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T H E  I N C R E A S I N G  P O P U L A R I T Y  O F  O N L I N E 
streaming video is defining a major shift in 
the Internet’s workload. To cope with the 
demands of distributing video, many popu-
lar services take a peer-to-peer approach, 
relying on users to redistribute video data 
after receiving it. PPLive is one such system, 
used daily for live streaming by millions of 
people worldwide. As with any P2P design, 
the scalability of PPLive depends on users 
contributing capacity to the system. But, 
currently, these contributions are neither 
verified nor rewarded. This article describes 
Contracts, an extension of the PPLive proto-
col, that improves performance by recogniz-
ing and rewarding users who contribute. 
For example, in our experiments, the frac-
tion of PPLive clients using  Contracts expe-
riencing loss-free playback is more than four 
times that of native PPLive. 

Live Streaming

The Internet is rapidly becoming one of the main 
distribution channels for video. Hulu, Netflix, 
and the BBC’s iPlayer are just a few examples of 
well-known video streaming services. Increasingly, 
video distribution services support live content as 
well, e.g., sporting events. 

The popularity of video streaming creates scalabil-
ity challenges. Publishers would prefer that play-
back start quickly, continue without interruption, 
and have high quality. But achieving these goals 
is difficult given the realities of transient conges-
tion, flash crowds, and network bottlenecks at the 
broadcast source. 

To achieve scalability, many Internet video services 
use peer-to-peer (P2P) content distribution. P2P 
designs rely on users who have already received 
part of the video stream to redistribute that data to 
others. This decreases load on the broadcaster and 
provides more redundant data sources, increasing 
robustness. 

PPLive is one of the most widely deployed live 
streaming services on the Internet today, serving 
more than 20 million active users spread across the 
globe. As with any P2P design, PPLive’s scalability 
depends on its users contributing their capacity by 
redistributing video data. But the current PPLive 



; LO G I N :  AUGUST 201 0	 I M PROV I N G P2 P L I V E STRE A M I N G WITH CO NTR AC T S 	 51

design neither verifies nor rewards contributions. All users are treated 
equally by the protocol, even if they contribute nothing whatsoever. 

In this article, we examine how best to provide incentives for users to con-
tribute resources to P2P live streaming systems. Our goal is to structure the 
system so that rational users will want to contribute resources because doing 
so will improve their performance. We use PPLive as a concrete example; it 
is one of the most popular P2P live streaming systems available today, and 
its developers were willing to work with us to provide modified binaries and 
workload data. 

The goal of motivating contributions is common to many P2P designs, nota-
bly the popular BitTorrent file-sharing protocol. BitTorrent and PPLive take a 
similar approach to distribution: data is broken up into blocks and distrib-
uted by a source, with peers redistributing individual blocks after receiving 
them. Unlike PPLive, however, BitTorrent incorporates contribution incen-
tives into its design. BitTorrent’s policy is “tit-for-tat”—clients reciprocate by 
providing data to peers that give data in return. As a result, users interested 
in faster downloads should increase their upload contribution. 

The similarity of BitTorrent and PPLive raises the question: will tit-for-tat 
work for live streaming? While intuitive and simple, we find that tit-for-tat is 
much less effective for live streaming than file sharing. We consider three 
challenges to applying tit-for-tat that motivate the design of our protocol, 
Contracts. 

CAPACITY HETEROGENEITY

The picture quality of a video stream is determined by its data rate. For a 
P2P system, choosing the data rate depends on the total capacity of all the 
users in the system, including any seed capacity provided by the source. 
The maximum rate is the average capacity-beyond the average, bandwidth 
demand exceeds supply, and a rate lower than the average wastes capacity 
that could be used to increase quality. 

Although streaming at the average capacity maximizes quality, doing so is 
incompatible with incentive strategies based on strict reciprocation; i.e., users 
trade one block sent for one block received. Strict reciprocation creates a 
strong incentive to contribute—to view the stream, users must contribute as 
much as they receive. But such a policy would exclude users with a capacity 
less than the average. In other words, for strict tit-for-tat to work well in live 
streaming systems, all users should have roughly the same capacity. 

