription ratio while
the aggregation layer has a ratio of 4:1. When varying the
oversubscription ratio at a given layer, we do so by removing
links and aggregation/core switches. For instance, we create
our 5:1 ToR-layer oversubscription ratio by only including
6 aggregation switches per cluster and adjusting the number
of core switches accordingly.

We assume that ToRs have per-port packet counters that
are aggregated by local controllers. Every Trebind = 10 ms,
the controllers collect all the packet counters and dissemi-
nate them to any subscribed end hosts. For detouring, we use
Tdetect = 10 ms, Tdurat ion = 100 ms, and limit the number
of hops to at most two intermediate servers.

8.2 Validation Using Our Testbed
We validate our simulator using a small Cloudlab [30]

testbed. The testbed emulates 16 dual-ported servers, 4 ToRs,
and 2 aggregation switches connected through a 2-layer Fat-
Tree topology with an oversubscription ratio of 4:1. Because
Cloudlab’s network topology and queuing characteristics dif-
fer from our system, we emulated the ToR and aggrega-
tion switches using servers. For this purpose, we have added
support for flow-based ECMP routing to the Linux kernel
version 3.13. ECMP was implemented using the same con-
sistent hash function that memcache uses to map keys to
servers [19]. To prevent the emulated switches from becom-
ing overloaded, we limited link rates to 500 Mbps. For com-
parison purposes, we replicated this setup in our simulator.

For validation, we emulated a scenario where three racks
of servers all send traffic to the servers in a single rack. Since

a rack has 4 servers, there are a total of 12 senders and 4
receivers. Each sender sends 4 simultaneous 100 MB flows
to each receiver. In the testbed, this was accomplished using
iperf. In the simulator, we started 192 simultaneous TCP
flows. In both cases, we record tail flow completion time.

Table 2 shows the time from the first flow start to the last
flow completion for simulation and emulation, for Subways
Type 0 and Type 1. With Type 0, all flows traverse the ag-
gregation layer and are bottlenecked at the downlink into
the ToR switch for the receivers. With Type 1, most senders
have shortcuts through a shared ToR to the receiver rack.
The flows from the remaining senders traverse the aggre-
gation layer, but with less contention. For both topologies,
our simulator and testbed results matched each other closely.
Some of the remaining difference can be attributed to kernel
scheduling latency and jitter resulting from our need to em-
ulate switches in software.

8.3 Speeding up a MapReduce Shuffle
Our first evaluation considers the effect of Subways on the

performance of an all-to-all MapReduce-like shuffle.

Experiment. Using the default configuration described above,
we tested a range of shuffle job sizes. We measured the speedup
in completion time of different Subways types compared
to Type 0 with the same hardware. For each job, all of the
servers in several contiguous racks act as both mappers and
reducers. We minimize the number of racks used and group
them together as much as possible in order to promote local-
ity. Mappers initiate flows to reducers with a shuffle size de-
rived from [11], which, in this experiment, is 15 MB between
each pair. We mark the job as completed when the last TCP
flow finishes and compare the completion time with that of
Type 0. Note that we ignore the effects of cross-traffic.

We evaluate two situations. The first involves job sizes
of up to 180 nodes (12 racks) within a single cluster. For
these, we only test Type 1 and its load balancing variants
as Type 2 provides very little additional benefit for a purely
intra-cluster and intra-loop workload. The second situation
also tests several different job sizes, but splits those servers
equally between two different Subways loops. For this case,
we test both Type 1 and Type 2 variants.

Results. Fig. 6 shows results for both intracluster and cross
cluster configurations. In most cases, Subways significantly
outperforms a Type 0 architecture using the same amount of
hardware. This is most pronounced for mid-sized jobs (up
to a 3.1× speedup for 60 nodes in an intracluster job) with
the speedup tapering off for larger jobs. The primary reasons
for these performance benefits are (i) more short paths that
avoid the network backbone, (ii) the ability to spread up-
link/downlink traffic to the backbone across more ToRs, and
(iii) for Type 2, increased cross cluster bandwidth.

