
deSEO: Combating Search-Result Poisoning
John P. John, ‡∗, Fang Yu§, Yinglian Xie§, Arvind Krishnamurthy‡, Martı́n Abadi§†

‡University of Washington § MSR Silicon Valley
{jjohn, arvind}@cs.washington.edu {fangyu, yxie, abadi}@microsoft.com

Abstract
We perform an in-depth study of SEO attacks that

spread malware by poisoning search results for popular
queries. Such attacks, although recent, appear to be both
widespread and effective. They compromise legitimate
Web sites and generate a large number of fake pages
targeting trendy keywords. We first dissect one exam-
ple attack that affects over 5,000 Web domains and at-
tracts over 81,000 user visits. Further, we develop de-
SEO, a system that automatically detects these attacks.
Using large datasets with hundreds of billions of URLs,
deSEO successfully identifies multiple malicious SEO
campaigns. In particular, applying the URL signatures
derived from deSEO, we find 36% of sampled searches
to Google and Bing contain at least one malicious link in
the top results at the time of our experiment.

1 Introduction
The spread of malware through the Internet has increased
dramatically over the past few years. Along with tradi-
tional techniques for spreading malware (such as through
links or attachments in spam emails), attackers are con-
stantly devising newer and more sophisticated methods
to infect users. A technique that has been gaining preva-
lence of late is the use of search engines as a medium for
distributing malware. By gaming the ranking algorithms
used by search engines through search engine optimiza-
tion (SEO) techniques, attackers are able to poison the
search results for popular terms so that these results in-
clude links to malicious pages.

A recent study reported that 22.4% of Google searches
contain such links in the top 100 results [23]. Further-
more, it has been estimated that over 50% of popular key-
word searches (such as queries in Google Trends [9] or
for trending topics on Twitter [20]), the very first page of
results contains at least one link to a malicious page [19].

Using search engines is attractive to attackers because
of its low cost and its legitimate appearance. Malicious
pages are typically hosted on compromised Web servers,
which are effectively free resources for the attackers. As
long as these malicious pages look relevant to search en-
gines, they will be indexed and presented to end users.
Additionally, users usually trust search engines and often
click on search results without hesitation, whereas they

∗Work partly performed while interning at MSR Silicon Valley.
†Also affiliated with UC Santa Cruz and Collège de France.

would be wary of clicking on links that appear in unso-
licited spam emails. It is therefore not surprising that,
despite being a relatively new form of attack, search-
result poisoning is already a huge phenomenon and has
affected major search engines.

In this paper, we aim to uncover the mechanics of such
attacks and answer questions such as how attackers com-
promise a large number of Web sites, how they auto-
matically generate content that looks relevant to search
engines, and how they promote their malicious pages to
appear at the top of the search results.

In order to answer these questions, we examine a live,
large-scale search poisoning attack and study the meth-
ods used by the attackers. This attack employs over
5,000 compromised Web sites and poisons more than
20,000 popular search terms over the course of several
months. We investigate the files and scripts that attack-
ers put up on these compromised servers and reverse-
engineer how the malicious pages were generated.

Our study suggests that there are two important re-
quirements for a search-result poisoning attack to be suc-
cessful: the use of multiple (trendy) keywords and the
automatic generation of relevant content across a large
number of pages. Since trendy keywords are often pop-
ular search terms, poisoning their search results can af-
fect a large user population. Further, by generating many
fake pages targeting different keywords, attackers can ef-
fectively increase their attack coverage.

Based on these observations, we develop techniques
to automatically detect search-result poisoning attacks.
Although there exist methods for identifying malicious
content in individual Web pages [14, 22], these solutions
are not scalable when applied to tens of billions of Web
pages. Further, attackers can leverage cloaking tech-
niques to display different content based on who is re-
questing the page—malicious content to real users and
benign, search-engine-optimized content to search en-
gine crawlers. Therefore, instead of detecting individual
SEO pages, we identify groups of suspicious URLs—
typically containing multiple trendy keywords in each
URL and exhibiting patterns that deviate from other
URLs in the same domain. This approach not only is
more robust than examining individual URLs, but also
can help identify malicious pages without crawling and
evaluating their actual contents.

Using this approach, we build deSEO, a system
that automatically detects search-result poisoning attacks

1

without crawling the contents of Web pages. We apply
deSEO to two datasets containing hundreds of billions of
URLs collected at different periods from Bing. Our key
results are:

1. deSEO detects multiple groups of malicious URLs,
with each malicious group corresponding to an SEO
campaign affecting thousands of URLs.

2. deSEO is able to detect SEO campaigns that employ
sophisticated techniques such as cloaking and have
varying link structures.

3. We derive regular expression signatures from de-
tected malicious URL groups and apply them to
search results on Google and Bing. The signatures
detect malicious links in the results to 36% of the
searches. At the time our experiments, these links
were not blocked by either the Google Safebrows-
ing API or Internet Explorer.

The rest of the paper is structured as follows. We be-
gin with describing the background for SEO attacks and
reviewing related work in Section 2. Next, we investigate
a large scale attack in detail in Section 3. Based on the
insights gained from the attack analysis, we present the
deSEO detection system in Section 4. In Section 5, we
apply deSEO to large datasets and report the results. We
analyze the detected SEO groups and apply the derived
signatures to filter search results in Section 6. Finally, we
conclude in Section 7.

2 Background and Related Work
Search engines index billions of pages on the Web. Many
modern search engines use variants of the PageRank al-
gorithm [17] to rank the Web pages in its search index.
The rank of a page depends on the number of incoming
links, and also on the ranks of the pages where the links
are seen. Intuitively, the page rank represents the likeli-
hood that a user randomly clicking on links will end up
at that page.

In addition to the rank of the page, search engines
also use features on the page to determine its relevance
to queries. In order to prevent spammers from gam-
ing the system, search engines do not officially disclose
the exact features used to determine the rank and rele-
vance. However, researchers estimate that over 200 fea-
tures are used [3, 6]. Among these features, the most
widely known ones are the words in the title, the URL,
and the content of the page. The words in the title and
in the URL are given high weight because they usually
summarize the content of the page.

Search Engine Optimization (SEO) is the process of
optimizing Web pages so that they are ranked higher by
search engines. SEO techniques can be classified as be-
ing white-hat or black-hat.

In white-hat SEO, the sites are created primarily with
the end-user in mind, but structured so that search engine
crawlers can easily navigate the site. Some of the white-
hat techniques are creating a sitemap, having appropriate
headings and subheadings, etc. They follow the quality
guidelines recommended by search engines [8, 29].

Black-hat SEO techniques, on the other hand, try to
game the rankings, and do not follow the search engine
guidelines. Keyword stuffing (filling the page with lots
of irrelevant keywords), hidden text and links, cloak-
ing (providing different content to crawlers and users),
redirects, and participating in link farms are considered
black-hat techniques. These practices are frowned upon
by the search engines, and if a site is caught using such
techniques, it could be removed from the search index.

To detect black-hat SEO pages, many approaches have
been proposed. Some are based on the content of the
pages [5, 15, 21], some are based on the presence of
cloaking [25, 27], while some others are based on the
link structure leading to the pages [4, 26].

The SEO attacks that we study in this paper are differ-
ent from traditional ones in that attackers leverage a large
number of compromised servers. Since these servers
were originally legitimate and their main sites still op-
erate normally even after compromise, they display a
mixed behavior and therefore are harder to detect.

