
A Cloud-Scale Characterization of
Remote Procedure Calls

Korakit Seemakhupt
University of Virginia

Brent E. Stephens
Google and University of Utah

Samira Khan
Google and University of Virginia

Sihang Liu
University of Waterloo

Hassan Wassel
Google

Soheil Hassas Yeganeh
Google

Alex C. Snoeren
Google and UC San Diego

Arvind Krishnamurthy
Google and University of Washington

David E. Culler
Google

Henry M. Levy
Google and University of Washington

Abstract
The global scale and challenging requirements of modern
cloud applications have led to the development of complex,
widely distributed, service-oriented applications. One enabler
of such applications is the remote procedure call (RPC),
which provides location-independent communication and
hides the myriad of cloud communication complexities and
requirements within the RPC stack. Understanding RPCs is
thus one key to understanding the behavior of cloud appli-
cations. While there have been numerous studies of RPCs
in distributed systems, as well as attempts to optimize RPC
overheads with both software and hardware, there is still a
lack of knowledge about the characteristics of RPCs “in the
wild” in the modern cloud environment.

To address this gap, we present, to the best of our knowl-
edge, the first large-scale fleet-wide study of RPCs. Our study
is conducted at Google, where we measured the infrastructure
supporting Google’s user-facing, billion-user web services,
such as Google Search, Gmail, Maps, and YouTube, and the
information and data management systems that support them.
To carry out the study, we examined over 10,000 different
RPC methods sampled from over one billion traces, along
with statistics collected every 30 minutes over a period of
nearly two years. Among other things, we consider the vol-
ume, throughput and growth rate of RPCs in the datacenter,
the latency of RPCs and their components (the “RPC latency
tax”), and the structure of RPC call chains. Our analysis
shows that the characteristics, scope and complexity of RPCs
at hyperscale differ significantly from the assumptions made

This work is licensed under a Creative Commons Attribution International 
4.0 License.
SOSP ’23, October 23–26, 2023, Koblenz, Germany
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0229-7/23/10.
https://doi.org/10.1145/3600006.3613156

in prior research. Overall, our work provides new insights
into RPC usage and characteristics at the largest scale and
motivates further research on optimizing the diverse behavior
of this crucial communication mechanism.

CCS Concepts: • Networks → Network measurement; •
Computer systems organization → Cloud computing.

Keywords: Remote procedure call, Cloud computing, Dis-
tributed computing, Communications systems

ACM Reference Format:
Korakit Seemakhupt, Brent E. Stephens, Samira Khan, Sihang Liu,
Hassan Wassel, Soheil Hassas Yeganeh, Alex C. Snoeren, Arvind
Krishnamurthy, David E. Culler, and Henry M. Levy. 2023. A Cloud-
Scale Characterization of Remote Procedure Calls. In ACM SIGOPS
29th Symposium on Operating Systems Principles (SOSP ’23), Oc-
tober 23–26, 2023, Koblenz, Germany. ACM, New York, NY, USA,
17 pages. https://doi.org/10.1145/3600006.3613156

1 Introduction
Modern cloud computing plays an increasingly critical role in
today’s Web services, data storage, analytics, and emerging
applications like AI/ML and AR/VR. A key advantage of the
cloud is the ability for applications to dynamically scale out
to meet changing workloads. Cloud applications can achieve
high availability, fault isolation, and easier maintenance, in
part, through deployment and replication of computation and
data across datacenters and geographical regions.

To scale out, a single application is divided into multiple
distributed communicating services. Currently, the standard
inter-communication layer for cloud services is Remote Pro-
cedure Call (RPC) [10, 12, 13, 48, 73, 76]. RPC greatly sim-
plifies application development in a distributed system. In
particular, a function call to a remote machine looks similar
to a function call within the same application [14], and com-
plexities such as connection management, network protocols,
parameter marshalling/demarshalling, encryption/decryption,
and thread scheduling are handled by the RPC stack, which
is typically implemented as a userspace library [44, 66, 68].

498

https://doi.org/10.1145/3600006.3613156
https://doi.org/10.1145/3600006.3613156
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3600006.3613156&domain=pdf&date_stamp=2023-10-23


In effect, RPC is the fundamental control structure that
defines the flow of both computation and data in a distributed
system.1 For this reason, RPC is a valuable lens for view-
ing the behavior and performance of modern cloud-based
widely-distributed applications. While prior work has ana-
lyzed the behavior of datacenter networks [7, 11, 60] and
the microarchitectural CPU behavior of datacenter applica-
tions [42], there is little analysis and understanding of RPCs
at cloud scale. This is a significant limitation, because RPCs
generate the work performed by the network, the CPUs, and
the storage systems. For example, it is necessary to consider
the RPC communication graphs to understand the dependen-
cies across network flows, e.g., co-flows [21].

This paper presents, to our knowledge, the first analysis
of RPCs from geo-distributed applications running across
a fleet of datacenters. Our study is unique in its massive
scale: we evaluate RPC calls in Google’s internal-application
environment collected over a period of 23 months, using
multiple tools and data sources describing RPC characteristics
and behavior. For example, we examine counters collected
every 30 minutes from over 10,000 different unique RPC
methods (procedures) running in 100s of different clusters,
and we analyze over 722 billion RPC samples collected from
a single day. This data, which we describe more in following
sections, allows us to discover key properties such as the
volume of RPCs and its growth over time, the contributions
of different RPC components to latency, and the depth and
structure of RPC call trees. Together, these different analysis
methodologies allow us to conduct a thorough and in-depth
analysis of the behavior of RPCs and global-scale applications
in one of the world’s largest hyperscalers.

In more detail, the contributions of this paper include the
following:
• We show that the use of RPC is increasing rapidly, indi-

cating the importance of RPC optimization.
• We characterize the latency, frequency, size, and nested

hierarchy of over 10,000 distinct RPC methods, showing
that their characteristics differ significantly from those
assumed by prior work. For example, on average, RPCs
in our environment operate at millisecond timescales and
kilobyte sizes with relatively deep nested hierarchies.

• We analyze the latency components in RPC completion
time and find that the RPC latency bottleneck differs
from prior assumptions. On average, the majority of this
time is spent on application processing, but tail latency is
dominated by the RPC latency tax, i.e., the time spent on
queues, RPC processing, and network transfers.

• We characterize the latency components in eight top ser-
vices and show the latency variation within and across
physically co-located clusters of servers distributed across

1RDMA [1, 25, 34, 70, 77] systems are increasingly used along with RPC
for data movement, but we focus here on RPC.

datacenters. We find that high server and memory utiliza-
tion leads to high variation within clusters, while network
latency dominates the variation across clusters.

• Finally, we analyze the CPU cycle variation in processing
RPCs across the fleet and find that there is a significant
variance in CPU cycles used for RPCs, indicating the
opportunity for better load-balancing.

Overall, our characterization of RPCs provides a perspec-
tive on the scope, complexity, and variance of the cloud ser-
vices that implement some of the world’s largest-scale web
applications. We also hope to motivate future research on
designing effective optimizations of applications and RPCs.

The remainder of the paper is organized as follows. Sec-
tion 2 explores the scope and complexity of RPCs in Google’s
hyperscale environment. In Section 3, we examine the RPC
latency and its major components that affect RPC completion
time and variance. Section 4 considers resource utilization
in RPC services across the datacenter, focusing on the op-
portunity for load-balancing. We discuss implications of our
research in Section 5, present previous work in Section 6, and
conclude in Section 7.

2 Characteristics of RPCs at Hyperscale
This section analyzes the properties of the RPCs used to imple-
ment Google’s external services and internal data processing
systems in aggregate across its datacenters. For each RPC
that we analyze, we measure the behavior of the RPC stack
and the RPC handler (i.e., the invoked method). Specifically,
we measure RPCs from Google’s first-party commercial prod-
ucts, including both user-facing web services (e.g., Google
Search, Google Maps, Gmail, and YouTube), as well as the
massive internal services and data processing systems that
support these web services (e.g., Spanner [22], BigQuery [26],
Bigtable [17], F1 [64], GFS [30], and Chubby [15]). Our
study does not include Google’s external Cloud product
(GCP) or RPCs issued by its customers.

These Google internal services are all built with similar
design patterns. In particular, they are widely distributed,
e.g., they consist of many replicated parallel tasks running
in multiple geo-distributed datacenters to ensure high avail-
ability. Nearly all of the services we study are built with the
Stubby RPC stack [12], a Google-internal RPC library that
provides features similar to gRPC. To operate at a massive
scale, many of these services utilize a partition/aggregate de-
sign pattern [24, 64]. Data for these services is stored remotely
in a network filesystem that replicates blocks across multiple
machines in different datacenters for fault tolerance [30]. In
these applications, computation flows from front-end applica-
tions to back-end services and then to the network filesystem.
The individual RPCs that compose these applications can
handle large amounts of data and are often computationally
intensive. As such, these applications are based on a service-
oriented architecture rather than a microservice architecture

499



in that they are not decomposed into the smallest possible
functional units. While we expect to see an increase in mi-
croservices in the future, the rapid growth in data collection
and processing may well offset that trend.

Because this is the first study of its kind, it is difficult to
know the extent to which the behavior of Google’s internal
applications generalizes to the behavior of the distributed sys-
tems used in other hyperscalars. Different cloud and commu-
nications architectures can lead to different design decisions,
and it would be interesting to understanding other designs
and their implications. However, this study is an important
first step toward understanding RPC in the context of massive
scale applications and their supporting services.

2.1 Methodology
In our analysis, we primarily focus on the most common RPC
stacks at Google: Stubby [12] and gRPC [44]. Our analysis is
performed using three different Google-internal monitoring
tools, Monarch [4], Dapper [65], and GWP [58]. We particu-
larly focus on the distribution of RPC completion time, size,
and depth, as prior works propose optimizations based on
these RPC properties [8, 40, 41, 46, 47, 53, 56, 72, 74].

Monarch is a monitoring database that performs periodic
sampling of various metrics exported by individual applica-
tion instances (tasks). These samples provide distributions
of RPC behavior across various levels and dimensions of
aggregation, e.g., per-cluster or network-traffic class.2 Not
all metrics in this database have the same retention policies.
Some metrics are retained for 700 days with metric samples
every 30 minutes. Over shorter time scales like the past 30
days, it is possible to get samples with shorter windows, e.g.,
one every minute. Our results are based on metrics from a 700-
day period between December 2020 and November 2022. We
use this timescale of 700 days primarily to observe changes
in RPCs over time.

Aggregate time-series data does not provide complete infor-
mation about the behavior of individual RPCs, so we employ
Dapper to conduct some aspects of our analysis. Dapper is
an internal service that collects samples of entire RPC trees
(traces), where each node in the tree represents an individual
child RPC call [65]. For each RPC call, the service collects
information about the latency of various components, includ-
ing the time spent in the client, server, and network. For RPCs
that make nested RPC calls, the time of the nested calls is
included in the application processing time of the parent RPC.
From the RPC handler’s perspective, waiting for application
processing and waiting for the responses from nested RPCs
are the same, as the nesting is invisible to the caller. Similarly,
we exclude the latency of error RPCs from the measurement.
However, the caller of erroneous RPCs needs to handle er-
rors (unless canceled by the caller), and the latency of these

2The sampling omits some RPC classes, such as streaming RPCs that are
used for some bulk-data transfers.

