
50	 ; LO G I N : VO L . 35, N O. 4

M I C H A E L P I AT E K A N D
A R V I N D K R I S H N A M U R T H Y

improving the perfor-
mance and robustness
of P2P live streaming
with Contracts

Michael Piatek is a graduate student at the
University of Washington. After spending his
undergraduate years working on differential
geometry, his research interests now include
incentive design in distributed systems, net-
work measurement, and large-scale systems
building.

piatek@cs.washington.edu

Arvind Krishnamurthy is an associate
research professor at the University of
Washington, Seattle. His research interests
are primarily at the boundary between the
theory and practice of distributed sys-
tems, in the topics of peer-to-peer systems,
network measurements, and network
protocols. His recent projects include iPlane,
a distributed service that performs network
measurements, BitTyrant, an optimized con-
tent distribution system, Botlab, a pervasive
monitoring infrastructure for Botnets, and
OneSwarm, a privacy-preserving peer-to-
peer system.

arvind@cs.washington.edu

T H E I N C R E A S I N G P O P U L A R I T Y O F O N L I N E
streaming video is defining a major shift in
the Internet’s workload. To cope with the
demands of distributing video, many popu-
lar services take a peer-to-peer approach,
relying on users to redistribute video data
after receiving it. PPLive is one such system,
used daily for live streaming by millions of
people worldwide. As with any P2P design,
the scalability of PPLive depends on users
contributing capacity to the system. But,
currently, these contributions are neither
verified nor rewarded. This article describes
Contracts, an extension of the PPLive proto-
col, that improves performance by recogniz-
ing and rewarding users who contribute.
For example, in our experiments, the frac-
tion of PPLive clients using Contracts expe-
riencing loss-free playback is more than four
times that of native PPLive.

Live Streaming

The Internet is rapidly becoming one of the main
distribution channels for video. Hulu, Netflix,
and the BBC’s iPlayer are just a few examples of
well-known video streaming services. Increasingly,
video distribution services support live content as
well, e.g., sporting events.

The popularity of video streaming creates scalabil-
ity challenges. Publishers would prefer that play-
back start quickly, continue without interruption,
and have high quality. But achieving these goals
is difficult given the realities of transient conges-
tion, flash crowds, and network bottlenecks at the
broadcast source.

To achieve scalability, many Internet video services
use peer-to-peer (P2P) content distribution. P2P
designs rely on users who have already received
part of the video stream to redistribute that data to
others. This decreases load on the broadcaster and
provides more redundant data sources, increasing
robustness.

PPLive is one of the most widely deployed live
streaming services on the Internet today, serving
more than 20 million active users spread across the
globe. As with any P2P design, PPLive’s scalability
depends on its users contributing their capacity by
redistributing video data. But the current PPLive

; LO G I N : AUGUST 201 0	 I M PROV I N G P2 P L I V E STRE A M I N G WITH CO NTR AC T S 	 51

design neither verifies nor rewards contributions. All users are treated
equally by the protocol, even if they contribute nothing whatsoever.

In this article, we examine how best to provide incentives for users to con-
tribute resources to P2P live streaming systems. Our goal is to structure the
system so that rational users will want to contribute resources because doing
so will improve their performance. We use PPLive as a concrete example; it
is one of the most popular P2P live streaming systems available today, and
its developers were willing to work with us to provide modified binaries and
workload data.

The goal of motivating contributions is common to many P2P designs, nota-
bly the popular BitTorrent file-sharing protocol. BitTorrent and PPLive take a
similar approach to distribution: data is broken up into blocks and distrib-
uted by a source, with peers redistributing individual blocks after receiving
them. Unlike PPLive, however, BitTorrent incorporates contribution incen-
tives into its design. BitTorrent’s policy is “tit-for-tat”—clients reciprocate by
providing data to peers that give data in return. As a result, users interested
in faster downloads should increase their upload contribution.

The similarity of BitTorrent and PPLive raises the question: will tit-for-tat
work for live streaming? While intuitive and simple, we find that tit-for-tat is
much less effective for live streaming than file sharing. We consider three
challenges to applying tit-for-tat that motivate the design of our protocol,
Contracts.

CAPACITY HETEROGENEITY

The picture quality of a video stream is determined by its data rate. For a
P2P system, choosing the data rate depends on the total capacity of all the
users in the system, including any seed capacity provided by the source.
The maximum rate is the average capacity-beyond the average, bandwidth
demand exceeds supply, and a rate lower than the average wastes capacity
that could be used to increase quality.

Although streaming at the average capacity maximizes quality, doing so is
incompatible with incentive strategies based on strict reciprocation; i.e., users
trade one block sent for one block received. Strict reciprocation creates a
strong incentive to contribute—to view the stream, users must contribute as
much as they receive. But such a policy would exclude users with a capacity
less than the average. In other words, for strict tit-for-tat to work well in live
streaming systems, all users should have roughly the same capacity.

