
This paper is included in the Proceedings of the
17th USENIX Symposium on Operating Systems

Design and Implementation.
July 10–12, 2023 • Boston, MA, USA

978-1-939133-34-2

Open access to the Proceedings of the
17th USENIX Symposium on Operating
Systems Design and Implementation

is sponsored by

eZNS: An Elastic Zoned Namespace
for Commodity ZNS SSDs

Jaehong Min and Chenxingyu Zhao, University of Washington;
Ming Liu, University of Wisconsin-Madison;

Arvind Krishnamurthy, University of Washington

https://www.usenix.org/conference/osdi23/presentation/min

eZNS: An Elastic Zoned Namespace for Commodity ZNS SSDs

Jaehong Min1, Chenxingyu Zhao1, Ming Liu2, and Arvind Krishnamurthy1

1University of Washington
2University of Wisconsin-Madison

Abstract
Emerging Zoned Namespace (ZNS) SSDs, providing the

coarse-grained zone abstraction, hold the potential to signif-
icantly enhance the cost-efficiency of future storage infras-
tructure and mitigate performance unpredictability. However,
existing ZNS SSDs have a static zoned interface, making them
in-adaptable to workload runtime behavior, unscalable to un-
derlying hardware capabilities, and interfering with co-located
zones. Applications either under-provision the zone resources
yielding unsatisfied throughput, create over-provisioned zones
and incur costs, or experience unexpected I/O latencies.

We propose eZNS, an elastic-zoned namespace interface
that exposes an adaptive zone with predictable characteristics.
eZNS comprises two major components: a zone arbiter that
manages zone allocation and active resources on the control
plane, a hierarchical I/O scheduler with read congestion con-
trol, and write admission control on the data plane. Together,
eZNS enables the transparent use of a ZNS SSD and closes
the gap between application requirements and zone interface
properties. Our evaluations over RocksDB demonstrate that
eZNS outperforms a static zoned interface by 17.7% and
80.3% in throughput and tail latency, respectively, at most.

1 Introduction
The NVMe Zoned Namespace (ZNS) is a newly-introduced
storage interface and has received significant attention from
data center and enterprise storage vendors. By dividing the
SSD physical address space into logical zones, migrating
from device-side implicit garbage collection (GC) to host-
side explicit reclaim, and eradicating random write accesses,
a ZNS SSD significantly reduces device DRAM needs, re-
solves the write amplification (WAF) issue, minimizes costly
overprovisioning, and mitigates I/O interference. However,
the performance characteristics of the ZNS interface are not
well-understood. In particular, to build efficient I/O stacks
over it, we should be cognizant of (1) how the underlying
SSD exposes the zone interface and enforces its execution
restrictions; (2) what trade-offs the device’s internal mecha-
nisms make to balance between cost and performance. For

example, the device-enforced zone placement makes the ac-
tual I/O bandwidth capacity of a zone contingent on how a
ZNS SSD allocates zone blocks across channels/dies. Further,
a zone is not a performance-isolated domain, and one could
observe considerable I/O interference for inter-zone read and
write requests. Therefore, there is a strong need to understand
its idiosyncratic features and bring enough clarity to storage
applications.

We perform a detailed performance characterization of a
commodity ZNS SSD, investigate its device-internal mech-
anisms, and analyze the benefits and pitfalls under differ-
ent I/O profiles in both standalone and co-located scenarios.
Using carefully calibrated microbenchmarks, we examine
the interaction between zones and the underlying SSD from
three perspectives: zone striping, zone allocation, and zone
interference. We also compare with conventional SSDs when
necessary to investigate the peculiarity of a ZNS SSD. Our
experiments highlight the interface’s capabilities to mitigate
the burden on I/O spatial and temporal management, identify
constraints that would cause sub-optimal performance, and
provide guidance on overcoming the limitations.

We then propose eZNS, a new interface layer, which pro-
vides a device-agnostic zoned namespace to the host system,
mitigates inter-/intra-zone interference, and improves the de-
vice bandwidth by allocating active resources based on the ap-
plication workload profile. eZNS is transparent to upper-layer
applications and storage stacks. Specifically, eZNS comprises
two components: the zone arbiter on the control plane and a
tenant-cognizant I/O scheduler on the data plane. The zone
arbiter maintains the device shadow view that manages zone
allocations and realizes a dynamic resource allocation by a
zone ballooning mechanism. It allows serving applications
to max out the device capability by enabling the maximum
device parallelism given the workload profile and rebalancing
inactive bandwidth across namespaces. The I/O scheduler of
eZNS leverages the intrinsic characteristics of ZNS, where
there are no hardware-hidden internal bookkeeping opera-
tions. Read I/Os become more predictable, and one can di-
rectly harness this property to examine inter-zone interference.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 461

H
os

t I
nt

er
fa

ce

Lo
gi

c

NAND
Die #1

Embedded
Processor

DRAM/SRAM

Fl
as

h
C

ha
nn

el

C
on

tro
lle

r

Channel 1

Channel n

SSD Controller

NAND
Die#n

NAND
Die #1

NAND
Die#n

Page 1 …
Erase Block 1

Page n

Page 1 …
Erase Block n

Page n

……

Figure 1: The architecture of a conventional and ZNS SSD.

On the other hand, write I/Os share a performance domain
due to the write cache architecture of the SSD, causing global
congestion across all active zones. eZNS, therefore, applies
a local congestion control for reads and a global admission
control for writes. Our I/O schedulers mitigate the interfer-
ence independently but improve overall system performance
cooperatively. We demonstrate benefits in the evaluation (§5)
over micro-benchmarks and RocksDB.

2 Background and Motivation
This section reviews the basics of NAND-based SSDs, in-
troduces the ZNS SSD and its features, and discusses the
problems with the existing zoned interface.

2.1 NAND-based SSDs
A NAND-based SSD combines an array of flash memory
dies and is able to deliver a bandwidth of several GB/s. It
comprises four main architectural components (Figure 1):
(1) a host interface logic (HIL) that implements the proto-
col used to communicate with the host, such as SCSI [40]
and recent NVMe [29]; (2) an SSD controller, enclosing an
embedded processor and a flash channel controller, which is
responsible for the address translation and scheduling, as well
as flash memory management; (3) onboard DRAM, buffering
transmitted I/O data and metadata, storing the address transla-
tion table, and providing a write cache; (4) a multi-channel
subsystem that connects NAND dies via a high-bandwidth
interconnect. As shown in Figure 1, a NAND die consists of
hundreds of erase blocks, where each block contains hundreds
to thousands of pages. Each channel holds multiple dies to
increase I/O parallelism and bandwidth. Each page encloses
a fixed-sized data region and a metadata area that stores ECC
and other information. Flash memory supports three major
operations: read, program, and erase. The access granular-
ity of a read/program is a page, while the erase command is
performed in units of blocks. NAND flash memory has three
unique characteristics [1, 10, 12, 19, 26]: (1) no in-place up-
date, where the whole block must be erased before updating
any page in that block; (2) asymmetric performance between
reads and programs; (3) limited lifetime (endurance) – each
cell has a finite number of program/erase (P/E) cycles [22].

To effectively use the NAND flash and address its limita-
tions, SSDs employ a special mapping layer called the flash
translation layer (FTL). It provides three major functionali-
ties [13, 20, 33, 52]: (1) dynamically mapping logical blocks
addresses (LBA) to physical NAND pages addresses (PPA);
(2) implementing a garbage collection (GC) mechanism to

handle the no in-place update issue and asynchronously re-
claim invalid pages; (3) applying a wear-leveling technique to
evenly balance the usage (or aging property) of all blocks and
prolong the SSD lifespan. However, FTL brings in consid-
erable overheads. First, the translation table requires a large
amount of DRAM to store the mapping entries, e.g., 1GB for
1TB NAND capacity for 4KB data unit size. Second, when
serving a user I/O, the compounding effect of GC and wear-
leveling would trigger additional SSD internal writes (i.e.,
copying valid pages to erase the block) and lead to the WAF
(Write Amplification Factor) problem. Third, the FTL does
not employ performance isolation mechanisms and incurs sig-
nificant interference issues under mixed I/O profiles [28, 32].

2.2 Zoned Namespace SSDs
ZNS SSDs, a successor to Open-Channel (OC) SSDs [6, 9],
have recently been developed to overcome the aforemen-
tioned limitations of conventional SSDs. There are several
commodity ZNS SSDs from various vendors [34, 37, 38, 50].
A ZNS SSD applies the same architecture as a conventional
one (Figure 1) but exposes the zoned namespace interface. A
namespace is a separate logical block address space, like a
traditional disk partition, but managed by the NVMe device
controller rather than the host software. The device may con-
trol the internal block allocation of namespaces to optimize
the performance based on the device-specific architecture. In
ZNS SSD, the namespace comprises multiple zones instead
of blocks in the conventional one, and each namespace owns
dedicated active resources that are used to open and write a
zone.

A ZNS SSD divides the logical address space of names-
paces into fixed-sized zones, where each one is a collection
of erase blocks and must be written sequentially and reset
explicitly. ZNS SSDs present three benefits: (1) Maintain
coarse-grained mappings between zones and flash blocks and
apply wear-leveling at the zone granularity, requiring much
smaller internal DRAM; (2) Eliminate the device-side GC and
reclaim NAND blocks via explicit zone resets by host appli-
cations, which mitigates the WAF and log-on-log [51] issues
and minimizes the over-provisioning overhead; (3) Enable the
placement of opened zones across different device channels
and dies, providing isolated I/O bandwidth and eliminating
inter-zone write interference.

A zone has six states (i.e., empty, implicitly open, explicitly
open, closed, full, read only, and offline). State transitions are
triggered by either write I/Os or zone management commands
(i.e., RESET, OPEN, CLOSE, and FINISH). A zone must be
opened before issuing writes, but it is capable of serving reads
in any state except the offline state. closed and open (both
implicit and explicit) are active states that require the device
to maintain NAND metadata for incoming user write I/Os,
limiting the maximum number of active zones. SSDs employ
the write cache in DRAM to align the wide range of user I/O
sizes to the NAND program unit and comply with the NAND-

462 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

specific requirements (timings and program order). In case of
a sudden power-off failure, the device flushes uncommitted
data in the cache using batteries or capacitors as an emergency
power source [46, 54]. Since active zones must have a buffer
backed by energy devices for at least one NAND program
unit in the cache, the maximum number of active zones is also
constrained by the size of the write cache.

A zone provides three I/O commands: read, sequential
write, and append. The append works similarly to the name-
less write [53] but improves the host I/O efficiency rather than
the internal NAND page allocation. Compared with the nor-
mal write, a zone append command does not specify the LBA
in the I/O submission request, whilst the SSD will determine
it at processing time and return the address in the response.
Thus, user applications can submit multiple outstanding op-
erations simultaneously without violating the restriction of
sequential writes. Random writes are disallowed on ZNS
SSDs, and the zone is erased as a whole (via the RESET). A
ZNS SSD delegates the FTL and GC responsibilities to user
applications, where they are performed at the zone granularity,
thus eliminating traditional SSD overheads.