Figure 1. Normalized RPS per CPU cycles consumed over time.

callers is included in the latency measurement. Note that TCP
retransmissions are not counted as errors.

Our analysis that utilizes the Dapper tracing service focuses
on RPCs from a single day. When we use tracing to look at
different RPC methods, we only consider methods with at
least 100 samples so that the 99th percentile is well defined.

We use GWP (Google-Wide Profiling) [58] to study the
number of CPU cycles spent processing RPCs in our fleet.
GWP collects daily CPU profiles of sampled application exe-
cution, and these profiles can be used to identify RPC cycles.

2.2 Why is RPC Evaluation Important?
We evaluate the growth rate of RPCs to demonstrate the im-
portance of RPC and its efficiency in the cloud. Equally
important, RPC gives us insight into the organization of a
widely distributed system and its dynamic functioning. Fig-
ure 1 shows the number of RPCs per second (RPS) in our
fleet divided by the number of CPU cycles consumed over the
700-day period. The daily RPS/CPU value in this figure is
normalized to the first day of our observation, which shows
the growth rate of the ratio.

From Figure 1, RPC throughput relative to CPU cycle uti-
lization is increasing at an annual rate of approximately 30%,
for a total increase of 64% over the measurement interval.
That is, RPC usage is growing faster than compute in our
cloud. This change is the result of two trends. The first is that
increasing the hardware optimization of the RPC stack over
time has reduced the CPU cycle cost of each RPC invocation.
The second is that the growth of microservice-based design
[2, 3, 59] is reducing the number of CPU cycles consumed
per RPC, and this is likely to accelerate this trend even more
in the future.

This growth rate puts a tremendous demand on network and
compute resources, creating major challenges to sustaining
this growth.

In the rest of this section we analyze high-level RPC char-
acteristics to understand the basic properties of RPCs and
RPC-based services. The deeper analysis in future sections
will help to expose potential optimization and acceleration
opportunities for cloud-based RPC systems.

2.3 Not all RPCs are the same.
We analyze the distribution of completion times and the pop-
ularity of common RPC methods in order to understand the
variance in the timescale on which they operate. Figure 2a
shows, for our 10K methods, the RPC completion time (RCT)

500



(a) RPC Latency Distribution
Heatmap

(b) RPC Latency CDF

Figure 2. Per-Method RPC latency, sorted by median latency.

(a) RPC method frequency (b) CDF of method frequencies
Figure 3. Per-Method RPC frequency, sorted by median

latency.

per method, sorted by the median latency. The RPC comple-
tion time includes all latency from the client’s RPC invocation
until the client receives the response; this includes execution
of the method on the server. We show the latency distributions
of each method as a heatmap, where brighter colors (e.g., red)
indicate P90+ tail latencies, and cooler colors (e.g., blue) in-
dicate P10- latencies of each method. Figure 2b shows a CDF
of the tail latencies of different methods.

These figures show that there is significant variance in
the amount of time taken to process RPCs across different
methods. Most methods are capable of completing RPCs
within hundreds of microseconds. For 90% of the methods,
the 1st percentile latency is 657 µs or less. However, services
often operate at the millisecond scale in our fleet. 90% of the
services have a median latency that is 10.7 ms or greater.

At the tail, almost all methods have slow RPCs that operate
on the scale of milliseconds. Over 99.5% of methods have a
P99 latency of 1 ms or greater; 50% of methods have a P99
latency of 225 ms or greater. Further, the slowest methods
are even slower. Of the slowest 5% of methods, the P1 and
P99 latencies are 166 ms and 5 s or greater, respectively. We
conclude that there is a major variation in the latency of hy-
perscale RPCs, and it ranges from hundreds of microseconds
to seconds.

The latencies of hyperscale RPCs are significantly higher
than what has been assumed in recent RPC benchmarks [29]
and RPC optimization [35, 38, 41, 46, 72] works. Most of
these studies assumed micro-second level RPCs and opti-
mized the RPC stack for better performance. It is clear that

(a) Descendants sorted in increasing
order

(b) CDF

Figure 4. Per-Method Number of Descendants

(a) Per-method number of ancestors
sorted by median in increasing order

(b) CDF of ancestor count

Figure 5. Per-Method RPC Ancestors.

we need to better understand the latency bottlenecks in hy-
perscalar RPCs; we dive deeper into latency components and
variation of RPCs in Section 3.

Given the large variation in method latency, we also investi-
gate the popularity of RPC methods. Knowing the popularity
distribution tells us the expected benefit of optimizing a small
number of methods. Figure 3a shows the popularity (rela-
tive frequency) of all 10K methods, and Figure 3b shows the
popularity CDF; both graphs are again sorted in latency order.

From Figure 3a we see that not all RPC methods are equally
popular, but in particular, many of the low-latency methods
(on the left) are extremely popular. In fact, the 100 lowest
latency RPC methods account for 40% of all RPC calls. As an
extreme point, the “Write” RPC for the Network Disk alone
accounts for 28% of all RPC calls.

Sorting by popularity rather than latency (not shown) gives
another view of the skew. The 10 most popular methods ac-
count for 58% of all calls, and the top-100 account for 91% of
all calls. While many long-latency methods may be less fre-
quent, collectively they consume more resources than shorter,
more popular methods. The slowest 1000 RPC methods ac-
count for only 1.1% of all calls, but they take 89% of the
total RPC time. Clearly not all RPCs are the same, and we
should target different services and methods for optimization
depending on our goals.

2.4 Nested RPCs are Wider than Deep
The distributed nature of service-oriented applications in the
fleet results in nested RPC call graphs, where each RPC can
fan out to multiple child RPCs. To better understand the shape

501



of nested RPC calls, we analyze the number of descendants
and ancestors of different RPC methods. Looking at the num-
ber of descendants shows the scale of distributed computation
performed by an RPC, and the number of ancestors provides
insights into how the properties of RPCs change as they get
deeper into the call graph of a root RPC.

Figure 4 plots the number of descendants for different
RPC methods. Half of RPC methods have a median of 13
or fewer descendants. On the other hand, the descendant tail
can be quite large: 90% of RPC methods have P90 and P99
descendant counts of over 105 and 1155, respectively.

Figure 5 shows the number of ancestors for each invoked
method, i.e., the return distance from a called method to the
root RPC in the tree. Compared to the number of descen-
dants, the number of ancestors for a given invocation is much
smaller, implying that the typical RPC call tree is wider than
it is deep. For example, half of the methods have fewer than
10 ancestors at 99th percentile.

In early RPC systems, calls typically went to simple, dis-
crete services. However, from our measurements, RPCs in
the cloud environment may invoke general computations that
include complex call trees and nested RPCs. Understanding
this call structure has important implications, e.g., in creat-
ing benchmarks for hyperscale services that can accurately
represent the shape of complex, nested RPC call graphs.

As a point of comparison, Luo et al. [48] performed an
analysis of RPC call graphs from more than 20,000 microser-
vices at Alibaba (Figure 3). In both this study and the Alibaba
study, the call graphs are wider than they are deep. There is
a heavy tail many times larger than the median, and the call
tree depths are also similar at both the median and the tail.
The biggest difference is that the RPC methods that we study
have a larger number of descendants, especially at the tail.

Huye et al. [37] report properties about the number of
service blocks in the request workflows for a few of Meta’s
internal applications, and they similarly find that these service
graphs are much wider than they are deep. Their P99 depth
ranges from 5–6 and their maximum depth ranges from 9–19,
and this is similar to our findings. Their median total number
of blocks per trace ranges from 2–498, and the P99 ranges
from ∼1K–10K, and there are RPC methods that we study
that also have similarly sized RPC trees.

Gan et al. [29] report the depth and size of the service
graphs used by the applications in the DeathStarBench (DSB)
benchmark. The applications service graph depths range from
3–9, and the total number of services in an application ranges
from 21–41. These service graphs are similar in depth to
those of the methods that we studied, but the total size of
these graphs are smaller, especially at the tail.

2.5 RPC Size Matters
Characterizing flow sizes and their heavy tail in datacenter
workloads has been important in shaping the design of traffic
engineering in datacenter networks. At the RPC layer, the

(a) Request Sizes. (b) Request Sizes (CDF)
Figure 6. Per-Method Request Size

(a) Response/Request Size Ratio (b) Response/Request Size
Ratio (CDF)

Figure 7. Per-Method Response/Request Size Ratio

individual RPC is the smallest unit that can be load balanced.
As such, it is also important to understand the distribution of
RPC sizes. For example, knowledge of the RPC size distribu-
tion is needed to evaluate changes to how RPCs are mapped
onto network flows.

Figure 6 plots the RPC request size distribution in bytes for
the 10K methods. The figure shows that most RPCs are small
— with the smallest a single cache line (64 B). The smallest
10% have median requests and responses under 2030 B and
188-B, respectively. Half of the methods have median requests
under 1530 B, with responses under 315 B.

Although most RPCs are small, most methods have a large
heavy tail. For example, P90 request and response sizes are
11.8 KB and 10 KB, respectively; P99 requests and responses
are 196 KB and 563 KB — an order-of-magnitude increase
over the median. This finding can predict the effectiveness of
accelerators that have a maximum message size. For example,
an on-NIC deserialization offload such as Zerializer [74],
which can only process messages contained in a single MTU,
would be able to accelerate the majority of RPCs but would
miss the tail.

Although there is no previous study that characterizes the
sizes of RPCs in general, our findings can be compared
against other more directed studies of KV-Stores and dat-
acenter networks. The RPC sizes in Figure 6 are similar to
the distributions reported by prior studies. For example there
are two studies of KV-Stores from Meta [9, 16]. Both of these
studies show similar trends, where most of the transfers range
from 100 B to 100 KB. There is wide range of median values
across methods in Figure 6, and the Meta distributions for

502



(a) By number of
RPC invocations.

(b) By bytes
transferred.

(c) By CPU cycles
used

Figure 8. Fraction of top RPC services.

KV-Stores show median values that are on the smaller side
of median values shown in Figure 6. This is to be expected
given that KV-Stores typically persist small amounts of state
for otherwise stateless applications [5, 12].

When compared against studies of network flows that iden-
tify elephants and mice [6, 7, 11], we similarly find that there
are a few RPC elephants and many mice, although the RPC
and flow sizes are much different. This has implications for
the mappings of RPCs to flows and the scheduling of RPCs
inside the network. A mouse RPC that is queued behind an
elephant RPC will experience a significant increase in latency.
As such, avoiding elephant head-of-line (HOL) blocking is an
important component of reducing tail RPC network latency.

