FairCloud: Sharing the Network in Cloud Computing

Lucian Popa Gautam Kumar Mosharaf Chowdhury
HP Labs UC Berkeley UC Berkeley
Arvind Krishnamurthy Sylvia Ratnasamy lon Stoica
U. Washington UC Berkeley UC Berkeley

ABSTRACT

The network, similar to CPU and memory, is a critical and shared
resource in the cloud. However, unlike other resources, it is nei-
ther shared proportionally to payment, nor do cloud providers offer
minimum guarantees on network bandwidth. The reason networks
are more difficult to share is because the network allocation of a vir-
tual machine (VM) X depends not only on the VMs running on the
same machine with X, but also on the other VMs that X commu-
nicates with and the cross-traffic on each link used by X. In this
paper, we start from the above requirements—payment proportion-
ality and minimum guarantees-and show that the network-specific
challenges lead to fundamental tradeoffs when sharing cloud net-
works. We then propose a set of properties to explicitly express th-
ese tradeoffs. Finally, we present three allocation policies that al-
low us to navigate the tradeoff space. We evaluate their characteris-
tics through simulation and testbed experiments to show that they
can provide minimum guarantees and achieve better proportional-
ity than existing solutions.

Categories and Subject Descriptors

C.2.0 [Computer-Communication Networks]: General
Keywords: cloud computing, network sharing

1. INTRODUCTION

Cloud computing is the platform of choice for deploying and run-
ning many of today’s businesses. Central to cloud computing is
its ability to share and multiplex resources across multiple tenants.
Cloud networks, however, are shared in a best-effort manner mak-
ing it hard for both tenants and cloud providers to reason about how
network resources are allocated.

We argue that a desirable solution for sharing cloud networks
should meet three requirements. The first is to provide tenants guar-
antees on the minimum network bandwidth they can expect for
each VM they buy, irrespective of the network utilization of other
tenants. Such guarantees are common for resources like CPU and
memory, and having the same for the network is key to achieving
lower bounds for the worst-case performance of an application. We
refer to this requirement as min-guarantee.

The second desirable requirement, referred to as high utilizat-
ion, aims to maximize network utilization in the presence of un-
satisfied demands. For example, we would like an application to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SIGCOMM’12, August 13—17, 2012, Helsinki, Finland.

Copyright 2012 ACM 978-1-4503-1419-0/12/08 ...$15.00.

use the entire available bandwidth when no other application is ac-
tive. This can significantly improve the performance for applica-
tions with bursty (on/off) traffic patterns, such as MapReduce. Im-
proving application performance may, in turn, allow the provider
to charge more.

The third and last requirement is that network resources should
be divided among tenants in proportion to their payments, similar
to CPU or memory. Under the current flat-rate per VM payment
model, this means that two tenants with the same number of (iden-
tical) VMs should get the same aggregate bandwidth assuming they
both have sufficient demands, since they paid the same amount of
money. We refer to this allocation requirement as network propor-
tionality. Note that the min-guarantee requirement does not achieve
network proportionality, as it only refers to the minimum band-
width guarantee of VMs; however, a VM can get a lower allocation
than its guarantee when it has a lower demand, or a higher allocation
when the other VMs have lower demands than their guarantees.

Unfortunately, none of the traditional network sharing policies
(e.g., fairness among flows, source-destination pairs, or sources
alone) can meet either of the min-guarantee or network propor-
tionality requirements, while more recent proposals such as Ok-
topus [10] can only provide minimum guarantees. We argue that
the difficulty of developing solutions to achieve these requirements
stems from the following fundamental tradeoffs:

o There is a hard tradeoff between min-guarantee and network
proportionality: if one aims to achieve min-guarantee, she
cannot achieve network proportionality, and vice versa.

e Even without requiring min-guarantees, there is a tradeoft be-
tween network proportionality and high utilization.

To this end, we propose a set of properties to help us navigate
the tradeoff space and present three allocation policies that obtain
the maximal sets of non-conflicting desirable properties. There are
two key concepts at the core of these policies. First, we allocate
bandwidth along congested links in proportion to the number of
VMs of each tenant, not to the number of flows, sources, or source-
destination pairs of the tenant. This allows us to meet (restricted
versions of) the network proportionality requirement. Second, we
use the VM proximity to a link to compute a tenant’s share on that
link. Specifically, in tree-based network topologies, the share of a
tenant on a link is computed as the number of VMs of that tenant in
the sub-tree delimited by that link. This allows us to provide mini-
mum guarantees by trading off network proportionality.

In summary, we make two contributions in this paper.

1. We expose the fundamental tradeoffs in network resource allo-
cation in cloud and data center environments, and we provide
a set of requirements and properties that allow us to explicitly
express these tradeoffs (§2 and §3).

2. We develop a set of resource allocation policies to best navi-
gate these tradeoffs (§4) and evaluate them using simulation and
testbed experiments (§5).

Da Demand matrix of tenant A
Ra Allocation matrix for tenant A
|[Ra| | Aggregate bandwidth of tenant A

Table 1: Notation

2. REQUIREMENTS AND TRADEOFFS

In this section, we elaborate on the desirable requirements for
bandwidth allocation across multiple tenants. Then, we show that,
even though all these requirements are desirable at the same time,
they cannot be simultaneously achieved. In this context, we discuss
tradeoffs between these requirements and place traditional alloca-
tion policies in this space.

2.1 Assumptions and Notation

We assume an Infrastructure-as-a-Service (IaaS) cloud model
such as Amazon EC2 [1], where tenants pay a fixed flat-rate per
VM. Hence, our goals for network sharing are defined from a per
VM viewpoint, akin to how other cloud resources are allocated to-
day. For the simplicity of exposition, we assume in this section that
all VMs are identical (in terms of hardware resources) and have the
same price. We will consider heterogeneous VMs and expand on
alternate pricing models in §4.

Our discussion is agnostic to VM placement and routing, which
we assume are implemented independently. Also, our work is
largely orthogonal to work on network topologies aimed at improv-
ing bisection bandwidth [7, 16, 18], because the possibility of con-
gestion (and hence the need for sharing policies) remains even in
full bisection bandwidth networks (e.g., many-to-many communi-
cation in MapReduce can congest any of the links in the network).

We abstract a cloud provider’s network by a graph G = (V,E),
where V is the set of physical machines and E is the set of links that
connect them. A machine is either a switch/router or a server. A
server can host one or more VMs, possibly belonging to different
tenants. We use the term congested to refer to a fully utilized link.

A tenant, K, consists of Nx VMs, and has an instantaneous Nk X
Nx demand matrix Dx = [Dy/], where D}/ represents the band-
width demand from tenant K’s VM i to VM j. An allocation policy
P allocates a set of rates R = {Ry, ..., Rn} to the set of m tenants
with demands D = {Dy,...,Dn},ie,

P(G,D) = {Ri,...Rn}, 1)

where the Nx x Nx matrix Rg = [R}/] is the instantaneous band-
width allocation for tenant K and R}y < D}/ Vi,j. Finally, let
Re| =3 RY denote the aggregate bandwidth allocation of ten-
ant K (see Table 1).

2.2 Allocation Requirements

We desire a bandwidth allocation policy that meets the following
three requirements.

o Min-Guarantee: Provide a minimum absolute bandwidth guar-
antee for each VM. We consider the hose model [13] shown in Fig-
ure 1, where each VM is connected to a non-blocking switch by
a dedicated connection whose capacity is equal to the minimum
bandwidth guarantee. A similar model is assumed by other efforts
such as Oktopus [10] or Gatekeeper [24]. This requirement is key
for achieving predictable application performance and is usually en-
forced through admission control.

o High Utilization: Do not leave network resources underutilized
when there is unsatisfied demand. Consider a statically reserved,
non work-conserving hose model in which tenants cannot exceed
their guaranteed bandwidth; while it is a good fit for low-latency

=
BWmml BWminN
BWminZ

Figure 1: Guaranteed bandwidth of each VM in the hose model.

and predictable traffic, it is not well suited for bursty traffic. Note
that high utilization is more general than work conservation; for in-
stance, as we will discuss in §2.4, tenants could be disincentivized
to use free network resources even if they have unsatisfied demands.
This would lead to a lower utilization of the network even for a work
conserving allocation.

High utilization is particularly important for throughput-
sensitive applications. For example, a tenant running MapReduce
jobs can utilize excess bandwidth (i.e., bandwidth unused by other
tenants) to improve the completion times for her jobs.'

e Network Proportionality: Share bandwidth between tenants
based on their payments, just as any other resource in the cloud.
Given today’s flat-rate per VM payment and assuming the VMs to
be identical, this requires the network share of a tenant to be pro-
portional to the total number of her VMs. Thus, given two tenants
A and B, an ideal solution for network proportionality would allo-
cate |Ra|/|Rs| = Na/N5. Unfortunately, this is not always possible
due to different communication patterns, capacity constraints and
demands of the tenants. For example, assume N4 = Nz, and both
tenants have infinite demands, but all tenant A’s traffic traverses a
link of 1Gbps, while tenant B’s traffic a 10Gbps link. If these are the
only two tenants in the system, then the “natural” allocation would
be |[Ra| = 1Gbps and |[Rg| = 10Gbps, respectively, which would
violate the naive definition of network proportionality.

