
Host Congestion Control
Saksham Agarwal
Cornell University

Arvind Krishnamurthy
Google & University of Washington

Rachit Agarwal
Cornell University

ABSTRACT
The conventional wisdom in systems and networking communities
is that congestion happens primarily within the network fabric.
However, adoption of high-bandwidth access links and relatively
stagnant technology trends for resources within hosts have led to
emergence of host congestion—that is, congestion within the host
network that enables data exchange betweenNIC and CPU/memory.
Such host congestion alters the many assumptions entrenched
within decades of research and practice of congestion control.

We present hostCC, a congestion control architecture to handle
both host and network fabric congestion. hostCC embodies three
key ideas. First, in addition to congestion signals that originate
within the network fabric, hostCC collects host congestion signals
that capture the precise time, location, and reason for host conges-
tion. Second, hostCC introduces a sub-RTT granularity host-local
congestion response that uses congestion signals to allocate host
resources between network traffic and host-local traffic. Finally,
hostCC uses both host and network congestion signals to allocate
network resources at an RTT granularity.

We realize hostCC within the Linux network stack. Our hostCC
implementation requires no modifications in applications, host
hardware, and/or network hardware; moreover, it can be integrated
with existing congestion control protocols to handle both host and
network fabric congestion. Evaluation of Linux DCTCP with and
without hostCC suggests that, in the presence of host congestion,
hostCC significantly reduces queueing and packet drops at the host,
resulting in improved performance of networked applications in
terms of throughput and tail latency.

CCS CONCEPTS
• Networks → Transport protocols; Data center networks; •
Software and its engineering → Operating systems;

KEYWORDS
Congestion control, datacenter transport, network stack

ACM Reference Format:
Saksham Agarwal, Arvind Krishnamurthy, and Rachit Agarwal. 2023. Host
Congestion Control. In ACM SIGCOMM 2023 Conference (ACM SIGCOMM
’23), September 10–14, 2023, New York, NY, USA. ACM, New York, NY, USA,
13 pages. https://doi.org/10.1145/3603269.3604878

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 979-8-4007-0236-5/23/09. . . $15.00
https://doi.org/10.1145/3603269.3604878

1 INTRODUCTION
Classical literature in datacenter congestion control takes a nar-
row view of “end-to-end”, often interpreting the end as the point
of presence of Ethernet (the network interface card, or NIC). This
view precludes a network that every datacenter server has—the host
network, that is, the network comprising processor, memory and
peripheral interconnects that enables the exchange of data between
CPU, memory and peripheral devices. The host network provides
many desirable properties—minuscule probability of failures and
packet corruption, ample bandwidth, and losslessness guarantees;
thus, the conventional wisdom in systems and networking com-
munities is that congestion happens primarily within the network
fabric (that is, at network switches).

Several recent studies from large-scale production clusters [1,
24, 25] demonstrate that the above conventional wisdom is merely
an appeal to tradition fallacy: adoption of high-bandwidth access
links, coupled with relatively stagnant technology trends for re-
sources within the host—CPU speeds, cache sizes, memory access
latency, memory bandwidth per core, NIC buffer sizes, etc.—has
led to the emergence of host congestion, that is, congestion within
the processor, memory and peripheral interconnects of the host
network. For instance, a recent study from Google [1] demonstrates
that host congestion in their production clusters leads to significant
queueing and packet drops at hosts, resulting in application-level
performance degradation in terms of latency and throughput. We
reproduce the host congestion phenomenon from [1] using Linux
DCTCP; we observe that host congestion can lead to as much as
1% packet drops at the host, 35 − 55% throughput degradation, and
120 − 5000× tail latency inflation (§2).

The regime of host congestion forces us to revisit the many
fundamental assumptions entrenched within decades of research
and practice of congestion control. For instance, classical conges-
tion control literature assumes that packet drops happen at the
congestion point; in contrast, host congestion results in queue-
ing and drops away from the actual congestion point (since the
host network is lossless). Thus, we must rethink congestion signals
to capture the precise time, location, and reason for host conges-
tion. As another example, an unspoken assumption in classical
congestion control literature is that all competing traffic adheres
to the congestion control protocol; such is not the case in the host
congestion regime where traffic from “outside the network” (e.g.,
applications generating CPU-to-memory traffic) does not employ
congestion control mechanisms, is much closer to the congestion
point, and can thus change dramatically at sub-RTT granularity.
This has powerful implications in terms of rethinking congestion
response: existing congestion control protocols that operate at RTT
granularity may achieve performance far from optimal in the host
congestion regime. Thus, host congestion provides us an opportu-
nity to revisit intellectually intriguing, decades-old, fundamental
questions related to congestion control architecture and protocols.

https://doi.org/10.1145/3603269.3604878
https://doi.org/10.1145/3603269.3604878

We present hostCC, a congestion control architecture that takes
the ultimate end-to-end view: it handles both host congestion and
network fabric congestion by allocating both host and network
resources among competing traffic. The ethos of host and network
resource allocation is the core that drives the three key technical
ideas embodied within hostCC. First, in addition to congestion sig-
nals from within the network fabric, hostCC generates host-local
congestion signals at processor, memory, and peripheral intercon-
nects at sub-microsecond timescales. These host congestion signals
enable hostCC to precisely capture the time, location, and reason
for host congestion. The second key technical idea in hostCC is a
sub-RTT granularity host-local congestion response: at both the
sender and the receiver, hostCC uses host-local congestion signals
to allocate host resources between network traffic and host-local
traffic. At the sender, hostCC uses host-local congestion response to
ensure that network traffic is not starved, even at sub-RTT granular-
ity; at the receiver, hostCC uses host-local congestion response to
minimize queueing and packet drops at the host: it modulates host
resources allocated to the network traffic at sub-RTT granularity
to ensure that NIC queues are drained at the same rate at which
network traffic arrives at the NIC. Finally, the third key technical
idea in hostCC is to use both host and network congestion signals
to perform efficient network resource allocation at RTT timescales.

hostCC admits efficient realization within existing host network
stacks, without any modifications in applications, host hardware,
and/or network hardware; moreover, hostCC can be integrated with
existing congestion control protocols to efficiently handle both host
and network fabric congestion. To demonstrate this, we perform
an end-to-end implementation of hostCC in the Linux kernel using
∼800LOC, and evaluate it alongwith unmodified Linux DCTCP. Our
evaluation demonstrates that, in the presence of host congestion,
hostCC reduces queueing and packet drops at the host to a baremini-
mum, resulting in near-optimal network utilization and tail latency
for networked applications. The end-to-end implementation of
hostCC, along with all the documentation needed to reproduce our
results, is available at https://github.com/Terabit-Ethernet/hostCC.