Our detection methods make use of URL properties
to detect malicious pages without necessarily crawling
the pages. In this respect, our work is similar to pre-
vious work by Ma et al. [12, 13], where they build a
binary classifier to identify email spam URLs without
crawling the corresponding pages. The classifier uses
training data from spam emails. The SEO attacks we
study are very new and there are few reports on spe-
cific instances of such attacks [10]. Therefore, it is dif-
ficult to get training data that has good coverage. In ad-
dition, spam URLs have different properties than SEO
URLs. Many spam domains are new and also change
DNS servers frequently. Therefore, their system makes
use of domain-level features such as age of the domain
and the DNS-server location. Since we deal with com-
promised domains, there are no such strong features.

A recent analysis of over 200 million Web pages
by Google’s malware detection infrastructure discovered
nearly 11,000 domains that are being used to serve mal-
ware in the form of FakeAV software [18]. This work
looks at the prevalence and growth of FakeAV as a means
for delivering malware. Our work, on the other hand,
looks at the mechanisms used by the perpetrators to game
search engines for the effective delivery of this kind of
malware. By developing methods to detect SEO attacks,
we also detect a large number of compromised domains,
but without having to inspect them individually.

2

Compromised
Web server

Redirection
server

Search
engine

11 12
13

Exploit server

14

15

Scareware page returned

Click on SEO search result
query:
justin bieber

Figure 1: An overview of how the attack works. The victim issues a popular query to a search engine (1),
and clicks one of the results, which happens to be a malicious page hosted on a compromised server (2). The
compromised server forwards the request to a redirection server (3). The redirection server picks an exploit
server and redirects the victim to it (4). The exploit server tries to exploit the victim’s browser or displays a
scareware page (5) to infect the victim through social engineering.

3 Dissecting an SEO Attack
In order to gauge the prevalence of search poisoning at-
tacks, we pick a handful of trendy search terms and is-
sue queries on Google and Bing. Consistent with pre-
vious findings, we find that the results to around 36%
of the search results contain malicious links (i.e., links
that redirect to pages serving malware), with many of the
links appearing on the first page of results.

Figure 1 shows, from a legitimate user’s perspective,
how a victim typically falls prey to an SEO keyword-
poisoning attack. The attackers poison popular search
terms so that their malicious links show up in the search
results for those terms. When the victim uses a search en-
gine to search for such popular terms, some of the results
would point to servers controlled by attackers. These are
usually legitimate servers that have been compromised
by the attackers and used to host SEO pages. Clicking
on the search results leads to an SEO page that redirects,
after multiple hops, to an exploit server that displays a
scareware page. For instance, the scareware page might
depict an anti-virus scan with large flashy warnings of
multiple infections found on the victim system, scaring
the user into downloading and installing an “anti-virus”
program. The exploit servers could also try to directly
compromise the victim’s browser.

To understand exactly how these malicious links end
up highly ranked in the search results for popular queries,
we pick a few malicious links and examine them closely.
Our first observation is that the URLs have similar
structure—they all correspond to php files and the search
terms being poisoned are present in the URL as argu-
ments to the php file. The SEO page contains content
related to the poisoned terms, and also links to URLs of
a similar format. These URLs point to SEO pages on

other domains that have also been compromised by the
same group of attackers. By crawling these links succes-
sively till we reach a fixed point, i.e., till we see no more
new links, we can identify the entire set of domains in-
volved in a search poisoning attack.

In the rest of this section, we study one particular
SEO attack, which started in August 2010, was active for
around 10 weeks, and included nearly 37 million SEO
pages hosted on over 5,000 compromised servers. Ana-
lyzing the php script that generates the SEO page gives us
greater insight into the mechanics of this attack. Usually,
the source of the php files cannot be obtained directly
since accessing the file causes the Web server to execute
the php commands and display the output of the execu-
tion. In this case, however, we found misconfigured Web
servers that did not execute the files, but instead allowed
us to download the sources. By examining the source
files and log files (the locations of the log files were ob-
tained from the source php file) stored by attackers on
the Web server, we get a better understanding of the at-
tack. Note that all the files we examined were publicly
accessible without the use of any passwords.

Relying on all of this publicly accessible informa-
tion, we examine the techniques used by the attackers
and identify patterns that help detect other similar at-
tacks. There are three major players in this attack: com-
promised Web servers, redirection servers, and exploit
servers. We discuss each of them in detail next.

3.1 Compromised Web servers

Finding vulnerable servers
The servers were likely compromised through a vulner-
ability in osCommerce [16], a Web application used to

3

manage shopping sites. We believe the exploit happened
through osCommerce because all of the compromised
sites were running the software, and the fake pages were
set up under a directory belonging to osCommerce. Ad-
ditionally, this software has several known vulnerabili-
ties that have remained unpatched for several years, so is
a rather easy target for an attacker. Also, the databases
associated with shopping sites are likely to store sensitive
information such as mailing addresses and credit card de-
tails of customers. This offers an additional incentive for
attackers to target these sites. We believe that vulner-
able servers running osCommerce are discovered using
search engines. Attackers craft special queries designed
to match the content associated with these Web services
and issue these queries to search engines such as Bing or
Google to find Web servers running this software [11].

Compromising vulnerable servers
How does the compromise happen? Surprisingly,
this is the easiest part of the whole operation. The
primary purpose of compromising the site is to store
and serve arbitrary files on the server, and to execute
commands on the server. With vulnerable installs of
osCommerce, this is as easy as going to a specific URL
and providing the name of the file to be uploaded. For
example, if www.example.com/store is the site,
then visiting www.example.com/store/admin/
file_manager.php/login.php?action=
processuploads and specifying a filename as a
POST variable will upload the corresponding file to the
server.

Hosting malicious content
Typically, attackers upload php scripts, which allow them
to execute commands on the compromised machine with
the privilege of the Web server (e.g., Apache). In many
cases, attackers upload a graphical shell or a file man-
ager (also written in php), so that they can easily navi-
gate the files on the server to find sensitive information.
The shell includes functions that make it easy for the at-
tackers to perform activities such as a brute-force attack
on /etc/passwd, listening on a port on the server, or
connecting to some remote address.

In our case, the attacker uploads a simple php script,
shown in Figure 2. This file is added to the images/
folder and is named something inconspicuous, so as to
not arouse the suspicion of the server administrator. This
script allows the attacker to either run a php command,
run a system command, or upload a file to the server.
A newer version of the script (seen since October 9th,
2010) additionally allows the attacker to change the per-
missions of a file.

Once this script is in place, the attacker can add files
to the server for setting up fake pages that will be in-

<?php
 $e=@$_POST['e'];
 $s=@$_POST['s'];
 if($e) {
 eval($e);
 }
 if($s) {
 system($s);
 }
 if($_FILES['f']['name']!='') {
 move_uploaded_file(
 $_FILES['f']['tmp_name'],
 $_FILES['f']['name']);
 }
?>
!

Figure 2: The php script uploaded by the attackers to
the compromised server.

dexed by search engines. These files include an html
template, a CSS style file, an image that looks like a
YouTube player window, and a php script (usually named
page.php) that puts all the content together and gener-
ates an html page using the template. The URLs to the
pages set up by the attackers are of the form:
site/images/page.php?page=<keyphrase>.
The set of valid keyphrases is stored in another file
(key.txt), which is also uploaded by the attackers.
Most of the keyphrases in the file are obtained from
Google hot trends [9] and Bing related searches.

In some other attacks, we observe that the attackers
make use of cloaking techniques [25,27] while delivering
malware, i.e., they set up two sets of pages and provided
non-malicious pages to search engine bots, while serving
malicious pages to victims. In this specific attack, how-
ever, the attackers do not use cloaking. Instead, the same
page is returned to both search engines and regular users,
and the page makes use of javascript and flash to redirect
victims to a different page. The redirection is triggered
by user actions (mouse movement in this case). The ra-
tionale here is that search engine crawlers typically do
not generate user actions, so will not know that visitors
will be redirected to another URL. Using such flash code
for redirection makes detection much harder.