Formally, we define network proportionality as a generalization
of max-min fairness. Let Wk be the weight associated to tenant
K, e.g, Wk = Nk. Let Fx be the normalized allocation of tenant
K, ie, Fx = |Rg|/Wk. Now, let F“(R) = {F,,...,F, } be
the sorted vector of normalized tenant allocations (F;, < Fy,).
The network proportional allocation R* corresponds to the max-
imal normalized allocation F"** in increasing order, i.e., for any
other feasible allocation F”", there exists g, such that Pf;x_’d < Pf{d’*

and qu < q; F;]’d = F;j’d’*. In essence, this allocation maximizes

the minimum (normalized) tenant allocation.”
Next, we discuss the tradeoffs between these requirements.

2.3 Tradeoff Between Network Proportiona-
lity and Min-Guarantee

In this section we show that there is a tradeoff between achieving
network proportionality and providing each VM a useful (i.e., large
enough) bandwidth guarantee.

To illustrate this tradeoff, consider the example in Figure 2 show-
ing two tenants A and B. A employs two VMs, while B employs
eleven VMs. VMs A, and B; are hosted on the same machine; A,
communicates with A,, while B; communicates with the rest of the
ten VMs of B. We assume that the access link of this machine is
the only congested link in the system. According to the network
proportionality requirement, A; should get 2/13 of the access link

"While several providers (e.g., Amazon EC2) do not allow statistical
multiplexing for the CPU and memory resources, others, such as
RackSpace do [6].

2 Previous work [22] has shown that the maximal lexicographical
allocation is equivalent to max-min for multi-path routing, a prob-
lem to which network proportionality can be reduced to.

Figure 2: Network proportionality vs. min-guarantee. With propor-
tionality, as B; communicates with more VMs, A,’s bandwidth can
be decreased arbitrarily.

because A has two VMs and there are 13 VMs in total, while B;
should get 11/13. Unfortunately, one can arbitrarily reduce A;’s
bandwidth by simply increasing the number of VMs that B; com-
municates with. While strictly speaking, proportionality still pro-
vides a min-guarantee, since the number of VMs in the data center
is finite, the resulting guarantee is too low to be useful in practice.

If we consider the min-guarantee requirement alone, and assume
no other VM can be admitted on the server, both A; and B, should
each be guaranteed half of the capacity of the shared access link,
just as each VM would be guaranteed half of the resources of the
machine they are running on (recall that we are assuming identical
VMs for now). This guarantee should not be affected by the traffic
of other tenants in the network. However, as illustrated by our ex-
ample, there is a hard tradeoff between network proportionality and
min-guarantee: one can either achieve network proportionality or
provide a useful min-guarantee, but not both!

2.4 Tradeoff Between Network Proportiona-
lity and High Utilization

We now show that even in the absence of the min-guarantee re-
quirement, network proportionality is hard to achieve. In particu-
lar, we show that there is a tradeoff between network proportionality
and high utilization.

To illustrate this tradeoff, consider the example in Figure 3 de-
picting two tenants A and B, each employing four VMs. Figure 3(a)
shows a scenario in which their flows traverse the same congested
link L of capacity C; each tenant gets C/2 of the aggregate band-
width, and the network proportionality requirement is met. Now
assume that VMs A; and Aj start communicating along an uncon-
gested path, P (Figure 3(b)). In order to preserve network propor-
tionality, we need to decrease tenant A’s allocation along link L. Un-
fortunately, if A deems its traffic along L more important than that
between A, and As, A is disincentivized to use path P, which hurts
network utilization.

We will refer to the ability of a tenant to use an uncongested path
without being penalized on another (disjoint) congested path as the
utilization incentives property. Thus, the tradeoff between network
proportionality and high utilization can be reduced to a tradeoff be-
tween network proportionality and utilization incentives.

2.4.1 Congestion Proportionality

It might appear that one could get around this tradeoff by re-
stricting the network proportionality requirement only to the traffic
traversing congested links. We define congestion proportionality as
network proportionality restricted to congested paths that involve
more than one tenant. In other words, for each tenant K, conges-
tion proportionality considers only >, i R, where there is at least
a congested link along path i—j traversed by the flows of multiple
tenants. For the example in Figure 3(b), since the path between A;
and A; is used only by tenant A, it does not count towards A’s use of
congested resources when comparing the aggregate bandwidths of

B, B,
(0)

&
E
.
Z]
E

Figure 3: Network proportionality vs. high utilization. (a) VMs of
tenants A and B have equal shares on link L. (b) If A; starts com-
municating with A3, A’s allocation on L decreases; thus, A may be
incentivized to refrain from using the free path P. (c) Even with con-
gestion proportionality, tenants can have incentives to keep links
underutilized to increase their total allocation.

A and B. Thus, congestion proportionality does not disincentivize a
tenant from using free resources.

Unfortunately, even congestion proportionality conflicts with hi-
gh utilization, since it can incentivize tenants to artificially inflate or
deflate their real demands. Consider Figure 3(c), where the traffic of
tenants A and B s split across two congested links L, and L, with the
same capacity C. Initially, assume that tenants have high demands
and each tenant receives half of each congested link. This allocation
trivially meets congestion proportionality.

Now assume the demand from Bs to B4 drops to a small value € (all
the other demands remain very high). As a result, B;— B, will get €
on L,, while A3—A4 will get C— €. In turn, congestion proportiona-
lity will change the allocation on L, so that B;—B, gets C — € and
A1—A,; gets e. By doing so, each tenant will still get same aggregate
capacity C, and the system remains fully utilized.

However, congestion proportionality can still violate the utiliza-
tion incentives property. For example, A may choose to send only
C — 2e on Ly. Since L, is no longer a congested link, congestion
proportionality will only allocate Ly, by giving C/2 to both tenants.
As aresult, A ends up getting an aggregate allocation of 3C/2 — 2¢,
while B will get only C/2 + €. By doing so, A increases her alloca-
tion, while the system utilization decreases from 2C to 2C — e. This
example also illustrates the fact that a tenant can artificially mod-
ify her demand to get a higher allocation. We refer to the ability to
prevent such behavior as strategy-proofness.

2.4.2 Link Proportionality

We have shown that both network proportionality and its re-
stricted version, congestion proportionality, end up compromising
high utilization. To avoid this tradeoff, we further constrain the net-
work proportionality requirement to individual links.

We define link proportionality as network proportionality re-
stricted to a single link. More concretely, if the link is congested,
link proportionality translates into max-min fairness between dif-
ferent tenants that communicate on that link.** A remaining ques-
tion is what weight to associate with a tenant on a given link. The
only constraint we impose for link proportionality is that the weight
of any tenant K on a link L is the same for any communication pat-
tern between K’s VMs communicating over L and any distribution
of the VMs as sources and destinations. For example, one can de-
fine the tenant K’s weight on link L as the number of VMs of K that
communicate on L. In another example, K’s weight can be defined

*The max-min allocation is equivalent to the lexicographic maxi-
mum for both network proportionality and link proportionality.
*One can generalize link proportionality to the granularity of each
VM instead of the tenant granularity, as we will discuss in §4.

Figure 4: Two tenants sharing a single link using different commu-
nication patterns.

as Nk, i.e., total number of K’s VMs in the network. Note that the
latter allocation is similar to that of NetShare [19].

Since the allocation is independent across different links, link
proportionality can achieve high utilization. However, link propor-
tional allocations can be substantially different than network wide
allocations such as those meeting congestion proportionality, since
each VM can compete on a different number of congested links in
the network.

More generally, we can classify all allocation policies to be ap-
plicable either at the link level or at the network level. We define
link level allocations to have the link-independence property, mean-
ing that the allocation at each congested link L is based only on the
demands known at L and on static information about the VMs com-
municating on L (i.e., information that does not change during the
lifetime of a VM). In the absence of link-independence, there can
exist a congested link L whose bandwidth allocation can change due
to a change in the allocation of another congested link L’ or due to a
change in the communication pattern of one of the VMs communi-
cating on L. Network proportionality and congestion proportiona-
lity are not link-independent, while link proportionality is. All link-
independent allocations provide incentives to use free resources.

Traditional allocation policies, such as per-flow fairness, are link-
independent, and thus are capable of achieving high utilization.
However, we next show that they cannot provide even link propor-
tionality, nor do they provide min-guarantees.

2.5 Traditional Allocation Policies

The traditional approach to sharing the network is to apply per-
flow fairness, where a flow is characterized by the standard five-tuple
in packet headers. However, the Per-Flow mechanism can lead to
unfair allocations at the VM granularity [11]. For instance, two VMs
can increase the allocation between them at the expense of other
VMs by simply instantiating more flows.