2 HOST CONGESTION
We start with a brief primer on the host network, with a particular
focus on potential congestion points within the host network (§2.1).
We then reproduce the host congestion phenomenon from [1] for
Linux DCTCP, and provide insights on the root causes of perfor-
mance degradation in the host congestion regime (§2.2).

2.1 Background: the host network
Figure 1 illustrates the host network datapath. We discuss below the
life of a packet from the time it arrives at the NIC until it is trans-
ferred to CPU/memory. For brevity, we exclude certain architectural
details that are not necessary to understand the hostCC architecture
(e.g., DRAM architecture). We primarily focus on the receiver side
since host congestion is more prominent at the receiver [1, 22, 24].

The host network datapath is best described in two components—
one between the NIC (one end of the PCIe interconnect) to the In-
tegrated IO Controller (IIO, the other end of the PCIe interconnect),
and the other between the IIO to memory. We discuss below the
steps involved in each component.

Rx Descriptors NIC Buffer

PCIe Credits

PCIe
Channel

IIO

Memory
Controller

NIC

CPUs

DRAM

IIO Buffer

Rd Q

Wr Q

1
2

3

4

1

2

Figure 1: Illustration of host network datapath for the Intel archi-
tecture (AMD architecture is conceptually similar) between NIC and
CPU/memory for the DDIO disabled case. Discussion in §2.1.

NIC to IIO datapath. NIC and IIO sit at the two ends of the PCIe
interconnect.
1 Upon a packet arrival, the NIC enqueues the packet into its

input buffer (typically in a small SRAM [1, 21]).
2 Next, the NIC fetches a descriptor that provides a host memory

address for the NIC to DirectMemory Access (DMA) the packet;
the NIC driver periodically replenishes these descriptors.

3 Importantly, PCIe is a lossless interconnect that uses a credit-
based flow control mechanism implemented via a fixed
(hardware-specific) number of credits [33]. When credits are
available, the NIC instantiates a DMA request over the PCIe
(executed using PCIe transactions); DMA’ing a single packet
may require multiple PCIe credits [1, 33]. PCIe being a lossless
interconnect, the packet can be safely removed from the NIC
buffer as soon as DMA is initiated. If PCIe runs out of credits
(we will discuss potential reasons below), DMAs cannot be
initiated until credits are replenished.

4 The IIO intercepts each PCIe transaction and initiates writes
to memory (discussed below); importantly, a PCIe credit is
replenished only when the IIO has successfully issued a write
to the memory1.

IIO to memory datapath. Modern hosts have support for di-
rect cache access (e.g., using DDIO [14]) that allows NICs to DMA
packets directly into the last-level cache (LLC). The precise IIO to
memory datapath depends on whether DDIO is enabled or disabled.
We first describe the datapath with DDIO disabled; we then discuss
the case when DDIO is enabled.
1 Upon receiving a PCIe transaction, IIO enqueues the request

in an IIO buffer.
2 IIO issues the requests from its buffer to the memory controller

buffer, and the controller executes the final write to DRAM.
Importantly, IIO to memory controller datapath also traverses
a lossless interconnect that uses a credit-based flow control
mechanism; the IIO can issue a write request to the memory

1PCIe transactions are executed at the granularity typically 256 − 512 byte-sized PCIe
Transaction Layer Packets (TLPs); however, IIO to memory transactions are executed
at the granularity of 64 byte-sized cachelines. Thus, each PCIe transaction requires
multiple IIO to memory writes before completion. We will largely ignore this detail
since it is not necessary to understand the phenomenon of host congestion.

https://github.com/Terabit-Ethernet/hostCC

controller only if the write queue at the memory controller is
not full. If this write queue is full (e.g., due to other memory
requests from CPUs), the request remains enqueued in the
IIO buffer. Once the write queue becomes free, IIO transfers
the request to the memory controller write queue; this incurs
a cacheline worth of memory write bandwidth. Since IIO to
memory controller datapath is lossless, the request can be safely
removed from the IIO buffer as soon as it is admitted into
the memory controller write queue. At this point, IIO also
replenishes the PCIe credit, as discussed above.

If DDIO is enabled, IIO transfers the cacheline to the LLC. This
may require evicting an already existing cacheline to the memory
controller [9, 14]. Therefore, if DDIO is enabled and does not lead
to evictions, it reduces the latency of an IIO write request, since
the speed-of-light delay from IIO to LLC is smaller than from IIO
to DRAM. However, if it does lead to evictions, we are back to the
DDIO disabled case: each eviction not only incurs a cacheline worth
of memory write bandwidth, but also higher latency since IIO to
LLC write can only be executed after the eviction has completed.

Host congestion. Host congestion may occur due to one or more
bottlenecks along the datapath, e.g., memory interconnect [1, 24],
peripheral interconnect [33], or hardware components required for
memory protection from peripheral devices [1, 6, 9, 28, 33]. To gain
intuition on host congestion, consider the memory interconnect
bottleneck. When the memory controller write queue is full, we
observe a domino effect due to latency inflation for IIO-to-memory
requests: as IIO-to-memory latency increases, more requests get
queued at the IIO buffer, PCIe credit replenishing incurs larger
delays, and PCIe may run out of credits. As a result, PCIe bandwidth
remains underutilized, resulting in packet queueing and eventual
drops at the NIC buffer.