2.3 Small-zone and Large-zone ZNS SSDs
Zones can be classified into two types: physical zone and
logical zone. Physical zones are the smallest unit of zone
allocation and consist of one or more erasure blocks on a
single die. They are device-backed and offer fine-grained con-
trol over storage resources. In contrast, logical zones refer to
a striped zone region consisting of multiple physical zones.
They can be implemented by either the device firmware or
application and provide higher bandwidth through striping.
Large-zone ZNS SSDs provide coarse-grained large logical
zones with a fixed striping configuration that spans multiple
dies across all internal channels but offers limited flexibil-
ity for controlling device behavior from the host software.
This simplifies zone allocation but exposes a small number of
active zones available for allocation to applications (e.g., 14
zones [50]). As a result, large-zone SSDs are more suitable for
scenarios with small numbers of tenants, where the number of
active zones required is not high. In addition, the application-
agnostic fixed striping configuration does not adapt to work-
load profiles, resulting in low bandwidth utilization. Small-
zone ZNS SSDs operate under similar hardware constraints
but expose finer-grained physical zones. Each zone is con-
tained within a single die but sufficiently large to encompass
at least one erasure block. Small-zone SSDs provide greater
flexibility and much more active resources (e.g., 256 zones
in our testbed ZNS SSD) to support more I/O streams. In
addition to increased flexibility, small-zone SSDs reduce the
need for application-level garbage collection, especially while
managing large numbers of small objects. Recent studies also
corroborate some of these points. Specifically, Bae et al. [3]
advocate a zone to be as small as possible to reduce the inter-
ference caused by high zone-reclaiming latencies. ZNS+ [16]

0

4

8

12

16

20

0 50 100 150 200

Lo
gi

ca
l Z

on
e

(#
)

Time (s)

Zone w/ Write Activity

Figure 2: The number of zone with actual write activity when running
the fill-random workload over the RocksDB. The storage backend is
ZenFS. The maximum number of active zones is 16 (red line).

also prefers small zones as it minimizes the latency of COPY
operations performed frequently in its F2FS implementation.

2.4 The Problem: Lack of an Elastic Interface
The ZNS SSD brings in two key benefits. First, it exposes
controllable garbage collection to host applications, eliminat-
ing obtrusive I/O behaviors precipitated by device internal
bookkeeping I/Os. This also alleviates write amplification
and reduces flash over-provisioning. Second, it only allows
sequential writes within a zone and thereby mitigates cer-
tain I/O interference observed in a conventional SSD. Both
prior studies [3, 8, 16, 45] and our characterizations (§3) be-
low demonstrate these points. However, existing ZNS SSDs
have one significant drawback: the zoned interface is static
and inflexible. After a zone is allocated and initialized, its
maximum performance is fixed regardless of the underlying
device capability, its I/O configurations cannot adapt to run-
time workload characteristics, and cross-zone I/O interference
yields unpredictable I/O executions.

First, the performance profile of a zone-sized storage par-
tition hinges on physical zone placement and stripe config-
uration, which should align with application requirements.
Despite significant benefits from the flexibility of the user-
defined logical zone, application-managed zone configuration
would sustain sub-optimal performance due to the lack of
knowledge of other tenants sharing the device. In addition, it
imposes another burden on application developers, as with
OC SSDs.

Second, it is non-trivial to develop a complete application
profile that captures every aspect of I/O execution charac-
teristics, such as read/write block size and distribution, I/O
concurrency, and command interleaving degree. The existing
zoned interface fails to adapt to the changing workload be-
havior. Users have to over-provision the zone resources when
configuring a zone based on the worst-case estimation.

In Figure 2, it is shown that the RocksDB over ZenFS [7]
actively writes to only a fraction of the zones it maintains in
the active state. This leads to inefficient utilization of valu-
able active resources in the ZNS SSD. Similarly, file systems
like BtrFS [36] and F2FS [25] support ZNS SSDs but write
user data to only one zone at a time, resulting in suboptimal
utilization of the available active resources. This issue is fur-

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 463

ther exacerbated when the device has multiple namespaces
serving different applications. In such cases, each application
only utilizes a fraction of the available bandwidth, wasting
valuable active resources in the ZNS SSD.

Third, a zone is not a completely performance-isolated
domain, and co-located zones interact with each other in a
non-deterministic fashion. Ideally, each tenant should receive
a weighted share based on the consolidation degree. Specifi-
cally, its housing application should achieve its targeted per-
formance when the SSD is under-utilized but receive a propor-
tional degradation when the SSD is over-subscribed. However,
unlike its predecessor OC SSD, ZNS SSDs manage zone al-
location and wear-leveling internally with no strong isolation
support and expose an opaque view to applications, yielding
unpredictable performance interference and I/O execution
unfairness. Such an issue could be mitigated in a conven-
tional SSD where FTL and GC blend and distribute blocks
across channels and dies uniformly regardless of the origi-
nal command flow, ensuring the attainment of the maximum
bandwidth and equal utilization of channel and die.

3 Performance Characterization of a ZNS SSD
This section characterizes a ZNS SSD with a focus on under-
standing why existing ZNS interfaces are static and inflexible.
We then discuss the possibilities of addressing the problem.

3.1 Experimental Setup

Device HW Parameters Specification
Capacity 3,816 GB

Channels # 16 Channels
NAND Dies # 128 Dies

NAND Page Size 16 KB
NAND Channel B/W ∼600 MB/s
Physical Zone Size 96 MB

Read B/W per Physical Zone ∼200 MB/s
Write B/W per Physical Zone ∼ 40 MB/s

Maximum Active Zones # 256

Table 1: The commodity ZNS SSD specification.

ZNS SSD and testbed. We use a commodity ZNS SSD for
characterization. Table 1 presents its hardware details. It has
40,704 physical zones, where each 96MB-size zone consists
of NAND erase blocks solely on a single die, and supports a
maximum of 256 open zones simultaneously. We then con-
figure various logical zones using such fine-granular units.
We also prepare a conventional SSD with an equivalent archi-
tecture for a fair comparison. Our server has two 2.50GHz
E5-2680v3 Xeon processors with 256GB DDR4 DRAM, and
both SSDs are connected to ×4 PCIe Gen3 slots directly.

Workloads and performance metrics. We use the Fio
benchmark tool [15] running on the SPDK framework [43]
to generate synthetic workloads. We report both per-IO aver-
age/tail latency as well as achieved bandwidth. We add a thin
layer to the SPDK to implement the logical zone concept and
realize different zone configurations. Given the ZNS protocol,
we regulate the write workloads to sequential accesses on a

Layer 5: SSD ch./die

Applications

Layer 4: Physical zone

Layer 3: Logical zone

Layer 2: Namespace

Layer 1: Tenant

NVMe driver
(a). Layered view (b). SW stack (c). I/O path

Host CPU

Controller CPU

Write Cache

NAND Flash

wrrd

Zone MappingZoned block
device layer

reset

Figure 3: System model, SW stack, and I/O path of a multi-tenant ZNS
SSD deployment. RD/WR=Read/Write. The write cache flushes data
to the NAND flash asynchronously. Zone resets are completed after
invalidating the mapping layer, where NAND blocks are erased lazily.

single logical zone in the following experiments, where read
workloads are issuing random I/Os unless specified.

3.2 System Model
We consider a typical system setup with a five-layered view
to facilitate the understanding of a multi-tenant ZNS SSD de-
ployment and dissect the I/O behavior (Figure 3-a). From the
top-down perspective, the first layer contains a few co-located
tenants, each running a storage application (e.g., blob store,
F2FS, and RocksDB). Next, a tenant exclusively owns one or
several namespaces based on the required capacity. A names-
pace provides independently configurable logical zones (layer
3), exposing a private logical block address space. By manip-
ulating the logical zone setup, a namespace can be configured
differently to meet the capacity and parallelism requirements.
Within a logical zone, reads happen everywhere, while writes
are only issued in an append-only manner. This is unique to a
ZNS SSD and in significant contrast to a conventional SSD,
which can be viewed as a fixed or statically configured SSD.

A logical zone comprises several physical zones (fourth
layer). The number of physical zones per logical zone is typi-
cally fixed within a namespace. The logical-to-physical zone
mapping can be arbitrary regardless of the request serving or-
der and device occupancy. However, the logical zone must not
share its physical zones with each other to conform with the
ZNS protocol. At the bottom layer, a physical zone is placed
on one channel/die following the device specification. The
zoned block device (ZBD) layer (Figure 3-b) is the central
component across the storage stack that abstracts away archi-
tectural details of a ZNS SSD. It provides three functionalities:
(1) interacting with the application on namespace/logical zone
management; (2) orchestrating the logical-to-physical zone
mapping in consideration of the application requirement; (3)
scheduling a sequence of I/O commands to maximize device
utilization and avoid head-of-line blocking. Figure 3-c shows
the IO path of read/write/reset requests. We carefully config-
ure each layer when designing characterization experiments.

3.3 Zone Striping
Since a logical zone is usually configured as an array of phys-
ical zones spatially, similar to RAID 0, one could apply the

464 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

4-zones 8-zones 16-zones 32-zones

B
a

n
d

w
id

th
 (

M
B

/s
)

Zone Configuration

4KB
8KB

16KB
32KB

64KB

Figure 4: Read bandwidth varying the stripe size
for different types of zones.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

1 2 4 6 8 10 12 14 16 20 24 32

B
a

n
d

w
id

th
 (

M
B

/s
)

Physical Zone Number (#)

2MB-RD-QD1
2MB-RD-QD2

4KB-RD-QD32
2MB-SEQ-WR

Figure 5: Read/Write bandwidth varying the
number of physical zones.

 0

 1000

 2000

 3000

 4000

 5000

1 2 4 8 16 32 64

B
a

n
d

w
id

th
 (

M
B

/s
)

Queue Depth (#)

4KB-2 OL.
4KB-4 OL.
4KB-8 OL.

128KB-2 OL.
128KB-4 OL.
128KB-8 OL.

Figure 6: Read bandwidth under three channel
overlapping (OL) allocations.

Stripe Size Avg. Lat(us) P99.9 Lat. (us) B/W (MB/s)
4KB 64 76 59
8KB 71 84 108
16KB 88 103 175
32KB 163 269 190
64KB 314 619 198

Table 2: Read I/O average/P99.9 latency and bandwidth varying the
stripe size on a physical zone.

striping technique to achieve higher throughput, especially for
large-sized I/Os. Zone striping segments data blocks across
multiple physical zones and access them concurrently. There
are two configuration parameters: (1) Stripe size is the small-
est data placement unit in a stripe, and (2) Stripe width defines
the number of physical zones in an active state and controls
the write bandwidth.

3.3.1 Basic Performance
When there are enough outstanding I/Os submitted to an SSD,
unsurprisingly, the optimal striping efficiency is achieved
when the stripe size matches the NAND operation unit (i.e.,
NAND page size). As shown in Table 2, the achieved per-die
bandwidth increases slowly after the 16KB stripe size. In
terms of latency, the access time reduction is non-linear for
sizes smaller than a NAND page (16KB). When the I/O size
is larger than 16KB, the average latency rises proportionally
to the I/O unit because each request has to access the die
multiple times sequentially. Next, we change the logical zone
setup and see the efficiency of different stripe sizes. We use
N-zones to refer to a logical zone configuration, where N is
the number of physical zones in a striping. As shown in Fig-
ure 4, when issuing 2MB reads (which generates enough I/O
to construct a full stripe I/O on each physical zone), for dif-
ferent zone configurations, the bandwidth over various stripe
sizes shows a similar result with the single-die performance.
On the other hand, a wider width that fully uses the stripe
size (stripe_size× stripe_width) achieves higher bandwidth.
For example, the 4KB stripe size in 8-zones achieves 37.3%
higher read bandwidth than the 8KB stripe size in 4-zones.
Note that the stripe size does not significantly affect the write
performance as one can coalesce stripes on the same physical
zone into a single device I/O and submit it at once. Instead,
the stripe width determines the maximum write bandwidth.