A natural “fix” is to use a per source-destination pair (Per-SD) al-
location policy, where each source-destination pair is allocated an
equal share of a linkK’s bandwidth regardless of the number of flows
between the pair of VMs. However, this policy does not provide li-
nk proportionality either, because a VM that communicates with
many VMs gets more bandwidth than a VM that communicates
with fewer VMs. For example, a tenant that employs an all-to-all
communication pattern between N VMs will get a bandwidth share
of O(N*), while a tenant that performs one-to-one communication
between the same number of N VMs will get a share of only O(N).
Figure 4 (a) shows one such example, where the bandwidth allocated
to tenant A is twice that of tenant B.

To address this problem, previous solutions (e.g., Seawall [25])
have proposed using a per source (Per-Source) allocation policy. Per-
Source assigns equal weights to all the sources communicating over
a given link, and the bandwidth is divided accordingly. While this
is fair to sources, it does not meet link proportionality since it is
not fair to destinations. For example, in Figure 4(b), if VMs A, As,
and B, are the sources, then the bandwidth allocation of tenant A

Property | Description

Full utilization of bottleneck links.

By being dishonest a tenant cannot im-
prove her utility.

P3. Utilization incen- | Tenants are not disincentivized to use un-
tives congested resources.

P4. Communication- | The allocation does not favor some com-
Pattern Independence munication patterns compared to others.
P5. Symmetry Reversing demands of all flows in the net-
work does not change their allocations.

P1. Work Conservation
P2. Strategy-Proofness

Table 2: Network sharing properties desirable for any bandwidth
allocation policy in clouds.

would be twice that of tenant B. However, if the direction of the
communication is reversed, tenant A would receive only half the
bandwidth allocated to B. Therefore, there is a mismatch between
the amount of traffic sourced and the amount received by a VM.

We refer to this mismatch between allocations in opposite di-
rections as asymmetry and consider Per-Source to be asymmetric.
Asymmetry is undesirable because it can result in application-level
inefliciencies. For example, in a MapReduce setting, a VM hosting
both a mapper and a reducer can experience a significant discrep-
ancy between the bandwidth available for the mapper to send and
for the reducer to receive, slowing down the application to the slow-
est component. More generally, VMs can experience large varia-
tions between the incoming or outgoing bandwidths, without show-
ing a preference for one of them. A per destination (Per-Destination)
allocation policy is asymmetric as well for similar reasons.

We have shown that both Per-Source and Per-Destination alloca-
tion policies fail to provide link proportionality. In addition, neither
satisfies min-guarantee. Referring back to Figure 2, we can easily see
that A,’s incoming bandwidth can arbitrarily be reduced by tenant
B for Per-Source, and same applies to A,’s outgoing bandwidth for
Per-Destination.

To summarize, we have established that there are fundamental
tradeoffs between our requirements and that the traditional alloca-
tion policies are not satisfactory. We will next express these tradeoffs
using a set of lower-level desirable properties. Based on the require-
ments and properties, we will propose new allocation policies to be
implemented in cloud data centers.

3. NETWORK SHARING PROPERTIES

In this section, we describe a set of desirable properties that en-
able us to examine the above tradeoffs more explicitly. Table 2 sum-
marizes these properties. We do not claim this to be a complete set
of desirable properties, but rather a set that enables us to better un-
derstand the tradeoffs. Figure 5 captures the relationship between
these properties, the requirements and tradeoffs discussed in §2.
P1. Work conservation: As long as there is at least a tenant that
has packets to send along link L, L cannot be idle. More formally,
consider m tenants with demands D = {Di,...,Dm}, and let P
be an allocation policy that provides allocations R = {Ry,...,Rn}
(see Eq. 1). We say that P is work-conserving, iff for any flow of K
that traverses an uncongested path i—j, Ry = D/. In other words,
a link is either fully allocated, or it satisfies all demands. Surpris-
ingly, unlike the case of a single resource, in a distributed setting,
work conservation does not guarantee high utilization. The next
two properties illustrate this point.

P2. Strategy-proofness: Tenants cannot improve their allocations
by lying about their demands [14]. Consider allocation policy P that
provides allocation Rk to tenant K with demand Dx. With each ten-
ant K, we associate utility Ux(Rk), a scalar function defined on K’s

Min G D Network-Proportionality G D High
Guarantee l Utilization

Congestion-Proportionality

Link-Proportionality

Comm-Pattern Work Utilization
Independence Conservation Incentives

Symmetry

Figure 5: Requirements, properties, and tradeoffs between them.

allocation. We say that P is strategy-proof if tenant K cannot change
its demands to get a better allocation with higher utility. That is, for
any demand I/); # Dk, we have Ux(Rk) > UK(I/{;), where l/{\K is
the allocation corresponding to]/); In other words, tenant K has
no incentives to lie about her demands.

Unfortunately, any allocation policy that is unaware of the utility
functions cannot satisfy the above definition. Moreover, even if we
restrict the utility function of any tenant K to represent the total al-
location of K, Ux(Rk) = |Rk]|, i.e., each byte has the same utility
for K, this property is still very challenging to achieve for any work
conserving allocation.

For example, one can show that link proportionality fails to sat-
isfy even this restricted version of strategy-proofness. Consider the
example in Figure 6 consisting of two links with capacities C;, and
C,, respectively. Assume a link proportionality policy, where each
tenant has the same weight on each link, i.e., A;—A>, A3—A4 and
B1— B, have all equal weights. Now assume the demand from A, to
A, is €, while the other demands are infinite, and that C; < C; <
2C;. In this case, only L; is congested. As a result, A gets an aggre-
gate allocation of € 4 % (i.e.,eonL; and % on L), while B gets %
However, by artificially congesting L,, A can reduce B’s allocation to
£, and increase her useful aggregate allocation to € + C; — <.

We believe that the above example can be extended to any work-
conserving link-independent allocation. In fact, we are not aware
of any work-conserving bandwidth allocation policy that is strategy-
proof. We leave this challenge for future, and, instead, we next focus
on a restricted version of this property, utilization incentives.

P3. Utilization incentives: Tenants are never incentivized to reduce
their actual demands on uncongested paths or to artificially leave
links underutilized. This property aims to preclude the scenarios
described in §2.4, in which a tenant can improve her allocation, and,
as a result, decrease the system utilization. More formally, let again
Dx denote the true (real) demand of tenant K, and let 15; denote any

demand, such that DY > DY/, for any VM pair (i, j) for which the
path i—j remains or becomes uncongested under demand DY (i—j

can be either congested or not under Dx), and D;{ = D;gj , otherwise.
We say that an allocation satisfies the utilization incentives property,
ifit provides allocations Rk and I/{\K, such that Ux(Rk) >= UK(I/QE),
for any monotonic utility function of K.° In other words, tenant
K will only reduce her utility by decreasing her real demand on an
already uncongested link or on a link that becomes uncongested.
Note that the utilization incentives property is a particular case

°If a link L between i—j is congested for D/ but not for D/, we
assume that the utility function is Ux(Rk) = |Rk|; for general utility
functions it can be shown that this property is not achievable in this
case by any work-conserving policy, since K can increase her most
valued flows on link L.

Figure 6: Link-independence vs. strategy-proofness: by increasing
the A;—A, traffic, A may increase her A3 — A, traffic.

of the strategy-proofness property, in which a tenant can only lie by
reducing her demands on uncongested paths.

We have shown that network proportionality and congestion pro-
portionality violate this property. Almost all link-independent allo-
cations satisfy this property. Note that both work conservation and
utilization incentives properties are necessary to satisfy the high ut-
ilization requirement.

P4. Communication-pattern independence: The allocation of a
VM depends only on the VMs it communicates with and not on the
communication pattern. Consider a set of source VMs, QQ that com-
municates with a set of destination VMs, IP, where the VMs in Q and
P do not communicate with any other VMs. Assuming sufficient de-
mands, any communication pattern involving (Q and IP should result
in the same aggregate allocation.

It is not always possible to achieve this property at the network
level. For example, assume Q = {A1, A3}, P = {A, A4}, and effec-
tive bandwidths along A;—A; and A3 —A4 to be much higher than
that along A;—A4 and A3—A; (e.g., due to different link capacities
and/or background traffic). In this case, the first communication
pattern (A —Az, A;—A4) would receive a higher throughput than
the second (A} —A4, A3—Ay).

Consequently, we consider a simpler formulation of this property
that is limited to a single congested link L. Some allocation policies
still cannot support this property. In Figure 4(a), assume Q = {A,,
A3}, P = {A,, A4}. Using Per-SD allocation, if A; and A3 commu-
nicate with both A, and A4, they get a larger share than a one-to-one
communication such as A;—A; and A;—Aj4. Per-Source allocation
achieves this property since A; and As will get ; of L’s capacity re-
gardless of the communication pattern (given sufficient demand).

We note that link proportionality implies communication-pa-
ttern independence; otherwise, allocations will not remain propor-
tional when communication patterns change.