To understand the relationship between requests and re-
sponses, Figure 7 plots the distribution of RPC response/re-
quest ratio for each of the 10K methods. A ratio of greater
than 1 indicates that an RPC was read-dominant, e.g., an RPC
that reads data or performs a computation that expands data.
Write-dominant RPCs have a ratio lower than 1, and this in-
cludes RPCs that write or aggregate data. This figure shows
that most RPC methods service both write- and read-dominant
RPCs with there being a heavy tail of both large responses and
large requests for all RPC methods. However, the majority of
RPCs for most methods are writes because the median ratio
for most methods is below 1. This finding implies that most
RPC methods should expect both ingress and egress dataflow.
Interference between write- and read-dominant RPCs could
potentially be a problem, and this motivates future work on
providing knowledge about expected request and response
sizes to an RPC scheduler.

2.6 Storage RPCs are Important
Here we categorize the fleet-wide RPCs into application ser-
vices. This categorization provides insights into services that
consume the most resources. Figure 8 shows the fraction of
RPC services by the number of RPC invocations, number of
bytes transferred, and number of CPU cycles consumed by
each service. As this figure shows, the top 8 applications in
terms of method popularity account for 60% of total invoca-
tions. The single most popular application is Network Disk,
which receives both the most RPCs and transfers the most
bytes. The next most popular are Spanner, KV-Store, and F1.
In addition, Figure 8b shows that the distribution of bytes

RPC Proc + 
Network Stack

Send queue

Application

RPC Proc + 
Network Stack

RPC Proc + 
Network Stack

RPC Proc + 
Network Stack

Network Send queue

Network Recv queue

Recv queue
Client Server

Figure 9. Components in RPC latency breakdown.

transferred differs significantly from the number of RPC calls.
The Network Disk sends and receives proportionally more
bytes than other applications, while the analytics services
transfer fewer bytes than the other most popular services.

On the other hand, while those storage services consume
a significant number of fleet CPU cycles, they proportion-
ally use fewer cycles per RPC call compared to other ap-
plications. For example, Network Disk, which is the most
popular low-latency RPC service (35% of RPCs), dispropor-
tionately utilizes less than 2% of the fleetwide CPU cycles.
Longer-latency RPCs, e.g., ML Inference and F1 in our study,
consume 0.89% and 1.8% CPU cycles but contribute to only
0.17% and 1.8% of RPC invocations, respectively.

These findings motivate application-specific optimizations,
especially on storage systems, as storage is by far the largest
distributed application in the fleet.

3 RPC Latency
The previous section showed that the RPC completion time
varies significantly, ranging from hundreds of microseconds
to hundreds of milliseconds. Therefore, optimizing an RPC
requires an understanding of the RPC’s components and their
latencies. This section provides a fleet-wide breakdown of
RPC component latencies and then analyzes individual RPC
bottlenecks in eight popular cloud services.

3.1 RPC Components
We measured the latencies of different RPC components with
Dapper. Although different RPC stacks may have different
structures, Figure 9 illustrates the major components of the
RPC stack that we measured, which are described in more
detail below.
• Client Send Queue: Client-side RPC code places re-

quests in a queue where they wait for transmission when
local CPU and network resources are available.

• Request RPC Processing and Network Stack: This
includes the processing and serialization latency for the
RPC packets, i.e., the latency taken for marshalling and
sending multiple packets, as well as the time needed for
message encryption and compression.

• Request Network Wire: RPC request propagation la-
tency, including wire and queuing delay in the network.

• Server Receive Queue: When the server receives an RPC
request, it places it in a request queue, where a server
thread eventually removes and processes it. Latency for

503



(a) Fleet-wide Latency spent by
RPC Tax.

(b) Fleet-wide RPC Tax Latency
breakdown.

(c) Latency spent by RPC Tax
in P95 tail

(d) RPC Latency Tax
breakdown of RPC with P95 tail

latency.
Figure 10. RPC Latency Tax

this stage includes the costs of decrypting and parsing the
request message.

• Server Application: The server thread dequeues an RPC
from the request queue and executes the handler for the ap-
propriate method. If an RPC method calls another method,
this latency includes the time for the subsequent calls to
complete.

• Server Send Queue: When the application completes,
the RPC system places its response in a send queue, where
it waits until the network is available for transmission.

• Response Network Wire: Response propagation latency,
which includes wire and queuing delay in the network.

• Response RPC Processing and Network Stack: This
step includes the processing and serialization latency for
the RPC responses.

• Client Receive Queue: When the response arrives back
at the client it is placed in a response queue for processing,
where it may wait if the client is busy.

With the exception of the application processing time, all
other components are a result of using RPCs to access a
remote service. We therefore describe these non-application
latencies as the RPC latency tax (or more simply, the RPC
tax).

3.2 Fleet-Wide Latency Variation
We describe how the major components contribute to the RPC
completion time. In particular, we show the fraction of RPC
time spent on the latency tax, and then break down the tax
into RPC processing and network stack, network wire, and
queuing components.

Application-processing time dominates but RPC tax can
be significant. Figure 10a gives an overview of the average
RPC latency tax across all RPCs. Overall, the average tax is

(a) Distribution Heatmap (b) CDF
Figure 11. Per-Method Ratio of the RPC Latency Tax (RLT) to

RPC Completion Time (RCT).

(a) Distribution Heatmap (b) CDF
Figure 12. Per-Method RPC Latency Distribution for Network

Wire (RW) and RPC Processing and Network Stack (RN).

only 2.0% of the total completion time. Of that 2.0%, Fig-
ure 10b shows that the network accounts for roughly half
(1.1% of total time), while the RPC processing and network
stack component and the queuing component each contribute
nearly one quarter (0.49%, and 0.43% of total time, respec-
tively). However, for RPCs with P95-tail latency, the tax
component is significant, as shown in Figures 10c and 10d.
Here the distribution skews toward network-induced delay,
suggesting that network congestion and/or global distribution
(i.e., speed-of-light propagation delays) may be limiting tail
performance.

To better understand how much of completion time is due
to the RPC latency tax, Figure 11 plots the RPC latency tax
ratio distributions for all RPC methods; the tax ratio is the
fraction of RPC service time for which the tax is responsible.
Most RPCs are bottlenecked by application-processing time;
for the RPC method with the median ratio, the tax makes
up only 8.6% of the total completion time. As noted before,
though, the RPC tax is more significant at the tail. For the 10%
of methods with the highest overheads, the median RPC tax
is 38%, while the 90th-percentile RPC tax is 96%. The 99th-
percentile RPC tax ratio for the top and bottom 1% of methods
ranges from 0.5% to 99.99% with a median of 66%. We
conclude that optimizing RPC latency requires a two-pronged
approach. Optimizing server processing time is extremely
important to reduce the completion time of most RPCs. At
the tail, however, most method types have RPC invocations
where latency comes almost entirely from the RPC tax.

504



(a) Distribution Heatmap (b) CDF
Figure 13. Per-Method Queuing Latency.

RPC tax breakdown. To quantify the relative contributions
of the different RPC tax components, Figure 12 shows a per-
method breakdown of the latency distribution for combined
Network Wire (RW) and RPC Processing and Network Stack
(RN). Figure 13 shows the per-method queuing latencies. We
expect tail network latencies near the longest round-trip time
across the WAN between datacenters, which is about 200 ms
in our fleet. As Figure 12 shows, tail network latencies can
be around this expected latency for many methods. The P99
latency for the fastest 50% of methods in network latency
is 115 ms or less. There are some methods that have much
lower tail latencies, with the fastest 1% and 10% of meth-
ods having a P99 latency of 6 and 19 ms, respectively; this
implies that some methods avoid the cost of geographic dis-
tribution in most cases. However, at the tail, combined RPC
processing and networking stack latencies are high. The slow-
est 10% of methods have a P99 latency of at least 271 ms.
Finally, the slowest 1% have a P99 latency of 826 ms, which
is significantly higher than the longest network propagation
delays, suggesting that there is room for improvement in RPC
processing and network performance.

Queuing latency is also a significant contributor to the RPC
tax. Figure 13 shows that queuing latency is high at the tail,
although on the whole it is comparable to the combined RPC
processing and network latency. Half of the methods have
median and P99 queuing latencies under 360 µs and 102 ms,
respectively, compared to median and P99 latencies under
398 µs and 115 ms for combined RPC processing and net-
work stack. However, for the 10% of methods that experience
the highest queuing latency, median and P99 latencies are
1.1 ms and 611 ms, respectively. Thus, for many methods, tail
queuing latency is much worse than median queuing latency.
This implies that it may be possible to reduce tail latency for
many methods by improving tail queuing with better schedul-
ing and load balancing.

3.3 Service-Specific Latency Variation
Our fleet-wide analysis finds that there can be significant
variance across different RPC services (i.e., methods); here
we perform an in-depth analysis of some important RPC ser-
vices, most of which are leaf RPCs. In particular, we select
representative RPC methods from eight production systems,
listed in Table 1. These services can be categorized into three

0 20 40 60 80 100
CDF (Percentile)

0

1

2

La
te

nc
y 

(m
s)

Client Send Queue
Request Network Wire
Request Processing+Net Stack

Server Recv Queue
Server Application
Server Send Queue

Resp Processing+Net Stack
Resp Network Wire
Client Recv Queue

L
at

en
cy

(m
s)

0 50 100
Percentile

0.0

1.0

2.0

(a) Bigtable

0 50 100
Percentile

0.0

1.0

2.0

(b) Network
Disk

0 50 100
Percentile

0.0

2.5

5.0

(c) F1

0 50 100
Percentile

0.0

2.0

4.0

(d) SSD cache

L
at

en
cy

(m
s)

0 50 100
Percentile

0.0

0.5

(e) KV-Store

0 50 100
Percentile

0.0

2.0

4.0

(f) ML
Inference

0 50 100
Percentile

0.0

1.0

(g) Spanner

0 50 100
Percentile

0.0

0.5

1.0

(h) Video
Metadata

Figure 14. CDF of RPC completion time breakdown.

C
lie

nt
 S

en
d 

Q
ue

ue

R
eq

ue
st

 N
et

w
or

k

R
eq

ue
st

 R
PC

 
+

 N
et

w
or

k 
st

ac
k 

Se
rv

er
 S

en
d 

Q
ue

ue

Se
rv

er
 A

pp
lic

at
io

n

Se
rv

er
 S

en
d 

Q
ue

ue

R
es

p 
R

PC
+

 N
et

w
or

k 
St

ac
k

R
es

p 
N

et
w

or
k

C
lie

nt
 R

ec
v 

Q
ue

ue

Network Disk 0.65 0.35 1.90 4.13 22.43 0.11 0.89 0.57 5.02

SSD cache 0.78 0.18 11.30 33.58 1.64 1.98 4.13 0.00 1.59

F1 0.01 0.00 1.18 13.98 21.33 0.01 1.81 0.29 28.56

BigQuery 0.13 0.48 0.02 3.34 36.34 0.13 2.87 0.48 0.17

KV-Store 1.06 1.67 0.04 2.18 4.55 0.11 15.47 0.95 2.96

ML Interference 0.09 0.02 0.25 0.43 67.97 1.08 0.46 0.00 0.33

Spanner 0.03 0.63 1.61 2.95 26.56 0.41 3.51 0.35 0.84

Video Metadata 0.86 2.23 0.97 17.35 2.73 0.22 5.56 2.63 18.01

Figure 15. Percent improvement of tail latency (P95) with a
what-if analysis.

types: storage applications, which include Bigtable, Network
Disk, SSD cache, Video Metadata and Spanner; compute-
intensive applications, which include F1 and ML inference;
and a latency-sensitive in-memory cache KV-Store. We eval-
uate the distribution of latency breakdowns for each RPC
across several dimensions.