3.3.2 Challenge #1: Application-agnostic Striping
When deciding the optimal stripe size and width, one should
consider the application I/O profile dynamically, including

request type, size distribution, I/O size efficiency, and con-
currency. However, the existing zoned interface lacks such
support and hinges on users’ domain knowledge during con-
figuration. A large stripe may hurt performance if the size of
sequential user I/O is smaller than the size of a full stripe. On
the other hand, too small a stripe also hurts the I/O efficiency
of the device; a 4KB stripe with an 8-zone or wider width
significantly lags behind 8KB or larger stripes in Figure 4. A
wide stripe width sustains high performance per logical zone.
However, since the device has a limited amount of active re-
sources, it will instead limit the maximum number of active
logical zones and jeopardize application concurrency.

Observation: The use of logical zones with striping is
beneficial for the application, but zone striping should be an
adaptive configuration determined based on the total amount
of active zones and application profiles. A ZNS SSD has to
provide enough active logical zones to not only cope with ap-
plication concurrency but also max out the device bandwidth
by adjusting the stripe width dynamically. An ideal strip size
can be the NAND page size, but it also has to be adjusted to
the stripe width to provide a consistent full stripe size.

3.4 Zone Allocation and Placement
A ZNS SSD allocates physical zones across dies/channels,
mainly taking access parallelism and wear-leveling into con-
sideration. Upon an allocation request, the ZNS SSD traverses
the die array following a certain order, and then selects the
next available die to place each physical zone. Within a deter-
mined die, it chooses blocks with the least P/E cycles based
on opaque wear-leveling policies.

3.4.1 Basic Performance
Zone allocation should be locality-aware and parallelism-
aware. A larger-sized logical zone is expected to observe
higher read/write bandwidth because it spreads physical zones
across different channels and dies in a deterministic sequence
and achieves more I/O parallelism. The maximum perfor-
mance is obtained when I/Os access all channels and dies
without blocking. We configure the stripe size to 16KB and
increase the number of physical zones in a logical zone (N),
then measure the I/O bandwidth of a single logical zone under
four I/O profiles (Figure 5). The performance of 2MB reads
with queue depths 1 and 2 (i.e., 2MB-RD-QD1/2MB-RD-
QD2) keeps increasing until the number of physical zones
approaches 20. But they max out for different reasons. The

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 465

 0

 500

 1000

 1500

 2000

 2500

0 25 50 75 100 0

 200

 400

 600

 800

 1000

B
a

n
d

w
id

th
 (

M
B

/s
)

P
9

9
.9

 L
a

te
n

c
y
 (

u
s
)

Overlapped Ratio (%)

128KB-BW
4KB-BW

128KB-Lat
4KB-Lat

Figure 7: Bandwidth and tail latency varying
with the die overlapping ratio.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

200 400 600 800 1000 1200

P
9

9
.9

 L
a

te
n

c
y
 (

u
s
)

Write Bandwidth (MB/s)

ZNS-Read
ZNS-Write

Frag-Read
Frag-Write

Figure 8: Read tail latency varying the write
bandwidth (ZNS vs Conventional SSD)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

RR-No-Cong RR-Cong WW-No-Cong WW-Cong

B
a

n
d

w
id

th
 (

M
B

/s
)

Zone A Zone B

Figure 9: Bandwidth under RD-RD and WR-
WR congestion due to the die-collision.

QD2 case is bounded by the PCIe bandwidth (i.e., four Gen3
lanes or 3.2GB/s), whilst the QD1 scenario is simply limited
by the application as it cannot issue enough outstanding I/Os
at that queue depth. In terms of 4KB random read with 32
queue depth and 2MB sequential write, they sustain 80MB/s
read and 40MB/s program bandwidth per physical die, respec-
tively, requiring much more physical zones (∼ 40 and 80) to
utilize the channel or PCIe bandwidth fully.

3.4.2 Challenge #2: Device-agnostic Placement

An ideal allocation process should expose all of the inter-
nal I/O parallelism of a ZNS SSD to a tenant. However, the
existing mechanism is opaque to housed tenants, where the
global allocation pointer picks the next available die with-
out considering the application’s prior allocation history or
how it interacts with other tenants. This causes unbalanced
zone placement, hurts I/O parallelism, and jeopardizes perfor-
mance. We find two types of inefficient placements:

• Channel-overlapped placement: Concurrent zone allo-
cations might cause overlapped zone placements across
channels, limiting the maximum channel parallelism. Simi-
larly, synchronized allocation requests might prevent place-
ment alignment, again limiting the aggregated bandwidth.
Figure 6 presents 4KB and 128KB random read band-
width when increasing the QD for three inferior place-
ments, where 2/4/8 physical zones contend for the same
channel in a 16-zone configuration. Physical zones stay
across 16 different dies that limit the maximum bandwidth.
The 2-overlapped allocation outperforms the other two (i.e.,
4-overlapped/8-overlapped) by 1.7×/2.9× and 1.7×/2.5×
for 4KB and 128KB cases, respectively.

• Die-overlapped placement: An intra-namespace die over-
lapped placement limits the bandwidth and can be even
more detrimental because a die can only process one opera-
tion at a time. We configure such an experiment by placing
physical zones in the same die and gradually increasing
the overlapping ratio. Figure 7 reports the logical zone’s
sustained bandwidth and tail latency under two I/O profiles.
When no physical zones share the same die, it achieves
1,128MB/s and 2,051MB/s along with 317us and 284us
p99.9 tail latency for the 4KB random read and 128KB
sequential read cases, respectively. With full overlap, we
observe 47.2%/23.8% bandwidth drop and 87.1%/28.0%
tail latency increase. Such performance degradation hap-

pens even when the overlapping ratio is lower than 25%,
because both types of I/Os suffer from the head-of-line
blocking issue at the overlapped dies.

Observation: It is challenging to infer the zone’s physical
location without knowing the device’s internal specification.
One may run a profiling tool in the runtime to extract the rela-
tion among different zones [3]. However, it does not eliminate
the imprinted overlap at the allocation time. To maximize the
I/O parallelism, one could build a device abstraction layer
that (1) relies on a general allocation model of the device;
(2) maintains a shadow view of the underlying physical de-
vice; (3) profiles its placement balanced level across different
physical channels and dies.

3.5 I/O Execution under ZNS SSDs
A ZNS SSD eradicates background GC I/Os, thereby remov-
ing one form of performance non-determinism. Within a log-
ical zone, writes happen sequentially, but reads are issued
arbitrarily. When reads are congested, one would observe
latency spikes under die/channel contention. If considering
cross-zone cases, either intra or inter namespace, interfer-
ence would be more severe than a conventional SSD because
ZNS SSDs impose no physical resource partitions, and per
die/channel bandwidth is narrow.

3.5.1 Basic Performance
Irrespective of the NAND block layout of a logical zone,
its I/O access latency highly correlates with achieved band-
width because there are no device internal I/Os that consume
bandwidth and are hidden from user applications. To demon-
strate this, we prepare a conventional SSD having the same
hardware as the ZNS SSD and compare two SSDs under
the mixed read-write scenario. We configure a logical zone
for the ZNS SSD that spreads across all the channels and
dies (i.e., 128-zone configuration with 16KB stripe size) to
match the conventional one. The fragmented conventional
SSD is 70% filled and preconditioned with 128KB random
writes. Then we run eight read threads–where each issues
one 128KB read I/O to all the dies uniformly random–and
one write thread that performs sequential write at a fixed rate.
Figure 8 reports the read/write tail latency as we increase the
write bandwidth. More writes on a ZNS SSD leave less band-
width headroom for reads and cause the latency to increase.
However, for the fragmented conventional SSD, the internal
GC activities make even less bandwidth available to serve

466 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

reads due to write amplification. For example, when the write
bandwidth is 1,000MB/s, the p99.9 read and write latency of
the conventional SSD is 4.3× and 2.8× worse than the ZNS
one. In terms of the read throughput, the conventional SSD
shows 1.1× and 1.6× lower throughput than the ZNS SSD at
the 200MB/s and 1,000MB/s write bandwidth, respectively.

3.5.2 Challenge #3: Tenant-agnostic Scheduling

Existing zoned interfaces of ZNS SSDs provide little perfor-
mance isolation and fairness guarantees for the inter-zone
case, regardless of deployed workloads. One cannot overlook
the read interference on a die because (1) an arbitrary number
of zones can collide on a die, (2) the bandwidth of a single
die is poor, and hence the interference becomes severe even
under a very low load on the device, and (3) it causes a severe
head of line blocking problem and degrades the performance
of the logical zone. Since there is no internal GC in the ZNS
SSD, The I/O determinism [26] proposed for the conventional
SSD does not apply as well. Similar to conventional SSDs, the
write cache, shared among all NAND dies, is an indispensable
component of the ZNS SSD, buffering incoming writes and
flushing to the NAND dies in a batch. Host applications will
observe prompt write I/O completions when they are absorbed
by the cache but experience considerable latency spikes when
the cache overflows. This has not been an intractable issue
in conventional SSDs because the device firmware blends
all incoming write I/Os and constructs a single large flow
spanning entire NAND dies, maintaining the cache eviction
rate to the maximum device bandwidth. However, in the ZNS
SSD, a write I/O must be flushed out to the designated NAND
die with an inadequate program bandwidth, even with zone
striping. In this situation, a heavy writer exhausts the available
cache capacity and severely disturbs other short flows.

We set up two readers performing 128KB read I/O in dif-
ferent profiles: (1) queue depth 8 with a two-zone configura-
tion, and (2) queue depth 2 with an eight-zone configuration.
Figure 9 shows the interference between two readers in a die-
collision. The QD-8 reader easily obtains 97.2% of the total
bandwidth of collision dies. Note that the interference and
unfair bandwidth share also occurs in the conventional one,
but only when the device bandwidth is fully saturated [23,41].
We also demonstrate the write cache congestion in Figure 9.
We first populate 15 logical zones with a stripe width of 8, and
each physical zone is allocated to a dedicated die. The cumu-
lative write bandwidth of 15 zones maxes out the PCIe band-
width (3.2GB/s), and a single zone performs at ∼213.3MB/s.
In this case, a physical zone in the logical zone receives write
at a lower rate than the maximum bandwidth (∼26.7MB/s),
and the write cache does not overflow. Then, we add one
more writer with a narrow width of 2, which also runs on ded-
icated dies. Write I/Os towards the narrow zone are equally
fetched by the device, but it soon consumes all available cache
because of the scarce bandwidth (∼85MB/s) of underlying
physical zones. It degrades others’ bandwidth by 27.3% or

Device Shadow View

Zone Arbiter
Zone

Ballooning
Serial Zone Allocator

Resv.
Zones

(a). eZNS Overall

Local Overdrive

HAL

(b). Zone Ballooning

Zone 2

Spare Pool

De
vic

e Essential Pool

Spare

N
S1

Spare

N
S2

Zone 1

Global Overdrive

Zone 3

Reclaim

Essential Essential

Per-device AC

Zone I/O Scheduler

Read I/O Write I/O

Per-zone CC

Read I/O Write I/O
Zones (1…n) Zones (1…m)

Lending

Figure 10: eZNS System Architecture.