P5. Symmetry: If we switch the direction of all the flows in the
network, then the reverse allocation of each flow should match its
original (forward) allocation. More formally, assume G’s routing
is symmetric, and the capacities of every link are the same in both
directions. If the demand of each tenant is transposed (i.e., the de-
mand from i to j is equal to the original demand from j to i) and R
is the resulting allocation for the transposed demands for tenant K,
then Rk = Rk VK, where Ry is the original allocation.

Existing allocation policies make an implicit assumption as to
whether the allocation is receiver- or sender-centric. However, it
is difficult to anticipate application-level preferences. For exam-
ple, server applications might value more the outgoing traffic while
client applications might value more the incoming traffic. In the
absence of application-specific information, we prefer allocations
that provide equal weights to both incoming and outgoing traffic.
As shown in §2, Per-Source and Per-Destination allocations do not
provide the symmetry property. Proportionality requirements im-
ply symmetry by definition, since the share of a tenant does not de-
pend on the direction of its communication.

Figure 5 summarizes the desirable requirements, corresponding
properties, and the tradeoffs discussed in §2 and §3.

4. PROPOSED ALLOCATION POLICIES

In the previous sections, we have described a set of requirements
and properties desired of a network allocation policy and identified
fundamental tradeoffs between them. In this section, we discuss
how to navigate the tradeoffs shown in Figure 5 and describe three
allocation policies that take different stands on these tradeofTs.

The first policy, PS-L, achieves link proportionality and can sat-
isfy all the properties mentioned in §3 (except strategy-proofness).
The second, PS-N, provides better proportionality at the network
level (congestion proportionality in a restricted setting), but it does
not fully provide utilization incentives. Finally, PS-P, provides min-
imum bandwidth guarantees in tree-based topologies (hence it does
not provide proportionality). At the end of the section, we discuss
how these policies can be implemented in practice as well as alter-
nate pricing models.

Table 3 summarizes the properties achieved by these three poli-
cies as well as by the traditional network sharing policies.

Heterogeneous VMs: Before presenting the allocation policies, we
first remove the assumption of all VMs being identical. We gener-
alize to a model where tenants pay different flat-rate prices for in-
dividual VM’s network share. Just as today’s cloud providers offer
VMs with different CPU and memory configurations at different
prices, we consider a setting where each VM has a (positive) net-
work weight associated with it based on the tenant’s payment. Thus,
each VM is also characterized by its network weight, in addition to
its CPU and memory capacities. Intuitively, higher weights should
result in higher bandwidth allocations. It is not difficult to extend li-
nk proportionality and min-guarantee to the heterogeneous model;
for brevity we discuss these extensions as part of the presentation of
our proposed allocation policies.

4.1 Proportional Sharing at Link-level

Proportional Sharing at Link-level (PS-L) is an allocation policy
that provides link proportionality. The simplest way to understand
PS-L is by considering a model in which each switch implements
weighted fair queuing (WFQ) and has one queue for each tenant.

The weight of the queue for tenant A on link L is the sum of the
weights of A’s VMs that communicate through link L. For instance,
let A’s VMs have a communication pattern such that a set of VMs
@ sends traffic to the set IP over link L. Then, A’s (unnormalized)
weight willbe Wy = 37, o Wx+ > yp Wy. Consider Figure 4(b)
and assume that all VMs have unit weights. Both tenants will be
assigned a weight of 3, leading to an equal bandwidth distribution
in both directions between them. In another example, on link L; in
Figure 7, tenant A will have a weight of four since it has four VMs
communicating and tenant B will have a weight of two.

One drawback of the above version of PS-L is that there is a simple
strategy for tenants to increase their allocations. By sending an €
amount of data between all her VMs, a tenant can achieve a weight
equal to her total number of VMs on any congested links. One fix is
to simply use a weight for tenant A equal to the total weight of all of
A’s VM, which can in fact be seen as an application of the NetShare
model [19]. Another fix is to apply PS-L at a per VM granularity,
rather than per tenant, as we describe next.

In this case, PS-L assigns to a communication between VMs X
and Y on link L a weight of:

Wx_y=—+ —

X—Y Ny + Ny
where Ny is the number of other VMs X is communicating with on
link L (similarly Ny). For example in Figure 4(c), the per VM PS-L
assigns weights of 1.5, 1.5,and 2 to A; — A;, A3 — Ay, and B, — By,
respectively. So the flows between A; —A; and A3 — A, would receive

Figure 7: Example for illustrating the allocation policies.

L2 of the link capacity, since A;’s weight is split across its two flows.
This approach removes the incentives to send traffic between all of
one VMs.’

As discussed in §2, link proportionality only offers a link level
view of proportionality, which can be far from approximating pro-
portionality at the network level. The next allocation policy aims to
address this concern.

4.2 Proportional Sharing at Network-level

Proportional Sharing at Network-level (PS-N) is an allocation that
aims to approximate congestion proportionality and can achieve it
in a severely restricted setting. As a consequence, however, PS-N
does not provide full utilization incentives (Table 3).

The intuition behind PS-N is that the communication between
the VMs in a set Q has the same total weight through the network
irrespective of the communication pattern between the VMs in Q.
This weight equals the sum of the weights of the VMs in Q. For
example, in Figure 7, the total weight of each tenant A or B is four
regardless of the communication pattern between their VMs.

To achieve this, we extend PS-L to incorporate information re-
garding the global communication pattern of a tenant’s VMs. PS-
N uses a weight model that is similar to that of PS-L, as it sets the
weight of the communication between VMs X and Y to be Wx_y =
x—;’: + ;‘;—5, with the difference that N is the number of VMs that

X communicates with across the entire network and not just over a
particular link. For example, in Figure 7, PS-N would provide A;-A3;
with a weight of ; + 1 = 2 on any link, while PS-L would provide
ita weight of 2 + 1 = 3 on link Ls, because A; communicates with
only two VMs on Ls, but with four VMs in total.

PS-N strives to achieve proportionality in the absence of detailed
knowledge about the load on each bottleneck link, assuming uni-
form load conditions throughout the network. Specifically, a set
of VMs Q communicating using PS-N across a set S of bottleneck
links achieves at least its proportional share of the total bottleneck
capacity if the demand on each VM-to-VM communication is high
enough and one of the following condition holds: (a) all bottleneck
links have the same capacity and background weight (i.e., weight of
traffic not involving VMs in Q), or (b) all congested links are pro-
portionally loaded, i.e., any two congested links of capacities C; and
C, are loaded with total weights W and W> such that % = %.7

For example, assume that the network shown in Figure 7 is fully
provisioned, tenant A communicates all-to-all (i.e., each VM com-
municates with all other VMs of A), and tenant B communicates

® Note that the properties exhibited by the described per VM PS-L
allocation are different for different demands. For example, in Fig-
ure 4(c), if the flow between A, and A, has a very small demand
€, the allocation between As-A; and B;-B, will respect the ratio of
1.5 : 2 instead of a 1 : 1 ratio for a per VM proportionality. This
can be addressed by taking into account the demands when assign-
ing weights, but for brevity we do not detail that extension.

"There is a subtle difference between the two cases; for case (a), the
weight does not include the VMs in Q; for (b), it does.

Per-Source Reservations
Per-Flow || Per-SD (Per-Destination) (e.g. [10]) PS-L PS-P PS-N
Proportionality X X X X link-proportionality X congestion-proportionality™
Min-Guarantee X X X Vi X v X
Work Conservation N N N X N N N
Utilization Incentives v v v Nai v v X
Comm-Pattern Indep. X X Vv N4 V4 V4 N4
Symmetry v v X v v v v

Table 3: Properties achieved by different network sharing policies. (*in a restricted setting, ' also strategy-proof)

one-to-one (e.g., as shown in the figure). In this case, the two ten-
ants achieve the same total bandwidth allocation (assuming high
enough demands), since the congestion is on the access links, which
have the same capacity and the same weight load. Indeed, the two
tenants will have equal weights on the access links: Wy = 8% i =2,
since each VM will contribute with a weight of 4 to each VM to VM
flow, while Wg = 4 - 1. Note that PS-L would not provide network
wide proportionality in this case, since A’s weight would be twice
that of B on the access links.

A drawback of PS-N is that each VM’s weight is statically divided
across the flows with other VMs, irrespective of the traffic demands.
This further constraints the situations when PS-N achieves propor-
tionality (requiring high demands on all flows), as well as makes
PS-N lack the utilization incentives property. For example, assume
that all the links in Figure 7 have the same capacity and Ls is the
only congested link. If A deems A,’s traffic to A3 and A4 more im-
portant than that to A,, A may not send traffic between A; and A,
to get a larger share for its traffic to As and A4 on Ls. We believe
this could potentially be addressed if we include the demands when
assigning weights, e.g., by not providing any weight to flows travel-
ing uncongested paths. However, such a policy will be significantly
more difficult to deploy, and we leave its exploration to future work.