3.3.1 Latency Variation Within a Cluster. We first study
the latency variation of intra-cluster RPC calls to our 8 ser-
vices. For each service, we included only RPC calls (1) to the
method shown for that service in Table 1, and (2) from clients
located in the same cluster and datacenter as the server. Figure
14 shows the CDF of RPC latency for the selected service
methods. The colors in the graphs show the breakdown of the
RPC latencies into the nine latency components described in
Section 3.1.

As the graphs show, not all RPCs with the same total la-
tency have the same per-component latencies. Overall, most
workloads have one dominant latency component. Based on
the dominant component, we categorize the eight RPCs as
application-processing-heavy (Bigtable, Network Disk, F1,
ML Inference, and Spanner), queuing-heavy (SSD cache and

505



Category Server Client RPC Size Method Description

Storage

Bigtable KV-Store 1 kB Search value
Network Disk Bigtable 32 kB Read from SSD
SSD cache BigQuery 400 B Look up streaming data
Video Metadata Video Search 32 kB Get metadata
Spanner Network information service 800 B Read rows

Compute-intensive
F1 F1 75 B Process data packet
ML Inference ML Client 512 B Perform inference

Latency-sensitive KV-Store Recommendation service 128 B Search value

Table 1. RPC services in this study

Video Metadata), and RPC-stack-heavy (KV-Store). The dom-
inant latency components take 25–66% of the total latency
at the median but increase to 30–83% at P95. However, tail
latencies are significantly higher than the median: the P95 la-
tency is 1.86–10.6× higher than the median. F1 has the largest
difference, primarily because the database executes queries
of varying complexity using the same RPC method.

3.3.2 Component Impact on Tail Latency. To better un-
derstand how each component impacts tail latency, we per-
form a “what-if” analysis by replacing each latency compo-
nent of (P95) tail RPCs with its median value, one-by-one.
Figure 15 shows the percentage of tail RPCs that become
non-tail (i.e., move below the prior P95 latency) when the
corresponding latency component is reduced to its median.
We find that the impact is largely consistent with the catego-
rization, i.e., the latency component that dominates the RPC
latency in general is also the main cause of tail latency.

The key findings of this experiment are that, not surpris-
ingly, the major cause of tail RPC latency in the datacenter
differs among RPCs and types of applications. Prior work has
focused on reducing the latency of the computation of the
RPC stack [41] or the network [31] to improve RPC times.
In contrast, these measurements demonstrate the importance
of other RPC components, such as application service time
and client/server queuing. As a result, reducing RPC latency
will likely require an application-specific approach, both to
choose the component to optimize and often to reduce execu-
tion time of the application methods, which dominate RPC
tax mechanisms for some important applications.

3.3.3 Service Latency of Different Clusters. We now
show how the latencies for each service can vary within dif-
ferent clusters in the cloud. To do this, for each service, we
examine RPC data from dozens of different clusters and data-
centers. As in Section 3.3.1, in all cases the client and server
are within the same cluster, and we ensure that all RPCs
are based on the same underlying hardware/software system
platform.

Figure 16 shows the latency breakdown of P95-tail laten-
cies for RPCs for each of the 8 services across different
clusters. The x axis represents unique clusters in which the

0 20 40 60 80 100
CDF (Percentile)

0

1

2

La
te

nc
y 

(m
s)

Client Send Queue
Request Network Wire
Request Processing+Net Stack

Server Recv Queue
Server Application
Server Send Queue

Resp Processing+Net Stack
Resp Network Wire
Client Recv Queue

L
at

en
cy

(m
s)

0 12 22
Cluster

0

1

2

(a) Bigtable

0 14 26
Cluster

0

2

(b) Network
Disk

0 22 44
Cluster

0.0

2.5

5.0

(c) F1

0 12 22
Cluster

0

2

4

(d) SSD cache
L

at
en

cy
(m

s)

0 3 5
Cluster

0.0

0.5

(e) KV-Store

0 22 44
Cluster

0

5

10

(f) ML
Inference

0 8 14
Cluster

0

1

(g) Spanner

0 8 16
Cluster

0.0

0.5

1.0

(h) Video
Metadata

Figure 16. Distribution of latency components across clusters.

selected RPCs execute; different services run on different
numbers of clusters, and in these figures the results are sorted
by median latency for between 5 and 44 clusters.

The dominant component of RPC latency remains largely
the same across different clusters,

yet the latency varies significantly among different clusters,
with the difference ranging from 1.24 to 10×. As the system
platform, RPC methods, and RPC sizes are all the same, this
experiment indicates that the state of the cluster is the major
cause of the differences. We refer to the system-level variables
that capture this cluster state as exogenous variables.

3.3.4 Exogenous Variables Affecting Latency Variation.
Figure 17 demonstrates the relationship between the value of
these exogenous variables (x axis) and RPC latency break-
down (y axis). We pick three applications (one from each
category) and four exogenous variables that have the highest
variations (Table 2). Because network latency is fairly stable
across different clusters, we focus on exogenous variables
that capture server state.

Similar to before, RPCs with the same exogenous variable
may have different component latencies, so this figure shows
the average of all of the RPCs with equal exogenous variable

506



0 20 40 60 80 100
CDF (Percentile)

0

1

2

La
te

nc
y 

(m
s)

Client Send Queue
Request Network Wire
Request Processing+Net Stack

Server Recv Queue
Server Application
Server Send Queue

Resp Processing+Net Stack
Resp Network Wire
Client Recv Queue

25 50 75
0

2

4

6

50 100
0

1

2

3

0.0 0.1
0

5

10

1.0 1.5
0

2

4

Bigtable

L
at

en
cy

(m
s)

25 50 75
0.0

0.5

50 100
0.0

0.5

0.00 0.01
0.0

0.5

1.0

1.5

1.0 1.5
0.0

0.5

1.0

KV-Store

25 50 75
0.0

0.5

1.0

50 100
0.0

0.5

1.0

0.00 0.05
0.0

0.5

1.0

1.5

1.5 2.0 2.5
0.0

0.5

1.0

Video
Metadata

CPU Util
(Percent)

Memory BW
(GB/s)

Long Wakeup
Rate

Cycles Per
Inst.

Figure 17. Relation between exogenous variable and latency
components.

values. Specifically, we collected samples of exogenous vari-
ables and RPC latency and aggregated them over 30 minutes.
Then we bucket RPC latency samples according to the ex-
ogenous variables (x axis). For each bucket, we select RPC
latency samples with total latency near P95 (+/-1%) and plot
the per-component average (y axis).

Each application category reacts differently towards these
exogenous variables. Bigtable is a server-processing-heavy
workload, and its performance is highly dependent on CPU
utilization, memory bandwidth, wake-up time, and cycles per
instruction. Video Metadata is queuing heavy, which follows a
similar trend. In comparison, KV-Store, an RPC-stack-heavy
workload, is most impacted by variation in cycles per in-
struction. We note, however, that KV-Store runs on reserved
cores in our fleet, which may partially explain the lack of
correlation with overall server CPU and memory bandwidth
utilization. Additionally, among the applications we studied,
branch misprediction and LLC miss rates are not correlated
with RPC latency and their result are not shown here.

To confirm our hypothesis that exogenous variables corre-
late with RPC latency, we further monitor the (P95) tail RPC
latency together with the value of exogenous variables of
Bigtable over a 24-hour period. Figure 18 plots these values
in representative fast and slow clusters. RPC latency fluctuates
following the same trend as most exogenous variables, which
confirms our previous findings. For example, in both the fast
and slow clusters, CPU and memory bandwidth utilization
both show similar trends as RPC latency. We conclude that
system-level optimizations, including both the hardware plat-
form and low-level OS details like scheduling, may benefit
from application specificity. We expect future work to explore
cross-layer designs that are specialized for not only different
applications but for different RPCs.

Variable Description

CPU util % CPU utilized
Memory BW Total memory bandwidth utilized (GB/s)

Long wakeup rate
Fraction of scheduling events
longer than 50 µs

Cycles per Inst. CPU’s cycles per instruction

Table 2. Exogenous variables

3.3.5 Latency of Cross-Cluster RPCs. For some RPCs,
the client and server are frequently located in different clus-
ters. To study the impact of traversing the WAN, Figure 19
shows the median latency of an RPC to Spanner servers lo-
cated in 21 different clusters. This demonstrates that when the
client and server are within the same cluster or are in clusters
that are close geographically, the latency is low and follow
the same trend as same-cluster breakdowns. As the distance
between client and server increases, the network component
begins to dominate the RPC latency.

Unfortunately, most of this latency is unavoidable as the
network latency is bounded by the speed of light. We cross-
validated the cross-cluster latency in Figure 19 and found that
the latency closely matches the actual wire latency. Therefore
wire latency, not congestion, contributes to the majority of
the network latency of the average RPC.

We conclude that, on average, the room for network la-
tency optimization in a global cloud environment is limited as
some communication latency is unavoidable. However, one
of the main reasons for cross-cluster RPC is a lack of data lo-
cality, i.e., RPC servers are not located close to the data being
processed. As such, it is critical to optimize data locality in
large-scale distributed RPC systems.

4 Resource Utilization of RPCs
This section studies the CPU costs of RPCs, which we refer
to as the RPC cycle tax. We also examine the effectiveness
of RPC load balancing. Understanding these costs can help
future research make RPCs more efficient.

4.1 CPU Cycle Breakdown
Figure 20 shows the RPC cycle tax across the entire fleet with
respect to CPU cycles consumed: roughly 7.1% of all cycles.
Further, the right-hand pie chart shows that there are many
different components that contribute a significant fraction of
the cycles. The single biggest consumer of CPU cycles is
compression, at 3.1% of all cycles. The next-most-significant
consumers of CPU cycles are networking and serialization,
at 1.7% and 1.2% of all total cycles, motivating research on
serialization offload [56, 74].