In practice, a defining feature of P2P workloads is that users’ upload capaci-
ties vary significantly, and PPLive is no exception. Capacity measurements of
more than 90,000 clients show that the top 10% of PPLive users contribute
58% of total capacity. This yields a discouraging trade-off. On one hand,
streaming at the average rate maximizes quality, but would exclude 86% of
PPLive clients when insisting on strict reciprocation. Alternatively, support-
ing 95% of users reduces capacity utilization to just 15%. In short, when
applying strict reciprocation to live streaming, we can have high quality or
robust incentives, but not both.

52	 ; LO G I N : VO L . 35, N O. 4

F I G U R E 1 : B L O C K T R A D I N G O P P O R T U N I T I E S I N A L I V E S T R E A M -
I N G M E S H . D I S T A N T C L I E N T S H A V E F E W O P P O R T U N I T I E S F O R
R E C I P R O C A T I O N W I T H P E E R S C L O S E R T O T H E S O U R C E .

LIMITED TRADING OPPORTUNITIES

An alternative to strict reciprocation is to allow imbalanced exchange.
Rather than insisting on one block received for one block sent, imbalanced
reciprocation schemes simply prioritize peers that contribute the most. But
imbalanced exchange still depends on trading opportunities arising between
peers—i.e., two peers exchanging blocks of mutual interest.

Unfortunately, live streaming provides clients with few opportunities for
mutually beneficial trading between peers. The key property is that unlike
bulk data distribution, where blocks have roughly equal value over time and
among clients, the value of blocks in live streaming varies over time and client.
A block has little value if it is received after the playback point at a client.
Thus, the data useful to an individual client is limited to a narrow range
between the production point and the local playback point.

This effect is shown in Figure 1. In this case, a snippet of the overlay mesh
is shown. A source S sends blocks to directly connected peers A and X,
who forward it to other peers in turn. Consider the trading opportunities
between A and B. A is directly connected to the source—it receives most
data immediately after it is produced. B is more distant, receiving data only
after it has been forwarded by others. This reduces the trading opportuni-
ties between A and B, since virtually all of B’s data blocks have already been
received by A.

This example illustrates a general property: peers close to the source enjoy
a near monopoly on new blocks, creating a trade imbalance that puts more
distant peers at a perpetual disadvantage under any incentive scheme based
on pairwise reciprocation between peers.

NO COMPELLING REWARD

The final obstacle we consider is the lack of a compelling reward for increas-
ing contribution in live streaming. For bulk data distribution, the incentive
to increase upload rate is a corresponding increase in download rate. But,
live streaming is inelastic. To watch the stream, each user needs to download
video data at the production rate. Even a small loss rate can quickly degrade
the quality of a live video stream. On the other hand, neither can we in-
crease download speeds to reward users—for live streams, additional video
data has not yet been produced.

S

A

B

X

Y

Playback buffer at B

Playback buffer at A
Playback

point
Production

point

#fig:trading

; LO G I N : AUGUST 201 0	 I M PROV I N G P2 P L I V E STRE A M I N G WITH CO NTR AC T S	 53

Streaming Incentives with Contracts

The challenges of using reciprocation lead us to take a different approach to
providing contribution incentives in live streaming. Our scheme, Contracts,
is based on two key design choices, which we summarize here. More details
are available in our paper [1].

■■ Contracts evaluates contributions according to both their amount and ef-
fectiveness. As in any P2P system, PPLive benefits from users contributing as
much as possible. But, in live streaming, contribution alone is not suffi-
cient. Because data blocks must arrive in time to meet playback deadlines,
Contracts prioritizes requests from peers with the greatest capacity—i.e.,
the peers that can replicate new data most quickly.

In Contracts, evaluating contributions and effectiveness must be verifiable.
While we could rely on honest reporting of these values, a strategic client
could easily misrepresent its contributions to game the system. To prevent
this, each Contracts client bases its calculations of a peer’s value on crypto-
graphically strong receipts of contribution. Each receipt acknowledges that
one user has sent some data blocks to another. Receipts are gossiped among
peers, allowing clients to evaluate nearby peers in the mesh.

F I G U R E 2 : E V A L U A T I N G P E E R S I N C O N T R A C T S . C L I E N T A R E C E I V E S
C R Y P T O G R A P H I C R E C E I P T S F R O M B A C K N O W L E D G I N G D A T A T R A N S -
F E R , A N D F O R W A R D S T H E S E T O E T O D E M O N S T R A T E I T S C O N T R I B U -
T I O N A M O U N T . T O D E M O N S T R A T E E F F E C T I V E N E S S , E A L S O I N C L U D E S
R E C E I P T S F R O M I T S O N E H O P N E I G H B O R H O O D O F P E E R S (S H A D E D) .