155MB/s, and the device even fails to max out the PCIe band-
width (∼2.4GB/s).

Observation: When using ZNS SSDs in a multi-tenant sce-
nario, one should first understand how different namespaces
and logical zones share the channels and NAND dies of the
underlying device, classify their relationships into competing
and cooperative types, and employ a congestion avoidance
scheme for the inter-zone scenario to achieve fairness. Since
there are no device bookkeeping operations, I/O latencies
represent the congestion level on colliding dies. In addition,
write cache congestion needs to be addressed globally. Thus,
a possible solution is to design (1) a global central arbiter that
decides the bandwidth share among all active zones; (2) a per-
zone I/O scheduler that orchestrates the read I/O submission
based on the congestion level.

4 eZNS: Enabling an Adaptive Zoned NS

This section describes the design and implementation of eZNS
that realizes a new and elastic zoned interface. We use the
gathered insights from our characterization experiments and
address the aforementioned issues.

4.1 eZNS Overview
eZNS stays atop the NVMe driver and provides raw block
accesses. eZNS exposes the v-zone interface that offers run-
time hardware adaptiveness, application elasticity, and tenant
awareness. We carefully design eZNS and spread its function-
alities across the control plane and data plane. As shown in
Figure 10, it mainly consists of two components. The first is
the zone arbiter that (1) maintains the device shadow view in
a hardware abstraction layer (HAL) and provides the basis
for other components, (2) performs serialized zone allocation
avoiding overlapped placement, and (3) dynamically scales
the zone hardware resources and I/O configurations via a
harvesting mechanism. The second is a tenant-cognizant I/O
scheduler, orchestrating read requests using a delay-based
congestion control mechanism and regulating writes through
a token-based admission control. In sum, eZNS addresses the
three issues discussed in §3.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 467

4.2 Hardware Contract and HAL
We develop eZNS based on the following hardware contract,
which are met by recent ZNS SSDs with small zones: (1) a
physical zone consists of one or more erasure blocks on a
single die; (2) the maximum number of active physical zones
is a multiple of the number of dies, and all dies hold the same
number of active zones when they are fully populated (i.e.,
the ZNS SSD evenly distributes physical zones over dies);
(3) the zone allocation mechanism follows the wear-leveling
requirements, indicating that consecutive allocated zones will
not overlap on a physical die until all the dies have been tra-
versed. We need to caveat that the last contract may not always
be followed in allocations if the device firmware enforces a
specific policy other than round-robin across dies. However,
considering the large number of chips and the wear-leveling
constraint, such cases are rare. Our mechanism doesn’t require
being cognizant of the two-dimensional geometric physical
view of SSD NAND dies and channels or maintaining an
exact zone-die mapping.

eZNS maintains a shadow device view, exposing the ap-
proximate data locality for zone allocation and I/O scheduling.
Our mechanism (or HAL layer) only hinges on three hard-
ware parameters from device specifications. The first one is
the maximum number of active zones (or MAR, maximum ac-
tive resources). This is based on an observation that the MAR
is generally in proportion to or a multiple of the number of
physical dies on the SSD. One could estimate the number of
active zones that a die could hold by deliberately controlling
the zone allocation order in an offline calibration experiment
(§3.4). The second parameter required is the NAND page size
used for striping configuration. For example, 16KB is a de
facto standard for most TLC NVMe drives and is well-known
for system developers. The SSD shows the best efficiency
when the stripe size is aligned with it (§3.3), and thereby, we
choose the stripe size as a multiple or factor of the NAND
page size that is closest to avoid inefficient stripe reads for
sequential workloads. These two parameters reflect the de-
vice’s capabilities. The third one is the physical zone size,
deciding how a logical zone and strip groups are constructed.
With such information, HAL provides a shadow view having
a consistent MAR (e.g., 16) and the size of a zone (e.g., 2GB)
regardless of the underlying device.

4.3 Serial Zone Allocator
eZNS develops a simple zone allocator that provides three
guarantees: (1) it ensures that each stripe group comprises
a list of consecutive and serial opened physical zones, fol-
lowing the firmware-enforced internal order; (2) there is no
die collision within a stripe group; (3) across stripe groups,
die collision could happen for writes only if available active
physical zones are fully populated across all the dies. Given
the above device model, the number of stripe groups colliding
on a die is Maximum # o f active zones

Die # at most. Channel collision
would not be an issue because its bandwidth is usually higher

SIZECAPACITY

WRITE POINTER

Unusable

Space

Unallocated

Space

Finished Stripe Group

(Overdrive Width=4)

essential spare

Opened

Stripe Group

Stripe Group

(Width=2)

S
tr

ip
e

Figure 11: Example of eZNS v-zone structure.

than the aggregated program bandwidth across dies.
Our allocator works as follows. It has a per-device request

queue, buffering OPEN commands (including implicit ones
followed by writes) from all logical zones. Our allocator
serves each logical zone request atomically. Since the com-
pletion of a zone OPEN command does not guarantee that the
zone is actually allocated on a physical die, we implement a
zone reservation mechanism during zone opens–flushing one
data block that enforces binding a die to the zone. Writes com-
plete immediately as the write cache of the device absorbs a
single block even in high load. To expedite this process, we
proactively maintain a certain amount of reserved zones in
serial order and provision them to an upcoming stripe group.
Upon completion of the allocation, we then update the allo-
cation history and write it into a reserved persistent region
(metadata block) following the block for reservation. Hence,
we preclude interleaved allocations from concurrently opened
logical zones to prevent channel-overlapped placement and fa-
cilitate allocation reordering to mitigate die overlaps (§3.4.2).

4.4 Zone Ballooning
v-zone, a specialized logical zone, can automatically scale its
I/O striping configuration and hardware resources to match
changing application requirements in a lightweight fashion.
Figure 11 illustrates an example of a v-zone structure. Similar
to a static logical zone, a v-zone contains a fixed number
of physical zones. However, unlike a static logical zone, it
divides physical zones into one or more stripe groups. When
v-zone is first opened or reaches the end of a previous stripe
group, it allocates a new stripe group. All physical zones in the
previous stripe group must be finished when the write pointer
reaches the end of the stripe group, allowing an active v-zone
to take active resources for only one stripe group. The number
of physical zones in a stripe group is determined at the time of
allocation according to the local overdrive mechanism, which
enables flexible zone striping. To comply with the standard
zone interface, v-zone has a size that is a power of 2, and its
capacity is the sum of user-available bytes in physical zones.

Similar to the virtualization memory ballooning tech-
nique [5, 39, 47], zone ballooning allows a v-zone to (1) ex-
pand its stripe width by leasing spares from others when other
namespaces are under low active resource usage; (2) return
them when it finishes the stripe group either by writing to the
end of the stripe group or explicitly issuing FINISH/RESET
commands from the application.

468 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

4.4.1 Initial Resource Provisioning
eZNS divides all the available and opened physical zones on
the ZNS SSD into two groups: essential and spare. The essen-
tial group contains a minimal number of active physical zones
that can max out the SSD write bandwidth (Nessential), whilst
the rest belong to the spare group (Nspare). Our initial resource
allocation follows the equal bandwidth partition principle. We
choose the write I/O bandwidth as the minimum guarantee
because writing resources (or active physical zones) of a ZNS
SSD are scarce. Assuming the number of namespaces that
a ZNS SSD holds is Nns and the maximum number of ac-
tive v-zones per namespace is MARlogical . A namespace takes
Nessential

Nns
exclusive active physical zones; when a v-zone in the

namespace opens a new stripe group, it receives Nessential
Nns×MARlogical

assured essential ones which is also the minimum stripe width.
In terms of spare zones, similarly, eZNS equally distributes
them to a namespace (Nspare

Nns
) during initialization. Both a v-

zone and a namespace will expand/shrink their capacity to
adapt to workload demands.

4.4.2 Local Overdrive: Zone Expanding
eZNS provisions available spares from the spare group of
its namespace to boost its write I/O capability. We realize
this via an internal local overdrive operation while opening a
new stripe group. The mechanism works as follows. First, it
estimates the resource usage of the namespace by analyzing
its previously opened v-zones, quantified as the exponentially
weighted moving average over the number of active v-zones
(NActiveZoneHistory). Second, it checks the remaining spares
from the spare group (NRemainingSpare) and reaps additional
spares based on NTotalSpare

NActiveZoneHistory
. Essentially, a v-zone will re-

ceive more (fewer) spares if it embodies writing activities but
the namespace only opens fewer (more) v-zones. Third, the
v-zone conflates the harvested spares with assured essential
ones for it to open the new stripe group, and the stripe width
is rounded down to the nearest power of two for efficient re-
source management. Note that the local overdrive operates in
a serial and best-effort fashion. Lastly, eZNS sets the baseline
stripe size to 32KB at the minimum width for the optimal I/O
efficiency of the device. It then reduces the stripe size for an
overdriven zone according to the stripe width, down to the
minimum block size of the device. For example, if the width
gets two times wider, the stripe size is reduced by half. We de-
termine the range of stripe sizes to optimize the performance
as aforementioned in §3.3. The reduced stripe size further
contributes to the I/O scheduler ensuring fairness (§4.5).

4.4.3 Global Overdrive: Namespace Expanding
Across the whole device, our zone ballooning mechanism
further reallocates spares across namespaces based on their
latest write activity. We realize this via another internal global
overdrive operation–lend spares from the spare group to each
other. Unlike local overdrive, global overdrive is triggered

based on the write intensity across the entire drive. Specifi-
cally, our arbiter monitors the past Nessential opened physical
zones across all active namespaces, computes their zone uti-
lization, and redistributes the remaining spares from inactive
namespaces to active ones. In the current design, we deter-
mine an inactive namespace as a namespace that has no allo-
cation history in the last Nessential physical zone allocations
of the device, and lent spares are equally distributed across
active namespaces. When an inactive namespace becomes
active again, eZNS marks the leased spares as recall spares
and leased namespaces release them to the global pool as soon
as they FINISH/RESET the stripe group in v-zones. eZNS
then returns them to the original namespace at the next global
overdrive operation.

4.4.4 Reclaim: Zone/Namespace Compaction
Generally, an overdriven v-zone after entering the FINISH
state will return spare zones. Therefore, spare zones circulate
as long as namespaces continue to write to v-zones. However,
when a namespace overdrives v-zones, which becomes inac-
tive without releasing them, the arbiter has to use a reclaim
operation to take back the spares to prevent resource leak-
age. To ensure no slowdown on the performance path, we
employ an asynchronous window-based monitoring scheme,
where the arbiter bookkeeps the status of each inactive names-
pace and continuously counts how long its status is in the
read-only state. If a namespace presents no write I/Os for
a certain amount of time, TReadOnly, the arbiter triggers the
reclaim procedure to proactively collect the spare zones. The
execution cost of reclaim depends on the configuration within
the opened stripe group. If there are committed writes on the
zone, reclaim will trigger a zone compaction and perform a
sequence of I/O reads/writes, i.e., finishing existing zones,
opening a new stripe group with shrunk width, and copying
data to the new one. Once the migration is done, the spare
zones can be returned to the global spare pool.