The SEO page
The bulk of the work in creating the SEO page and links
is done by the page.php script uploaded to the server.
This is an obfuscated php script, and like many obfus-
cated scripts, it uses a series of substitution ciphers fol-
lowed by an eval function to execute the de-obfuscated
code. By hooking into the eval function in php, we get
the unobfuscated version. The script performs three ac-
tivities:

1. Check if search engine: When the page is re-
quested, the script first checks if the request is from

4

www.example.com/store
www.example.com/store/admin/file_manager.php/login.php?action=processuploads
www.example.com/store/admin/file_manager.php/login.php?action=processuploads
www.example.com/store/admin/file_manager.php/login.php?action=processuploads

a search engine crawler. It does this by checking
the user-agent string against a list of strings used
by search engines. If the request is from a search
crawler, the script logs the time of the request, the IP
address of the requester, the user-agent string, and
the exact URL requested. Since this attack does not
use any cloaking, this check seems to be only for
logging purposes.

2. Generate links: The script loads the html tem-
plate, and fills in the title and other headings us-
ing the keyphrase in the URL. It picks 40 random
keyphrases from key.txt and generates links to
the same server using these keyphrases. It then
picks five other keyphrases from key.txt and
generates links to five other domains (randomly
picked from a set of other domains that have also
been compromised by the attacker). In all, there are
45 links to similar pages hosted on this and other
compromised servers.

3. Generate content: Finally, the script also gen-
erates content that is relevant to the keyphrase in
the URL. It does this with the help of search en-
gines. It queries google.com for the keyphrase,
and fetches the top 100 results, including the URLs
and snippets. It also fetches the top 30 images from
bing.com for the same keyphrase. The script then
picks a random set of 10 URLs (along with associ-
ated snippets) and 10 images and merges them to
generate the content page.

The content generated for each keyphrase is stored on
the server in a cached file, and all subsequent requests for
the page are satisfied from the cache, without having to
regenerate the content. We believe that the presence of
highly relevant information on the page, along with the
dense link structures, both within the site and across dif-
ferent compromised sites, result in increasing the pager-
anks of the Web pages generated by the attacker.

3.2 Redirection servers
The second component in the attack framework is the
redirection server, which is responsible for redirecting
the victim to a server that actually performs the exploit.
Typically, there are one to three additional layers of redi-
rection, before the victim reaches the exploit server. In
our case, when a victim visits the compromised site and
moves the mouse over the fake YouTube player, he or
she gets redirected (using javascript) to another compro-
mised domain, which again performs the redirection. We
observed two major domains being used for redirection,
and analyzed the working of the redirection server.

When the victim reaches the redirection server, it
queries a service named NailCash to obtain the URL for

Total .in .co.cc .net .com
191 16 28 73 74

Table 1: Breakdown of exploit server TLDs.

redirection. The NailCash service is accessed via an http
request to feed2.fancyskirt.com. The redirection
server provides as arguments an API key, a command,
and a product ID. In this attack, the redirection server
picks randomly among two API keys. It specifies the
command as cmd=getTdsUrl, and the product ID as
productId=3 (which refers to FakeAV).

During our observation, the URLs requested were only
for FakeAV, but it is likely that the same redirection ser-
vice is used for getting URLs for other types of malware.

The redirection server caches the received URL for
10 minutes, and any requests arriving within those 10
minutes are satisfied from the cache without making a
request to feed2.fancyskirt.com. Between August
8th, 2010 and October 13th, 2010 the redirection server
redirected victims to 453 distinct domains. These do-
mains were very similar in name, and were all hosted on
just two /24 IP prefixes. One of them was located in
Illinois and the other in Amsterdam.

3.3 Exploit servers
Finally, the attacker hosts the actual malicious content on
an exploit server. We found 191 different domains being
used by the exploit server over time. All the domains
were hosted on two IP addresses, one located in Quebec,
Canada and the other in Luxembourg. The exploit server
does not display the scareware page if the user agent is
suspicious (such as a search engine crawler), or if the
referrer is missing. It also refuses connections from IP
addresses belonging to search engine companies. Most
of these domains are either .com, .net, or .co.cc, or .in,
and the breakdown is shown in Table 1.

3.4 Results and observations
We present some of the results from our study. Starting
with one compromised site, we were able to follow the
links to other compromised sites and eventually map the
whole network of compromised sites used in this attack.
In all, we were able to identify 5400 domains, of which
around 5000 were active, and the others were either down
or had been cleaned up.

Link structure
Figure 3 shows the number of compromised domains
each site links to. On average, each domain linked to 202
other domains, with a median value of 159. In addition,
each compromised domain also linked to around 80,000
legitimate domains, since each compromised server had
around 8,000 keyphrases, each corresponding to an SEO

5

!"

#!!"

$!!"

%!!"

&!!"

'!!"

(!!"

!" !)$" !)&" !)(" !)*" #"

!
"#

$%
&'
()
'(
"*
+,-
./
0'

1&234(.'()'3(#5&(#-0%6'0-*%0'

Figure 3: The number of other compromised sites
each site links to. The degree distribution indicates a
dense linking structure.

!"
#!!"
$!!"
%!!"
&!!"
'!!"
(!!"
)!!"
*!!"

!
"#

$%
&'
()
'*
+,
%*
'-
(#

.&
(#

+*
%/

'

01,%'

!"
#!!"
$!!"
%!!"
&!!"
'!!"
(!!"
)!!"
*!!"

!
"#

$%
&'
()
'*
+,
%*
'-
(#

.&
(#

+*
%/

'

01,%'

Figure 4: The number of sites compromised by the
attackers each day over a period of three months.

page, linking to 10 different sites obtained from a Google
search. The dense link structure helps boost the pager-
anks of these fake pages in the query results.

Timeline of compromise
Figure 4 shows the number of sites compromised on each
day. We define the time of compromise as the time at
which the malicious php files were added to the server.
This time is obtained from the directory listing on the
server. We find the compromise volume to be rather
bursty, with most of the servers getting compromised in
the initial phase of the attack.

Once the sites are compromised and set up to serve
the fake pages, we look at how soon the first visit from
search engine crawlers appear.

In Figure 5, we see that almost half of the compro-
mised sites are crawled within four hours of compromise,
and nearly 85% of the sites are crawled within a day. This
could either be because search engine crawlers are very
aggressive at crawling new links, or because the attackers
are submitting their sites actively to the search engines
through the Webmaster tools associated with each search
engine. The dense link structure might also account for
the quick crawling time of these pages.

Distribution of keyphrases
Each compromised server sets up an SEO page for each

!"

!#$"

!#%"

!#&"

!#'"

("

!" %" '" ($" (&" $!" $%"

!"
#
"$
%&

'(
)*+
%,
&
-.

)-
*)/
01
(/
)

2"+%&-.)3(14((.),-#5+-#0/()%.6)7+/1),+%4$)89-"+/:)

Figure 5: The interval between a site getting compro-
mised and the SEO page getting crawled by a search
engine.

Fraction of keyphrases, rank-ordered by occurrence

Figure 6: The frequency with which each keyphrase
occurs across the compromised sites.

of the keyphrases present in the file. Across all the com-
promised sites, we found 38 different keyphrase files,
with a total of 20,145 distinct keyphrases.