4.3 Proportional Sharing on Proximate Links

The previous policies strive to achieve forms of proportionality
and thus do not provide minimum bandwidth guarantees. To offer
(useful) minimum bandwidth guarantees one would want to prior-
itize the allocation of a link based on the “importance” of that link
with respect to the VMs using it. For example, on the access link
of one host, we might want to allocate the link bandwidth based
more on the weights of the VMs residing on that host and less on
the weights of the remote VMs using the link.

Based on the above observation we generalize PS-L to derive the
following weighting scheme: Wx_y = Wy_x = ag—;‘ + 6%’. The
coeflicients v and 3 allow different weights for VMs located on the
two sides of the link. By setting specific values for o and j3 at differ-
ent links in the network, one can use the generalized PS-L to achieve
bandwidth guarantees for different network topologies.

In this paper, we present Proportional Sharing on Proximate Links
(PS-P), which is suitable for tree-based topologies (e.g., traditional
data center architectures, VL2 [15], and multi-tree structures such
as fat trees [7]). PS-P prioritizes VMs that are close to a given link.
More precisely, PS-P uses « = 1 and 8 = 0 for all links in the tree
that are closer to X than Y, and « = 0 and 8 = 1 for all links closer
to Y than X.

In practice, PS-P translates into applying per-source fair sharing
for the traffic towards the root of the tree and per-destination fair
sharing for the traffic from the root. For example, on link L, in Fig-
ure 7, the three flows communicating with A, will share A,’s weight
irrespective of the weights of A,, A3, and A4, while on link Ls, A1-A3
will have As’s weight and A;-A4, Ay’s weight. These weights apply
equally to both directions of the traffic.

PS-P provides absolute bandwidth guarantees for any VM
to/from the root of the physical tree, since that VM competes on a
given link to the root only with the other VMs in the same subtree.
Obviously, cloud providers must deploy admission control to en-
sure that the total bandwidth guarantees of the VMs hosted within
the subtree of any link L does not exceed L’s capacity, similar to how
CPU guarantees are offered on a given host. Guarantees are com-
puted assuming all hosts are fully loaded with VMs.

For example, in Figure 7, on link L,, B; competes only with A,’s
weight irrespective of A;’s communication pattern. Thus, assum-
ing all VMs have have equal weights and that the maximum weight
on each host is 2, B, is always allocated at least % of its access link
capacity (L,). Similarly, B, will get at least i of Ls.

These guarantees can be used to offer different service models to
tenants. The basic model offered by PS-P is similar to Oktopus’s
Virtual Cluster [10] (i.e., hose model), with the difference that PS-P
is work conserving. The cloud provider can associate a minimum
guaranteed bandwidth for every unit of VM weight and advertise it
to customers through different VM configurations (CPU, memory
and bandwidth). The guarantee is computed as the minimum share
across all the layers of the tree. Tenants entirely collocated within a
higher capacity subtree can achieve higher guarantees. The value of
the guarantees can vary from VM to VM and from tenant to tenant.

PS-P can also expose a service model similar to Oktopus’s vir-
tual oversubscribed cluster (VOC) [10]. Specifically, the model
can expose higher guarantees between each group of VMs collo-
cated within a high-capacity subtree; the guarantees when commu-
nicating with VMs from a different group are scaled down with the
oversubscription factor. Unfortunately, all models exposed by PS-
P would have the same oversubscription ratio, that of the physical
network. To fix this, PS-P can be applied within virtual topologies
with different oversubscription characteristics. (The virtual topolo-
gies could themselves be build with a PS-P-like mechanism.)

We assume that if VMs can communicate via multiple paths, the
routing protocol performs load balancing of the traffic across the
available paths. This assumption holds for many of the newly pro-
posed multi-tree topologies that use multi-path routing to fully uti-
lize the network bisection bandwidth, e.g., [7,8,15,23].

Similar to PS-L, PS-P can be implemented per tenant, which re-
duces the hardware requirements when PS-P is implemented at
switches (§4.5). In this case, the weight of tenant A’s queue through
link L equals the number of VMs of A located in the subtree commu-
nicating through L. For example, in Figure 7, on link Ls, the weight
of A will be Wa, + Wy, (W4, is Ar’s weight). The disadvantage of
the per-tenant implementation is that the provided guarantees are
not for each VM, i.e., when buying a VM, the VM is not guaran-
teed a minimum amount of traffic to/from the network core; rather,
the tenant in aggregate is guaranteed that the bandwidth from all its
VMs to/from the core equals the sum of the minimum guarantees
that would be offered to each of its VMs by the per-VM PS-P. We be-
lieve that by selecting suitable values for « and 3, one can generalize

PS-P to provide guarantees for other topologies, such as BCube [16]
or DCell [18]. We leave this to future work.

4.4 Summary

Table 3 summarizes the properties achieved by the allocation
policies presented in this section. All the described policies are work
conserving, symmetric, and offer communication-pattern inde-
pendence, but they make different choices for the rest of the prop-
erties. PS-L achieves link proportionality, does not provide guar-
antees, but does provide utilization incentives; PS-N achieves better
proportionality at the network level, but does not provide full in-
centives for high utilization; lastly, PS-P provides guarantees and
incentives for high utilization but not proportionality.

4.5 Deploying PS-L, PS-P and PS-N

We identify three deployment paths for the presented policies:

1. Full switch support. For this deployment, each switch must
provide a number of queues equal to or greater than the num-
ber of tenants communicating through it, and must support
weighted fair queuing. All the described policies can be im-
plemented with such switch support.

2. Partial switch support. PS-N and PS-P are amenable to imple-
mentation using CSFQ [26], which does not require support
for per-tenant or per-VM queues at switches.

3. No switch support. There are two types of hypervisor-only
implementations. First, a centralized controller can enforce
rate-limiters at hypervisors based on the current network traf-
ficand implement any of the proposed policies. Second, PS-N
(and we believe PS-P as well) could be implemented through
a distributed mechanism similar to Seawall [25].

In this paper, we focus on the full and partial switch support de-
ployments and only sketch the hypervisor-only deployment, leaving
it to future work. We present our evaluation in §5 and we present
more details related to practical deployment issues in §6.

4.6 Other Models

In addition to the flat-rate per VM pricing model, PS-P can also
accommodate a per-byte pricing model, such as paying for the band-
width above the minimum guarantees (like DRP [9]), or simply pay-
ing for all bytes. We also note that if the per-byte price is constant
across tenants and traffic volume, proportionality still is a desirable
property. However, congestion pricing or other forms of price dis-
crimination can offer alternative ways of sharing the network, which
would not benefit from proportionality.

Finally, we note that it is possible to create a more complex alloca-
tion policy that provides guarantees and shares proportionally only
the bandwidth unused by guarantees. In a nutshell, this allocation
would work as follows. Assume the total weight of all the VMs in
the subtree delimited by a link L (for which we provide guarantees
on L) is W and the weight of the VMs currently active in the sub-
tree is Wc. We note by Wp = Ws — W as the weight to be divided

proportionally (of the VMs not active). In this context, the weight
of tenant A on link L is Wy = Wsg + WP X Ww—’f, where Wy, is the
weight of A’s VMs in the subtree, while Wy, and Wr are the weights
of all A’s VMs, and all VMs, respectively, active on L.

5. EVALUATION

In this section we evaluate the allocation policies presented in §4.
We divide the results in three parts.

o First, we consider a single congested link and explore the be-
havior of these policies under various scenarios (§5.1).

e Second, we extend our experiments the network level, exem-
plify the aforementioned tradeoffs using suitable small-scale
examples, and observe how these policies behave (§5.2).

o Finally, we leverage traces obtained from a 3200-node pro-
duction cluster at Facebook to validate the properties exhib-
ited by these policies on a large scale (§5.3).

We generated the results using a flow-level simulator written in
Java and validated the simulation results by experiments in the DE-
TERlab testbed [4]. For this purpose, we implemented switch sup-
port for PS-L, PS-P and PS-N using per-flow queues in a software
router implemented in Click [20]. The implementation is using
kernel-mode Click and consists of ~500 lines of C++ code for the
new elements and ~2000 lines of python scripts to generate config-
uration files. We also developed support for PS-N with CSFQ with
additional ~400 lines of C++ for the Click elements. To achieve
high performance, we deploy Click in kernel mode and approximate
CSFQ using fixed point operations. Unless otherwise specified, the
presented results are obtained in simulation.

Since Per-Flow’s allocation can be arbitrary, depending on the
number of flows, we only consider a maximum of one flow between
any source-destination pair. In this case, Per-SD and Per-Flow are
equivalent, and therefore, we omit Per-SD from the results. For ease
of exposition, we assume all VMs to have a unit weight. The high-
lights of our findings are as follows:

o The tradeoff between proportionality and bandwidth guaran-
tee is also evident at the network level. While PS-P is able to
provide the highest guarantee, PS-N exhibits maximum pro-
portionality in network allocation.

o The relative behaviors of these policies scale to large-scale
clusters. PS-N is very close to achieving network propor-
tionality for the small MapReduce jobs, and both PS-P and
PS-N improve the minimum bandwidth allocations of the
tasks of individual jobs and therefore result in an approximate
speed-up of ~15x in the shuffle time of the small jobs.®

5.1 Link-Level Scenarios

For the first set of experiments, we focus on a single congested
link and evaluate multiple allocation policies by varying workloads.
Since PS-N would provide the same allocation as PS-L on a single
link (assuming that the VMs in our experiments only communicate
over that congested link), we omit it from the following discussion.