2.2 Understanding impact of host congestion
Existing network protocols and stacks are not designed to han-
dle host congestion—they primarily target either network fabric
congestion only (e.g., [4, 8, 26, 31]), or compute bottlenecks due
to inefficient software (e.g., [9, 10, 12, 22, 29]). Indeed, the Google
study [1] demonstrates that, even with state-of-the-art congestion
control protocol Swift [22] and userspace network stack Snap [29],
their production clusters suffer from host congestion resulting in
significant queueing and packet drops at the host, throughput degra-
dation, and tail latency inflation. In this subsection, we reproduce
the host congestion phenomenon from [1] using Linux DCTCP,
and provide insights on root causes for queueing, packet drops, and
performance degradation in the host congestion regime.

Setup. To build an understanding of performance degradation in
the host congestion regime, we use a setup with two servers con-
nected via a single switch. These are 4-socket (NUMA node) servers
with 8 Intel Cascade lake CPU cores per socket, 100Gbps Mellanox
CX5 NIC connected to one of the sockets over 128Gbps PCIe 3.0,
and DDR4 DIMMs connected to 2 memory channels (with a total
maximum theoretical capacity of 375Gbps = 46.9GBps). In terms
of resource balancing, our servers are state-of-the-art: the latest
commercially available Intel servers have the same set of resources
but scaled by a factor (that is, a server with PCIe 4.0 with 256 Gbps

0x 1x 2x 3x0
20
40
60
80

100

N
et

w
or

k
T

hr
ou

gh
pu

t
(G

bp
s)

0x 1x 2x 3x
Degree of Host Congestion

10−5
10−4
10−3
10−2
10−1

100

Pa
ck

et
D

ro
p

R
at

e
(%

)

DDIO Off DDIO On

0x 1x 2x 3x
Degree of Host Congestion

0.0

0.2

0.4

0.6

0.8

1.0

M
em

or
y

B
an

dw
id

th
U

til
iz

at
io

n

DDIO Off, NetApp-T
DDIO Off, MApp

DDIO On, NetApp-T
DDIO On, MApp

Figure 2: (left) Host congestion leads to significant perfor-
mance degradation in terms of packet drop rates and through-
put (even with no network congestion). DDIO helps a little
but observes similar performance degradation. (right) MApp is
able to acquire a large fraction of memory bandwidth, leav-
ing little room for NetApp-T. Discussion in §2.2.

capacity would also have 4× more cores, 2× more NIC bandwidth,
4× more memory bandwidth, etc.) [1, 13]. Our servers run Linux
kernel 5.4.0 and, by default, use 4K MTUs (similar to [1]), and all
available optimizations (segmentation offloads like TSO and GRO,
accelerated request flow steering, etc.) that have been shown to
achieve best-possible Linux performance [9].

We use three applications—(a) a NetApp-T that generates 4 long
flows, each flow from one sender-side CPU core to one receiver-side
CPU core on the NIC-local NUMA node (DCTCP needs a minimum
of 4 cores to saturate 100Gbps NIC in an uncongested scenario); (b)
a NetApp-L that generates latency-sensitive RPCs (of sizes varying
from 128B to 32KB) between a sender-side and receiver-side CPU
core on the NIC-local NUMA node; and (c) an MApp that generates
CPU-to-memory traffic with 1 : 1 read-write ratio and sequential
memory access pattern; we increase the offered load to the memory
interconnect by the MApp from 1× to 3×, by increasing the number
of MApp CPU cores, and therefore increasing the number of in-flight
memory requests (in the absence of any other source of memory
traffic, using 1× to 3× MApp cores results in a total observed memory
bandwidth of 16.0GBps, 28.7GBps, and 34.8GBps, respectively). We
use standard benchmark tools for these applications—iperf [17] for
NetApp-T, netperf [20] for NetApp-L, and MLC [16] for MApp.

[Figure 2] Host congestion leads to degraded network
throughput (>35%), evenwhenDDIO is enabled. Figure 2 shows
throughput, packet drops, and memory bandwidth utilization with
increasing degrees of host congestion, with and without DDIO. The
case of 0× is easy: there is no host congestion, and thus network
traffic is able to saturate the access link bandwidth. Enabling DDIO
reduces memory bandwidth utilization since the CPU is able to
consume the data before it is evicted; nevertheless, memory band-
width utilization is non-zero because evictions do happen due to
cache pollution—since LLC is shared across all cores, one cannot
guarantee a perfect cache hit rate [9]. The case of 1× is more in-
teresting; let us start with the DDIO disabled case. Here, as shown
in the right figure, memory bandwidth utilization is now close to
saturation2; thus, memory access latency (and thus, the number
of CPU cycles per memory access) starts to increase. As a result,
network throughput is now compute bottlenecked (more precisely,

2Memory bandwidth utilization at saturation depends upon DRAM hardware as well
as application workload (read-write ratio, access patterns, etc.) [18], and is typically
lower than the maximum theoretical bandwidth.

1500B 4000B 9000B0
20
40
60
80

100

N
et

w
or

k
T

hr
ou

gh
pu

t
(G

bp
s)

1500B 4000B 9000B
MTU Size

0.00
0.25
0.50
0.75
1.00
1.25

Pa
ck

et
D

ro
p

R
at

e
(%

)

DDIO Off DDIO On

4 8 160
20
40
60
80

100

N
et

w
or

k
T

hr
ou

gh
pu

t
(G

bp
s)

4 8 16
Number of Active Flows

0.0
0.5
1.0
1.5
2.0

Pa
ck

et
D

ro
p

R
at

e
(%

)

DDIO Off DDIO On

Figure 3: The impact of host congestion worsens with larger
MTU size and number of flows, with 3× degree of host con-
gestion. DDIO enabled case, in particular, suffers more than
DDIO disabled case.

by receiver-side buffers) and is unable to saturate the access link
bandwidth. DDIO shines in such a scenario: lower memory band-
width utilization results in lower memory access latency and fewer
CPU cycles per memory access, allowing network traffic with DDIO
to continue to saturate the access link bandwidth.