In the intracluster case, these benefits peak at a job size of
45/60, i.e., 3 or 4 racks of servers. In these cases, most of the
traffic can be transmitted directly through shared ToRs; this
is in contrast to Type 0 and traditional rack-based architec-
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Figure 6: The effect of Subways on an all-to-all MapReduce shuffle
workload and a range of job sizes. For both intracluster and cross
cluster configurations, we show the speedup of different Subways
wiring and load balancing variants compared to Type 0.

tures where short paths only exist within a single rack. Load
balancing has a greater relative effect—with p = 2, 3 racks
can spread their uplink/downlink traffic across 4 ToRs ver-
sus 3 ToRs with Type 0. Adaptive load balancing and detours
only serve to enhance and extend this benefit. As the job size
grows to encompass an entire loop, the load balancing effect
disappears as there are no free racks for either load balancing
or detours. This represents a worst case for our load balanc-
ing algorithms. However, even so, short paths continue to
provide a modest benefit (about a 1.3× speedup).

Like the intracluster configuration, our cross cluster ex-
periments show significant benefits for small to medium job
sizes, peaking at a speedup of 2.7× for Type 2D compared to
Type 0. For large, cross-cluster jobs, the bottleneck becomes
the core network For this reason, Type 2 with its greater
amount of cross-cluster bandwidth is particularly effective
for this workload. Adaptive load balancing and detours pro-
vide further benefits for Type 2 for the same reason.

8.4 Comparison of Upgrade Paths
Next, we examine the effect of the above performance im-

provements on different upgrade paths.

Experiment. We reconsider the MapReduce shuffle pattern
of the previous section, but focus on a job size of 90 nodes
all contained within a single cluster.

Our experiment measures speedup in job completion time
versus a baseline where every server has a single 10 GbE link
and the backbone is also made of 10 GbE links. From this
baseline, we evaluate four potential upgrade paths: a full net-
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Figure 7: Speedup of a MapReduce shuffle for different upgrade
paths. The baseline is a configuration with a single 10 GbE port on
every server.
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Figure 8: Speedup of a MapReduce shuffle for different loop sizes
compared to Type 0.

work replacement with 25 GbE links, one with 40 GbE links,
a Subways-style 10 GbE augmentation, and a Subways-style
25 GbE augmentation. Note that for both the single port and
Subways configurations, we maintain a 15 server rack and
add/remove aggregation and core switches to keep the over-
subscription ratio the same across upgrade paths. Because
this is a heterogeneous configuration, we use Type 2 wiring.

Results. Fig. 7 compares the upgrade paths. As expected,
performance of the 25 GbE and 40 GbE network replace-
ments provide ∼ 2.5× and ∼ 4× speedup respectively. In
contrast, with a Type 2D design, a 10 GbE augmentation pro-
vides about a 4× speedup. Despite the fact that the servers
only have 20 GbE of total bandwidth, the performance is on
par with a 40 GbE network because of decreased inter-ToR
traffic and better load balancing. Augmenting with a 25 GbE
link shows additional performance benefits.

8.5 The Effect of Loop Size
In this experiment, we evaluate the effect of loop size on

performance. In particular, we look to answer two questions:
(1) Is Subways better than a multihoming solution (l = p)?
and (2) How sensitive is Subways to loop size?

Experiment. Again we consider a shuffle pattern with 90
contiguous nodes. We evaluate Subways Type 1, with and
without load balancing, on loop sizes ranging from 2, essen-
tially a multihomed configuration, to 12, spanning an entire
cluster. The remainder of the topology adheres to our default
configuration.

Results. Our results are shown in Fig. 8. From the graph, we



can see a few interesting effects. First, all Subways Type 1
variants benefit significantly from l > p. Multihoming pro-
vides a 1.3× speedup on this workload because it has short
paths between more pairs of servers. However, a loop size of
3 provides a 1.64× speedup for Type 1 and a 1.85× speedup
for Type 1LB and Type 1D, because of even more short paths
and opportunities to spread backbone traffic across more ToRs.