Figure 8 depicts a scenario similar to the one in Figure 2, where
two VMs, A and By, are collocated on the same physical host; A;
communicates with VM A,, while B; communicates with N other
VMs. We assume VMs have high demands and the link capacity is
1Gbps. Figure 8 plots the bandwidth allocation of tenant A for in-
creasing values of N. Figure 8(a) presents simulation results, while
Figure 8(b) presents actual allocations achieved on the testbed. Re-
member that Per-Source is asymmetric, and so we present both in-
coming and outgoing allocations for it.

We make four observations from these results.

o First, PS-P maintains the same throughput for tenant A re-
gardless of N. This is because A; is guaranteed a minimum
bandwidth of half its access link capacity; the same is true for
the outgoing bandwidth allocated by Per-Source.

8During the shuffle phase, mappers of a MapReduce job transfer
intermediate data to the reducers over the network.

50 & 45
g Vs Py)
400 OO per-Fiow % 400 OO Per-Flow
30 O-O Per-Source (Out) é 300 O-O Per-Source (Out)
\t\ Ye=r Per-Source (In) S Ye=4% Per-Source (In)
[H Ps-L o 1 [CH Ps-L
20 V=7 psp £ 200 = s
o
@
100r 1 5, 1007
sy
<

Aggregate Bandwidth (Mbps)

5 10 15 20 25
Destination VMs

w
o

5 10 15 20 25 30
Destination VMs

(a) Simulation results (b) Experimental results

Figure 8: Link level bandwidth allocation of tenant A, while tenant
B has an increasingly larger number of VMs (similar to the scenario
in Figure 2). PS-P maintains a constant throughput for tenant A.

< 700 - 70
iy ks
s 600r 13 601
% 500 % 500
= 400 Z 400
sl el
,;E’ 300 C/J Per-Flow. é 300r Per-Flow.
L O Per-Source Out L OO Per-Source (Out)
%20 @' F&=4¢ Per-Source (In) & %20 w-w Per-Source (In)
5 =1 Ps-L 5 [Ps-L
2 100] 2 10
< 7 PSP 2 V¥ Ps-P
2 4 6 8 10 2 4 6 8 10
Mappers # Mappers

(a) Simulation results (b) Experimental results

Figure 9: Network allocation of tenant B on a congested link, while
tenant A varies the number of mappers (senders). Both tenants
use the many-to-many communication pattern commonly found in
MapReduce shuffles.

e Second, PS-L provides tenant A its proportional share.

o Third, Per-Flow and Per-Source policies provide neither pro-
portionality nor guarantees.

e Lastly, our implementation matches the simulation results,
modulo the fact that the link capacities available on DETER-
lab are smaller (the available bandwidth is ~900Mbps instead
of advertised 1Gbps).

In Figure 9, we consider two MapReduce jobs A and B (jobs play
the role of tenants in this discussion), each with 10 VMs. While job
B has 5 mappers and 5 reducers communicating over the congested
link under consideration, we vary the ratio between the number of
mappers (M) and reducers (R) of job A while keeping (M+R) = 10.
As before, we show both simulation and testbed results.

We observe that PS-L achieves a proportional allocation that is
not affected by the change in M, while PS-P’s allocation increases
as M7+5 (5 is the number of mappers of tenant B). We also notice
that Per-Flow achieves proportionality only when the distribution of
mappers and receivers is the same between the two jobs (at M = 5),
since only at this point both the jobs have equal number of flows;
remember that the number of flows is M x R.

5.2 Network-Level Scenarios

‘We now turn our attention to the network-wide allocation under
different scenarios. For these experiments we include PS-N, because
its network-wide allocations will be different than those of PS-L.

We start off with the simple scenario illustrated in Figure 10(a).
In this particular example, we have a small tree with eight servers
and two tenants A and B, each with one VM in each of the servers.

Strate Full Bisection BW 4x Oversubscribed
8y Sim | Exp Sim | Exp
Per-Flow 7.00 6.99 18.98 18.91
Per-Source | 1.00 1.00 6.99 6.75
PS-L 4.00 4.03 7.00 7.20
PS-P 1.00 0.99 7.00 7.13
WEQ | CSEQ WEQ [CSFQ
PS-N L0050 T 115 >29 1535 | 555

Table 4: Simulation vs. Experimental Results (Ratio of Aggregate
Bandwidth of the tenants, B/A)

We assume that tenant A communicates using a pairwise one-to-one
communication pattern between its VMs (i.e., A; <> Aiys, where
i = {1,...4}), while tenant Bcommunicates all-to-all (i.e., B; com-
municates with all Bj, where j # 7). For simplicity, we assume all the
VMs have equal weights and infinite bidirectional demands. From
the network proportionality point of view, an ideal allocation would
provide both tenants the same bandwidth.

Figure 10(b) presents the bandwidth allocation for the two ten-
ants in Figure 10(a) when the core is fully provisioned (i.e., the net-
work has full bisection bandwidth). In this case, the access links are
the congestion points. We see from Figure 10(b) that PS-P, PS-N
and Per-Source policies are able to match the desirable equal allo-
cation. However, PS-L provides B twice as much bandwidth as A
on each access link, since B competes with four VMs on each access
link against only two VMs of A—we use the version of PS-L propor-
tional the number of active tenant VMs on the link. Consequently,
at the network level, Per-Flow and PS-L favor dense communication
patterns such as all-to-all over sparse communication patterns.

Figure 10(c) presents the allocations for tenants A and B when the
core is under-provisioned by a factor of 4x (each of the aggregation
and core layers being oversubscribed by 2x). Given our setup, core
links are the bottlenecks for tenant A. In this case, PS-P, PS-L and
Per-Source policies allocate the core bandwidth equally between the
two tenants, while allowing tenant B to fully utilize the aggregation-
level bandwidth for free. However, PS-N penalizes tenant B for uti-
lizing the aggregation-level bandwidth because half the weights of
each of the tenant B’s VMs is utilized in aggregation-level commu-
nication, and it provides twice as much core bandwidth to tenant A.
Thus, PS-N provides the best proportionality at the network level
(see Table 4 for quantitative results).

We validate the simulation results presented in the above two
cases through experiments on a testbed with the same topology.
Table 4 presents the comparison between the simulation and the
experimental results. The experimental results closely match those
from the simulation, with an error margin lower than than 4%.

In the next two experiments, we focus on highlighting the tradeoff
between proportionality and bandwidth guarantees at the network
level. First, consider a scenario, where two tenants A and B have the
same number of VMs (64) deployed on a fully provisioned tree net-
work —we use a 32 server cluster, each server containing one VM
of each tenant. VMs of tenant A communicate in a (random) one-
to-one fashion. B runs a MapReduce job, and his VMs are divided
in two sets M and R, such that all VMs in M communicate to all in
R. For ease of exposition, we consider the communications to be
bidirectional.”

Figure 11 presents the ratio between the aggregate bandwidths of
Band A for PS-P and PS-N in this setting.'’ The fully proportional

? Otherwise, congestion will not appear uniformly, and the results
will become more difficult to understand.

""We did not include the other policies since they would offset the
chart, making it significantly harder to visualize.

1200 T T

=

IS)

S

3
7

Core
Bandwidth

@

S

S
T

Adg
Bandwidth

N
o
S

& @ & &
AN A N A .

gregate Bandwidth (Mbps)
3
o

/ \ / \ / \ / \ Bandwidth 200
0 Per-Flow Per-Source PS-L
o, f e e o e I B e '

(a) Experiment

Rack mmm Agg

(b) Full bisection bandwidth network

T 1200 T T T T T
Rack = Agg mm Core

T
. Core

r2 o ® O
o o o o
o o o o
i i i i
; ; ; ;

n

o

S
T

Aggregate Bandwidth (Mbps)

l. 1 | |,|f

PS-pP PS-N 0 Per-Flow Per-Source - PS-p PS-N

(c) 4x Oversubscribed network

Figure 10: Simple scenario with two tenants having equal number of VMs and a uniform deployment. Tenant A communicates using a pairwise
one-to-one communication pattern and B all-to-all. (b) PS-P, PS-L and Per-Source policies achieve perfect proportionality in presence of full
bisection bandwidth; (c) PS-N provides the best allocation ratio among the compared policies when the network is oversubscribed.