For 2× and 3×, memory bandwidth is now saturated, resulting in
inflated memory access latency. We now see the domino effect dis-
cussed earlier: PCIe becomes underutilized, and packets get queued
(and eventually dropped) at the NIC; even in this simple setup, we
observe 0.3% drops. Interestingly, while DDIO can be slightly help-
ful in improving network throughput, it has negligible impact on
packet drop rate; this is because of the reasons discussed earlier—as
shown in the right figure, memory bandwidth utilization is similar
for both DDIO enabled and disabled (that is, majority of cachelines
are evicted from LLC before the CPU can consume them). We will
discuss in §5 that at 2× and 3×, DCTCP is operating in the AIMD
regime: senders keep on increasing sending rate, resulting in queue
build-up and drops at the NIC when total sending rate exceeds the
instantaneous host interconnect capacity; packet drops leads to
rate reduction, followed by subsequent sawtooth behavior.

Figure 2(right) shows that, as we increase the number of MApp
cores, network traffic is allocated a decreasing fraction of memory
bandwidth. More work is needed to understand the precise rea-
sons; our evaluation suggests that memory bandwidth allocation
is essentially proportional to the load generated by individual en-
tities (IIO or CPU); this implies that, as MApp cores increase, MApp
generates increasingly larger load3 but the maximum number of
requests issued by IIO remains the same (dependent on the PCIe
credit limit). As a result, CPUs are able to quickly acquire a larger
fraction of memory bandwidth, creating even more host contention
for network traffic.

[Figure 3] Impact of host congestion worsens with increasing
MTU sizes and a larger number of flows. Larger MTU sizes
and a large number of connections have been shown to improve
network throughput when compute at the host is bottlenecked due
to inefficient software [1, 9]. Figure 3 shows that, in the presence of
host congestion, these optimizations can, in fact, hurt performance—
we see a significant increase in packet drop rates for both DDIO
enabled and disabled cases; and, while we observe a slight improve-
ment in throughput for the DDIO disabled case (due to reduction in
3This is because each CPU core can maintain a hardware-specific maximum number
of in-flight memory requests, equal to so-called Line Fill Buffer (LFB) size. On our
servers, this limit is typically 10 − 12.

104
105
106

128B 512B 2KB 8KB 32KB
RPC Size

50

100

150

200

L
at

en
cy

(µ
s)

DCTCP
(No host congstion)

DCTCP
(With host congestion)

Figure 4: Host congestion leads to orders of magnitude tail la-
tency inflation. The figure shows {P50, P90, P99, P99.9, P99.99}
latencies (represented by whiskers) for NetApp-L, with and
without host congestion, when NetApp-T, NetApp-L, and MApp
are run together with DDIO disabled. DDIO enabled results,
shown in §5.2, are identical. Discussion in §2.2.

compute cycles required to process each packet), we also observe
significant throughput reduction for the DDIO enabled case.

The trends for the DDIO disabled case are easy to understand:
for AIMD-style congestion control protocols, it is known that
packet drop rates increase with MTU size [30] and the number
of flows [2, 32]. The trends for the DDIO enabled case are related to
the inefficacy of DDIO observed in [9]—with an increase in MTU
size and/or number of flows, DDIO observes an increase in cache
eviction rates (and thus, increase in memory bandwidth utilization);
as discussed in §2.1, each such eviction not only incurs a cacheline
worth of memory bandwidth as in DDIO disabled case, but also
higher latency than DDIO disabled case since IIO to LLC write can
only be executed after the eviction has completed. As a result, DDIO
enabled case at 3× host congestion observes even higher packet
drop rates than the DDIO disabled case for large MTU sizes and
large numbers of flows.

[Figure 4] Host congestion can cause orders of magnitude
tail latency inflation for latency-sensitive applications.We
now run the three applications—NetApp-T, NetApp-L, and MApp—
together, with 3× host congestion. Since NetApp-L introduces a tiny
amount of additional traffic, NetApp-T and MApp performance is
similar to previous experiments; we thus focus on NetApp-L results.
We observe significant latency inflation for NetApp-L in the host
congestion regime. This latency inflation is caused due to three
reasons (a) queueing delay at the NIC buffer; (b) retransmission and
timeout delays due to drops at the NIC buffer; and (c) larger CPU
processing delays due to inflated in CPU cycles in memory accesses
caused by host congestion. Building upon previous observations
(close to 0.3% drops), P99 latency is dominated by (a) and (c), and
P99.9 is dominated by (b)—for both DDIO enabled and disabled
(that observe similar drop rates), P99 latency inflation is roughly
60 − 100𝜇s which is close to the worst-case queueing delay at the
NIC buffer; at P99.9, latency inflation is close to 200ms, which is
the default Linux minimum retransmission timeout (RTO) value.
Smaller RPCs suffer from higher tail latency inflation because any
packet drop necessitates a timeout; for larger RPCs, Linux Tail Loss
Probe (TLP) [34] mechanism is effective (with a smaller timeout)
when there is more than one in-flight packet. Isolating NIC buffers
does not solve this problem: a smaller NIC buffer size would incur
a larger number of drops, increasing (b); a larger NIC buffer size,
on the other hand, would increase (a).

3 hostCC
Figure 5 illustrates the end-to-end hostCC architecture. In this sec-
tion, we provide details on the three key technical ideas embodied
within the architecture—host congestion signals (§3.1), host-local
congestion response (§3.2), and network resource allocation (§3.3).

3.1 Host congestion signals
hostCC, in addition to classical congestion signals from within
the network fabric, generates host-local congestion signals. More
precisely, hostCC uses IIO buffer occupancy as a congestion signal.

To understand why, recall the host datapath discussed in §2.1.
Let R be the rate at which NIC receives data, P be the maximum
in-flight bytes that PCIe can maintain (a fixed hardware-dependent
constant that depends on the maximum number of credits, and on
TLP size), ℓ𝑝 be the latency between the NIC to the IIO (a fixed
hardware-dependent constant), and ℓ𝑚 be the latency between the
IIO and the memory controller. As discussed in §2.1, ℓ𝑚 depends
upon multiple factors, including the memory controller write queue
size, load on the memory controller, whether DDIO is enabled (and
whether an eviction is triggered), and the speed-of-light-latency
between the IIO and memory [7, 14, 23]. We will refer to ℓmin

𝑚 and
ℓmax
𝑚 as the minimum and the maximum value of ℓ𝑚 .
Given the above, PCIe throughput is given by P/max{ℓ𝑝 , ℓ𝑚},

that is, PCIe utilization is dominated by the maximum latency
among all links along the path from the NIC to memory4. The IIO
buffer occupancy is equal to R × ℓ𝑚 , that is, the maximum number
of bytes that can be received by the IIO while it is waiting for credits
to be replenished (if it had credits, IIO would issue the requests).