Second, ECMP is sensitive to interactions between the
job- and loop-size. When l = 3, the 6 racks of MapReduce
servers fit perfectly in 2 loops and their ToRs are therefore
naturally balanced when all flows are operating at full capac-
ity. At l = 4, we must split the job into two groups of racks
that do not fit perfectly in the loop; with ECMP, this leads to
load imbalance at some ToRs as described at the beginning
of Sec. 5. Adaptive load balancing fixes this issue. Finally,
as expected, detours improve with loop size once the loop is
large enough to encompass both the busy and free ToRs.

8.6 The Effect of Port Count
Our default configuration has two ports per server because

it is the simplest Subways upgrade step for many data cen-
ters. In this section, we extend our discussion to study the
effect of further increases in the port count.

Experiment. In this experiment we again use a shuffle work-
load. We begin with the default configuration and vary the
number of ports per server. More ports increases the band-
width per server. To keep the oversubscription ratio constant,
each configuration includes a different number of aggrega-
tion switches. For p = 2, there are 6 aggregation switches
per rack, for p = 4, 12, and for p = 6, 18. Within a given port
count and job size, all Subways types operate under the same
constraints.

Like Sec. 8.3, we test two job configurations. The first
involves 90 nodes across 6 racks within a single cluster to
evaluate Type 1 and its variants. The second involves 180
nodes across 12 racks split equally between two different
Subways loops. For this case, we only test Type 2 variants.

Results. Fig. 9a depicts the results for the intracluster config-
uration. By creating more short paths to more nodes, increas-
ing the number of ports per server also increases the speedup
of Subways. There are diminishing returns for very high port
counts. With a job size of 6 racks, 6 ports is overkill—servers
will prefer the short paths while rarely using their ToR up-
links. For the same reason, the relative benefits due to adap-
tive load balancing and detours decrease with 6 ports since
most of the traffic bypasses the data center backbone.

The cross cluster results in Fig. 9b provide a complemen-
tary view of the effect of port counts on Subways perfor-
mance. Because the job is divided amongst two loops, short
paths will never dominate as they do in the intracluster case.
Instead, the bottleneck is in the cross cluster network, where
more ports leads to a greater degree of interconnection and
speedup compared to Type 0. Here, load balancing becomes
even more effective with more ports.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 2  3  4  5  6

S
p
e
e
d
u
p

Ports Per Server

Type 1
Type 1LB
Type 1D

(a) Intracluster

 1

 1.5

 2

 2.5

 3

 3.5

 4

 2  3  4  5  6

S
p
e
e
d
u
p

Ports Per Server

Type 2
Type 2LB
Type 2D

(b) Cross cluster

Figure 9: Speedup of a MapReduce shuffle for different per-server
port counts compared to Type 0.

8.7 Faster Memcache with Less Hardware
We also look at the effect of Subways on the throughput

of a Facebook-like memcache deployment. In particular, we
test a range of oversubscription ratios to evaluate the degree
to which we can achieve the same performance as a Type 0,
but with less hardware.

Experiment. We model this experiment on Facebook’s mem-
cache architecture [25]. Each rack within a single cluster
consists of either memcache or web servers, but not both.
Out of a cluster with 12 racks, 2 are memcache racks while
the rest hold web servers. The web servers perform lookups
for random keys spread across the memcache servers. Re-
quests are done with UDP packets of 50 bytes, while re-
sponses are 1500 bytes. Because the nodes reside in a single
cluster, we only evaluate Type 1 and its variants.

As in [25], the metric we use is the maximum sustainable
memcache request rate. More specifically, all web servers in
a cluster send requests at a constant rate to all memcache
servers in the same cluster. We then record the average la-
tency for responses after the system enters a steady state. To
find the maximum sustainable throughput, we increase each
web server’s request rate until the average latency over all
requests goes above 1 ms.