1.0
0.9
£
g 0.8
507
2 0.6
kS
505
504
03

992 03 04 05 06 07 08 09 10
M/R

Figure 11: PS-N is more proportional than PS-P.

allocation would allocate equal network shares to both A and B, and
would appear as a horizontal line at y = 1. However, this allocation
is not always possible, since the MapReduce communication pat-
tern is limited by min(M, R) X C, where Cis the access link capacity.
Figure 11 shows that PS-P provides direct proportionality between
min(M, R) and tenant B’s bandwidth: each VM is guaranteed its fair
share of the network up to the core, and MapReduce will commu-
nicate with an aggregate throughput of min(M, R) x Bw, where Bw
is the per-VM bandwidth guarantee (Bw = £ in this case). PS-N,
on the other side, provides better proportionality than PS-P, i.e., the
ratio of allocated bandwidths is closer to 1.0.

Proportionality, however, comes at a cost as expected from the
tradeoffs presented in §2; the minimum bandwidth allocation of a
VM provided by PS-N can become arbitrarily small in practice. Fig-
ure 12 presents the minimum guarantee provided by PS-N and PS-P
for a scenario similar to the one shown in Figure 7 but with a slightly
different communication pattern. In addition to the N-to-one com-
munication pattern employed by A (i.e., all of A’s VMs send to A,),
each of the N VMs sending traffic to A; also communicates with
another of the N VMs, so that they can utilize the rest of the links.
Without this additional flow from each sender, the throughput of
A’s VMs would be limited by the traffic going into A;, and the min-
imum bandwidth would be affected by the hose model rather than
the allocation scheme. We study the variation of minimum of the
bandwidth allocations in such a scenario with increasing network
size. Figure 12 shows that PS-P can maintain the same minimum
guarantee regardless of the network size (for the same oversubscrip-
tion ratio), while PS-N’s minimum bandwidth decreases with the
network size given this “bad” communication pattern.

5.3 Trace-driven Simulations

So far we have evaluated the proposed and existing network al-
location policies in synthetic, small-scale scenarios. To understand

50--EH o o
7
8404
S B 0--0 Per-Flow
s =2X...Per-Source
'g i PS-L
e
s B PS-P
o
= PS-N
=

0 20 40 60 80 100 120
Hosts

Figure 12: PS-P gives the highest bandwidth guarantee.

their large-scale implications, we performed some experiments us-
ing MapReduce traces from a 3200-node Facebook production data
center [12]. Our goal is to identify the network shares that different
MapReduce jobs would achieve given different network allocation
techniques.

We consider a one hour window in the trace and observe the
number of jobs involved in active shuffle at a minute’s interval in that
hour. In our trace, an average number of 73 jobs were in active shuf-
fle at any given time, with a maximum of 100 jobs and a minimum
of 49. We then create a snapshot in time at the point when most jobs
are in active shuffle, generate corresponding traffic matrices and ob-
serve the allocation of different policies. We infer the network posi-
tion of each mapper and reducer based on the IP addresses and the
names in the log files. The inference shows a heterogeneous cluster
with an average of four active tasks per server, with some servers
having up to 12 tasks. Due to the lack of knowledge about the over-
subscription factor, we consider both full bisection bandwidth and
4x oversubscribed topologies with 20 aggregate switches and 160
racks. Note that the trace does not contain information about the
processing times of each job; hence, we do not try to emulate entire
running times of the jobs.

Figure 13(a) presents the network allocations for all the active
jobs based on their size (measured by the number of mapper and re-
ducer tasks) for the full bisection bandwidth case. The total network
utilization was the same since all evaluated allocations are work con-
serving disciplines, but the distribution of bandwidth among jobs is
different. During the shuftle phase, a MapReduce job with M map-
pers and R reducers can launch M x R flows, one from each of the
mappers to each of the reducers. In such a scenario, a Per-Flow al-
location can potentially give a network share proportional to M x R
to a job whose payment was proportional to M + R (the number of
map and reduce slots it was allotted). Thus network allocations can
be quadratic making allocations significantly unfair to small jobs.

w
n
o

:g eee Per-Flow mmg PS-P .

[©) 300 e« Per-Source aaa PS-N .|

£ 250H +++ PS-L

9 L]

3 200 R

s A . .

E 1505 M

T 100f & =

o

S 5ol 4"

< .

OO 2000 4000 6000 8000 10000

Job Size (M +R)
(a) All Jobs

Aggregate Bandwidth (Gbps)

10f| ==~ Per-Flow (Deg2) e®e Per-Flow =
- PS-N (Deg 1) =®a PS-P
8 — Proportional aAa PS-N - wah
]

o 20 20 60 80
Job Size (M +R)

(b) Small Jobs Only

100

Figure 13: Network allocation of MapReduce jobs on a 3200-node Facebook production cluster under different policies.

Strategy Full Bisection BW 4x Oversubscribed
RMSD | Speed-up || RMSD | Speed-up
Per-Flow 1.76 1.00 2.60 1.00
Per-Source 1.22 9.64 1.31 11.91
PS-L 1.72 2.49 2.39 10.73
PS-P 1.61 16.61 1.19 14.37
PS-N 1.00 9.96 1.00 11.77

Table 5: Normalized deviation from proportional allocation mea-
sured using RMSD and speed-up in the shuffle completion time for
small jobs.

To better understand this unfairness against small jobs, we consider
jobs with (M+R) < 100, that form a substantial fraction of the total
jobs. Figure 13(b) shows the manifestation of this quadratic alloca-
tion problem with Per-Flow, which gives considerably lower shares
to the small jobs. We also note that PS-N almost closely matches the
proportionality line— (M + R) &, where BW is the total bandwidth
and N is the total number of VMs of this data subset.

Table 5 presents quantitative results for small jobs for: (i) propor-
tionality and (ii) speed-up in the shuffle completion time compared
to Per-Flow, for both fully subscribed and oversubscribed topolo-
gies. We quantify proportionality by using the Root-Mean-Squared
Deviation (RMSD) of the allocations from the proportional alloca-
tion and normalize them w.r.t. PS-N (which exhibits the least devi-
ation for both topologies). The shuffle completion time of a job is
bottlenecked by the last finishing flow [12], which in turn is dictated
by the task having the minimum bandwidth allocation across all the
tasks in a job. We thus approximate the shuffle time by dividing the
bytes transferred per task by the bandwidth of the slowest transfer-
ring task. We report the median speed-up value relative to the Per-
Flow (TCP) case which performs the worst."" PS-P performs the
best (since it maximizes the minimum bandwidth guarantee for a
task) with speed-ups of ~15x for both topologies. Per-Source and
PS-N also give significant improvements for the small jobs.

6. PRACTICAL CONSIDERATIONS

In this section, we present more details for the practical challenges
towards deploying the allocation policies described in §4.
Full Switch Support: Today, there are switches that already have
hardware capabilities matching our requirements (one queue per
tenant, weighted fair queueing) such as routers with per-flow WFQ
support [2], however most data center switches today have 8-64

"The mean has a similar behavior albeit a few outliers with large
speed-ups.

hardware queues [5]. Determining the cost of this extra support
compared to today’s data center switches is a place for future work.

We also note that the weights for the tenant queues must be up-
dated in time. For PS-P, weighs on a link L must be updated only
when a new VM is started in the subtree delimited by L. For PS-L
and PS-N the weight of tenant A through link L needs to be updated
when there is a new pair of VMs belonging to A communicating on
L. Updating weights can be done by (1) a centralized controller or
(2) through the data-plane packets, which need to contain the ten-
ant ID and weight information in packets. Providers can implicitly
encode tenant IDs into different sets of IP or (virtual) MAC address
ranges (e.g., using something like NetLord [21]). The weight of a
VM can be encoded in packets through the use of the QoS bits in
the IP header, filled out by hypervisors (for security reasons), which
allows for 256 weights.

To support PS-L, switches require no additional information. For
PS-P, switches need to be configured with one bit for each interface,
identifying whether the interface is facing hosts or facing the net-
work core.

Deploying PS-N is the most challenging, since it requires coor-
dination between the source and the destination hypervisors for
setting the weight of a source-destination pair. This weight must
also be communicated to switches. Note that all the flows between
a source and a destination contain the same weight. For the first
packet between two VMs, the source’s hypervisor inserts its allo-
cated weight and the destination adds its weight to the returned
packets. The subsequent packets contain the full weight of the
source destination pair. When one of the endpoints starts commu-
nicating with another VM, its hypervisor updates the weights of the
ongoing flows to the other endpoints. For practical purposes, the
presence or absence of a communication between two VMs can be
identified by using a threshold for the outgoing/incoming rate. Note
that the 8 QoS bits in the IP packet header may offer too little weight
granularity for PS-N. One approach to increase the number of avail-
able bits is to use encapsulation, e.g., something like NetLord [21].
In this case, only the MAC addresses are used for switching from
the encapsulated header and many more other bits can be used for
this purpose. VLAN tags can also be used to carry weights.