In practice, a defining feature of P2P workloads is that users’ upload capaci-
ties vary significantly, and PPLive is no exception. Capacity measurements of 
more than 90,000 clients show that the top 10% of PPLive users contribute 
58% of total capacity. This yields a discouraging trade-off. On one hand, 
streaming at the average rate maximizes quality, but would exclude 86% of 
PPLive clients when insisting on strict reciprocation. Alternatively, support-
ing 95% of users reduces capacity utilization to just 15%. In short, when 
applying strict reciprocation to live streaming, we can have high quality or 
robust incentives, but not both. 
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F I G U R E  1 :  B L O C K  T R A D I N G  O P P O R T U N I T I E S  I N  A  L I V E  S T R E A M -
I N G  M E S H .  D I S T A N T  C L I E N T S  H A V E  F E W  O P P O R T U N I T I E S  F O R 
R E C I P R O C A T I O N  W I T H  P E E R S  C L O S E R  T O  T H E  S O U R C E . 

LIMITED TRADING OPPORTUNITIES

An alternative to strict reciprocation is to allow imbalanced exchange. 
Rather than insisting on one block received for one block sent, imbalanced 
reciprocation schemes simply prioritize peers that contribute the most. But 
imbalanced exchange still depends on trading opportunities arising between 
peers—i.e., two peers exchanging blocks of mutual interest. 

Unfortunately, live streaming provides clients with few opportunities for 
mutually beneficial trading between peers. The key property is that unlike 
bulk data distribution, where blocks have roughly equal value over time and 
among clients, the value of blocks in live streaming varies over time and client. 
A block has little value if it is received after the playback point at a client. 
Thus, the data useful to an individual client is limited to a narrow range 
between the production point and the local playback point. 

This effect is shown in Figure 1. In this case, a snippet of the overlay mesh 
is shown. A source S sends blocks to directly connected peers A and X, 
who forward it to other peers in turn. Consider the trading opportunities 
between A and B. A is directly connected to the source—it receives most 
data immediately after it is produced. B is more distant, receiving data only 
after it has been forwarded by others. This reduces the trading opportuni-
ties between A and B, since virtually all of B’s data blocks have already been 
received by A. 

This example illustrates a general property: peers close to the source enjoy 
a near monopoly on new blocks, creating a trade imbalance that puts more 
distant peers at a perpetual disadvantage under any incentive scheme based 
on pairwise reciprocation between peers. 

NO COMPELLING REWARD

The final obstacle we consider is the lack of a compelling reward for increas-
ing contribution in live streaming. For bulk data distribution, the incentive 
to increase upload rate is a corresponding increase in download rate. But, 
live streaming is inelastic. To watch the stream, each user needs to download 
video data at the production rate. Even a small loss rate can quickly degrade 
the quality of a live video stream. On the other hand, neither can we in-
crease download speeds to reward users—for live streams, additional video 
data has not yet been produced. 
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Streaming Incentives with Contracts

The challenges of using reciprocation lead us to take a different approach to 
providing contribution incentives in live streaming. Our scheme, Contracts, 
is based on two key design choices, which we summarize here. More details 
are available in our paper [1]. 

■■ Contracts evaluates contributions according to both their amount and ef-
fectiveness. As in any P2P system, PPLive benefits from users contributing as 
much as possible. But, in live streaming, contribution alone is not suffi-
cient. Because data blocks must arrive in time to meet playback deadlines, 
Contracts prioritizes requests from peers with the greatest capacity—i.e., 
the peers that can replicate new data most quickly. 

In Contracts, evaluating contributions and effectiveness must be verifiable. 
While we could rely on honest reporting of these values, a strategic client 
could easily misrepresent its contributions to game the system. To prevent 
this, each Contracts client bases its calculations of a peer’s value on crypto-
graphically strong receipts of contribution. Each receipt acknowledges that 
one user has sent some data blocks to another. Receipts are gossiped among 
peers, allowing clients to evaluate nearby peers in the mesh. 

F I G U R E  2 :  E V A L U A T I N G  P E E R S  I N  C O N T R A C T S .  C L I E N T  A  R E C E I V E S 
C R Y P T O G R A P H I C  R E C E I P T S  F R O M  B  A C K N O W L E D G I N G  D A T A  T R A N S -
F E R ,  A N D  F O R W A R D S  T H E S E  T O  E  T O  D E M O N S T R A T E  I T S  C O N T R I B U -
T I O N  A M O U N T .  T O  D E M O N S T R A T E  E F F E C T I V E N E S S ,  E  A L S O  I N C L U D E S 
R E C E I P T S  F R O M  I T S  O N E  H O P  N E I G H B O R H O O D  O F  P E E R S  ( S H A D E D ) . 