Results. Fig. 10 shows our results. We draw two conclusions
from the graph. The first is that, for a given oversubscrip-
tion ratio, Type 1 and each successive load balancing variant
provides higher memcache throughput while maintaining a
fixed latency. This benefit remains fairly stable across over-
subscription ratios, with Type 1 hovering at around a 1.2×
speedup compared to Type 0 and Type 1LB at around 1.6× .
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Figure 10: Throughput of memcached for various Subways variants
for a range of oversubscription ratios. For a given ratio, each variant
including Type 0 has the same amount of hardware. Throughput is
the maximum number of queries per second while preserving an
average response latency of 1 ms.

The relative benefit of Type 1D fluctuates between 1.8 and
2.5× , rising as the ToR becomes the bottleneck and falling
due to our limit on detour path length. We note that, despite
the fact that this experiment does not have any intra-rack
locality, it does exhibit intra-cluster locality that allows Sub-
ways to decrease traffic in the data center backbone. Because
responses are much larger than requests, the bottleneck is
the outgoing capacity of each memcache rack. Load balanc-
ing and detours improve performance by spreading the load
more evenly across the available ToRs.

The second conclusion is that, for a target latency and
number of queries per second (qps), we can achieve equiva-
lent performance with less hardware. For instance, to achieve
a target qps of 10 million and a 1 ms average latency, Type
0 requires a ToR oversubscription ratio of at most 5. On
the other hand, Type 1D can provide the same performance
with a ToR oversubscription ratio of 10—a factor of two less
backbone capacity.

8.8 Detour Forwarding Overhead
How much load does software detouring place on servers?

We benchmark a prototype of our detour protocol and mea-
sure CPU utilization. Our prototype is implemented on the
Arrakis high-performance server OS [26]. We note that any
solution providing low-latency access to the network would
have been sufficient (e.g., a Linux kernel module).

We conduct our experiment on a six machine cluster con-
sisting of 6-core Intel Xeon E5-2430 systems at 2.2 GHz.
Each system has an Intel X520 dual-port 10 Gb Ethernet
adapter. Both ports of each machine are connected to a sin-
gle Dell PowerConnect 8024F 10 Gb Ethernet switch. One
machine is the detour server under scrutiny. The other ma-
chines generate detour traffic to one port of the server. The
server decapsulates each detour packet and forwards it along
its other port to the next hop.

Our prototype uses a simple pipeline of two server cores:
the first core receives packets from the input NIC port, checks
whether they are detour packets and, if so, puts a pointer to
each one in a shared memory queue. For each queue entry,
the second core decapsulates the corresponding packet and
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are involved in detouring. We show the utilization of each individ-
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sends it to the other NIC port. When done, it uses another
shared memory queue to inform the first core that the packet
buffer can be reused. We do not copy the packet payload.

Fig. 11 shows the average CPU utilization for each pipeline
step over a period of 5 s. We vary the detour load between 1
and 10 Gbps, the line rate of a single NIC port. We see that
total utilization grows linearly with the detour throughput,
with decapsulation contributing most to the load. Although
our prototype requires two cores, in principle, a single core
would be able to sustain a detour workload of up to 7 Gbps.

9. RELATED WORK
There has been a large body of work on the topology and

management of the data center backbone, above the ToR
switch level [5, 14, 23, 24]. Our work is complementary
to these, in that wiring servers to overlapping sets of ToR
switches can be combined with any of them.

BCube, Hypercube, and Torus [15, 21] are backbone topo-
logies based on an assumption of multi-port servers, e.g., by
connecting each server port along a different dimension of a
hypercube. Although performance in Subways is better with
higher values of p, we demonstrate performance benefits for
p = 2, a port count far smaller than in this earlier work. Fur-
ther, since we preserve the ToR switch layer, our work is
compatible with existing data center operational constraints.

Port trunking (e.g., LACP (802.1ax), MC-LAG, and Trill
[34]) is a well-known technique for connecting multiple ser-
ver links to the same physical (LAG) or virtual (MC-LAG)
switch. These architectures are equivalent to Type 0, or in the
case of MC-LAG, Type 1 with p = l. We show that Subways
provides significantly better performance than port trunking,
along with further benefits when combined with adaptive
load balancing and detour routing.