In the regime of no host congestion, ℓ𝑚 ≈ ℓmin
𝑚 ≪ ℓ𝑝 by hardware

design, making ℓ𝑝 the dominant factor in PCIe utilization. Thus, by
hardware design, IIO replenishes PCIe credits at a rate no lower than
PCIe consumes credits, and PCIe bandwidth utilization matches the
rate at which NIC receives data; that is, P/ℓ𝑝 ≥ R. However, in the
host congestion regime, the IIO buffer occupancy can be anywhere
between R × ℓmin

𝑚 and min{R × ℓmax
𝑚 , maximum number of PCIe

credits}, where the second expression in the upper bound is achieved
when IIO is unable to replenish PCIe credits due to large ℓ𝑚 . Our
measurements in Figure 8 provide an empirical confirmation.

We are now ready to describe the benefits of using IIO occupancy
as the host congestion signal. First, IIO occupancy provides accurate
information about time, location, and reason for host congestion:
IIO occupancy increases immediately upon the memory controller
becoming congested (accuracy in time and location) and it increases
only if memory controller is congested (accuracy in reason). Sec-
ond, IIO occupancy can be combined with another statistic—IIO
insertion rate, defined as the rate at which PCIe inserts data into the
IIO buffer—to measure various other useful metrics; for instance,
instantaneous PCIe throughput (capturing the rate at which NIC
buffers are drained) is equal to instantaneous IIO insertion rate
times the cacheline size, host delay (ℓ𝑝 + ℓ𝑚) can be computed us-
ing Little’s Law [27]), etc. Third, IIO occupancy and IIO insertion
rates can be measured using two registers typically available on

4Here is one way to visualize this intuitively: if ℓ𝑝 → ∞ or ℓ𝑚 → ∞, PCIe utilization
tends to 0; furthermore, if ℓ𝑚 ≫ ℓ𝑝 , PCIe utilization is bottlenecked by ℓ𝑚 (host
congestion) and if ℓ𝑝 ≫ ℓ𝑚 , PCIe utilization is bottlenecked by ℓ𝑝 . This follows almost
immediately using the analysis in [19].

Classical Network FC

Host-local Congestion Response

NIC

PCIe

NIC

PCIe

Host
Congestion

Signal

Network
Congestion

Signal

Receiver Host

Classical Network CC

Input
Sender-host congestion signal +

Receiver-host congestion signal +
Network congestion signal

Output
Network resource allocation

(via rate control/window mgmt)

Host-local Congestion Response

Input
Host congestion signal

Output
Host-local response level

Sender Host
Host

Congestion
Signal

Output
Host-local response level

Input
Host congestion signal

Input
Host congestion signal +

Network congestion signal

Output
Flow control +

Echo congestion signals to sender

Figure 5: hostCC architecture overview. Discussion in §3.

commodity hardware, allowing hostCC to work without any hard-
ware modifications/support. Finally, IIO measurements are done at
the processor interconnect, outside the NIC-to-memory datapath;
thus, IIO occupancy measurements are not impacted by host con-
gestion. We provide more details in §4.1, including details on how
hostCC measures IIO occupancy and IIO insertion rates at sub-𝜇s
granularity using existing hardware.

3.2 Host-local congestion response at sub-RTT
granularity

A conceptual interpretation of classical congestion control protocols
is that, to handle congestion within the network, these protocols
(along with network switches) allocate network resources across
entities competing at the congestion point. The second key tech-
nical idea in hostCC architecture is motivated by this conceptual
view: to handle both host and network congestion, hostCC allocates
both host and network resources among entities competing at the
congestion point. To achieve this, hostCC introduces a host-local
congestion response—at both the sender and the receiver host—that
uses host congestion signals discussed in the previous subsection to
allocate host resources across network traffic and host-local traffic.

Resource allocation depends on the underlying policy; hostCC
architecture does not dictate the precise resource allocation policy—
just like different network resource allocation mechanisms use
different network allocation policies (max-min fairness, weighted
max-min fairness, prioritization, etc.), we envision hostCC to em-
body various host resource allocation policies and respective imple-
mentation. For the following discussion, we assume that the policy
periodically computes a target network bandwidth (𝐵𝑇), and feeds it
as input to hostCC. In addition, the host-local congestion response
takes as input IIO occupancy 𝐼𝑆 as the host congestion signal (using
a threshold 𝐼𝑇 , where 𝐼𝑆 > 𝐼𝑇 indicates host congestion) and PCIe
bandwidth utilization 𝐵𝑆 (computed using IIO insertion rates, as
discussed in the previous subsection). The congestion response
mechanism operates on a per-packet basis, and makes a decision
whether to increase or decrease the resource allocation to both
network traffic and host-local traffic.

Host-local Traffic
Rate

(IS = IT)

Host Congestion
(IS > IT)

No Host Congestion
(IS < IT)

Target Network
Bandwidth (BT)

Network Traffic
Rate (BS)

1

4

2

3

Figure 6: Resource allocation decisions made by hostCC un-
der different regimes of operation. Discussion in §3.2.

Given the above, hostCC’s host-local congestion response mech-
anism is best described in terms of four possible regimes of op-
eration, depicted in Figure 6. We describe individual regimes and
corresponding host-local congestion response below.