Figure 6 plots the distribution of the keyphrases across
the 38 files. The most popular phrases appear in 37 of
the 38 files, while nearly 15% of the phrases appear in
only a single file. In the median case, each phrase is seen
in 11 different files. To check whether Google trends is
one of the sources of these keyphrases, we consider all
the keywords which were listed as Google trends over a
four month period between May 28th, 2010 and Septem-
ber 27th, 2010. Out of the 2,125 distinct trend phrases
in this period, 2,018 (≈ 95%) were keyphrases used by
the attackers. Exploiting trendy keywords is thus another
characteristic of search poisoning attacks to increase the
content relevancy.

Traffic from victims
This was a large scale attack exploiting over 5,000 com-
promised sites, each hosting close to 8,000 SEO pages—
for a total of over 40 million SEO pages. However, this
does not tell us how successful the attack actually was.
We would need to take into account what fraction of
these pages were indexed by search engines, how many
pages showed up in top search results, and how many
users clicked on links to these SEO pages. Thus, the
measure of success of this SEO campaign would be the

6

τ0 τ1 τ2 τ3

δ1

τ0+T

δ3

δ2

Figure 7: The arrival of requests at the redirection
server.

number of victims who were actually shown the fake
anti-virus page.

Unfortunately, the SEO pages on the compromised
sites do not log information about who visited each link
(unless it is a search engine crawler). However, all the
SEO pages cause the user to get redirected to one of two
redirection servers. By monitoring the logs on the redi-
rection servers, we estimate the number of visits to the
FakeAV pages.

We started monitoring the redirection server on Au-
gust 27th, 2010, and so missed the first 20 days of the at-
tack. As explained in Section 3.2, the redirection server
fetches the redirect-URL from the NailCash service, and
each time it does this, it adds an entry to a log file. How-
ever, since the URL is cached for 10 minutes, we miss
any requests which were satisfied by the cached URL of
the exploitation server. Figure 7 illustrates the situation.
The solid arrows indicate observed requests (which were
written to the log on the redirection server). The grey
area denotes the interval when request are served from
the cache, and the dotted arrows denote requests which
we do not observe because they arrived before the cache
entry expired.

In order to estimate the total traffic volume from the
observed requests, we make the common assumption that
the requests follow a Poisson arrival process. This im-
plies that the inter-arrival times are exponentially dis-
tributed with mean λ. Since the exponential distribution
is memoryless, the time to the next arrival has the same
distribution at any instant.

Consider again Figure 7. The first request is observed
at time t = τ0. Since the inter-arrival time is memo-
ryless, the expected time to the next event is the same
whether we start our observation at t = τ0 or at any other
t (including t = τ0 + T). Therefore, we start our obser-
vation at t = τ0 +T , where T is the duration till which a
fetched redirect URL is cached, and the time to the next
arrival δ1 is a sample from our exponential distribution.
Similarly, δ2, δ3, . . . , δn are other samples from this dis-
tribution. The mean is then given by:

λ =
1

n
×

n∑
i=1

δi

!"
#!!!"
$!!!"
%!!!"
&!!!"
'!!!"
(!!!"
)!!!"
*!!!"

!
"#

$%
&'
()
'*
+,
-
#
'*
+.
+/
.'

01/%'

Figure 8: The estimated number of victims redirected
to the FakeAV sites on each day.

This is valid only for homogeneous exponential func-
tions, and since Web site visits tend to exhibit diurnal
patterns, we split the time into chunks of 2 hours, during
which we assume the inter-arrival distribution to be ho-
mogeneous. Once we have the mean inter-arrival time λi
for time interval ti, we can compute the expected number
of visits nvis as:

nvis =

n∑
i=1

len(ti)

λi

We use this formula to estimate the number of vis-
its to the redirection server, and plot the results in Fig-
ure 8. We observe a peak on September 2nd, and then
a sudden drop after that for a few days. We believe the
drop occurred because the redirection server was added
to browser blacklists. On September 7th, the redirection
server was moved to another domain, and we start seeing
traffic again. The redirection servers stopped working on
October 21st, and that marked the end of the SEO cam-
paign. During this period, we estimate the total number
of visits to be 60,248, and by extrapolating this number
to the start of the campaign (August 7th), we estimate
that there were over 81,000 victims who were taken to
FakeAV sites. The large number of visits suggests that
the attack is quite successful in attracting legitimate user
populations.

Multiple Compromises
Perhaps unsurprisingly, we found that many of these vul-
nerable servers were compromised multiple times by dif-
ferent attackers. We speculate that these were multiple
attackers based on the timestamps of when the files were
added to the server, and the contents of the files. It is pos-
sible that the same attacker uploaded multiple files to the
server at different times, but in many cases we see mul-
tiple php scripts which offer almost identical functional-
ity, but are slightly different in structure. Also, since we
observed the bursty nature of compromises, by looking
at timestamps of these uploaded files and clustering the
different sites by this timestamp, we can potentially find

7

groups of sites which were compromised by different at-
tackers at different times.

This observation suggests that attackers share compro-
mised server infrastructure, and thus detecting these sites
can effectively help search engines remove a wide class
of malicious content.

4 Detection Method
The previous section shows how search-result poison-
ing attacks are typically performed. In this section, we
present our system deSEO for automatically detecting
such attacks. This task is challenging as it is expensive
to test the maliciousness of every link on the Web us-
ing content-based approaches. Even if we test only links
that contain trendy keywords, it is not straightforward as
many SEO pages may look legitimate in response to most
requests; they deliver malicious content only when cer-
tain environmental requirements are met, e.g., the use of
a vulnerable browser, the redirection by search engines,
or user actions such as mouse movements. Without care-
ful reverse engineering, it is hard to guess the right envi-
ronment settings needed to obtain the malicious content
on the page.

To automatically detect the SEO links, we revisit the
attack we analyzed in the previous section. Our study
yields three key observations of why the SEO attack is
successful:

1. Generation of pages with relevant content.

2. Targeting multiple popular search keywords to in-
crease coverage.

3. Creating dense link structures to boost pagerank.

Attackers first need to automatically generate pages
that look relevant to search engines. In addition, one
page alone may not be able to bring them many victims,
so attackers often generate many pages to cover a wide
range of popular search keywords. To promote these
pages to the top of the search results, attackers need to
hijack the reputation of compromised servers and create
dense link structures to boost pagerank.

We draw on the first two observations when designing
our detection method. We do not look at the link struc-
tures of Web pages because that would require crawling
and downloading all pages to extract the cross-link in-
formation. In this paper, we show that studying just the
structure of URLs works well enough to detect SEO at-
tacks of this type.

Further, we observe that SEO links are often set up on
compromised Web servers. These servers usually change
their behavior after being hacked: many new links are
added, usually with different URL structures from the
old URLs. In addition, since attackers control a large

number of compromised servers and generate pages us-
ing scripts, their URL structures are often very similar
across compromised domains. Therefore, we can recog-
nize SEO attacks by looking for newly created pages that
share the same structure on different domains. By doing
so, we can identify a group of compromised servers con-
trolled by the same attacker (or the same SEO campaign),
rather than reasoning about individual servers.

At a high level, deSEO uses three steps for detection.
The first step is to identify suspicious Web sites that ex-
hibit a change in behavior with respect to their own his-
tory. In the second step, we derive lexical features for
each suspicious Web site and cluster them. In the last
step, we perform group analysis to pick out suspicious
SEO clusters. Next, we explain these three steps in de-
tail.

4.1 History-based detection
In the first step, deSEO identifies suspicious Web sites
that may have been compromised by attackers. SEO
pages typically have keywords in the URL because
search engines take those into consideration when com-
puting the relevance of pages for a search request [7].
So, we study all URLs that contain keywords. Option-
ally, we could also focus on URLs that contain popular
search keywords because most SEO attacks aim to poi-
son these keywords so as to maximize their impact and
reach many users.