GRIN [3] is an interesting proposal that looks at wiring
adjacent servers together directly, in addition to the ToR swit-
ch. Traffic through the adjacent server is detour routed thr-
ough that server’s ToR link. If the servers are in the same
logical rack, this has the effect of increasing the burst band-
width into each server, at low cost. If the servers are in ad-
jacent racks, GRIN becomes a way to wire each server indi-
rectly into multiple ToR switches, at the cost of dedicating
CPU cycles and server link bandwidth to forwarding traf-



fic. Our work is complementary to GRIN, in that our wiring
topologies, adaptive load balancing, and detour load shed-
ding could be applied in a GRIN context.

Another approach to reducing hotspots by adding capacity
to ToR switches is to use specialized hardware like optical
circuit switches and Wi-Fi [12, 16, 22, 37]. Our work can
be combined with these approaches. For example, if optical
switching is used in combination with a traditional multi-
level tree, then Subways can ameliorate any overload that
occurs in the oversubscribed switched network. Our work
also shows that it is possible to reduce the impact of hotspots
with existing hardware.

10. CONCLUSION
Growing pains are often most acute at the edge of the net-

work. In this paper, we describe Subways, a novel way to
wire servers to ToR switches that enables incremental up-
grades and reuse of existing hardware. Connecting servers
to the ToR switches of neighboring racks decreases the traf-
fic reaching the network backbone. When combined with ad-
vanced load balancing techniques, it also spreads the remain-
ing backbone traffic across more ToRs. In addition, Subways
improves locality and increases fault tolerance, all while re-
maining compatible with modern data center network prac-
tices, including multi-level switch backbones, wire bundling,
rack-based servers, and inexpensive server cables.

Acknowledgments
We would like to thank our shepherd Marco Canini and the
anonymous reviewers for their enormously helpful feedback.
This research was partially supported by a Google Gradu-
ate Fellowship, the Hacherl Endowed Fellowship, and by the
National Science Foundation (CNS-0963754).

11. REFERENCES
[1] http://www.cs.washington.edu/tr/2014/09/UW-CSE-14-09-01.pdf.
[2] (2012), TIA standard ANSI/TIA-942-A, data center cabling standard

amended. Telecommunications Industry Association, 2012,
http://www.tiaonline.org.

[3] A. Agache, R. Deaconescu, and C. Raiciu. Increasing datacenter
network utilisation with GRIN. In NSDI, 2015.

[4] M. Al-Fares et al. Hedera: dynamic flow scheduling for data center
networks. In NSDI, 2010.

[5] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity
data center network architecture. In SIGCOMM, 2008.

[6] M. Alizadeh et al. Data center TCP (DCTCP). In SIGCOMM, 2010.
[7] A. Andreyev. Introducing data center fabric, the next-generation

Facebook data center network. https://code.facebook.com, Nov.
2014.

[8] A. Belay et al. IX: A protected dataplane operating system for high
throughput and low latency. In OSDI, 2014.

[9] T. Benson, A. Akella, and D. A. Maltz. Network traffic
characteristics of data centers in the wild. In IMC, 2010.

[10] T. Benson, A. Anand, A. Akella, and M. Zhang. MicroTE: Fine
grained traffic engineering for data centers. In CoNEXT, 2011.

[11] Y. Chen, S. Alspaugh, and R. Katz. Interactive analytical processing
in big data systems: A cross-industry study of mapreduce workloads.
VLDB, 2012.

[12] N. Farrington et al. Helios: A hybrid electrical/optical switch
architecture for modular data centers. In SIGCOMM, 2010.

[13] P. Gill, N. Jain, and N. Nagappan. Understanding network failures in
data centers: Measurement, analysis, and implications. In
SIGCOMM, 2011.

[14] A. Greenberg et al. VL2: a scalable and flexible data center network.
In SIGCOMM, 2009.

[15] C. Guo et al. BCube: a high performance, server-centric network
architecture for modular data centers. In SIGCOMM, 2009.