4.2 Fleet-Wide CPU Cycle Variation
Figure 21 shows a per-method breakdown of RPC costs. In
this figure, costs are measured in terms of normalized CPU
cycles, a unit that reflects the varying performance across

507



0 5 10 15 20

1.8

2.0

2.2

RP
C'

s R
ou

nd
 Tr

ip
 T

im
e 

(m
s)

RPC Latency Exogenous Variable

0.004

0.006

0.008
Lo

ng
 W

ak
eu

p
Ra

te
 (x

10
00

)

0 5 10 15 20
Timestamp (hour)

2.0

2.5

La
te

nc
y 

(m
s)

20

40

60

CP
U 

Ut
il

 (p
er

ce
nt

)

0 5 10 15 20
Timestamp (hour)

2.0

2.5

La
te

nc
y 

(m
s)

50

60

70

80
M

em
or

y 
BW

 (G
B/

s)

0 5 10 15 20
Timestamp (hour)

2.0

2.5

La
te

nc
y 

(m
s)

4

6

8

Lo
ng

 W
ak

eu
p

Ra
te

 (x
10

00
)

0 5 10 15 20
Timestamp (hour)

2.0

2.5

La
te

nc
y 

(m
s)

0.9

1.0

Cy
cle

s p
er

 In
st

.

Fast Cluster

0 10 20
Timestamp (hour)

2.0

2.5

La
te

nc
y 

(m
s)

20

40

60

CP
U 

Ut
il

 (p
er

ce
nt

)

0 10 20
Timestamp (hour)

2.0

2.5
La

te
nc

y 
(m

s)

50

60

70

80

M
em

or
y 

BW
 (G

B/
s)

0 5 10 15 20
Timestamp (hour)

2.0

2.5

La
te

nc
y 

(m
s)

10

15

Lo
ng

 W
ak

eu
p

Ra
te

 (x
10

00
)

0 5 10 15 20
Timestamp (hour)

2.0

2.5

La
te

nc
y 

(m
s)

0.975

1.000

1.025

1.050

Cy
cle

s p
er

 In
st

.

Slow Cluster

Figure 18. Comparison of exogenous variable and latency
between different clusters (Bigtable)

0

100

200

300

0 20 40 60 80 100 120 140

L
at

en
cy

 (
m

s)

Client Cluster ID

Client Send Queue Request Processing + Net Stack Request Network Wire

Server Recv Queue Server Application Server Send Queue

Resp Processing + Net Stack Response Network Wire Client Recv Queue

Same

Datacenter
Different Datacenter

Same Country
Different Continents

Figure 19. Spanner Cross-cluster latency breakdown.

(a) Total cycles consumed by
the RPC cycle tax.

(b) RPC cycle tax breakdown.

Figure 20. RPC Cycle Tax.

different CPU architectures and generations present in our
fleet. Not all RPC samples collected by our tracing service
are annotated with CPU cost information, so this figure has
fewer methods than our previous analyses.

(a) Per-Method CPU Usage
Distribution.

(b) CDF

Figure 21. Per-Method RPC CPU Cycles.

Similar to our previous per-method analysis, this figure
shows that RPC CPU utilization is heavy tailed, with less dif-
ference between the minimum and maximum values on a per-
method basis. For example, the cheapest 10% of RPC calls
only change from 0.017 normalized cycles or less to 0.02 nor-
malized cycles or less when moving from the cheapest-10%
to cheapest-90% of methods. However, in contrast, the most-
expensive 10% of calls span 0.02–0.16 normalized cycles or
more between the cheapest 10% and 90% of methods.

When RPC calls are cheap, there tends to be low variance:
the difference between the P1 and P99 throughput for the
cheapest 1% of methods is within a factor of two. In contrast,
almost all other methods have a heavy tail where the P99
RPC costs are one-to-two orders of magnitude more than
the median; there are no methods that have high CPU over-
heads with low variance. This high variation has significant
consequences for RPC scheduling, load-balancing, and queu-
ing [27, 40, 53]. If RPC processing times are not known in
advance — which is not always possible because processing-
time prediction is a hard problem in general [28] — then this
heavy-tailed cost distribution is likely to lead to significant
HOL-blocking latency. If an RPC with low CPU cost unluck-
ily ends up queued at a server that is currently processing an
expensive query, then it could see significant latency inflation.
This spread also implies that any load balancing algorithm
that treats different RPCs as being equal is likely going to
lead to significant CPU imbalance. Further, improving load
balancing is a challenging problem because it is difficult to
know in advance which RPCs will be expensive. For example,
we found that neither RPC size nor RPC latency is correlated
with RPC CPU utilization.

4.3 Load-Balancing Resources
RPC load balancing determines how load is distributed across
servers. Figure 22 shows a CDF of the ratio between used
CPU resources and the allocated CPU resource limit across
all clusters (solid lines) and across different machines in the
same cluster (dashed lines) for each application. We observe
that load is significantly imbalanced across clusters. Our load
balancer considers network latency when distributing RPCs
among remote clusters, and balancing server CPU load across
clusters is not an explicit goal. That said, avoiding overload at

508



0 50 100
Percentile

0

50

100

Clusters Machines

C
PU

U
sa

ge
(%

)

0 50 100
Percentile

0

50

100

(a) Bigtable

0 50 100
Percentile

0

50

100

(b) Network
Disk

0 50 100
Percentile

0

50

100

(c) F1

0 50 100
Percentile

0

50

100

(d) SSD cache

C
PU

U
sa

ge
(%

)

0 50 100
Percentile

0

50

100

(e) KV-Store

0 50 100
Percentile

0

50

100

(f) ML
Inference

0 50 100
Percentile

0

50

100

(g) Spanner

0 50 100
Percentile

0

50

100

(h) Video
Metadata

Figure 22. Distribution of CPU usage across different clusters
and different machines in the same cluster.

Figure 23. The relative percentage of different
RPC error types.

any particular cluster is, and we find that, for some services,
tail utilization can approach the limit. This motivates find-
ing new ways to better balance load across cells while still
ensuring network latency is low.

Conversely, the dashed line in Figure 22 shows the CDF of
the same ratio but across different servers in the same cluster.
Overall, the load among servers has a much smaller variation,
except for Spanner, F1, and ML Inference. These applications
have some servers that are nearly fully utilized, suggesting
improvements are needed in intra-cluster load balancing as
well. However, this is a hard problem because load balancing
in some of the applications are data dependent and may suffer
from limited parallelism.

4.4 RPC Cancellations and Errors
RPCs are not guaranteed to complete. We find that 1.9% of
all of the RPCs issued during our period of study resulted in
errors. There are a large variety of reasons that RPCs may
experience an error, but all RPC errors waste resources.

To better understand the sources and costs of RPC errors,
Figure 23 plots the contribution of different error types to
the total in terms of both percentage of errors and wasted

CPU cycles. “Cancelled” is the most-common type of error,
which constitutes 45% in number and 55% of CPU cycles. We
suspect request hedging [23] is responsible for most cancella-
tions in a deliberate attempt to reduce tail latency. Moreover,
we observe that while many error types have relatively sim-
ilar contributions to frequency and CPU cost, cancellations
consume an out-sized fraction of CPU cycles, making them
more expensive than most. Although it is unclear exactly
what fraction of RPCs are canceled due to other reasons like
a user cancelling a job or query, this finding suggests there is
value in further understanding the overheads and trade-offs
associated with request hedging.

Unlike cancellations, which may be side effects of a tail-
latency-reduction strategy, other classes of errors are expected
to increase tail latency. As such, we believe that there is a need
for future research on the topic of reducing the relative num-
ber of RPCs that experience errors in large-scale distributed
systems. The second-most common source of error is “entity
not found”, which comprises 20% of total RPC errors and
consumes 21% of wasted CPU cycles due to RPC errors. It
is one of the error types that can possibly be eliminated or
significantly reduced by preventing requests to unavailable en-
tities. Other errors such as “no resource” and “no permission”
can also be possibly mitigated.

5 Implications
This section briefly highlights the implications of our results
based on the data we presented. It presents our key insights
about RPC behavior and problems with today’s RPC stacks,
and it highlights potential opportunities for improvements
and optimizations at the software and hardware layers.

5.1 RPC Behavior and Problems
This work provides a comprehensive study of the fleet-wide
RPC characteristics and behaviors of Google’s internal ap-
plications. Our findings have important implications with
regards to RPC behavior and problems that can be addressed.
Millisecond, not just microsecond timescales. Many of
the RPCs in our cloud are on the scale of milliseconds, not
microseconds. Reducing CPU utilization is in many cases
more critical than saving tens of microseconds of latency.
Yet many prior proposals focused only on microsecond-scale
latency improvements [38, 41, 53, 55].
Queuing matters. Our study (Fig. 11 and 12) shows that
queuing is a major contributor to tail latency. Prior work has
focused on reducing network tail latency [31, 51, 54], which
only solves part of the latency problem in RPC systems.
Congestion still impacts the WAN. We find that tail RPC
network latencies are much larger than the maximum me-
dian inter-datacenter latency. Although prior work on private
WANs suggests that congestion is a solved issue [36, 39, 45,
75], we show that network latency from congestion has a
significant impact on the tail network throughput of RPCs.

509



Tail latency is a bigger problem than average latency.
While the RPC latency tax is only 2% on average, it can climb
to 96% at 90th-percentile. Therefore, there is still a need to re-
duce the RPC latency tax at the tail. New RPC optimizations
could provide predictable performance and potentially have a
significant impact.
RPC errors. Our report of real-world errors and their distri-
butions shows that (a) RPC hedging is costly (55% of wasted
CPU cycles), and (b) unavailability of RPCs and other re-
source and permission issues account for 20% of wasted
RPCs. This suggests future research on mitigations, e.g., ser-
vice availability prediction.

5.2 Software Optimizations
There are different software components that impact RPC
processing. Our findings have implications on how these soft-
ware components could be changed to reduce latency or CPU
cycles utilization.
Improved scheduling and placement. Queuing latency con-
sumes 21% of the RPC latency tax, so better scheduling is
likely to reduce RPC completion times. Latency suffers when
clients and servers are not co-located. As a result, adding
support to a cluster manager for co-locating RPCs from the
same RPC tree could significantly reduce latency.
Load balancing. One of the major sources of latency varia-
tion comes from system balance and congestion issues. For
example, if the system exhibits high server and memory band-
width utilization or saturation, then tail latency can increase
significantly, particularly for RPCs that are bottlenecked by
server processing and queueing latency. We expect that a
cross-layer load-balancing mechanism that takes into account
both RPC type information and system resource states will
greatly reduce the latency variation.
Method-specific software optimizations. As previously
noted, the 10 most popular RPC methods account for 58% of
all calls and the top-100 account for 91% of all calls. There-
fore, a small number of targeted method-specific optimiza-
tions could potentially have a significant impact on a large
fraction of RPCs. Our service-based latency analysis shows
that these optimizations must address the main bottlenecks in
each service. For example, compute intensive services are bot-
tlenecked by their processing time (e.g, ML inference), while
light-load services are limited by queuing delay (e.g., video
metadata indexing). Prior work mostly focused on optimizing
light-load services [41, 71], but in reality, future research in
service-specific optimizations targeting each of their main
bottlenecks will be crucial as well.