While it is common for Web sites to have links that
contain keywords, URLs on compromised servers are all
newly set up, so their structures are often different from
historical URLs from the same domains.

Specifically, for each URL that contains keywords
delimited by common separators such as + and -,
we extract the URL prefix before the keywords.
For example, consider the following URL http:
//www.askania-fachmaerkte.de/images/
news.php?page=lisa+roberts+gillan.
The keywords in the URL are lisa roberts

gillan and the URL prefix before the keywords
is http://www.askania-fachmaerkte.de/
images/news.php?page=.

If the corresponding Web site did not have pages start-
ing with the same URL prefix before, we consider the
appearance of a new URL prefix as suspicious and fur-
ther process them in the next step.

4.2 Clustering of suspicious domains
In the second step, deSEO proceeds to cluster URLs so
that malicious links from the same SEO campaign will
be grouped together, under the assumption that they are
generated by the same script.

Similar to previous URL-based approaches for spam
detection [12,13], we extract lexical features from URLs.

8

http://www.askania-fachmaerkte.de/images/news.php?page=lisa+roberts+gillan
http://www.askania-fachmaerkte.de/images/news.php?page=lisa+roberts+gillan
http://www.askania-fachmaerkte.de/images/news.php?page=lisa+roberts+gillan
http://www.askania-fachmaerkte.de/images/news.php?page=
http://www.askania-fachmaerkte.de/images/news.php?page=

Empirically, we select the following features:

1. String features: separator between keywords, argu-
ment name, filename, subdirectory name before the
keywords.

2. Numerical features: number of arguments in the
URL, length of arguments, length of filename,
length of keywords.

3. Bag of words: keywords.

In our previous URL example, the separator between
keywords is “+”, the argument name is page, the file-
name is news.php, the directory before the keywords
is images, the number of arguments in the URL is one,
the length of arguments is four, the length of filename
is nine, and the bag of words is {lisa, roberts,
gillan}

As most malicious URLs created on the same do-
main have similar structure, we aggregate URL features
together by domain names and study the similarities
across domains. Note that we consider sub-domains sep-
arately. For example, abcd.blogspot.com is con-
sidered a separate domain because it is possible for a sub-
domain to get compromised rather than the entire domain
blogspot.com. When aggregating for string features,
we take the feature value that covers the most URLs in
the domain; for numerical features, we take the median;
and for bags of words, we take the union of bags.

In contrast to previous work that use URLs for spam
detection, where a binary classification of URL is suffi-
cient [12, 13], our goal is to cluster URLs. We adopt
the widely used K-means++ method [2]. Initially, we se-
lect K centroids that are distant from each other. Next
we apply the K-means algorithm to compute K clusters.
We select and output clusters that are tight, i.e., having
low residual sum of squares (the squared distance of each
data point from the cluster centroid). For the remaining
data points, we iteratively apply the K-means algorithm
until no more big clusters (with at least 10 domains) can
be selected.

Note that neither the computation of distances be-
tween data points nor the calculation of the cluster cen-
troid is straightforward because we have many features
with some of them being non-numerical values. We
normalize feature dimensions so that distances fall into
a weighted high-dimensional space, with the values of
each dimension ranging from 0 to 1. For string features,
identical values have a distance of 0 and the distance is
set to 1 otherwise. For numerical features, we define
the distance as the difference in numerical values, nor-
malized by the maximum value seen in the dataset. For
bags of words features, the distance between two bags
of words A = a1, a2, ..., an and B = b1, b2, ..., bm is

defined as ‖A∩B‖
‖A∪B‖ . When picking a weight for each di-

mension, we give a higher weight (the value 2) to string
features as it is relatively infrequent for different URLs to
have identical string features. For all other dimensions,
we give an equal weight of 1.

When computing centroids, we adopt the same
method we use to aggregate URL features into domain
features, treating all URLs in a cluster as if they were
from the same domain. If we find a cluster with the resid-
ual error of squares normalized by the cluster size lower
than the preset threshold, we output the cluster. Empiri-
cally, we find both the weight selection and the threshold
selection are not sensitive to the results as most malicious
clusters are very tight in distance and stand out easily.

4.3 Group analysis
Finally, we perform group analysis to pick compromised
domain groups and filter legitimate groups. In the previ-
ous steps, we leverage the fact that compromised sites
change behavior after the compromise and their link
structures are similar. In this step, we leverage another
important observation, namely that SEO links in one
campaign share a similar page structure (not just the
URL structure).

One way to measure the similarity of two Web page
structures is to compare their parsed HTML tree struc-
ture [21]. This approach is heavy-weight because we
need to implement a complete HTML page parser, de-
rive the tree representations, and perform tree difference
computations. For simplicity, we focus on simpler fea-
tures that are effective at characterizing pages. For in-
stance, we simply use the number of URLs in each page,
and we find this feature works well empirically.

We sample N (set to 100) pages from each group
and crawl these pages. Then we extract the number of
URLs per page and build a histogram. Figure 9 plots
the histogram of the number of URLs of a legitimate
group, while Figure 10 plots the histogram for a mali-
cious group. We can clearly see that the legitimate group
has a diverse number of URLs. But the malicious one
has very similar pages with almost identical number of
URLs per page. The small fraction of zero link pages
are caused by pages that no longer exist (possibly cor-
responding to compromised Web servers that have since
been cleaned up).

We normalize each histogram and compute peaks in
the normalized histograms. If the histogram has high
peak values, we output the group as a suspicious SEO
group and manually check the group. Although here we
still use manual investigation to pick out the final groups,
the amount of work is actually small. We show in Sec-
tion 5 that deSEO outputs less than 20 groups. There-
fore, a human expert only needs to check several sample
URLs in each group, rather than reasoning about millions

9

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1

10 30 50 70 90 11
0

13
0

15
0

17
0

19
0

21
0

23
0

25
0

27
0

30
0

36
0

40
0

42
0

51
0

67
0

Fr
ac
ti
o
n
 o
f
p
ag
e
s

of URLs

Figure 9: An example legitimate group that has diverse
distribution of number of URLs in each Web page.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 1 2 7 9 10 20 29 32 38 60 65 66 111 191

Fr
ac
ti
o
n
 o
f
p
ag
e
s

of URLs

Figure 10: An example malicious group that has a sim-
ilar number of URLs in each Web page.

of URLs that contain keywords one by one.
Finally, for each malicious group, deSEO outputs reg-

ular expression signatures using the signature generation
system AutoRE [28]. Since URLs within a group have
similar features, most groups output only one signature.
We apply the derived signatures to large search engines
and are able to capture a broad set of attacks appearing
in search engine results (see details in Section 6.3).

5 Results

In this section, we describe our datasets, which consist
of large sets of Web URLs, search engine query logs,
snapshot of Web content, and trendy keywords. Using
these datasets, we evaluate the effectiveness of deSEO in
identifying malicious groups of URLs corresponding to
different SEO attacks.

5.1 Dataset

We collect three sampled sets of URLs from Bing. These
URLs are sampled from all URLs that the crawler saw
during the months of June 2010, September 2010, and
January 2011. Each sampled set of URLs contains over
a hundred billion URLs. We use the June URLs as a
historical snapshot and apply deSEO to September and
January URL sets.

The second dataset we use is a sampled search query
log from September 2010 that contains over 1 billion
query requests. It records information about each query
such as query terms, clicks, query IP address, cookie,
and user agent. Because of privacy concerns, cookies
and user agents are anonymized by hashing. In addition,
when we look at IP addresses in the log, we focus on
studying the IP addresses of compromised Web servers,
rather than individual normal users.

The trendy keywords we use are obtained from Google
Trends [9]. We collect daily Google Trends keywords
from May 28th, 2010 to February 3rd, 2011. Each day
has 20 popular search terms.