1 [Nohost congestion, network traffichasmet the target net-
work bandwidth]. In this regime, host is not congested (𝐼𝑆 < 𝐼𝑇)
and the network traffic is using more resources than what is needed
to meet the target bandwidth (that is, 𝐵𝑆 > 𝐵𝑇). Thus, the host-local
congestion response mechanism increases the resources allocated
to the host-local traffic. This is the right action to take since, in
absence of host congestion, more host resources can be allocated
to either network traffic or host-local traffic; moreover, since the
network traffic has already met the target network bandwidth,
we want to ensure that host-local traffic is not backpressured un-
necessarily. Thus, the host-local congestion response mechanism
increases resources allocated to the host-local traffic. It is possible
that host-local traffic does not need additional resources; hostCC
handles this case by relying on the AIMD-style mechanisms used in
network congestion control protocols—since host is not congested,
network traffic does not get marked with congestion signals at the
host allowing network traffic to increase its rate and acquire unused
host resources (if network fabric is not congested).

2 [Host congestion, network traffic has met the target net-
work bandwidth]. In this regime, host is congested and the net-
work traffic is using more resources than what is needed to meet
the target bandwidth. Thus, the right action in this regime is to
reduce resources allocated to the network traffic and to not re-
duce resources allocated to the host-local traffic. To achieve this,
hostCC again relies on AIMD-style mechanisms used in network
congestion control protocols: it echoes the host congestion signal
to the network congestion control protocol resulting in reduction
in network traffic rate.

3 [Host congestion, network traffic has not met the target
network bandwidth]. In this regime, host is congested but the
network traffic is allocated fewer resources than what is needed
to meet the target bandwidth. Since there is host congestion, we
must reduce the allocated resources; since network traffic has not

met the target bandwidth, hostCC first reduces the resources allo-
cated to the host-local traffic (this happens at sub-RTT granularity).
However, this is not sufficient to avoid NIC buffer build up and
packet drops. To see why, recall that the PCIe bandwidth utilization
𝐵𝑆 and target network bandwidth 𝐵𝑇 may be much lower than
the rate R at which NIC is currently receiving traffic. By reducing
resources allocated to host-local traffic in order to accommodate
𝐵𝑇 network traffic bandwidth, the host-local congestion response
merely ensures that NIC buffers build up at a rate no faster than
R − 𝐵𝑇 . Without any explicit congestion signal, the network traffic
will have no reason to reduce R, resulting in increasingly more
queueing at the NIC and eventual packet drops. To avoid this, the
host-local congestion response also echoes the host congestion sig-
nal to the network congestion control protocol resulting in reduc-
tion in network traffic rate. We note that, if R < 𝐵𝑇 , the host-local
congestion response may lead to inefficient resource allocation due
to reducing resources allocated to both network and host-local
traffic; nevertheless, hostCC takes the above conservation decision
temporarily to minimize NIC buffer buildup and packet drops.

4 [No host congestion, network traffic has notmet the target
network bandwidth]. In this regime, host is not congested and
the network traffic has fewer resources than what is needed to meet
the target bandwidth. Thus, the host-local congestion response al-
locates more resources to network traffic; this allocation is again
implicit, in that, it again relies on the AIMD-style mechanisms—
since host is not congested, network traffic does not get marked
with congestion signals at the host allowing network traffic to in-
crease its rate and acquire unused host resources (if network fabric
is not congested). Increasing resources allocated to the network traf-
fic implicitly may take multiple RTTs, or may not even be feasible
(e.g., due to network congestion); nevertheless, the host-local con-
gestion response makes the conservation decision to not increase
resources allocated to the host-local traffic in this regime to avoid
host congestion before reaching the target network bandwidth.

The host-local congestion response in hostCC uses host congestion
signals (that are generated at sub-microsecond granularity) and is
purely local to the host; thus, it can be done at sub-RTT granularity.
As a result, even if host-local traffic changes at sub-RTT granularity,
the host-local congestion response can ensure high host resource
utilization while maintaining target network bandwidth according
to any given policy.

3.3 Network resource allocation at RTT
granularity

Consider the regime of host congestion (𝐼𝑆 > 𝐼𝑇) and network
traffic transmitting at rate R > 𝐵𝑇 (which will lead to 𝐵𝑆 > 𝐵𝑇). In
this scenario, the right action is for the network traffic to reduce
its rate. To achieve this, hostCC’s host-local congestion response
mechanism does not take any action; instead, hostCC simply echos
the host congestion signal back to the network congestion con-
trol protocol (in addition to any network congestion signal). This
has two benefits. The first benefit is conceptual: it enables a clean
separation of concerns, where the host-local congestion response
handles host congestion at sub-RTT granularity, and network con-
gestion control continues to handle network congestion at RTT

0.4 0.6 0.8 1.0 1.2
Measurement Latency (µs)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
O

ve
rA

ll
M

ea
su

re
m

en
ts

No Host Congestion
With Host Congestion

(a) CDF for 𝐼𝑆 read latency

0.4 0.6 0.8 1.0 1.2
Measurement Latency (µs)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
O

ve
rA

ll
M

ea
su

re
m

en
ts

No Host Congestion
With Host Congestion

(b) CDF for 𝐵𝑆 read latency
Figure 7: hostCC generates host congestion signals that are
not on the NIC-to-memory datapath; it can thus measure
both 𝐼𝑆 (left) and 𝐵𝑆 (right) at sub-𝜇s timescales independent
of host congestion.

granularity as they do today. Second, hostCC can be integrated
with any network congestion control protocol: the only difference
is that the protocol will now use both host and network congestion
signals for host resource allocation.

End-to-end hostCC behavior.We provide an intuitive descrip-
tion of hostCC’s end-to-end behavior. Suppose the network traffic
is operating at rateR > 𝐵𝑇 . Suppose severe host congestion is intro-
duced abruptly; then, as evaluated in §2.2, 𝐵𝑆 will reduce to a small
value below 𝐵𝑇 , 𝐼𝑆 will grow beyond 𝐼𝑇 , and the host-local conges-
tion response will kick in quickly to increase the host resources
allocated to network traffic to accommodate ∼𝐵𝑇 bandwidth (poten-
tially by reducing resources allocated to host-local traffic causing
host congestion). However, for a few RTTs, the arrival rate of net-
work traffic R at receiver NIC will still be higher than 𝐵𝑇 , resulting
in hostCC echoing host congestion signals back to the sender. The
sender will eventually reduce R until it converges to the target
network bandwidth 𝐵𝑇 .