[16] D. Halperin, S. Kandula, J. Padhye, P. Bahl, and D. Wetherall.
Augmenting data center networks with multi-gigabit wireless links.
In SIGCOMM, 2011.

[17] J. Hamilton. AWS innovation at scale. Presented at re:Invent 2014,
Las Vegas, NV, 2014.

[18] Intel Corporation. Intel 82599 10 GbE Controller Datasheet,
December 2010. Revision 2.6.

[19] R. Jones. libketama: Consistent hashing library for memcached
clients. http://www.metabrew.com, 2007.

[20] S. Kandula, D. Katabi, S. Sinha, and A. Berger. Dynamic load
balancing without packet reordering. SIGCOMM CCR, 37(2):51–62,
Mar. 2007.

[21] F. T. Leighton. Introduction to Parallel Algorithms and Architectures.
Morgan Kaufmann Publishers, Inc., 1992.

[22] H. Liu et al. Circuit switching under the radar with REACToR. In
NSDI, 2014.

[23] V. Liu, D. Halperin, A. Krishnamurthy, and T. Anderson. F10: A
fault-tolerant engineered network, 2013.

[24] N. Mysore et al. PortLand: a scalable fault-tolerant Layer 2 data
center network fabric. In SIGCOMM, 2009.

[25] R. Nishtala et al. Scaling Memcache at Facebook. In NSDI, 2013.
[26] S. Peter et al. Arrakis: The operating system is the control plane. In

OSDI, 2014.
[27] B. Pfaff et al. The design and implementation of Open vSwitch. 2015.
[28] D. R. K. Ports, J. Li, V. Liu, N. K. Sharma, and A. Krishnamurthy.

Designing distributed systems using approximate synchrony in data
center networks. In NSDI, 2015.

[29] C. Reiss, A. Tumanov, G. R. Ranger, R. H. Katz, and M. A. Kozuch.
Towards understanding heterogeneous clouds at scale.
ISTC-CC-TR-12-101, October 2012.

[30] R. Ricci, E. Eide, and The CloudLab Team. Introducing CloudLab:
Scientific infrastructure for advancing cloud architectures and
applications. USENIX ;login:, 39(6), Dec. 2014.

[31] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren. Inside the
social network’s (datacenter) network. In SIGCOMM, 2015.

[32] A. Singh et al. Jupiter Rising: A decade of Clos topologies and
centralized control in Google’s datacenter network. In SIGCOMM,
2015.

[33] D. Thaler and C. Hopps. Multipath issues in unicast and multicast
next-hop selection. RFC 2991 (Informational), 2000.

[34] J. Touch and R. Perlman. Transparent Interconnection of Lots of
Links (TRILL): Problem and Applicability Statement. RFC 5556
(Informational), May 2009.

[35] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley. Design,
implementation and evaluation of congestion control for multipath
TCP. In NSDI, 2011.

[36] J. Zhou et al. WCMP: Weighted cost multipathing for improved
fairness in data centers. In EuroSys, 2014.

[37] X. Zhou et al. Mirror mirror on the ceiling: Flexible wireless links for
data centers. In SIGCOMM, 2012.

http://www.cs.washington.edu/tr/2014/09/UW-CSE-14-09-01.pdf
https://code.facebook.com

	Introduction
	Background and Motivation
	Inter-rack Communication is Growing
	Server Traffic is Often Correlated
	ToRs Are a Single Point of Failure

	Design Overview
	Wiring Types
	Starting Point: Type 0 Subways
	Type 1: Shared ToRs Within a Cluster
	Type 2: ToRs in Different Clusters

	Adaptive Load Balancing
	Multipath Transport-layer Protocols
	Weighted-ECMP

	Detour Routing
	Physical Considerations
	Evaluation
	Simulator Implementation
	Validation Using Our Testbed
	Speeding up a MapReduce Shuffle
	Comparison of Upgrade Paths
	The Effect of Loop Size
	The Effect of Port Count
	Faster Memcache with Less Hardware
	Detour Forwarding Overhead

	Related Work
	Conclusion
	References