The zone reclaiming indeed brings GC-like overheads back
to the system. Thus, it is crucial that the system does not
trigger the operation in normal conditions. In eZNS, zone
reclaiming is only performed when namespaces have no write
activity for two cycles of global overdrive. This is likely to
happen infrequently, such as when an application undergoes a
significant change in its running state. Moreover, reclaiming
is triggered in a lazy fashion, executed in the background, and
regulated by the scheduler to limit its performance impact. As
a result, eZNS can avoid triggering zone reclaiming in normal
conditions, maintaining high performance and efficiency.

4.5 Zone I/O Scheduler
eZNS mindfully orchestrates I/O reads/writes with the goal of
providing equal read/write bandwidth shares among contend-
ing v-zones, maximizing the overall device utilization, and
mitigating superfluous head-of-line blocking when different
types of requests interleave. Our zone I/O scheduler com-

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 469

prises two components: congestion-avoiding read scheduler
and cache-aware write admission control.

4.5.1 Congestion-avoid Read Scheduler
Our design is based on the observations that (1) ZNS SSDs
have no internal housekeeping operations; (2) write I/Os are
sequential and synchronous. Hence, the read latency is stable
and low until the die becomes congested, and it is thus possi-
ble to detect congestion directly via latency measurements.

eZNS introduces a hierarchical design that performs
weighted round-robin scheduling firstly across active names-
paces and then delay-based congestion control across each
intra-namespace v-zones. By conforming to the NVMe ar-
chitecture, we create per-namespace NVMe queue pairs and
offload the round-robin scheduling to the device. Then, we
employ a Swift-like [24] congestion control mechanism to
decide the bandwidth allocation for each stripe group in the
v-zone, where the delay is the device I/O command execution
latency. As shown in Algorithm 1, during the congestion-free
phase, upon a read I/O completion, we additively increase
(AI) the congestion window until it approaches the maximum
size (line 6). Since the congestion window (cwnd) is shared
in the stripe group, when set to the stripe width, it indicates
that there is one outstanding I/O per die in the sequential
case. The SSD can max out its per-die bandwidth with a few
outstanding I/Os. Thus, when the cwnd starts with the stripe
width, it quickly ramps up to the device bandwidth capacity.
Further, we limit the maximum congestion window (cwnd)
to 4× strip_width to minimize the software overheads when
handling excess concurrent I/Os and avoid a meaningless
rapid growth of cwnd that would imperil the efficiency of the
MD phase. When congestion happens, we reduce the conges-
tion window multiplicatively (line 4), whose ratio depends on
the latency degradation degree. All the physical zones within
a stripe group share the same congestion status. It is reason-
able because sequential read bandwidth will be capped by
the most congested physical zone. Random reads usually will
not trigger frequent cwnd decrements because the minimum
window size is large enough to absorb them. Our congestion
control works cooperatively with the reduced stripe size of
the overdrive and ensures a fair share of bandwidth regardless
of the width of the stripe group.

4.5.2 Cache-aware Write Admission Control
Due to the non-linear write latency and the shared architecture,
it is inappropriate to implement a local mechanism to mitigate
the problem. Unlike the read congestion case, write conges-
tion happens globally across all zones from all namespaces
(§3.5). Therefore, eZNS monitors the global write latency
and regulates writes using a token-based admission control
scheme. We generate tokens periodically (ALG 1 lines 14–
16) and admit write I/Os in a batch for each active v-zone to
ensure overflow rarely happens. This requires a latency moni-
tor to analyze the write cache eviction activity (ALG 1 lines
8–12). Here, we profile the block admission rate (defined as

Algorithm 1 Zone I/O Scheduler
1: procedure READ COMPLETION()
2: lat_thresh← 500us
3: if io_lat > lat_thresh then
4: cwnd = max(1,cwnd× lat_threash

2×io_lat)
5: else ▷ α = additive factor
6: cwnd = min(stripe_width×4,cwnd +α× io_count

cwnd)

7: procedure WRITE LATENCY MONITOR()
8: On t every 10ms
9: total_lat = ∑active_zone per_block_lat

10: total_ios = ∑active_zone num_ios
11: avg_lat(t) = total_lat

total_ios

12: block_admission_rate = avg_lat(t−1)+avg_lat(t)
2

13: procedure WRITE TOKEN GENERATOR()
14: On every 1ms
15: for pending write zones do
16: token += now−last_re f ill

block_admission_rate × stripe_width

the minimum delay between two consecutive write blocks)
and adjust the token generation rate based on its normalized
average latency. This is based on an empirical observation
that the latency of the write projects its capacity share in
the write cache. Hence, we equalize the latency for all write
zones and calculate available tokens using the average value.
Additionally, we update the available tokens based on the
elapsed time from the last token refill upon a write submis-
sion. By doing so, we expect that writes are self-clocked in
the congestion-less condition.

Note that (1) when read and write I/Os mix on a physical
die, the total aggregate bandwidth will drop due to the NAND
interference effect. However, our read scheduler and write
admission control require little coordination because both
modules only use the latency (gradient) as a signal to infer the
current bandwidth capacity; (2) we coalesce stripes for the
same physical zone within a user I/O and submit one write
I/O to the device in a batch, and thus, a small stripe size does
not degrade the write bandwidth.

5 Evaluation
We add a thin layer in the SPDK framework [43] to implement
eZNS and realize the v-zone concept. The primary reason for
choosing the SPDK approach was its ease of implementation
and integration into the software stack of a storage server ac-
cessible by remote clients. Moreover, the SPDK-based design
can also be used in a local system to serve virtual machines
through the SPDK vhost extension. This approach allows the
storage server to provide efficient and high-performance I/O
operations, while remaining compatible with existing soft-
ware stacks. We use the same test environment as in §3.1.
Non-SPDK applications require a standard ZNS block device
exposed via the kernel NVMe driver; thus, we set up eZNS
as a disaggregated storage device over RDMA (NVMe-over-
RDMA) and connect to it using the kernel NVMe driver.

Micro-benchmarks: We use FIO [15] to generate syn-

470 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

 0

 500

 1000

 1500

 2000

 2500

4 8 16

B
a

n
d

w
id

th
 (

M
B

/s
)

Active Zones #

Overdrived Zone
Static Zone

Figure 12: B/W comparison between an over-
drived and three statically configured zones.

0
500

1000
1500
2000
2500
3000
3500

0 10 20 30 40 50 60 70 80 90 100

Ba
nd

w
id

th
 (M

B/
s)

Time (s)

NS1 NS2 NS3 NS4

Figure 13: Performance variation of four names-
paces with global overdrive under 100s.

0
10
20
30
40
50
60

0 10 20 30 40 50 60 70 80 90 100

U
se

d
Sp

ar
e

Zo
ne

s
(#

)

Time (s)

NS1 NS2 NS3 NS4

Figure 14: The number of used spare zones of
four namespaces under 100s.

 0

 500

 1000

 1500

 2000

Scenario1 Scenario2 Scenario3

B
a

n
d

w
id

th
 (

M
B

/s
)

ZoneA w/o CC
ZoneB w/o CC

ZoneA w/ CC
ZoneB w/ CC

(a) Read-Read Fairness. (128KB Read. Zone A with
QD-1, and Zone B with QD-32)

 0

 20

 40

 60

 80

 100

 120

Scenario1 Scenario2 Scenario3

B
a

n
d

w
id

th
 U

ti
liz

a
ti
o

n
 (

%
)

ZoneA w/o AC
ZoneB w/o AC

ZoneA w/ AC
ZoneB w/ AC

(b) Write-Write Fairness. (Zone A for regular writers,
and Zone B for the busy writer)

 0

 50

 100

 150

 200

No-CC/AC CC-only AC-only CC+AC

B
a

n
d

w
id

th
 (

M
B

/s
)

ZoneA ZoneB ZoneC

(c) Read-Write Fairness. (Zone A for readers, Zone
B for the busy writer, and Zone C for regular writers)

Figure 15: Efficiency of eZNS on handling read-read, write-write, and read-write congestion. (CC=Congestion Control, AC=Admission Control)

thetic workloads and allocate a separate thread for each
worker when the workload writes to multiple namespaces
or zones. For read workloads, we first precondition the names-
pace by performing sequential writes for the entire range of
read I/O. Additionally, we perform a pre-calibration step to
determine the die allocations in case the evaluation requires a
die-level collision.

Ported Applications: We use RocksDB as a real-world
ZNS application, to evaluate the performance of eZNS We
run RocksDB over ZenFS [7] to enable the ZNS support. As
eZNS complies with the standard NVMe ZNS specification,
no modification is required for the application and ZenFS. We
initialize the DB instance with 500M entities of 20-byte keys
and 1,000-byte values.

Default v-zone Configuration: By default, eZNS creates
four namespaces (NS1–4), each of which is allocated 32 essen-
tial and 32 spare resources. Since each namespace provides a
maximum of 16 active zones, the minimum stripe width for
v-zone is 2 with a stripe size of 32KB. However, eZNS can
overdrive the width up to 16 with a stripe size of 4KB. For a
fair comparison, we prepare a static logical zone configured
with stripe width and size of 4 and 16KB, respectively; hence,
it also accesses full device capability when the application
populates enough active logical zones. Both a v-zone and
a static logical zone comprise 16 physical zones. Different
configurations are used for single-tenant evaluation (single
namespace) as specified in Section 5.3.

5.1 Zone Ballooning
We demonstrate the efficiency of zone ballooning when han-
dling large writes (i.e., 512KB I/O with a queue depth of one).
First, within a namespace, we compare the performance be-

tween a v-zone and a static logical zone, where the number
of writers is configured to 4, 8, and 16, respectively. Each
writer submits a write I/O to different zones. Our local over-
drive operation can reap more spare zones and lead to better
throughput. As shown in Figure 12, the v-zone outperforms
the static one by 2.0× under the 4-writer case as 4 static
logical zones enable only 16 physical zones while 4 v-zone
overdrive the width to 8 and expand to 32 physical zones. In
the 8-writer and 16-writer cases, v-zone reduces the overdrive
width accordingly and utilizes the same number of physical
zones (32 and 64, respectively) with the static logical zone.

To evaluate eZNS’s adaptiveness under dynamic workloads,
we set up overdriven zones from different namespaces. The
first three namespaces (NS1, NS2, and NS3) run two writers,
while the fourth namespace (NS4) runs eight. NS1, NS2, and
NS3 stop issuing writes at t=30s and resume the writing activ-
ity at t=80s. We measure the throughput and spare zone usage
of four zones for a 100s profiling window (Figures 13 and
14). When the other three zones become idle, the v-zone from
NS4 takes up to 3× more spare zones from other namespaces
using the global overdrive primitive and maxes out its write
bandwidth (∼2.3GB/s). It can then quickly release the harvest
zones when other zones start issuing writes again.

5.2 Zone I/O Fairness
We evaluate our I/O scheduler in various synthetic congestion
scenarios by placing competing zones in the same physical
die group. We compare the performance of all co-located
zones when enabling and disabling our mechanism. The zone
ballooning mechanism is turned off for all cases. We report
per-thread bandwidth in Figure 15.