4 hostCC IMPLEMENTATION
We now provide details on how we incorporate the three key tech-
nical ideas from the previous section in an end-to-end hostCC
implementation—generating host congestion signals (§4.1), using
host congestion signals for host-local congestion response at sub-
RTT granularity (§4.2) and using both host and network congestion
signals for network resource allocation at RTT granularity (§4.3).
We implement hostCC as a loadable Linux kernel module using
∼800 LOC; hostCC works out-of-the-box with various existing con-
gestion control protocols, without requiring any modifications to
applications, host hardware, and/or network hardware.

4.1 Host congestion signals
hostCC collects host congestion signals at sub-microsecond gran-
ularity. To maintain brevity, we describe an implementation atop
Intel architectures (AMD architecture is conceptually very similar).

Most hardware counters are exposed using model specific reg-
isters (MSRs) [15]. The MSR for the IIO occupancy value at time
𝑡 (denoted by 𝑅𝑂𝐶𝐶 (𝑡)) maintains the cumulative value of the oc-
cupancy, incremented at IIO clock frequency (denoted by 𝐹𝐼 𝐼𝑂);
for example, 𝐹𝐼 𝐼𝑂 = 500MHz for our servers. The average IIO oc-
cupancy 𝐼𝑆 between any two time instants 𝑡1 and 𝑡2 is computed
using: 𝐼𝑆 = (𝑅𝑂𝐶𝐶 (𝑡2) − 𝑅𝑂𝐶𝐶 (𝑡1))/((𝑡2 − 𝑡1) ∗ 𝐹𝐼 𝐼𝑂). The time
difference (𝑡2 − 𝑡1) is measured by the standard method of reading

0 200 400 600 800 1000
0

20
40
60
80

100
120

PC
Ie

B
W

(G
bp

s)

0 200 400 600 800 1000
Time (µs)

50

60

70

80

90

100

II
O

O
cc

up
an

cy

(a) No Host Congestion

0 200 400 600 800 1000
0

20
40
60
80

100
120

PC
Ie

B
W

(G
bp

s)

0 200 400 600 800 1000
Time (µs)

50

60

70

80

90

100

II
O

O
cc

up
an

cy

(b) With Host Congestion
Figure 8: Variation of IIO occupancy 𝐼𝑆 and PCIe band-
width utilization 𝐵𝑆 with time for 1ms period for the ex-
periment of Figure 2 without host congestion (left) and with
3× host congestion (right). In absence of host congestion,
𝐵𝑆 ≈ 103Gbps (line-rate bandwidth including PCIe overheads
with 4K MTUs) and 𝐼𝑆≈65, which corresponds to hardware-
specific IIO-DRAM bandwidth-delay product (§3.1). During
host congestion, 𝐼𝑆 increases to a maximum value of ∼93
(shown in red), resulting in a reduction of 𝐵𝑆 , queueing and
packet drops at the NIC, and network CC reducing the rate.

the TSC register, which provides nanosecond level time accuracy.
To minimize read latency, we used inline assembler code to read the
TSC register. The read latency is bottlenecked by the read call to
the IIO occupancy MSR register. On our servers, we measured that
each TSC read took < 2ns, and each MSR read call took <∼600ns.
Thus, we are able to collect host congestion signal (IIO occupancy
𝐼𝑆) at sub-𝜇s timescales. Similarly, to measure PCIe bandwidth uti-
lization 𝐵𝑆 , we read another MSR counter (denoted by 𝑅𝐼𝑁𝑆) that
stores cumulative IIO insertions. Thus, similar to IIO occupancy, we
compute the average rate of IIO insertions 𝐼 between time instants
𝑡1 and 𝑡2 as 𝐼 = (𝑅𝐼𝑁𝑆 (𝑡2) − 𝑅𝐼𝑁𝑆 (𝑡1))/(𝑡2 − 𝑡1). The PCIe band-
width utilization between 𝑡1 and 𝑡2 is thus 𝐼 times the cacheline
size. Both congestion signals—𝐼𝑆 and 𝐵𝑆—require reading CPU reg-
isters, which does not overlap with the NIC-to-memory datapath;
thus, hostCC is able to measure these signals at a sub-𝜇s timescale,
independent of host congestion (as shown in Figure 7).

We note a low-level detail. Similar to existing network congestion
control protocols [22, 31], hostCC uses an exponentially weighted
moving averaging (EWMA) for its congestion signals, 𝐼𝑆 and 𝐵𝑆 ,
rather than their instantaneous values. The EWMA weight used
in hostCC has a standard tradeoff in terms of aggressiveness in
hostCC’s response to host congestion and delayed reaction—using
a large weight will quickly trigger host-local congestion response
as well as network congestion control response (the latter because
congestion signals will be generated more quickly, and echoing
them to network congestion control protocol will trigger its re-
sponse) which could lead to overreaction in presence of temporary
burst of host congestion; a small weight, on the other hand, will
delay congestion response. hostCC uses a default weight value of
1/8 for 𝐼𝑆 and 1/256 for 𝐵𝑆 (that is, last 8 IIO occupancy values and
last 256 PCIe bandwidth utilization values are dominant). An impor-
tant note here is that we use the same weight for 𝐼𝑆 for detecting
host congestion and echoing congestion to the network congestion
control protocol; this works because network congestion control
protocols typically maintains EWMA of their parameters (e.g., 𝛼 in

0 1 2 3 4
Host-local Response Level

0
20
40
60
80

100

N
et

A
pp

-T
T

pu
t

(G
bp

s)

DDIO Off DDIO On

0 1 2 3 4
Host-local Response Level

0
50

100
150
200

M
A

pp
T

pu
t

(G
bp

s)

DDIO Off DDIO On

0 1 2 3 4
Host-local Response Level

0.0

0.2

0.4

0.6

0.8

1.0

M
em

or
y

B
an

dw
id

th
U

til
iz

at
io

n

DDIO Off, NetApp-T
DDIO Off, MApp

DDIO On, NetApp-T
DDIO On, MApp

Figure 9: EvaluatingMBA efficacy: NetApp-T is able to acquire
more host resources with higher host-local response levels
(that is, more backpressure on MApp). As a result, NetApp-T
gets higher throughput (left) and a larger fraction ofmemory
bandwidth (right). Discussion in §4.2 and §5.