5.3 Hardware Optimizations
Hardware accelerators have emerged as a promising approach
to scaling the performance of datacenter applications in the
face of Dennard scaling limitations. This is because hardware
acceleration can potentially reduce latency, energy consump-
tion, and total costs.

Optimizing common operations. A number of common
compute or data-intensive operations, such as compression,
encryption and serialization, are used in RPC as well as in the
network stack. Prior work [38, 41, 53, 55] has evaluated opti-
mizations, but without including these operations, which are
required in the cloud environment. On the other hand, hard-
ware accelerators for these operations are common on many
systems or NICs and could be included in RPC processing.
RPC Library acceleration. Figure 20a shows that the RPC
Library only takes a small fraction of total CPU cycles
(1.1%). Therefore, accelerating the RPC Library using a
SmartNIC/xPU may not provide the highest value when com-
pared to other common data center tax operations (e.g., seri-
alization/deserialization and compression).
Storage dataflow accelerators. The majority of our RPC
invocations and data transferred are from two applications
(Figure 8) — Network Disk and Spanner — which are data
intensive. This demonstrates the potential for accelerating
data movement [20, 57].
Method-specific hardware optimizations. Accelerators
must cover a significant fraction of the CPU cycles consumed
by the fleet to provide cost-efficiency benefits [20, 43, 57].
As most CPU cycles are consumed by a few services (the top
8 services account for 60% of all RPC calls), a few method-
specific accelerators could potentially have a significant im-
pact on the fleet.

5.4 Limitations
We briefly note two limitations to this study. First, it analyzes
RPCs from a single hyperscaler. Others may have different
structures that might lead to different results. However, we
believe that it is likely that many of our findings generalize,
and that RPCs in cloud applications at other companies are
likely to share similar properties and behavior, given the sim-
ilarity of services that clouds provide. Our study provides a
basis for understanding this workload and comparing with
later studies. Conducting a cross-cloud study at this level and
magnitude would obviously be challenging.

Second, this study focuses primarily on RPCs sent over
TCP. RDMA has become increasingly important recently as
an alternative transport to TCP for RPCs [19, 25, 34, 41, 50,
77]. However, we have focused on RPC over TCP and leave
the study of RDMA to future work.

6 Related Work
There are two general classes of related work: previous studies
of datacenters and research on improving RPCs.

Generally, this paper is complementary to previous datacen-
ter studies because it adds detailed data and analysis of RPCs
in the modern cloud environment, which was not previously
available. This includes prior studies of the characteristics of
network traffic in datacenters by Roy et al. [60], Alizadeh et
al. [7], and Benson et al. [11]. In this prior work, the TCP

510



flow is the base unit. This paper providers further insight
into the behavior of these TCP flows in datacenters that are
sending and receiving RPCs. For example, these prior stud-
ies have found that TCP flows exhibit on/off traffic patterns,
and this can be in part caused by the heavy tailed RPC size
distributions that we observed.

In addition to network studies, there are also datacenter
studies. Kanev et al. [42] perform CPU profiling of Google’s
datacenters, and Gonzalez et al. [32] studied hyperscale big
data processing at Google. These studies look deeper into the
CPU behavior of Google’s internal applications, while this
paper looks into the RPC behavior that is generating the CPU
load for these applications. Further, these other datacenter
studies reach similar conclusions about the potential benefits
of using accelerators for important applications.

Sriraman et al. [69] profile Meta’s microservices for accel-
eration opportunities. Our RPC analysis complements these
studies by focusing on RPC services within the workloads
and providing a detailed analysis of non-application over-
heads from the RPC latency tax. Luo et al. [48] characterize
microservice dependencies and performance. They similarly
find that microservice call graphs are heavy tailed. ServiceR-
outer is a global service mesh used to route RPCs at Meta [62],
and Saokar et al. [62] found that the cloud-scale applications
that use ServiceRouter show similar trends to those used at
Google. Huye et al. [37] study the microservice topologies
and workflows of a few of Meta’s internal applications. Our
study builds upon this study by analyzing more RPC methods
and by performing a more in-depth latency analysis.

Our study is also closely related to efforts to improve RPC
performance. For example, Chen et al. argue that RPCs should
be an OS-managed service [18]. This paper provides insights
into the expected benefits of such an approach.

Wang et al. argue that it is time to add distributed memory
to RPCs [73]. The RPC Chain is a new abstraction that can
reduce network latency by chaining multiple RPC invoca-
tions [67]. This paper helps further motivate these research
directions by showing that nested RPC call trees can be deep.
This is because the potential benefits of both of these systems
increase with the depth of the RPC call tree.

Next, there is related work on reducing the latency and CPU
overheads of RPCs. Erms is an efficient resource management
system for microservices that is intended to guarantee SLAs
in shared microservice environments [49]. CRISP is a tool
for analyzing RPC critical paths that was used at Uber to
reduce tail latency [76]. This paper motivates the need for
these systems and others that can reduce tail latencies by
showing that RPC latencies are high at the tail.

eRPC is a system that onloads transport protocol process-
ing to reduce latency [41]. Our findings rebut some of the
previous understanding of eRPC. As we find that most of our
RPCs are millisecond-scale, this design choice seems worse
in practice than using existing RDMA for transport, which
can reduce the CPU overheads of messaging.

There have been many accelerators for transport and RPC
stacks. For example, Zerializer [74], Raghavan et al. [56]
and Karandikar et al. [43] introduce accelerators for mar-
shalling/demarshalling RPCs. Chiosa et al. [20] demonstrates
an accelerator for offloading compression and encryption
in SAP HANA database. Tonic [8] and AccelTCP [52] are
hardware accelerators for the TCP transport protocol. Dagger
offloads the entire RPC stack to an FPGA-based NIC [46].
NeBuLa is a CPU architecture optimized for accelerating
microsecond-scale RPCs [72]. nanoPU creates faster paths
from the network to CPU [38]. We provide insight into the ex-
pected benefits of these accelerators by showing the expected
percentage of CPU cycles that could be saved across the fleet.

nanoPU also discusses different application classes that
could benefit from a CPU fastpath for messaging, and this
includes µs-scale services. Although we found that most
services at Google at not µs-scale, this does not mean that it
is not possible to use µs-scale services at Google. However,
decomposing existing applications into smaller services to
better utilize new hardware like nanoPU is a challenging
problem, and this helps motivate systems that aim to do this,
like Nu [61] and ServiceWeaver [33].

Shenango is a centralized software RPC load balancer, and
RingLeader [47] and Turbo [63] are hardware accelerators
for RPC load balancing. Shinjuku [40] and Caladan [27] are
CPU schedulers that aim to isolate short- and long-running
applications. Our work motivates systems like these that can
reduce RPC queuing latency, as we show that queuing latency
contributes a significant fraction of the RPC latency tax.

7 Conclusions
This paper presents an analysis of RPCs in Google’s global-
scale cloud environment that supports its billion-user web
applications. We study over 700 billion RPC samples across
10,000 distinct RPC methods, and report on the growth of
RPC usage over a 700-day period. Our findings provide new
insights into the characteristics and behavior of RPCs that
have the potential to help shape the direction of future data-
center systems. For example, we find that RPCs operate on
different timescales than assumed by prior work, and that
latency overheads of RPCs are different from those assumed
by prior work. We also show that RPCs are increasingly im-
portant and their growth is outpacing the growth in compute
cycles in our fleet. This motivates research on reducing both
the RPC latency tax and RPC cycle tax, and we present break-
downs of the components of both to light a path toward reduc-
ing them. Overall, RPC is the fundamental building block for
widely distributed applications in modern computing environ-
ments. Our measurements of some of the largest-scale cloud
applications help us better understand the organization and
behavior of these applications and motivate the improvement
and development of RPC systems in the future.

511



References
[1] Binder, android developer references. https://developer.android.com/

reference/android/os/Binder.
[2] Lambda, 2022. https://aws.amazon.com/lambda/.
[3] Azure service fabric, 2023. https://azure.microsoft.com/en-us/

products/service-fabric.
[4] Colin Adams, Luis Alonso, Ben Atkin, John P. Banning, Sumeer

Bhola, Rick Buskens, Ming Chen, Xi Chen, Yoo Chung, Qin Jia, Nick
Sakharov, George T. Talbot, Adam Jacob Tart, and Nick Taylor, editors.
Monarch: Google’s Planet-Scale In-Memory Time Series Database.
VLDB Endowment, 2020.

[5] Atul Adya, Daniel Myers, Henry Qin, and Robert Grandl. Fast key-
value stores: An idea whose time has come and gone. In Proceedings of
the Workshop on Hot Topics in Operating Systems (HotOS). Association
for Computing Machinery, 2019.

[6] Mohammad Al-Fares, Sivasankar Radhakrishnan, Barath Raghavan,
Nelson Huang, and Amin Vahdat. Hedera: Dynamic flow scheduling
for data center networks. In Proceedings of the 7th USENIX Conference
on Networked Systems Design and Implementation (NSDI). USENIX
Association, 2010.

[7] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra Pad-
hye, Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari
Sridharan. Data center TCP (DCTCP). In Proceedings of the Con-
ference of the ACM Special Interest Group on Data Communication
(SIGCOMM). Association for Computing Machinery, 2010.

[8] Mina Tahmasbi Arashloo, Alexey Lavrov, Manya Ghobadi, Jennifer
Rexford, David Walker, and David Wentzlaff. Enabling programmable
transport protocols in High-Speed NICs. In Proceedings of the 17th
USENIX Conference on Networked Systems Design and Implementation
(NSDI). USENIX Association, 2020.

[9] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike
Paleczny. Workload analysis of a large-scale key-value store. In
Proceedings of the 12th ACM SIGMETRICS/PERFORMANCE Joint
International Conference on Measurement and Modeling of Computer
Systems (SIGMETRICS). Association for Computing Machinery, 2012.

[10] L. A. Barroso, J. Dean, and U. Holzle. Web search for a planet: The
Google cluster architecture. IEEE Micro, 2003.

[11] Theophilus Benson, Aditya Akella, and David A. Maltz. Network
traffic characteristics of data centers in the wild. In Proceedings of
the 10th ACM SIGCOMM Conference on Internet Measurement (IMC).
Association for Computing Machinery, 2010.

[12] Betsy Beyer, Chris Jones, Jennifer Petoff, and Niall Richard Murphy.
Site Reliability Engineering: How Google Runs Production Systems.
2016.

[13] Betsy Beyer, Niall Murphy, David Rensin, Stephen Thorne, and Kent
Kawahara. The Site Reliability Workbook. 2018.

[14] Andrew Birrell and Bruce Jay Nelson. Implementing remote procedure
calls. ACM Transactions on Computer Systems, 2:39–59, February
1984.