Partial Switch Support: CSFQ [26] was proposed to implement
weighted fair queueing between flows without requiring per-flow
state in the core switches but only in the edge switches. In data
centers, we can use CSFQ and only maintain per-VM (or even per-
tenant) state inside hypervisors at end points, and no such state in
switches. PS-N can directly be implemented using vanilla CSFQ.
PS-P can also be implemented using CSFQ but requires a slight
change in the mechanism. In particular, each flow needs to contain
two weights, the source and the destination weights, and switches

need to swap the two weights when the direction of packets changes
from flowing towards the core to flowing away from the core (to-
wards servers). However, a CSFQ-based deployment does require
CSFQ support in switches. While we do believe hardware sup-
port for CSFQ can be inexpensive and fast, this claim remains to
be proven by hardware manufacturers.

No Switch Support: TCP is known to provide per-flow fairness. If
we use a single flow between a source and a destination or we im-
pose an aggregate equivalent behavior in hypervisors, we achieve
per source-destination fairness. If we are able to use weights be-
tween these flows (e.g., two TCP flows weight twice as much as a
single flow and get twice as much bandwidth on a congested link)
we can effectively implement PS-N. Seawall [25] aims to achieve this
purpose. Thus, we expect one would be able to use Seawall, and in-
stead of using per-source weights, use the weights given by PS-N.
Weighted Flow Assignment (WFA) [12] can also approximate PS-N
shares at the application layer using multiple TCP flows. We be-
lieve PS-P could be approximated with similar (but more complex)
mechanisms.

7. RELATED WORK

Recently, there have been a few proposals for sharing cloud net-
works. Seawall [25] proposes a hypervisor-based mechanism for
enforcing a generalized TCP-like behavior between VMs, where
each TCP-like flow can have an arbitrary weight (rather than a single
weight as in the case of TCP). Using this mechanism Seawall imple-
ments a per-source allocation policy. Therefore, Seawall is mostly
orthogonal to our paper; in fact, Seawall’s mechanism may be used
to implement PS-N and PS-P. We leave this as future work.

Oktopus [10] and SecondNet [17] propose static reservations
throughout the network to implement bandwidth guarantees for the
hose model and pipe model, respectively. The main drawback of
reservation systems is that they do not achieve the work conserva-
tion property, since the unused bandwidth is not shared between
tenants. On the other hand, the advantage of reservation systems is
that they can achieve more complex virtual topologies regardless of
the physical location of the VMs. PS-P can support different band-
width guarantees for different tenants by using carefully selected
weights, but cannot support virtual topologies that are different than
the physical topologies. For this purpose, reservation systems could
be combined with our proposed allocation policies, which can be
applied within each reserved virtual topology.

Gatekeeper [24] proposes a per-VM hose model with work con-
servation. Gatekeeper uses a hypervisor-based mechanism, which,
however, works only for full bisection-bandwidth networks. In this
paper we have described the PS-P allocation policy which supports
a similar model for arbitrary tree networks, and described possible
deployments using switch support; we are currently investigating
how to implement PS-P using only hypervisors as well.

NetShare [19] advocates network sharing through the use of per-
tenant weights that are constant throughout the network. This
model can be used to implement a form of link proportionality.

Congestion Exposure (ConEx) [3] is a recent IETF effort that
aims to equalize the number of dropped packets (congestion-
volume) of different entities. By applying the ConEx mechanism
between VMs one could achieve a Per-SD allocation. By apply-
ing ConEx between tenants it appears that the closest abstraction
achieved is some form of congestion proportionality (but which also
considers links congested by a single tenant). However, the precise
set of properties of this approach remain to be determined.

8. CONCLUSIONS

In this paper, we have focused on understanding and exploring
several key requirements and properties for network allocation in
data centers. In summary, we have identified three main require-
ments: min-guarantee, proportionality (ranging from the network
level to the link level) and high utilization, and a set of properties to
guide the design of allocation policies in the tradeoft space.

In addition, we have introduced three allocation policies—PS-
L, PS-P and PS-N—to navigate the tradeoff space. We have eval-
uated the proposed allocation policies using simulation and a soft-
ware switch implementation. Through hand-crafted examples and
traces of MapReduce jobs from a production cluster, we have shown
that they achieve their intended properties. However, much more
remains to be done. The allocation policies we have proposed in
this paper should be seen as merely starting points in exploring the
tradeoft space.

Acknowledgments: We thank the anonymous reviewers and our
shepherd for their valuable feedback. Part of this work was sup-
ported by the NSF Award CNS-1038695.

9. REFERENCES

[1] Amazon web services. http://aws.amazon.com.

[2] Cisco 7500 series. http://goo.gl/mOVel.

[3] Congestion Exposure. http://datatracker.ietf.org/wg/conex/.

[4] DETERlab. http://wuw.isi.deterlab.net.

[5] HP 5900 ToR switch. http://goo.gl/kcyce.

[6] Rackspace Cloud Servers vs. VPS Platforms. http://goo.gl/LPxIJ.

[7] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity data center
network architecture. In SIGCOMM. ACM, 2008.

[8] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat. Hedera:
Dynamic Flow Scheduling for Data Center Networks. In NSDI, 2010.

[9] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron. The price is right:
Towards location-independent costs in datacenters. In Hotnets, 2011.

[10] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron. Towards Predictable
Datacenter Networks. In ACM SIGCOMM, 2011.

[11] B. Briscoe. Flow rate fairness: Dismantling a religion. ACM SIGCOMM
Computer Communication Review, 2007.

[12] M. Chowdhury, M. Zaharia, J. Ma, M. L. Jordan, and . Stoica. Managing data
transfers in computer clusters with Orchestra. In SIGCOMM, 2011.

[13] N.G. Duffield, P. Goyal, A. G. Greenberg, P. P. Mishra, K. K. Ramakrishnan, and
J. E. van der Merwe. A flexible model for resource management in virtual private
networks. In SIGCOMM, 1999.

[14] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and I. Stoica.
Dominant resource fairness: fair allocation of multiple resource types. In
USENIX NSDI, 2011.

[15] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. A. Maltz,
P. Patel, and S. Sengupta. VL2: A Scalable and Flexible Data Center Network.
ACM SIGCOMM, August 17 - 21 2009.

[16] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, and S. Lu.
BCube: A High Performance, Server-centric Network Architecture for Modular
Data Centers. ACM SIGCOMM, 2009.

[17] C. Guo, G. Lu, H. J. Wang, S. Yang, C. Kong, P. Sun, W. Wu, and Y. Zhang.
Secondnet: a data center network virtualization architecture with bandwidth
guarantees. In CONEXT. ACM, 2010.

[18] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu. Dcell: A Scalable and
Fault-tolerant Network Structure for Data Centers. In SIGCOMM, 2008.

[19] T.Lam, S. Radhakrishnan, A. Vahdat, and G. Varghese. NetShare: Virtualizing
Data Center Networks across Services. Technical Report, UCSD, 2010.

[20] R. Morris, E. Kohler, J. Jannotti, and M. E. Kaashoek. The click modular router.
SIGOPS Oper. Syst. Rev., 33(5):217-231, 1999.

[21] J. Mudigonda, P. Yalagandula, J. Mogul, B. Stiekes, and Y. Pouffary. Netlord: a
scalable multi-tenant network architecture for virtualized datacenters. In ACM
SIGCOMM, 2011.

[22] B.Radunovi¢ and J.-Y. L. Boudec. A unified framework for max-min and
min-max fairness with applications. IEEE/ACM Trans. Netw., Oct. 2007.

[23] C.Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and M. Handley.
Improving Datacenter Performance and Robustness with Multipath TCP. In
ACM SIGCOMM, 2011.

[24] H. Rodrigues, J. R. Santos, Y. Turner, P. Soares, and D. Guedes. Gatekeeper:
Supporting bandwidth guarantees for multi-tenant datacenter networks. In
USENIX WIOV, 2011.

[25] A. Shieh, S. Kandula, A. Greenberg, C. Kim, and B. Saha. Sharing the Data
Center Network. In Usenix NSDI, 2011.

[26] 1. Stoica, S. Shenker, and H. Zhang. Core-stateless fair queueing: achieving
approx. fair bandwidth allocations in high speed networks. In SIGCOMM’98.

http://aws.amazon.com
http://goo.gl/m0Ve0
http://datatracker.ietf.org/wg/conex/
http://www.isi.deterlab.net
http://goo.gl/kcycc
http://goo.gl/LPxIJ

	Introduction
	Requirements and Tradeoffs
	Assumptions and Notation
	Allocation Requirements
	Tradeoff Between Network Proportionality and Min-Guarantee
	Tradeoff Between Network Proportionality and High Utilization
	Congestion Proportionality
	Link Proportionality

	Traditional Allocation Policies

	Network Sharing Properties
	Proposed Allocation Policies
	Proportional Sharing at Link-level
	Proportional Sharing at Network-level
	Proportional Sharing on Proximate Links
	Summary
	Deploying PS-L, PS-P and PS-N
	Other Models

	Evaluation
	Link-Level Scenarios
	Network-Level Scenarios
	Trace-driven Simulations

	Practical Considerations
	Related Work
	Conclusions
	References