5.2 Detection results
5.2.1 History-based detection

We apply the history-based detection to the URLs of
September and January. Since we have over a hundred
billion URLs, to reduce the processing overhead, we first
filter out the top 10,000 Alexa [1] Web sites as we be-
lieve those servers are relatively well managed and have
a lower chance of getting compromised. Later, after we
derive regular expression patterns, we could apply them
to URLs corresponding to these Web sites to detect ma-
licious ones, if any, hosted by these servers.

With trendy keyword With new structure
Month Domains URLs Domains URLs
Sept 10 428,430 1,481,766 136,387 366,767
Jan 11 512,617 3,255,140 211,225 1,102,878

Table 2: History-based URL filtering.

We extract all URLs on remaining domains that con-
tain trendy keywords. Table 2 shows the results. In
September, over 1 million URLs have trendy keywords,
but in Jan the number jumps to 3 million, showing the
potential increase of SEO attacks. We next choose URLs
with new URL prefixes by comparing the URL prefixes
of September 2010 and January 2011 to those of June
2010. For URLs that contain new prefixes, we select
them and pass them to the next step. This step removes
about two thirds of the URLs.

5.2.2 Clustering results

We extract the domain features as described in Section
4.2 and apply the K-means++ algorithm to cluster these
domains. We vary the value of K and obtain similar
results since we apply the K-means++ algorithm iter-
atively. Table 3 shows the results of K=100. (The
third and fourth columns are explained below.) For both
months, the clustering algorithm outputs hundreds of
groups.

10

0

0.05

0.1

0.15

0.2

0.25

0
0.
05 0.
1

0.
15 0.
2

0.
25 0.
3

0.
35 0.
4

0.
45 0.
5

0.
55 0.
6

0.
65 0.
7

0.
75 0.
8

0.
85 0.
9

0.
95 1

Fr
ac
ti
o
n
 o
f
gr
o
u
p
s

Peak size

Figure 11: The distribution of peak values: percent-
age of pages sharing the same number of URLs within
a group.

5.2.3 Group analysis

As we have grouped similar Web sites into a small num-
ber of groups, we use group similarity to distinguish le-
gitimate groups from malicious ones. We use the URL
features mentioned in Section 4.3 to filter out obvious
false-positive groups.

Figure 11 shows the distribution of the peak value
among all groups. We can see that there are a small
number of groups that have high peak values. But most
groups have small peak values as their pages are diverse.
We pick a threshold for the peak value of 0.45, which fil-
ters most legitimate groups, as shown in the third column
of Table 3. After filtering, less than 20 groups remain,
and we manually go through these groups to pick out ma-
licious ones.

Number of groups
Month Total Above threshold Malicious

Sept 10 290 14 9
Jan 11 272 16 11

Table 3: Clustering and group analysis results.

In total, we find 9 malicious groups from the Septem-
ber data and 11 groups from the January data. The reg-
ular expressions derived from two datasets mostly over-
lap. This shows that there are a relatively small num-
ber of SEO campaigns, and that they are long-lasting.
Hence, capturing one signature can be useful to capture
many compromised sites over time. In total, we capture
957 unique compromised domains and 15,482 malicious
URLs in our sampled datasets.

Figure 12 shows a few derived regular expres-
sion samples. These include expressions that match
the URLs of compromised servers that we study in
Section 3, but also a number of new ones. Note that
some of the regular expressions may look generic,
e.g., */index.php/?w{4,5}=(w+(+w+)+)$,
which matches malicious URLs like: http:

//www.kantana.com/2009/index.php/
?bqfb=justin+bieber+breaks+neck. At first
glance, one might think index.php followed by words
would match many legitimate URLs, but it turns out that
it is rare to have “/?” in between. Further, the word
bqfb makes it even clearer that this is an automatically
generated URL.

6 Attack Analysis
In this section, we leverage the results produced by de-
SEO to gain more insights into SEO attacks. First, we
study a new attack found by deSEO, which has a differ-
ent link structure than the one we detect in Section 3.
Second, we study the search engine queries originating
from the IP addresses of compromised servers, as SEO
toolkits often query the search engines to generate SEO
pages. Finally we apply the derived regular expressions
to live search results to detect a broad set of attacks.

6.1 Study of new attack
By examining deSEO’s captured malicious groups, we
find another SEO attack that uses a different methodol-
ogy for setting up SEO pages, boosting their page ranks,
and polluting the search index. We believe that this SEO
campaign is probably orchestrated by a different group of
attackers. We now characterize the differences between
this attack and the attack that we initially studied.

6.1.1 Link structure

This attack makes use of two sets of servers—one set that
hosts SEO pages that redirect to an exploit server, and a
second set of pointer pages that link to only these SEO
pages.

We find 120 pointer pages, all of which are hosted on
hacked Wordpress [24] blogs. Further analysis shows
that these are older versions of Wordpress that have vul-
nerabilities, and attackers use one of these vulnerabilities
to modify the xmlrpc.php files that are included in
the Wordpress installation by default. Each pointer page
contains 500 links to SEO pages hosted on 12 different
domains. The pointer pages are dynamic in that the set
of links contained in a page changes each time the page
is visited, and the set of the 12 domains also changes on
a daily basis.

In all, we find SEO pages hosted on 976 domains.
Similar to the previous attack, the SEO pages contain
content relevant to the poisoned terms and redirect users
to the exploit server. However, new to this attack, the
SEO pages did not link to each other. Instead, they re-
lied on incoming links from the pointer pages to boost
their pageranks, as well as to populate the search engine
index with new SEO pages. However, in addition, the
SEO pages started linking to each other starting in Jan-
uary 2011. This change suggests that the attackers are

11

http://www.kantana.com/2009/index.php/?bqfb=justin+bieber+breaks+neck
http://www.kantana.com/2009/index.php/?bqfb=justin+bieber+breaks+neck
http://www.kantana.com/2009/index.php/?bqfb=justin+bieber+breaks+neck

!"#"$ %$&'()"*
!"#$%&'()*#$#+,-.#+,/,#!01&2 01134$$5*)67'8*69179&!79&!'5$%&'()*$)66%).:%*0)8!01&2

!"#$%&'()#$3'()#!303#;3'()<#+,-#,#+,/, 01134$$+++!8'+*189=)*!79&$7'81$%&'()*$3'()!303;3'()<>5*1%?,@%)@)
8,0'1)*,=98)'A70)7=<66BCDEBFFGHHI7GE@7D7C@HJE)'D)EIJ

!"#$89@91*!1K1#$#;*09+7<#+,-#,#+,/,L 01134$$+++!*95?6*9?*0)22'7!79&$89@91*!1K1$;*09+7<1958,6),:8'?7),
*1'(),B

!"#$K&2837#!303#$#;*09+7<#+,-#,#+,/,L 01134$$8'?69&2M%?*'?)'6N)?158)*!79&$K&2837!303$;*09+7<*)7,&)6%'
,6'M*,EJHJ

!"#$%&'()*#$+'170#$%?6)K#!303#;O<-#+,-#,#+,/,/L 01134$$+++!39.
=+9?(!79&3896571%&'()*$+'170$%?6)K!303;O<>5*1%?,&998)

!"#$P'.QRSTUCV!303#;P'.QRSBUCV<#+,-#,#+,/,L 01134$$)2)%*0'&%22)8!79&$?9:*>!303;3'()<*1)N)?,3%)3)8
"#$P'.QRSBUFV#!303#;P'.QRSHUFV<-#+,-WEJ#+,/,/L 01134$$N911CJJ!79&$5:6NO!303;(9<7'2%30'1)WEJ6):%?%1%9?