[15] Mike Burrows. The chubby lock service for loosely-coupled distributed
systems. In Proceedings of the 7th USENIX Conference on Operating
Systems Design and Implementation (OSDI). USENIX Association,
2006.

[16] Zhichao Cao, Siying Dong, Sagar Vemuri, and David H.C. Du. Charac-
terizing, modeling, and benchmarking RocksDB Key-Value workloads
at facebook. In Proceedings of the 18th USENIX Conference on File
and Storage Technologies (FAST). USENIX Association, 2020.

[17] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Debo-
rah A. Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and
Robert E. Gruber. Bigtable: A distributed storage system for structured
data. In Proceedings of the 7th USENIX Conference on Operating
Systems Design and Implementation (OSDI). USENIX Association,
2006.

[18] Jingrong Chen, Yongji Wu, Shihan Lin, Yechen Xu, Xinhao Kong,
Thomas Anderson, Matthew Lentz, Xiaowei Yang, and Danyang Zhuo.
Remote procedure call as an os-managed service. In Proceedings
of the 20th USENIX Conference on Networked Systems Design and
Implementation (NSDI). USENIX Association, 2023.

[19] Youmin Chen, Youyou Lu, and Jiwu Shu. Scalable RDMA RPC on
reliable connection with efficient resource sharing. In Proceedings of
the European Conference on Computer Systems (EuroSys). Association
for Computing Machinery, 2019.

[20] Monica Chiosa, Fabio Maschi, Ingo Müller, Gustavo Alonso, and Nor-
man May. Hardware acceleration of compression and encryption in SAP
HANA. In 48th International Conference on Very Large Databases
(VLDB), 2022.

[21] Mosharaf Chowdhury and Ion Stoica. Coflow: A networking abstrac-
tion for cluster applications. In Proceedings of the 11th ACM Workshop
on Hot Topics in Networks (HotNets). Association for Computing Ma-
chinery, 2012.

[22] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes,
Christopher Frost, J.J. Furman, Sanjay Ghemawat, Andrey Gubarev,
Christopher Heiser, Peter Hochschild, and Wilson Hsieh. Spanner:
Google’s globally-distributed database. In Proceedings of the 10th
USENIX Conference on Operating Systems Design and Implementation
(OSDI). USENIX Association, 2012.

[23] Jeffrey Dean and Luiz André Barroso. The tail at scale. Communica-
tions of the ACM, 2013.

[24] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified data pro-
cessing on large clusters. In Proceedings of the 6th USENIX Conference
on Operating Systems Design and Implementation (OSDI). USENIX
Association, 2004.

[25] Aleksandar Dragojević, Dushyanth Narayanan, Miguel Castro, and
Orion Hodson. FaRM: Fast remote memory. In Proceedings of the 11th
USENIX Conference on Networked Systems Design and Implementation
(NSDI). USENIX Association, 2014.

[26] Sérgio Fernandes and Jorge Bernardino. What is BigQuery? In Proceed-
ings of the 19th International Database Engineering & Applications
Symposium (IDEAS). Association for Computing Machinery, 2015.

[27] Joshua Fried, Zhenyuan Ruan, Amy Ousterhout, and Adam Belay.
Caladan: Mitigating interference at microsecond timescales. In Pro-
ceedings of the 14th USENIX Conference on Operating Systems Design
and Implementation (OSDI). USENIX Association, 2020.

[28] Silvery Fu, Saurabh Gupta, Radhika Mittal, and Sylvia Ratnasamy.
On the use of ML for blackbox system performance prediction. In
Proceedings of the 18th USENIX Conference on Networked Systems
Design and Implementation (NSDI). USENIX Association, 2021.

[29] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi,
Nayan Katarki, Ariana Bruno, Justin Hu, Brian Ritchken, Brendon
Jackson, Kelvin Hu, Meghna Pancholi, Yuan He, Brett Clancy, Chris
Colen, Fukang Wen, Catherine Leung, Siyuan Wang, Leon Zaruvinsky,
Mateo Espinosa, Rick Lin, Zhongling Liu, Jake Padilla, and Christina
Delimitrou. An open-source benchmark suite for microservices and
their hardware-software implications for cloud & edge systems. In
Proceedings of the Twenty-Fourth ACM International Conference on
Architectural Support for Programming Languages and Operating Sys-
tems (ASPLOS). Association for Computing Machinery, 2019.

[30] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google
file system. In Proceedings of the 19th ACM Symposium on Operating
Systems Principles (SOSP), 2003.

[31] Dan Gibson, Hema Hariharan, Eric Lance, Moray McLaren, Behnam
Montazeri, Arjun Singh, Stephen Wang, Hassan M. G. Wassel, Zhehua
Wu, Sunghwan Yoo, Raghuraman Balasubramanian, Prashant Chandra,
Michael Cutforth, Peter Cuy, David Decotigny, Rakesh Gautam, Alex
Iriza, Milo M. K. Martin, Rick Roy, Zuowei Shen, Ming Tan, Ye Tang,
Monica Wong-Chan, Joe Zbiciak, and Amin Vahdat. Aquila: A unified,
low-latency fabric for datacenter networks. In Proceedings of the 19th

512

https://developer.android.com/reference/android/os/Binder
https://developer.android.com/reference/android/os/Binder
https://aws.amazon.com/lambda/
https://azure.microsoft.com/en-us/products/service-fabric
https://azure.microsoft.com/en-us/products/service-fabric


USENIX Conference on Networked Systems Design and Implementation
(NSDI). USENIX Association, 2022.

[32] Abraham Gonzalez, Aasheesh Kolli, Samira Khan, Sihang Liu,
Vidushi Dadu, Sagar Karandikar, Jichuan Chang, Krste Asanovic, and
Parthasarathy Ranganathan. Profiling hyperscale big data processing.
In Proceedings of the ACM/IEEE 50th Annual International Symposium
on Computer Architecture (ISCA). IEEE Press, 2023.

[33] Google. Service weaver. https://serviceweaver.dev/.
[34] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni, Jianxi Ye,

Jitu Padhye, and Marina Lipshteyn. RDMA over commodity ether-
net at scale. In Proceedings of the Conference of the ACM Special
Interest Group on Data Communication (SIGCOMM). Association for
Computing Machinery, 2016.

[35] Mark Handley, Costin Raiciu, Alexandru Agache, Andrei Voinescu,
Andrew W Moore, Gianni Antichi, and Marcin Wójcik. Re-architecting
datacenter networks and stacks for low latency and high performance.
In Proceedings of the Conference of the ACM Special Interest Group
on Data Communication (SIGCOMM), 2017.

[36] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Vijay
Gill, Mohan Nanduri, and Roger Wattenhofer. Achieving high utiliza-
tion with software-driven WAN. In Proceedings of the Conference of
the ACM Special Interest Group on Data Communication (SIGCOMM).
Association for Computing Machinery, 2013.

[37] Darby Huye, Yuri Shkuro, and Raja R. Sambasivan. Lifting the veil
on Meta’s microservice architecture: Analyses of topology and request
workflows. In Proceedings of the USENIX Annual Technical Conference
(ATC). USENIX Association, 2023.

[38] Stephen Ibanez, Alex Mallery, Serhat Arslan, Theo Jepsen, Muham-
mad Shahbaz, Changhoon Kim, and Nick McKeown. The nanoPU: A
nanosecond network stack for datacenters. In Proceedings of the 15th
USENIX Conference on Operating Systems Design and Implementation
(OSDI). USENIX Association, 2021.

[39] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon
Poutievski, Arjun Singh, Subbaiah Venkata, Jim Wanderer, Junlan
Zhou, Min Zhu, Jonathan Zolla, Urs Hölzle, Stephen Stuart, and Amin
Vahdat. B4: Experience with a globally deployed software defined
WAN. In Proceedings of the Conference of the ACM Special Interest
Group on Data Communication (SIGCOMM). Association for Comput-
ing Machinery, 2013.

[40] Kostis Kaffes, Timothy Chong, Jack Tigar Humphries, Adam Belay,
David Mazières, and Christos Kozyrakis. Shinjuku: Preemptive sched-
uling for µsecond-scale tail latency. In Proceedings of the 16th USENIX
Conference on Networked Systems Design and Implementation (NSDI).
USENIX Association, 2019.

[41] Anuj Kalia, Michael Kaminsky, and David Andersen. Datacenter RPCs
can be general and fast. In Proceedings of the 16th USENIX Conference
on Networked Systems Design and Implementation (NSDI). USENIX
Association, 2019.

[42] Svilen Kanev, Juan Pablo Darago, Kim Hazelwood, Parthasarathy Ran-
ganathan, Tipp Moseley, Gu-Yeon Wei, and David Brooks. Profiling
a warehouse-scale computer. In Proceedings of the ACM/IEEE 42nd
Annual International Symposium on Computer Architecture (ISCA).
IEEE Press, 2015.

[43] Sagar Karandikar, Chris Leary, Chris Kennelly, Jerry Zhao, Dinesh
Parimi, Borivoje Nikolic, Krste Asanovic, and Parthasarathy Ran-
ganathan. A hardware accelerator for protocol buffers. In MICRO-54:
54th Annual IEEE/ACM International Symposium on Microarchitecture,
2021.

[44] Abhishek Kumar, Jayant Kolhe, Sanjay Ghemawat, and Louis Ryan.
gRPC Protocol, July 2016. Work in Progress, https://datatracker.ietf.
org/doc/draft-kumar-rtgwg-grpc-protocol/00/.

[45] Alok Kumar, Sushant Jain, Uday Naik, Anand Raghuraman, Nikhil
Kasinadhuni, Enrique Cauich Zermeno, C. Stephen Gunn, Jing Ai,

Björn Carlin, Mihai Amarandei-Stavila, Mathieu Robin, Aspi Sigan-
poria, Stephen Stuart, and Amin Vahdat. BwE: Flexible, hierarchical
bandwidth allocation for wan distributed computing. In Proceedings of
the Conference of the ACM Special Interest Group on Data Communi-
cation (SIGCOMM). Association for Computing Machinery, 2015.

[46] Nikita Lazarev, Shaojie Xiang, Neil Adit, Zhiru Zhang, and Christina
Delimitrou. Dagger: Efficient and fast RPCs in cloud microservices
with near-memory reconfigurable NICs. In Proceedings of the 26th
ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS). Association for
Computing Machinery, 2021.

[47] Jiaxin Lin, Adney Cardoza, Tarannum Khan, , Yeonju Ro, Brent E.
Stephens, Hassan Wassel, and Aditya Akella. RingLeader: Efficiently
offloading intra-server orchestration to NICs. In Proceedings of the 20th
USENIX Conference on Networked Systems Design and Implementation
(NSDI). USENIX Association, 2023.

[48] Shutian Luo, Huanle Xu, Chengzhi Lu, Kejiang Ye, Guoyao Xu, Lip-
ing Zhang, Yu Ding, Jian He, and Chengzhong Xu. Characterizing
microservice dependency and performance: Alibaba trace analysis. In
Proceedings of the ACM Symposium on Cloud Computing (SoCC).
Association for Computing Machinery, 2021.