Read-Read Fairness. We run a sequential read of 128KB

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 471

 0

 500

 1000

 1500

 2000

 2500

P50 P75 P99 P99.9P99.99

R
ea

d
La

te
nc

y
(u

s)

Percentile

Static-S
Static-L

eZNS

Throughput
 0

 50

 100

 150

 200

Th
ro

ug
hp

ut
 (

ko
ps

/s
ec

)

Static-S
Static-L

eZNS

Figure 16: readwhilewriting workload on a single
tenant configurations. Static has stripe width of
16. (S: 4KB stripe, L: 16KB stripe)

 0

 5000

 10000

 15000

 20000

P99 P99.9 P99.99

La
te

nc
y

(u
s)

Percentiles

A (Static)
A (eZNS)
B (Static)
B (eZNS)

C (Static)
C (eZNS)
D (Static)
D (eZNS)

Figure 17: Latency of db_bench workloads (2
overwrite, 2 randomread) on different names-
paces over eZNS and static zone.

 0

 20000

 40000

 60000

 80000

 100000

 120000

A B C D

Th
ro

ug
hp

ut
 (

op
s/

se
c)

Workloads

Static
eZNS

Figure 18: Throughput of db_bench workloads
(2 overwrite, 2 randomread) on different names-
paces over eZNS and static zone.

I/O size at two types of zones on co-located dies. To equally
load the physical dies, we populate more threads for lower-
width zones. For example, a zone with a width of 2 runs four
threads on each stripe group, while a zone with a width 8
has only one thread. As shown in Figure 15-a, in scenario
1, when disabling our congestion control mechanism, Zone
A (configured with stripe width 2 and stripe size 32KB, QD-
1) and Zone B (configured with stripe width 8 and stripe
size 8KB, QD-32), even holding the same sized full stripe,
achieve 76MB/s and 1287MB/s, respectively. This is because
the zone with the higher QD dominates on the competing
die. Our scheme effectively controls the per-zone window
size and ensures that each zone submits the same amount of
outstanding bytes. Hence, both Zone A and Zone B sustain
290MB/s. In scenarios 2 and 3, we change the Zone A stripe
configuration to <stripe width 4, stripe size 16KB, QD-1>
and <stripe width 8, stripe size 8KB, QD-1), and observe
similar behavior when turning off the read congestion logic.
In scenario 3, the congestion level on the die gets lowered as
Zone A only submits one 128KB I/O (which was 4 and 2 in
scenarios 1 and 2, respectively). Hence the read latency also
becomes below the threshold, and the I/O scheduler chooses
to max out the bandwidth.

Write-Write Fairness. We carefully create different write
congestion scenarios and see how our admission control oper-
ates. The workload used is a sequential write of 512KB size.
In the first scenario, we co-locate 16 regular write zones (Zone
A, where each has a striping width of 8 with 8KB stripe size
and submits write I/Os at 5ms intervals, sustaining 95MB/s
maximum throughput) with a busy writer (Zone B, that has
width 2 and 32KB stripe size, submits I/O without interval
delays, achieving 85MB/s at most). Figure 15-b reports the
bandwidth utilization of one regular zone (Zone A) and the
busy writer (Zone B). Our admission control mechanism lim-
its the write issuing rate of Zone B and gives more room at
the write cache to the regular zone (Zone A), leading to 35.7%
bandwidth improvement per thread. Next, we set up a highly-
congested case by changing 16 regular zones to busy writers
(scenario 2). As described in §4.5.2, our scheme equally dis-
tributes the write bandwidth share across competing zones,
and Zone B receives 56.8% of the total bandwidth of 2 physi-
cal zones. The last scenario is a collision-less one at the die
level where we eliminate the overlapping region among all the

write zones by populating active physical zones lesser than
the number of dies. Similarly, when enabling the admission
control, the bandwidth allocated for Zone B slightly decreases
(∼7.2%) to avoid cache congestion, and the overall device
bandwidth is increased by 24.7%.

Read-Write Fairness. We examine how our congestion
control mechanism coordinates with the admission control
when handling read/write mixed workloads. In this experi-
ment, we set up three types of zones: (1) ×16 regular readers
(Zone A), where each has a striping width of 2 and 32KB
stripe size, performing 128KB random read at queue depth
32, across all physical dies; (2) 1 busy writer (Zone B), whose
striping width is 2 with 32KB stripe size; (3) ×16 regular
writers (Zone C), which has a striping width of 8 and 32KB
stripe size each, submitting I/Os under 5ms interval. Both
B and C issue 512KB large writes. Figure 15-c reports their
per-thread bandwidth. When disabling our scheduler, each
reader achieves 199.6MB/s but writes are jeopardized signifi-
cantly, where Zone B and Zone C can only achieve 19.3% and
27.3% of their maximum bandwidth. As we gradually turn on
our mechanisms, the congestion control shrinks the window
size such that more bandwidth is allocated to the writes. Fur-
ther, the admission control then equally partitions bandwidth
among competing writing zones. As shown in the CC+AC
case, zone A, B, and C can sustain 71.6%, 57.5%, and 70.1%
of their maximum bandwidth capacity, respectively.

5.3 Application: RocksDB
To evaluate eZNS in a real-world scenario, we use RocksDB
[35] over the ZenFS storage backend. In addition to the built-
in utility in the RocksDB db_bench tool, we port YCSB work-
load generators [4] for the mixed workload evaluation.

Single-tenant performance. First, we evaluate the perfor-
mance of a single tenant using the readwhilewriting profile
of the db_bench, which runs one writer and multiple read-
ers. This workload profile demonstrates a read/write mixed
scenario. In the case of a single-tenant configuration, eZNS
creates a single namespace on the device and allocates 128
essential and 128 spare resources to it. Since only two stripe
widths, 8 and 16, are possible in this configuration, eZNS
sets the stripe size to 16KB for the width of 8 to avoid the
namespace running only on large stripe sizes. We compare
the performance of eZNS over two static configurations, both

472 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

 0

 2000

 4000

 6000

 8000

 10000

P99 P99.9 P99.99

R
ea

d
La

te
nc

y
(u

s)

Percentiles

A (Static)
A (eZNS)
B (Static)
B (eZNS)

C (Static)
C (eZNS)
F (Static)
F (eZNS)

Figure 19: Read latency of YCSB workloads
(A/B/C/F) on different namespaces over eZNS
and static zone.

 0

 20000

 40000

 60000

 80000

 100000

 120000

A B C F

Th
ro

ug
hp

ut
 (

op
s/

se
c)

Workloads

Static
eZNS

Figure 20: Throughput of YCSB workloads
(A/B/C/F) on different namespaces over eZNS
and static zone.

 0

 50

 100

 150

 200

 250

1 2 4 8 16 32

Av
g.

 R
ea

d
La

te
nc

y
(u

s)

I/O Depth

Direct
eZNS

Figure 21: Comparison of Avg. Read Latency
for 4KB I/Os at various depths between the host-
managed zone access and eZNS.

with a stripe width of 16, but with different stripe sizes of 4KB
and 16KB. Since there is only one namespace on the device,
eZNS always overdrives v-zones to the width of 16, which is
identical to the static configurations. Therefore, both the static
namespace and eZNS can exploit all available bandwidth on
the device. However, the I/O scheduler of eZNS helps mitigate
interferences between zones and improves overall application
performance. Figure 16 shows that eZNS improves the P99.9
and P99.99 read latency by 28.7% and 11.3% over the static
configurations with a stripe size of 16KB and 4KB, respec-
tively. Additionally, eZNS also improves the throughput by
11.5% and 2.5% with a stripe size of 4KB and 16KB.

Multi-tenant Performance. Next, we set up instances of
db_bench on four namespaces (A, B, C, and D), each with
a different workload profile. A and B perform the overwrite
profile, while C and D execute randomread concurrently. We
run the benchmark for 1,800sec and report the latency and
the throughput. Figure 17 shows that our I/O scheduler sig-
nificantly reduces P99.9 and P99.99 read (C/D) latency by
71.1% and 20.5%, respectively. In terms of throughput, eZNS
improves write (A/B) and read (C/D) throughput by 7.5%
and 17.7%, respectively. Furthermore, while the read latency
and throughput are improved, the write latency is either main-
tained at the same level or decreased compared to the static
configuration because eZNS moves the spare bandwidth from
read-only namespaces (C/D) to write-heavy ones (A/B).

Mixed YCSB Workloads. YCSB [14] is widely used to
benchmark realistic workloads. In our experiments, we run
YCSB workload profiles A, B, C, and F on each of the six
namespaces. We exclude YCSB workload profiles D and E be-
cause they increase the number of entities in the DB instance
during the benchmark. As YCSB-C (read-only) does not
submit any write I/Os during the benchmark, eZNS triggers
global overdrive and rebalances the bandwidth to the write-
most namespaces (A and F). Figure 19 shows that he I/O
scheduler improves the P99.9 read latency of read-intensive
workloads (YCSB B and C) and also the read-modify-write
one (YCSB F) by 79.1%, 80.3%, and 76.8%, respectively.
The throughput improvement from global overdrive is up to
10.9% for the write-most workload A in Figure 20.

5.4 Overhead analysis
End-to-end read latency overhead. Since eZNS serves as
an orchestration layer between the physical ZNS device and
the NVMe-over-Fabrics target, there may be some overhead
when the I/O load is very low. To measure this overhead, we
conducted a quantitative analysis using 4KB random read
I/Os and compared it with host-managed zone access, where
the host directly accesses the physical device without eZNS.
Figure 21 demonstrates that eZNS does not add a noticeable
latency overhead for I/O depths up to 8. As the I/O depth
goes over 16, up to 14.0% overhead is observed due to the I/O
scheduler delaying the I/O submission. However, the sched-
uler provides significant advantages in real-world scenarios
as shown in previous experiments.

Memory footprint. eZNS relies on in-memory data struc-
tures for managing v-zone metadata, including the logical-
to-physical mapping and scheduling statistics. Additionally,
it maintains a copy of the physical zone information to re-
duce unnecessary queries to the device, enabling faster zone
allocation and deallocation. In our current implementation,
the size of v-zone metadata is less than 1KB, and the size of
physical zone information is smaller than 64 bytes. For our
testbed SSD with four namespaces, each with 1TB of capac-
ity, v-zone metadata and physical zone information require
2MB and 2.5MB of memory, respectively. Compared to the
memory requirements of the page-mapping in conventional
SSDs, the memory usage of eZNS is negligible.