!"#$%?6)K#!303#$#;#+STUCV<-#+,-#,#+,/,/L 01134$$+++!='?1'?'!79&$EJJD$%?6)K!303$;@O:@<>5*1%?,@%)@)8,@8)'=*
,?)7=

Figure 12: Examples of derived regular expressions.

constantly trying to improve the ranking of their pages
using different strategies.

6.1.2 Use of cloaking

This attack makes use of cloaking, both for the pointer
pages and the SEO pages. When a pointer page is ac-
cessed by a legitimate user, the original page content is
displayed, but if the page is accessed by a search-engine
crawler (identified by the user-agent string), then a page
containing links to the SEO pages is displayed.

The SEO pages behave differently depending on how
they are accessed. When accessed by a search engine
crawler, the page displayed is optimized for the poisoned
keywords. When a regular user accesses the page, he/she
is redirected to the exploit server, provided the referrer
field matches a known search engine and the user-agent
field indicates a Windows machine. In all other cases,
the SEO page redirects to a benign page.

6.1.3 Redirection and exploit infrastructure

This attack makes use of a completely different set of
redirection and exploit servers, though the FakeAV page
displayed at the end is almost identical. In comparison
with the previous attack, these SEO pages go through an
extra level of redirection for reaching the exploit server.
We find a total of 485 exploit domains, hosted on two
sets of IP address in the US (in Texas and New Jersey).

6.2 Queries from compromised servers
We check whether we see queries from the compromised
servers captured by deSEO using the Bing search log.
Queries from Web servers can be viewed as a signal of
potential compromise, as they could indicate search en-
gine scraping activities in order to generate content for
SEO pages. Less than 5% of the top 500 Alexa Web sites
ever submitted queries during the month of September
2010, while 46% of the compromised servers did. Note

that this does not necessarily mean the remaining ones
do not issue queries to search engines. They could have
been inactive during that month, or could have chosen to
use other search engines.

The queries from legitimate sites are mostly infrequent
(less than one per day). These may be generated by
human administrators, who are logged in on the Web
servers. Only around 1% of legitimate sites generated
a large number of queries. These queries went through
the affiliate program that partners with the search engine
company to provide search results.

Queries from the IPs of compromised servers are
more frequent than those of legitimate sites. In addition,
queries from the same group have similar behavior.
Often, they present the same user-agent string, e.g.,
“Mozilla/5.0 (Windows; U; Windows NT

5.1; en-US; rv:1.9.2) Gecko/20100115

Firefox/3.6”.
Relying on this user-agent string, together with trendy
keywords, we detect other IP addresses that share the
same pattern. Accurately determining the compromised
domains hosted on these IP addresses is challenging,
though, because compromised servers are usually small
Web servers hosted on hosting infrastructures. It is
common to have many domains (sometimes tens of
thousands) sharing the same IP address. Therefore,
seeing bad activities from an IP address is not sufficient
to pinpoint the exact compromised server.

Besides trendy keyword queries, we also identify a
number of other malicious queries from these compro-
mised servers. For example, there are queries of the form
of site:< hosting site >. This query returns all the
pages from a particular site. What is interesting is that
the site specified in the query is also hosted on the same
IP address that issued the query. Such queries are seen
when a site is compromised, and the attackers try to de-

12

60 trendy keywords 60 attacker poisoned keywords
of matched searches # of matched URLs # of matched searches # of matched URLs

Google 16 39 27 124
Bing 0 0 1 1

Table 4: Matching Google and Bing search results using derived regular expressions.

termine which pages to inject code into; they typically
pick the most popular pages, i.e. the ones that show up
high in the search results.

6.3 Matching Google and Bing queries
We apply our derived regular expressions of Sec-
tion 5.2.3 to the Google and Bing search engines. We use
two sets of query terms. The first set is a set of 60 trendy
keywords obtained from Google Trends (February 1st to
February 3rd, 2011). The second set is a set of 60 key-
words poisoned by attackers (but not in Google Trends),
which were randomly selected from the keywords ap-
pearing in captured malicious URLs. For each keyword,
we manually perform Web search and then extract the top
100 results returned from Google and Bing. We use only
60 search terms because the search queries are issued
manually—automated queries and screen-scraping are
against the terms of use, and the search results obtained
using the search APIs are not consistent with the results
obtained through a browser. (While we do not know why
the API results differ from the browser-based search re-
sults, we speculate that the API search results are not as
fresh, so contain older and more well-established links.)

For a total of 120 keywords, 36% of them yield at
least one malicious link in the top 100 results (which
are spread over ten pages). Table 4 shows the detailed
results. Not surprisingly, attackers are even more suc-
cessful in poisoning non-trendy keywords that they se-
lect (45% match rate). This is because fewer Web pages
may match these keywords and hence it can be easier
for malicious links to appear among the top search re-
sults. Their distribution, i.e., how high in the search re-
sults these links are displayed, is shown in Figure 13.
We can see that the malicious links are spread over all
of the top 10 pages. Similar to previous reports [19], we
find Bing top search results contain relatively fewer ma-
licious links. (Experiments were conducted in February
2011; the search results of both Google and Bing have
been improved since then.)

We manually verified all the matches and did not find
false positives. All of the matches are generated by only
two regular expressions—the first and the seventh in Fig-
ure 12.

We run all matching URLs through Firefox using the
Google Safebrowsing API and Internet Explorer (using
its internal blacklist), and none of them were blocked by

!"#$ %&'($)*+,*'"-./.+&0*-.120
3 4
5 5
6 6
4 7
7 4
8 6
9 4
: 7
; ;

<*

5*

4*

8*

:*

3<*

3* 5* 6* 4* 7* 8* 9* :* ;*!
"#

$%
&''
()
'#

*+
,-
,(
".
'+,
/0

.'

1%*&-2'&%."+3'4*5%'

Figure 13: The number of malicious links found in
different pages of the search results for 60 popular
keywords.

either browser at the time of the experiment. This result
indicates that deSEO is able to capture live attacks that
have not yet been reported.

7 Discussion and Conclusion
In this paper, we study a large-scale, live search-result
poisoning attack that leverages SEO techniques. Based
on our observations, we develop a system called de-
SEO that automatically detects additional malicious SEO
campaigns. By deriving URL signatures from our results
and applying them to both Google and Bing, we find 36%
of searches yield links to malicious pages among their
top results. Our paper appears to be the first to present
a systematic study of search-result poisoning attacks and
how to detect them.

Attackers may wish to evade deSEO detection by not
embedding keywords in URLs. However, this approach
reduces the chance of getting SEO links to the top search
results, because keywords in URLs appear to be an im-
portant feature for relevance computation. Also, it may
reduce the chance of clicks by end users, as URLs with
keywords look more relevant to users who search using
these keywords. Attackers may also wish to diversify
the SEO link structures so that they look different across
different domains. Our history-based detection will still
pick such SEO links as long as their URL structures ap-
pear different than those used previously by the same do-
mains. To further detect the diversified SEO links as a
group, we could alternatively adopt content-based solu-
tions by comparing their page similarity [21], possibly
on virtual machines [22].

13

In our study, we find that attackers usually put up a
large number of new pages after compromising a Web
site, which is often relatively inactive before compro-
mise. Therefore, search engines could give a lower rank
to new pages on previously inactive sites. Search engines
could also consider dense link structures to identify SEO
attacks, if they are willing to crawl most of the malicious
pages and if they can afford to perform offline analysis.
In addition, we notice that the contents of SEO pages are
mostly irrelevant to the compromised site’s homepage,
and sometimes even the language is different. Therefore,
semantic-based approaches are also promising avenues
for further investigation.