As an example of how Contracts evaluates contributions, consider Figure 2.
In this case, A is being evaluated at E, and E uses receipts from peers in the
shaded region to perform its calculation. As A sends data to B, it receives re-
ceipts attesting to its contributions. A forwards these receipts to E. Receipts
from B  A allow E to compute the amount of A’s contribution. To compute
effectiveness, E needs receipts from both A and B. Receipts from C, D  B
show that A has made effective contributions to a peer (B) that replicated the
data to others. In general, A would forward receipts from all of its peers (and
peers of peers) to E. Contracts restricts the propagation of receipts to one
hop, however, to limit the overhead of the protocol.

In addition to prioritizing service, receipts are used to update the mesh
topology. Contracts restructures connections to move high capacity peers
towards the source, promoting efficiency. In Figure 2, for example, suppose
peer E is the closest to the broadcaster, and B has higher capacity than A.

E

A

B

Data

Receipts

C D

file:///Volumes/blueStack/Clients/USENIX/AUGUST2010login/toLinda/#contracts_paper
#fig:eval
#fig:eval

54	 ; LO G I N : VO L . 35, N O. 4

During its evaluation of peers, E can recognize the mismatch while inspect-
ing B’s receipts and connect to B directly. This moves B closer to the source.

Performance and Incentives

Our evaluation of Contracts shows two main results: (1) PPLive with
Contracts significantly outperforms both unmodified PPLive and PPLive
modified to support tit-for-tat (TFT); (2) Contracts provides our intended
contribution incentives; when the system is bandwidth constrained, increas-
ing contribution improves performance. PPLive has adopted some of our
techniques in their production code, and we continue to work towards full
support in the public client. In this section, we report performance measure-
ments of our Contracts PPLive prototype.

PERFORMANCE

We define performance as the fraction of data blocks received by their play-
back deadlines, and compare the performance of PPLive and PPLive using
Contracts. We conducted a test broadcast of 100 users with arrivals and
departures and upload capacities based on measurements of PPLive users.
Crucially, in order to provide a meaningful comparison, we use a video data
rate which exercises capacity constraints. (It would be easy to achieve good
performance by simply over-provisioning the system substantially.)

We find that Contracts significantly improves performance relative to
unmodified PPLive: 62% of Contracts clients experience loss-free playback
compared with just 13% when using unmodified PPLive. In other words, the
fraction of PPLive/Contracts clients experiencing loss-free playback is more
than four times that of unmodified PPLive.

INCENTIVES

Contracts rewards contribution with increased robustness. We evaluate this
by comparing the performance of PPLive using Contracts with that of PPLive
using tit-for-tat. In both cases, the system is bandwidth constrained.

F I G U R E 3 : D E L I V E R Y R A T E A S A F U N C T I O N O F C O N T R I B U T I O N .
C O N T R A C T S P R O V I D E S L A R G E R A N D M O R E C O N S I S T E N T R E W A R D S
F O R I N C R E A S I N G C O N T R I B U T I O N S .

In Figure 3, averages are shown with error bars giving the full range of block
delivery rates for clients with a given capacity. While tit-for-tat does provide
some correlation between contribution and performance, the amount of

#fig:contracts_incentives

; LO G I N : AUGUST 201 0	 I M PROV I N G P2 P L I V E STRE A M I N G WITH CO NTR AC T S	 55

improvement varies significantly because tit-for-tat does not update the to-
pology. In contrast, Contracts combines both topology updates and priority
service for contributors to provide a consistent improvement in performance,
strengthening incentives.

Summary

P2P technology has emerged as a powerful technique for achieving scalabil-
ity in live streaming systems. But scalability depends on users contributing
their capacity, and in many systems, contributions are neither verified nor
rewarded. The unique features of P2P live streaming limit the effectiveness
of widely used incentive strategies based on reciprocation, e.g., tit-for-tat.
Contracts provides an alternative: a new incentive strategy that rewards con-
tribution with quality of service by evolving the overlay topology. Experi-
ments using our prototype PPLive implementation show that Contracts both
improves performance relative to PPLive and strengthens contribution incen-
tives relative to existing approaches.

REFERENCES

[1] Michael Piatek, Arvind Krishnamurthy, Arun Venkataramani, Richard
Yang, David Zhang, and Alexander Jaffe, “Contracts: Practical Contribution
Incentives for P2P Live Streaming,” Proceedings of the 7th USENIX Symposium
on Networked Systems Design and Implementation (NSDI ’10), 2010.

file:///Volumes/blueStack/Clients/USENIX/AUGUST2010login/toLinda/#CITEcontracts_paper