As an example of how Contracts evaluates contributions, consider Figure 2. 
In this case, A is being evaluated at E, and E uses receipts from peers in the 
shaded region to perform its calculation. As A sends data to B, it receives re-
ceipts attesting to its contributions. A forwards these receipts to E. Receipts 
from B  A allow E to compute the amount of A’s contribution. To compute 
effectiveness, E needs receipts from both A and B. Receipts from C, D  B 
show that A has made effective contributions to a peer (B) that replicated the 
data to others. In general, A would forward receipts from all of its peers (and 
peers of peers) to E. Contracts restricts the propagation of receipts to one 
hop, however, to limit the overhead of the protocol. 

In addition to prioritizing service, receipts are used to update the mesh 
topology. Contracts restructures connections to move high capacity peers 
towards the source, promoting efficiency. In Figure 2, for example, suppose 
peer E is the closest to the broadcaster, and B has higher capacity than A. 
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During its evaluation of peers, E can recognize the mismatch while inspect-
ing B’s receipts and connect to B directly. This moves B closer to the source. 

Performance and Incentives

Our evaluation of Contracts shows two main results: (1) PPLive with 
Contracts significantly outperforms both unmodified PPLive and PPLive 
modified to support tit-for-tat (TFT); (2) Contracts provides our intended 
contribution incentives; when the system is bandwidth constrained, increas-
ing contribution improves performance. PPLive has adopted some of our 
techniques in their production code, and we continue to work towards full 
support in the public client. In this section, we report performance measure-
ments of our Contracts PPLive prototype. 

PERFORMANCE

We define performance as the fraction of data blocks received by their play-
back deadlines, and compare the performance of PPLive and PPLive using 
Contracts. We conducted a test broadcast of 100 users with arrivals and 
departures and upload capacities based on measurements of PPLive users. 
Crucially, in order to provide a meaningful comparison, we use a video data 
rate which exercises capacity constraints. (It would be easy to achieve good 
performance by simply over-provisioning the system substantially.) 

We find that Contracts significantly improves performance relative to 
unmodified PPLive: 62% of Contracts clients experience loss-free playback 
compared with just 13% when using unmodified PPLive. In other words, the 
fraction of PPLive/Contracts clients experiencing loss-free playback is more 
than four times that of unmodified PPLive. 

INCENTIVES

Contracts rewards contribution with increased robustness. We evaluate this 
by comparing the performance of PPLive using Contracts with that of PPLive 
using tit-for-tat. In both cases, the system is bandwidth constrained. 

F I G U R E  3 :  D E L I V E R Y  R A T E  A S  A  F U N C T I O N  O F  C O N T R I B U T I O N . 
C O N T R A C T S  P R O V I D E S  L A R G E R  A N D  M O R E  C O N S I S T E N T  R E W A R D S 
F O R  I N C R E A S I N G  C O N T R I B U T I O N S . 

In Figure 3, averages are shown with error bars giving the full range of block 
delivery rates for clients with a given capacity. While tit-for-tat does provide 
some correlation between contribution and performance, the amount of 

#fig:contracts_incentives
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improvement varies significantly because tit-for-tat does not update the to-
pology. In contrast, Contracts combines both topology updates and priority 
service for contributors to provide a consistent improvement in performance, 
strengthening incentives. 

Summary

P2P technology has emerged as a powerful technique for achieving scalabil-
ity in live streaming systems. But scalability depends on users contributing 
their capacity, and in many systems, contributions are neither verified nor 
rewarded. The unique features of P2P live streaming limit the effectiveness 
of widely used incentive strategies based on reciprocation, e.g., tit-for-tat. 
Contracts provides an alternative: a new incentive strategy that rewards con-
tribution with quality of service by evolving the overlay topology. Experi-
ments using our prototype PPLive implementation show that Contracts both 
improves performance relative to PPLive and strengthens contribution incen-
tives relative to existing approaches. 
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