6 Related Work

Early ZNS Exploration. Researchers have made initial ef-
forts to understand the ZNS interface and integrate it into
the host storage stack. Theano Stavrinos et al. [44] argue
for a shift in research to the zone interface and discuss fu-
ture directions (e.g., applying application-level information
for zone management and I/O scheduling). Hojin Shin et
al. [42] develop a performance analysis tool for a ZNS SSD
and profile its parallelism, isolation, and predictability prop-
erties. Compared with our study, they didn’t investigate the
underlying device’s internal mechanisms when realizing the
zoned namespace interface and, thereby, are unable to corre-
late the observed performance with the ZNS SSD character-
istics. ZNS+ [16] enhances the existing interface with two

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 473

new architectural primitives to optimize LFS file systems.
With such support, the authors then propose copy-back-aware
block allocation and hybrid segment recycling techniques.
Hanyeoreum Bae et al. [3] prioritize I/O requests for less
congested zones using an interference map, whilst updates
incur significant overheads. Although revising the ZNS in-
terface and exposing the physical allocation of zones could
potentially eliminate this overhead, it may not be feasible for
existing devices due to vendors’ resistance to disclosing inter-
nal architecture and policies. eZNS uses a delay to determine
congestion and doesn’t require an allocation map. Further-
more, eZNS addresses such as read and write differences,
zone striping, and bandwidth provisioning issues that were
not discussed in their work. Minwoo Im et al. [18] improved
ZenFS on small-zone SSDs by introducing read/write paral-
lelism with a multi-threaded I/O engine and lifetime-based
zone management at the application level. However, it re-
quires adjusting the RocksDB parameters to match the device
capability instead of the workload-optimized parameters. This
can increase the complexity of parameter configuration, result-
ing in sub-optimal settings for the workload. eZNS maximizes
parallelism within the thin layer, regardless of the underly-
ing device and the application profile. It exploits the device’s
parallel I/O processing capability that can be executed on a
single thread.

Addressing Inefficiencies of Conventional SSDs. Early
SSD researches [2, 11, 17, 31] focused on internal parallelism
and tradeoffs between concurrency, locality, bandwidth, ca-
pacity, performance, and lifetime. Modern SSDs handle ran-
dom write patterns with page mapping FTL, write-cache,
and superblock concepts [49] that group blocks together. It
benefits from high parallelism that transforms writes into se-
quential NAND programming. However, multi-tenancy work-
loads cause interference and high write amplification factor
(WAF). ZNS SSDs eliminate garbage collection and fix WAF
to one, but require careful parallelism management across
zones to avoid degraded device utilization. In addition, future
QLC-based ZNS SSDs may have fewer active zones due to
a multi-pass programming algorithm [21]. eZNS addresses
these challenges by adjusting the parallelism of each logical
zone based on the number of namespace flows, providing
fully dynamic parallelism and maximizing device capability
while presenting an identical logical view to applications.

IODA [26] is an I/O deterministic flash array that uses the
I/O determinism feature and exploits data redundancy for a
strong latency predictability contract. SSDs can fail an I/O to
allow predictable I/Os through proactive data reconstruction.
We target the ZNS SSD, where there are no random I/Os,
and GCs are user-controlled. This opens up a different design
space. Although techniques addressing GC-related interfer-
ence are not beneficial to GC-free ZNS SSDs, others such as
Engurance Group(EG) and NVM Set can be useful to ensure
physically-isolated zone allocation. eZNS can take advantage
of the geometry hints via EG (or even finer-grained NVM

Sets). Unfortunately, there is no currently-available SSD that
supports both ZNS and EG, but it will be an interesting direc-
tion for future work.
Open-Channel SSDs. These drives have no mapping layer in
the controller and directly expose a set of physically contigu-
ous blocks to applications, and leave the data placement/wear-
leveling responsibilities to the host. Researchers have built
several domain-specific solutions using them. For example,
SDF [30] employs a hardware-software co-designed approach
that exposes flash channel details and delegates I/O control-
plane and data-plane tasks to host applications. LOCS [48]
further improves the throughput of an LSM-tree-based KV
store by optimizing the scheduling and dispatching policies,
considering the characteristics of access patterns of the Lev-
elDB. RAIL [27] designs a horizontal hot-cold separation
mechanism and divides dies into two groups, where user and
GC writes are scheduled to different dies, and the hot/cold
ratio is dynamically adjusted based on runtime monitoring.
By having full control over the device, one can implement a
deterministic v-zone using eZNS. Despite the potential archi-
tecture, it imposes too many responsibilities on the software
handling tasks that are offloadable to the device with no cost,
for example, wear-leveling, physical zone-to-die mapping, etc.
Another challenge arises when the system consists of hetero-
geneous devices resulting in the overhead of managing dif-
ferent H/W architectures (NAND chip capacity, channel/die
configuration, etc.).
eZNS as a firmware. One may implement eZNS solely in
the SSD using the controller and firmware. This approach
can exploit internal knowledge such as NAND specification,
Channel/Die structure, queue length on a die, etc. Thus, it may
control the interference better and outperform the software-
based implementation. However, completing eZNS in one
device is not future-proof, given the disaggregated systems
architecture in data centers. The software-based solution can
build an eZNS-based system spanning multiple devices en-
abling elastic capacity scaling, load-aware allocation, high
availability, and more.

7 Conclusion
This paper presents an in-depth study on understanding the
characteristics of a commodity ZNS SSD. Then, we propose
eZNS, realizing an elastic zoned view via v-zone, providing
a flexible zone scaling interface transparent to the applica-
tion that maxes out the device capability, and ensuring a fair
bandwidth share between zones. We demonstrate significant
performance and fairness improvements using eZNS over
various scenarios.

Acknowledgments
We would like to thank the anonymous reviewers and our
shepherd, Mark Silberstein. This work was supported in part
by NSF grant CNS-2212193 and ACE, one of the seven cen-
ters in JUMP 2.0, a Semiconductor Research Corporation
(SRC) program sponsored by DARPA.

474 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References
[1] Nitin Agrawal, Vijayan Prabhakaran, Ted Wobber,

John D. Davis, Mark Manasse, and Rina Panigrahy. De-
sign Tradeoffs for SSD Performance. In USENIX 2008
Annual Technical Conference, 2008.

[2] Nitin Agrawal, Vijayan Prabhakaran, Ted Wobber,
John D Davis, Mark S Manasse, and Rina Panigrahy.
Design tradeoffs for ssd performance. In USENIX An-
nual Technical Conference, volume 57. Boston, USA,
2008.

[3] Hanyeoreum Bae, Jiseon Kim, Miryeong Kwon, and
Myoungsoo Jung. What You Can’t Forget: Exploiting
Parallelism for Zoned Namespaces. In Proceedings of
the 14th ACM Workshop on Hot Topics in Storage and
File Systems, 2022.

[4] Oana Balmau, Florin Dinu, Willy Zwaenepoel, Karan
Gupta, Ravishankar Chandhiramoorthi, and Diego Di-
dona. {SILK}: Preventing latency spikes in {Log-
Structured} merge {Key-Value} stores. In 2019
USENIX Annual Technical Conference (USENIX ATC
19), pages 753–766, 2019.

[5] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand,
Tim Harris, Alex Ho, Rolf Neugebauer, Ian Pratt, and
Andrew Warfield. Xen and the Art of Virtualization.
In Proceedings of the Nineteenth ACM Symposium on
Operating Systems Principles, 2003.

[6] Matias Bjørling. From open-channel ssds to zoned
namespaces. In Linux Storage and Filesystems Con-
ference (Vault 19), volume 1, 2019.

[7] Matias Bjørling, Abutalib Aghayev, Hans Holmberg,
Aravind Ramesh, Damien Le Moal, Gregory R Ganger,
and George Amvrosiadis. {ZNS}: Avoiding the block
interface tax for flash-based {SSDs}. In 2021 USENIX
Annual Technical Conference (USENIX ATC 21), pages
689–703, 2021.

[8] Matias Bjørling, Abutalib Aghayev, Hans Holmberg,
Aravind Ramesh, Damien Le Moal, Gregory R. Ganger,
and George Amvrosiadis. ZNS: Avoiding the Block
Interface Tax for Flash-based SSDs. In 2021 USENIX
Annual Technical Conference (USENIX ATC 21), 2021.

[9] Matias Bjørling, Javier Gonzalez, and Philippe Bonnet.
{LightNVM}: The linux {Open-Channel}{SSD} sub-
system. In 15th USENIX Conference on File and Stor-
age Technologies (FAST 17), pages 359–374, 2017.

[10] Feng Chen, Binbing Hou, and Rubao Lee. Internal
Parallelism of Flash Memory-Based Solid-State Drives.
ACM Trans. Storage, may 2016.

[11] Feng Chen, Binbing Hou, and Rubao Lee. Internal
parallelism of flash memory-based solid-state drives.
ACM Transactions on Storage (TOS), 12(3):1–39, 2016.

[12] Feng Chen, David A. Koufaty, and Xiaodong Zhang.
Understanding Intrinsic Characteristics and System Im-
plications of Flash Memory Based Solid State Drives.
In Proceedings of the Eleventh International Joint Con-
ference on Measurement and Modeling of Computer
Systems, 2009.

[13] Feng Chen, Tian Luo, and Xiaodong Zhang. {CAFTL}:
A {Content-Aware} flash translation layer enhancing the
lifespan of flash memory based solid state drives. In 9th
USENIX Conference on File and Storage Technologies
(FAST 11), 2011.

[14] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking cloud
serving systems with ycsb. In Proceedings of the 1st
ACM symposium on Cloud computing, pages 143–154,
2010.

[15] Flexible I/O Tester (FIO). https://github.com/a
xboe/fio, 2022.

[16] Kyuhwa Han, Hyunho Gwak, Dongkun Shin, and Jooy-
oung Hwang. ZNS+: Advanced Zoned Namespace In-
terface for Supporting In-Storage Zone Compaction. In
15th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 21), 2021.

[17] Yang Hu, Hong Jiang, Dan Feng, Lei Tian, Hao Luo, and
Chao Ren. Exploring and exploiting the multilevel par-
allelism inside ssds for improved performance and en-
durance. IEEE Transactions on Computers, 62(6):1141–
1155, 2012.

[18] Minwoo Im, Kyungsu Kang, and Heonyoung Yeom. Ac-
celerating rocksdb for small-zone zns ssds by parallel
i/o mechanism. In Proceedings of the 23rd International
Middleware Conference Industrial Track, Middleware
Industrial Track ’22, page 15–21, New York, NY, USA,
2022. Association for Computing Machinery.

[19] Myoungsoo Jung and Mahmut Kandemir. Revisiting
Widely Held SSD Expectations and Rethinking System-
Level Implications. In Proceedings of the ACM SIG-
METRICS/International Conference on Measurement
and Modeling of Computer Systems, 2013.

[20] Jeong-Uk Kang, Heeseung Jo, Jin-Soo Kim, and Joon-
won Lee. A superblock-based flash translation layer for
nand flash memory. In Proceedings of the 6th ACM &
IEEE International conference on Embedded software,
pages 161–170, 2006.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 475

https://github.com/axboe/fio
https://github.com/axboe/fio

[21] Ali Khakifirooz, Sriram Balasubrahmanyam, Richard
Fastow, Kristopher H Gaewsky, Chang Wan Ha, Rezaul
Haque, Owen W Jungroth, Steven Law, Aliasgar S
Madraswala, Binh Ngo, et al. 30.2 a 1tb 4b/cell 144-
tier floating-gate 3d-nand flash memory with 40mb/s
program throughput and 13.8 gb/mm 2 bit density. In
2021 IEEE International Solid-State Circuits Confer-
ence (ISSCC), volume 64, pages 424–426. IEEE, 2021.