8 Acknowledgements
We thank Úlfar Erlingsson, Qifa Ke, and Marc Na-
jork for their valuable advice. We are grateful to Fritz
Behr, David Felstead, Nancy Jacobs, Santhosh Kodi-
paka, Liefu Liu, Cheng Niu, Christian Seifert, David
Soukal, Walter Sun, and Zijian Zheng for providing us
with data and feedback on the paper. The investigation
and analysis of SEO attacks was partly supported by a
Cisco Fellowship and the National Science Foundation
under Grants CNS-0831540 and CNS-1040663.

References
[1] Alexa’s Top 1 million Web sites. http:

//s3.amazonaws.com/alexa-static/
top-1m.csv.zip.

[2] D. Arthur and S. Vassilvitskii. K-means++: the advan-
tages of careful seeding. In Proceedings of the 18th
Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA, 2007.

[3] V. Aubuchon. Google Ranking Factors - SEO Check-
list. http://www.vaughns-1-pagers.com/
internet/google-ranking-factors.htm.

[4] C. Castillo, D. Donato, A. Gionis, V. Murdock, and F. Sil-
vestri. Know your neighbors: Web spam detection using
the Web topology. In Proceedings of the 30th Interna-
tional ACM Conference on Research and Development in
Information Retrieval, SIGIR, 2007.

[5] D. Fetterly, M. Manasse, and M. Najork. Spam, damn
spam, and statistics: using statistical analysis to locate
spam Web pages. In Proceedings of the 7th International
Workshop on the Web and Databases, WebDB, 2004.

[6] R. Fishkin and J. Pollard. Search engine ranking fac-
tors, 2009. http://www.seomoz.org/article/
search-ranking-factors.

[7] Googleguide. How Google works. http://www.
googleguide.com/google_works.html/.

[8] Google search engine optimization starter guide.
http://www.google.com/webmasters/docs/search-engine
-optimization-starter-guide.pdf.

[9] Google trends. http://www.google.com/
trends.

[10] Hotvideo pages: analysis of a hijacked site.
http://research.zscaler.com/2010/09/
hot-video-pages-analysis-of-hijacked.
html.

[11] J. P. John, F. Yu, Y. Xie, M. Abadi, and A. Krishnamurthy.
Searching the Searchers with SearchAudit. In Usenix Se-
curity Symposium, 2010.

[12] J. Ma, L. K. Saul, S. Savage, and G. M. Voelker. Beyond
blacklists: Learning to detect malicious Web sites from
suspicious urls. In Proceedings of the SIGKDD Confer-
ence, 2009.

[13] J. Ma, L. K. Saul, S. Savage, and G. M. Voelker. Identify-
ing suspicious urls: An application of large-scale online
learning. In Proceedings of the International Conference
on Machine Learning, ICML, 2009.

[14] A. Moshchuk, T. Bragin, S. D. Gribble, and H. M. Levy.
A crawler-based study of spyware on the Web. In Pro-
ceedings of the Network and Distributed System Security
Symposium, NDSS, 2006.

[15] A. Ntoulas, M. Najork, M. Manasse, and D. Fetterly. De-
tecting spam Web pages through content analysis. In Pro-
ceedings of the International Conference on World Wide
Web, WWW, 2006.

[16] osCommerce, Open Source Online Shop E-Commerce
Solutions. http://www.oscommerce.com.

[17] L. Page, S. Brin, R. Motwani, and T. Winograd. The
pagerank citation ranking: Bringing order to the Web.
1998. http://www.scientificcommons.org/
42893894.

[18] M. A. Rajab, L. Ballard, P. Mavrommatis, N. Provos,
and X. Zhao. The nocebo effect on the Web: an anal-
ysis of fake anti-virus distribution. In Proceedings of
the 3rd USENIX Conference on Large-scale Exploits and
Emergent Threats: Botnets, Spyware, Worms, and More,
LEET, 2010.

[19] Spam SEO trends & statistics. http:
//research.zscaler.com/2010/07/
spam-seo-trends-statistics-part-ii.
html.

[20] Twitter trending topics. http://twitter.com/
trendingtopics.

[21] T. Urvoy, E. Chauveau, P. Filoche, and T. Lavergne.
Tracking Web spam with html style similarities. ACM
Transactions on the Web, February 2008.

[22] Y.-M. Wang, D. Beck, X. Jiang, R. Roussev, C. Ver-
bowski, S. Chen, and S. King. Automated Web patrol
with strider honeymonkeys. In Proceedings of the Net-
work and Distributed System Security Symposium, NDSS,
2006.

[23] Websense 2010 threat report. http:
//www.websense.com/content/
threat-report-2010-introduction.aspx.

[24] WordPress. http://wordpress.org.

14

http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
http://www.vaughns-1-pagers.com/internet/google-ranking-factors.htm
http://www.vaughns-1-pagers.com/internet/google-ranking-factors.htm
http://www.seomoz.org/article/search-ranking-factors
http://www.seomoz.org/article/search-ranking-factors
http://www.googleguide.com/google_works.html/
http://www.googleguide.com/google_works.html/
http://www.google.com/trends
http://www.google.com/trends
http://research.zscaler.com/2010/09/hot-video-pages-analysis-of-hijacked.html
http://research.zscaler.com/2010/09/hot-video-pages-analysis-of-hijacked.html
http://research.zscaler.com/2010/09/hot-video-pages-analysis-of-hijacked.html
http://www.oscommerce.com
http://www.scientificcommons.org/42893894
http://www.scientificcommons.org/42893894
http://research.zscaler.com/2010/07/spam-seo-trends-statistics-part-ii.html
http://research.zscaler.com/2010/07/spam-seo-trends-statistics-part-ii.html
http://research.zscaler.com/2010/07/spam-seo-trends-statistics-part-ii.html
http://research.zscaler.com/2010/07/spam-seo-trends-statistics-part-ii.html
http://twitter.com/trendingtopics
http://twitter.com/trendingtopics
http://www.websense.com/content/threat-report-2010-introduction.aspx
http://www.websense.com/content/threat-report-2010-introduction.aspx
http://www.websense.com/content/threat-report-2010-introduction.aspx
http://wordpress.org

[25] B. Wu and B. D. Davison. Cloaking and redirection: A
preliminary study. In Adversarial Information Retrieval
on the Web, AIRWeb, 2005.

[26] B. Wu and B. D. Davison. Identifying link farm spam
pages. In Special Interest Tracks and Posters of the Inter-
national Conference on World Wide Web, WWW, 2005.

[27] B. Wu and B. D. Davison. Detecting semantic cloaking
on the Web. In Proceedings of International Conference

on World Wide Web, WWW, 2006.

[28] Y. Xie, F. Yu, K. Achan, R. Panigrahy, G. Hulten, and
I. Osipkov. Spamming botnets: Signatures and character-
istics. In SIGCOMM, 2008.

[29] Yahoo! Search Content Quality Guidelines.
http://help.yahoo.com/l/us/yahoo/
search/basics/basics-18.html.

15

http://help.yahoo.com/l/us/yahoo/search/basics/basics-18.html
http://help.yahoo.com/l/us/yahoo/search/basics/basics-18.html

	Introduction
	Background and Related Work
	Dissecting an SEO Attack
	Compromised Web servers
	Redirection servers
	Exploit servers
	Results and observations

	Detection Method
	History-based detection
	Clustering of suspicious domains
	Group analysis

	Results
	Dataset
	Detection results
	History-based detection
	Clustering results
	Group analysis

	Attack Analysis
	Study of new attack
	Link structure
	Use of cloaking
	Redirection and exploit infrastructure

	Queries from compromised servers
	Matching Google and Bing queries

	Discussion and Conclusion
	Acknowledgements