[49] Shutian Luo, Huanle Xu, Kejiang Ye, Guoyao Xu, Liping Zhang, Jian
He, Guodong Yang, and Chengzhong Xu. Erms: Efficient resource man-
agement for shared microservices with sla guarantees. In Proceedings
of the 28th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS). Associa-
tion for Computing Machinery, 2022.

[50] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christopher Alfeld,
Sean Bauer, Carlo Contavalli, Mike Dalton, Nandita Dukkipati,
William C. Evans, Steve Gribble, Nicholas Kidd, Roman Kononov,
Gautam Kumar, Carl Mauer, Emily Musick, Lena Olson, Mike Ryan,
Erik Rubow, Kevin Springborn, Paul Turner, Valas Valancius, Xi Wang,
and Amin Vahdat. Snap: a microkernel approach to host networking.
In Proceedings of the 27th ACM Symposium on Operating Systems
Principles (SOSP), 2019.

[51] Behnam Montazeri, Yilong Li, Mohammad Alizadeh, and John Ouster-
hout. Homa: A receiver-driven low-latency transport protocol using
network priorities. In Proceedings of the Conference of the ACM Spe-
cial Interest Group on Data Communication (SIGCOMM). Association
for Computing Machinery, 2018.

[52] YoungGyoun Moon, SeungEon Lee, Muhammad Asim Jamshed, and
KyoungSoo Park. AccelTCP: Accelerating network applications with
stateful TCP offloading. In Proceedings of the 17th USENIX Conference
on Networked Systems Design and Implementation (NSDI). USENIX
Association, 2020.

[53] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay, and
Hari Balakrishnan. Shenango: Achieving high CPU efficiency for
latency-sensitive datacenter workloads. In Proceedings of the 16th
USENIX Conference on Networked Systems Design and Implementation
(NSDI). USENIX Association, 2019.

[54] Jonathan Perry, Amy Ousterhout, Hari Balakrishnan, Devavrat Shah,
and Hans Fugal. Fastpass: A centralized “zero-queue” datacenter net-
work. In Proceedings of the Conference of the ACM Special Interest
Group on Data Communication (SIGCOMM). Association for Comput-
ing Machinery, 2014.

[55] George Prekas, Marios Kogias, and Edouard Bugnion. ZygOS: Achiev-
ing low tail latency for microsecond-scale networked tasks. In Pro-
ceedings of the 26th ACM Symposium on Operating Systems Principles
(SOSP), 2017.

[56] Deepti Raghavan, Philip Levis, Matei Zaharia, and Irene Zhang. Break-
fast of champions: Towards zero-copy serialization with NIC scatter-
gather. In Proceedings of the Workshop on Hot Topics in Operating
Systems (HotOS). Association for Computing Machinery, 2021.

513

https://serviceweaver.dev/
https://datatracker.ietf.org/doc/draft-kumar-rtgwg-grpc-protocol/00/
https://datatracker.ietf.org/doc/draft-kumar-rtgwg-grpc-protocol/00/


[57] Parthasarathy Ranganathan, Daniel Stodolsky, Jeff Calow, Jeremy Dorf-
man, Marisabel Guevara, Clinton Wills Smullen IV, Aki Kuusela,
Raghu Balasubramanian, Sandeep Bhatia, Prakash Chauhan, et al.
Warehouse-scale video acceleration: co-design and deployment in the
wild. In Proceedings of the 26th ACM International Conference on
Architectural Support for Programming Languages and Operating Sys-
tems (ASPLOS). Association for Computing Machinery, 2021.

[58] Gang Ren, Eric Tune, Tipp Moseley, Yixin Shi, Silvius Rus, and Robert
Hundt. Google-wide profiling: A continuous profiling infrastructure
for data centers. IEEE Micro, 2010.

[59] David K. Rensin. Kubernetes - Scheduling the Future at Cloud Scale.
1005 Gravenstein Highway North Sebastopol, CA 95472, 2015.

[60] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C.
Snoeren. Inside the social network’s (datacenter) network. In Proceed-
ings of the Conference of the ACM Special Interest Group on Data
Communication (SIGCOMM). Association for Computing Machinery,
2015.

[61] Zhenyuan Ruan, Seo Jin Park, Marcos K. Aguilera, Adam Belay, and
Malte Schwarzkopf. Nu: Achieving Microsecond-Scale resource fun-
gibility with logical processes. In Proceedings of the 20th USENIX
Conference on Networked Systems Design and Implementation (NSDI).
USENIX Association, 2023.

[62] Harshit Saokar, Soteris Demetriou, Nick Magerko, Max Kontorovich,
Josh Kirstein, Margot Leibold, Dimitrios Skarlatos, Hitesh Khandelwal,
and Chunqiang Tang. ServiceRouter: Hyperscale and minimal cost
service mesh at Meta. In Proceedings of the 17th USENIX Conference
on Operating Systems Design and Implementation (OSDI). USENIX
Association, 2023.

[63] Hamed Seyedroudbari, Srikar Vanavasam, and Alexandros Daglis.
Turbo: SmartNIC-enabled Dynamic Load Balancing of µs-scale RPCs.
In Proceedings of the IEEE International Symposium on High-
Performance Computer Architecture (HPCA), 2023.

[64] Jeff Shute, Radek Vingralek, Bart Samwel, Ben Handy, Chad Whip-
key, Eric Rollins, Mircea Oancea, Kyle Littlefield, David Menestrina,
Stephan Ellner, John Cieslewicz, Ian Rae, Traian Stancescu, and Himani
Apte. F1: A distributed SQL database that scales. In 39th International
Conference on Very Large Databases (VLDB), 2013.

[65] Benjamin H. Sigelman, Luiz André Barroso, Mike Burrows, Pat
Stephenson, Manoj Plakal, Donald Beaver, Saul Jaspan, and Chandan
Shanbhag. Dapper, a large-scale distributed systems tracing infrastruc-
ture. Technical report, Google, Inc., 2010.

[66] Mark Slee, Aditya Agarwal, and Marc Kwiatkowski. Thrift: Scal-
able cross-language services implementation. Facebook white paper,
5(8):127, 2007.

[67] Yee Jiun Song, Marcos K. Aguilera, Ramakrishna Kotla, and Dahlia
Malkhi. RPC chains: Efficient client-server communication in geodis-
tributed systems. In Proceedings of the 6th USENIX Conference on
Networked Systems Design and Implementation (NSDI). USENIX As-
sociation, 2009.

[68] Jerome Soumagne, Dries Kimpe, Judicael Zounmevo, Mohamad
Chaarawi, Quincey Koziol, Ahmad Afsahi, and Robert Ross. Mer-
cury: Enabling remote procedure call for high-performance computing.
In 2013 IEEE International Conference on Cluster Computing (CLUS-
TER), 2013.

[69] Akshitha Sriraman and Abhishek Dhanotia. Accelerometer: Under-
standing acceleration opportunities for data center overheads at hy-
perscale. In Proceedings of the Twenty-Fifth ACM International Con-
ference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS). Association for Computing Machinery,
2020.

[70] Patrick Stuedi, Animesh Trivedi, Bernard Metzler, and Jonas Pfef-
ferle. Darpc: Data center rpc. In Proceedings of the ACM Symposium
on Cloud Computing (SoCC). Association for Computing Machinery,
2014.

[71] Maomeng Su, Mingxing Zhang, Kang Chen, Zhenyu Guo, and Yongwei
Wu. Rfp: When rpc is faster than server-bypass with rdma. In Pro-
ceedings of the European Conference on Computer Systems (EuroSys).
Association for Computing Machinery, 2017.

[72] Mark Sutherland, Siddharth Gupta, Babak Falsafi, Virendra Marathe,
Dionisios Pnevmatikatos, and Alexandres Daglis. The nebula RPC-
optimized architecture. In Proceedings of the ACM/IEEE 47th Annual
International Symposium on Computer Architecture (ISCA). IEEE Press,
2020.

[73] Stephanie Wang, Benjamin Hindman, and Ion Stoica. In reference
to RPC: It’s time to add distributed memory. In Proceedings of the
Workshop on Hot Topics in Operating Systems (HotOS). Association
for Computing Machinery, 2021.

[74] Adam Wolnikowski, Stephen Ibanez, Jonathan Stone, Changhoon Kim,
Rajit Manohar, and Robert Soulé. Zerializer: Towards zero-copy serial-
ization. In Proceedings of the Workshop on Hot Topics in Operating
Systems (HotOS). Association for Computing Machinery, 2021.

[75] Chi yao Hong, Subhasree Mandal, Mohammad A. Alfares, Min Zhu,
Rich Alimi, Kondapa Naidu Bollineni, Chandan Bhagat, Sourabh Jain,
Jay Kaimal, Jeffrey Liang, Kirill Mendelev, Steve Padgett, Faro Thomas
Rabe, Saikat Ray, Malveeka Tewari, Matt Tierney, Monika Zahn, Jon
Zolla, Joon Ong, and Amin Vahdat. B4 and after: Managing hierar-
chy, partitioning, and asymmetry for availability and scale in google’s
software-defined WAN. In Proceedings of the Conference of the ACM
Special Interest Group on Data Communication (SIGCOMM). Associa-
tion for Computing Machinery, 2018.

[76] Zhizhou Zhang, Murali Krishna Ramanathan, Prithvi Raj, Abhishek
Parwal, Timothy Sherwood, and Milind Chabbi. CRISP: Critical path
analysis of Large-Scale microservice architectures. In Proceedings of
the USENIX Annual Technical Conference (ATC). USENIX Associa-
tion, 2022.

[77] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong Guo, Marina
Lipshteyn, Yehonatan Liron, Jitendra Padhye, Shachar Raindel, Mo-
hamad Haj Yahia, and Ming Zhang. Congestion control for large-scale
RDMA deployments. In Proceedings of the Conference of the ACM Spe-
cial Interest Group on Data Communication (SIGCOMM). Association
for Computing Machinery, 2015.

514


	Abstract
	1 Introduction
	2 Characteristics of RPCs at Hyperscale
	2.1 Methodology
	2.2 Why is RPC Evaluation Important?
	2.3 Not all RPCs are the same.
	2.4 Nested RPCs are Wider than Deep
	2.5 RPC Size Matters
	2.6 Storage RPCs are Important

	3 RPC Latency
	3.1 RPC Components
	3.2 Fleet-Wide Latency Variation
	3.3 Service-Specific Latency Variation

	4 Resource Utilization of RPCs
	4.1 CPU Cycle Breakdown
	4.2 Fleet-Wide CPU Cycle Variation
	4.3 Load-Balancing Resources
	4.4 RPC Cancellations and Errors

	5 Implications
	5.1 RPC Behavior and Problems
	5.2 Software Optimizations
	5.3 Hardware Optimizations
	5.4 Limitations

	6 Related Work
	7 Conclusions
	References