[22] Moosung Kim, Sung Won Yun, Jungjune Park,
Hyun Kook Park, Jungyu Lee, Yeong Seon Kim, Dae-
hoon Na, Sara Choi, Youngsun Song, Jonghoon Lee,
Hyunjun Yoon, Kangbin Lee, Byunghoon Jeong, San-
glok Kim, Junhong Park, Cheon An Lee, Jaeyun Lee,
Jisang Lee, Jin Young Chun, Joonsuc Jang, Younghwi
Yang, Seung Hyun Moon, Myunghoon Choi, Won-
tae Kim, Jungsoo Kim, Seokmin Yoon, Pansuk Kwak,
Myunghun Lee, Raehyun Song, Sunghoon Kim, Chi-
weon Yoon, Dongku Kang, Jin-Yub Lee, and Jaihyuk
Song. A 1tb 3b/cell 8th-generation 3d-nand flash mem-
ory with 164mb/s write throughput and a 2.4gb/s inter-
face. In 2022 IEEE International Solid- State Circuits
Conference (ISSCC), volume 65, pages 136–137, 2022.

[23] Ana Klimovic, Heiner Litz, and Christos Kozyrakis. Re-
flex: Remote flash= local flash. ACM SIGARCH Com-
puter Architecture News, 45(1):345–359, 2017.

[24] Gautam Kumar, Nandita Dukkipati, Keon Jang, Hassan
M. G. Wassel, Xian Wu, Behnam Montazeri, Yaogong
Wang, Kevin Springborn, Christopher Alfeld, Michael
Ryan, David Wetherall, and Amin Vahdat. Swift: Delay
is simple and effective for congestion control in the dat-
acenter. In Proceedings of the Annual Conference of the
ACM Special Interest Group on Data Communication
on the Applications, Technologies, Architectures, and
Protocols for Computer Communication, 2020.

[25] Changman Lee, Dongho Sim, Jooyoung Hwang, and
Sangyeun Cho. {F2FS}: A new file system for flash
storage. In 13th USENIX Conference on File and Stor-
age Technologies (FAST 15), pages 273–286, 2015.

[26] Huaicheng Li, Martin L. Putra, Ronald Shi, Xing Lin,
Gregory R. Ganger, and Haryadi S. Gunawi. IODA: A
Host/Device Co-Design for Strong Predictability Con-
tract on Modern Flash Storage. In Proceedings of the
ACM SIGOPS 28th Symposium on Operating Systems
Principles, 2021.

[27] Heiner Litz, Javier Gonzalez, Ana Klimovic, and Chris-
tos Kozyrakis. RAIL: Predictable, Low Tail Latency for
NVMe Flash. ACM Trans. Storage, 18(1), 2022.

[28] Jaehong Min, Ming Liu, Tapan Chugh, Chenxingyu
Zhao, Andrew Wei, In Hwan Doh, and Arvind Krishna-
murthy. Gimbal: Enabling multi-tenant storage disag-

gregation on smartnic jbofs. In Proceedings of the 2021
ACM SIGCOMM 2021 Conference, SIGCOMM ’21,
page 106–122, New York, NY, USA, 2021. Association
for Computing Machinery.

[29] The NVMe Base Specification. https://nvmexpre
ss.org/developers/nvme-specification/, 2022.

[30] Jian Ouyang, Shiding Lin, Song Jiang, Zhenyu Hou,
Yong Wang, and Yuanzheng Wang. SDF: Software-
Defined Flash for Web-Scale Internet Storage Systems.
In Proceedings of the 19th International Conference on
Architectural Support for Programming Languages and
Operating Systems, 2014.

[31] Chanik Park, Wonmoon Cheon, Jeonguk Kang, Kangho
Roh, Wonhee Cho, and Jin-Soo Kim. A reconfigurable
ftl (flash translation layer) architecture for nand flash-
based applications. ACM Transactions on Embedded
Computing Systems (TECS), 7(4):1–23, 2008.

[32] Stan Park and Kai Shen. FIOS: A Fair, Efficient Flash
I/O Scheduler. In Proceedings of the 10th USENIX
Conference on File and Storage Technologies, 2012.

[33] Roman Pletka, Ioannis Koltsidas, Nikolas Ioannou, Saša
Tomić, Nikolaos Papandreou, Thomas Parnell, Haralam-
pos Pozidis, Aaron Fry, and Tim Fisher. Management
of next-generation nand flash to achieve enterprise-level
endurance and latency targets. ACM Transactions on
Storage (TOS), 14(4):1–25, 2018.

[34] Radian Memory System RMS ZNS SSDs. https:
//www.radianmemory.com/zoned_namespaces/,
2022.

[35] RocksDB. http://rocksdb.org/, 2022.

[36] Ohad Rodeh, Josef Bacik, and Chris Mason. Btrfs: The
linux b-tree filesystem. ACM Transactions on Storage
(TOS), 9(3):1–32, 2013.

[37] Samsung PM1731a ZNS SSDs. https:
//news.samsung.com/global/samsung-intro
duces-its-first-zns-ssd-with-maximized-use
r-capacity-and-enhanced-lifespan, 2022.

[38] Samsung PM1731a Review from STH.
https://www.servethehome.com/samsung-p
m1731a-ssd-with-zns-support/, 2022.

[39] Joel H Schopp, Keir Fraser, and Martine J Silbermann.
Resizing memory with balloons and hotplug. In Pro-
ceedings of the Linux Symposium, volume 2, pages 313–
319, 2006.

[40] The SCSI Protocol. https://en.wikipedia.org/w
iki/SCSI#cite_note-1, 2022.

476 17th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://nvmexpress.org/developers/nvme-specification/
https://nvmexpress.org/developers/nvme-specification/
https://www.radianmemory.com/zoned_namespaces/
https://www.radianmemory.com/zoned_namespaces/
http://rocksdb.org/
https://news.samsung.com/global/samsung-introduces-its-first-zns-ssd-with-maximized-user-capacity-and-enhanced-lifespan
https://news.samsung.com/global/samsung-introduces-its-first-zns-ssd-with-maximized-user-capacity-and-enhanced-lifespan
https://news.samsung.com/global/samsung-introduces-its-first-zns-ssd-with-maximized-user-capacity-and-enhanced-lifespan
https://news.samsung.com/global/samsung-introduces-its-first-zns-ssd-with-maximized-user-capacity-and-enhanced-lifespan
https://www.servethehome.com/samsung-pm1731a-ssd-with-zns-support/
https://www.servethehome.com/samsung-pm1731a-ssd-with-zns-support/
https://www.servethehome.com/samsung-pm1731a-ssd-with-zns-support/
https://en.wikipedia.org/wiki/SCSI#cite_note-1
https://en.wikipedia.org/wiki/SCSI#cite_note-1

[41] Kai Shen and Stan Park. {FlashFQ}: A fair queueing
{I/O} scheduler for {Flash-Based}{SSDs}. In 2013
USENIX Annual Technical Conference (USENIX ATC
13), pages 67–78, 2013.

[42] Hojin Shin, Myounghoon Oh, Gunhee Choi, and Jong-
moo Choi. Exploring Performance Characteristics of
ZNS SSDs: Observation and Implication. In 2020 9th
Non-Volatile Memory Systems and Applications Sympo-
sium (NVMSA), 2020.

[43] The Storage Performance Development Kit (SPDK).
https://spdk.io, 2022.

[44] Theano Stavrinos, Daniel S. Berger, Ethan Katz-Bassett,
and Wyatt Lloyd. Don’t Be a Blockhead: Zoned Names-
paces Make Work on Conventional SSDs Obsolete. In
Proceedings of the Workshop on Hot Topics in Operat-
ing Systems, 2021.

[45] Nick Tehrany and Animesh Trivedi. Understanding
NVMe Zoned Namespace (ZNS) Flash SSD Storage
Devices, 2022.

[46] Hung-Wei Tseng, Laura Grupp, and Steven Swanson.
Understanding the impact of power loss on flash mem-
ory. In 2011 48th ACM/EDAC/IEEE Design Automation
Conference (DAC), pages 35–40. IEEE, 2011.

[47] Carl A. Waldspurger. Memory Resource Management
in VMware ESX Server. SIGOPS Oper. Syst. Rev.,
36(SI):181–194, dec 2003.

[48] Peng Wang, Guangyu Sun, Song Jiang, Jian Ouyang,
Shiding Lin, Chen Zhang, and Jason Cong. An Efficient
Design and Implementation of LSM-Tree Based Key-
Value Store on Open-Channel SSD. In Proceedings of
the Ninth European Conference on Computer Systems,
2014.

[49] Shunzhuo Wang, Fei Wu, Chengmo Yang, Jiaona Zhou,
Changsheng Xie, and Jiguang Wan. Was: Wear aware
superblock management for prolonging ssd lifetime. In
Proceedings of the 56th Annual Design Automation Con-
ference 2019, pages 1–6, 2019.

[50] Western Digital Ultrastar ZNS SSDs. https://www.
westerndigital.com/solutions/zns, 2022.

[51] Jingpei Yang, Ned Plasson, Greg Gillis, Nisha Talagala,
and Swaminathan Sundararaman. Don’t Stack Your
Log On My Log. In 2nd Workshop on Interactions
of NVM/Flash with Operating Systems and Workloads
(INFLOW 14), 2014.

[52] Ming-Chang Yang, Yu-Ming Chang, Che-Wei Tsao,
Po-Chun Huang, Yuan-Hao Chang, and Tei-Wei Kuo.
Garbage collection and wear leveling for flash memory:

Past and future. In 2014 International Conference on
Smart Computing, pages 66–73. IEEE, 2014.

[53] Yiying Zhang, Leo Prasath Arulraj, Andrea C Arpaci-
Dusseau, and Remzi H Arpaci-Dusseau. De-indirection
for flash-based ssds with nameless writes. In FAST,
page 1, 2012.

[54] Mai Zheng, Joseph Tucek, Feng Qin, and Mark Lillib-
ridge. Understanding the robustness of {SSDs} under
power fault. In 11th USENIX Conference on File and
Storage Technologies (FAST 13), pages 271–284, 2013.

USENIX Association 17th USENIX Symposium on Operating Systems Design and Implementation 477

https://spdk.io
https://spdk.io
https://www.westerndigital.com/solutions/zns
https://www.westerndigital.com/solutions/zns

	Introduction
	Background and Motivation
	NAND-based SSDs
	Zoned Namespace SSDs
	Small-zone and Large-zone ZNS SSDs
	The Problem: Lack of an Elastic Interface

	Performance Characterization of a ZNS SSD
	Experimental Setup
	System Model
	Zone Striping
	Basic Performance
	Challenge #1: Application-agnostic Striping

	Zone Allocation and Placement
	Basic Performance
	Challenge #2: Device-agnostic Placement

	I/O Execution under ZNS SSDs
	Basic Performance
	Challenge #3: Tenant-agnostic Scheduling

	eZNS: Enabling an Adaptive Zoned NS
	eZNS Overview
	Hardware Contract and HAL
	Serial Zone Allocator
	Zone Ballooning
	Initial Resource Provisioning
	Local Overdrive: Zone Expanding
	Global Overdrive: Namespace Expanding
	Reclaim: Zone/Namespace Compaction

	Zone I/O Scheduler
	Congestion-avoid Read Scheduler
	Cache-aware Write Admission Control

	Evaluation
	Zone Ballooning
	Zone I/O Fairness
	Application: RocksDB
	Overhead analysis

	Related Work
	Conclusion