DCTCP) used to trigger network congestion response. We show in
Figure 8 the IIO occupancy and PCIe write bandwidth with time
for the baseline setup in §2, with and without host congestion.

4.2 Host-local congestion response
The host-local congestion response in hostCC implementation takes
as input host congestion signals (𝐼𝑆 and 𝐵𝑆) and corresponding
thresholds (𝐼𝑇 and 𝐵𝑇) and triggers the response discussed in §3.2.
Any resource allocation mechanism must operate using the in-
terface provided by the system that offers resources; we describe
our implementation using the Intel Memory Bandwidth Allocation
(MBA) tool. This interface uses a simple multi-level backpressure
mechanism to the host-local traffic (recall, host interconnect is
lossless; thus, backpressure is a natural mechanism to reduce CPU
to memory traffic). Higher levels mean more backpressure; that
is, higher levels result in fewer resources allocated to host-local
traffic. Internally, MBA alters the rate at which any CPU core can
generate memory traffic by introducing additional latency to every
read/write request that observes an L2 cache miss on that core.
Therefore, average traffic generated by a core to memory is in-
versely proportional to the introduced additional latency: (LFB size
× cacheline size)/per-access latency, where LFB size is as discussed
in §2.2. The current MBA interface allows 10 levels, with higher
levels introducing higher latency resulting in lower CPU to memory
traffic [37]. AMD’s Memory Bandwidth QoS control tool uses a
similar interface [5].

The desired rate level is realized by performing a single MSR
write to MBA-specific registers. For each socket (NUMA node),
MBA maintains 8 MSR registers, one for each “class-of-service”
(COS), which can include any number of CPU cores within a par-
ticular socket. The assignment of CPU cores to COS can also be
changed dynamically using an MSR write to another control reg-
ister. Therefore, a single MSR write can simultaneously alter the
CPU to memory traffic for any number of CPU cores within a
socket. Our current implementation uses 5 local response levels
ℓ = {0, 1, 2, 3, 4}, where each successive level ℓ introduces increas-
ingly larger latency—level 0 corresponds to no backpressure, and
level 4 corresponds to maximum backpressure. We separate out
network traffic cores from host-local traffic cores using different
COS and introduce backpressure only to the latter.

Figure 9(left) shows network throughput when we hard code
each individual host-local response level ℓ . We observe that, with

each level ℓ , throughput increases as expected: withmore aggressive
backpressure on host-local traffic, network throughput increases
from 43Gbps at level 0 to ∼100 Gbps at level 45. To understand
Figure 9(right), that shows corresponding memory bandwidth uti-
lization, we must understand the difference between application-
level throughput and corresponding load on memory bandwidth.
In particular, NetApp-T and MApp use ∼2.1× and ∼1.33× memory
bandwidth per unit of application-level throughput (due to data
copy and processor interconnect overheads, respectively). When
DDIO is enabled, the network application achieves higher through-
put at lower response levels (for eg., ∼100Gbps at level 3 instead of
4) because NetApp-T utilizes smaller amount of memory bandwidth
per unit throughput (since DDIO cache eviction rate is typically
less than 100%). Consequently, it requires smaller amount of back-
pressure to the MApp to achieve the same network throughput. Our
measurements also suggest that it takes ∼22𝜇s to perform a write
to today’s MBA MSR registers due to MBA limitations; to verify
that this was not an hostCC implementation artifact, we performed
MSR writes using inline assembler core such that we only execute
a single assembly-level instruction for the write and still incurred
22𝜇s latency (2× smaller than our network RTT). We discuss this
limitation of MBA in §6.

4.3 Network resource allocation
hostCC can be integrated with many existing network congestion
control protocols. We focus here on hostCC’s implementation with
ECN-based protocols; we discuss extensions to integrate hostCC
with other protocols in §6. hostCC requires no modification to exist-
ing network congestion control protocol implementations: hostCC
simply generates ECNmarkings on theACKs sent back to the sender
if 𝐼𝑆 > 𝐼𝑇 (if the packet was already marked by the switch, no mod-
ifications are made). The current hostCC implementation performs
ECN marking at the IP layer using 2 out of 6 DSCP bits (as in RFC
3168 [35]) by exploiting a hook to the ip_recv function provided
by the widely used NetFilter kernel module [38] in Linux. hostCC’s
host-local congestion response does exactly what today’s switches
do—mark both these bits as 1 to indicate congestion—before deliver-
ing the IP datagram to the transport layer. The transport layer then
processes the ECN marked datagram in exactly the same manner
as it would for any ECN marked packet at today’s switches.

5 hostCC EVALUATION
We now evaluate hostCC performance. Our goals are three-fold:

• Understanding benefits of hostCC’s core ideas—host congestion
signals, host-local congestion response, and performing network
resource allocation using both host and network congestion
signals—to application-level performance;

5The host-local response level 3 corresponds to the maximum possible latency that can
be introduced using the current MBA implementation to all MApp cores. However, this
added latency does not provide sufficient backpressure to MApp to allow the network
application to reach line rate throughput (as shown in Figure 9, NetApp-T only achieves
∼77Gbps throughput at level 3). In order to emulate an MBA response with larger
added latency, we introduced a level 4 in current hostCC implementation—when
emulating level 4, we pause the execution of the MApp process using the SIGSTOP
signal, and when switching back from level 4 to lower levels, we resume the MApp
process using the SIGCONT signal.

0x 1x 2x 3x0
20
40
60
80

100

N
et

w
or

k
T

hr
ou

gh
pu

t
(G

bp
s)

0x 1x 2x 3x
Degree of Host Congestion

10−5
10−4
10−3
10−2
10−1

100

Pa
ck

et
D

ro
p

R
at

e
(%

)

DCTCP DCTCP+hostCC

0x 1x 2x 3x
Degree of Host Congestion

0.0

0.2

0.4

0.6

0.8

1.0

M
em

or
y

B
an

dw
id

th
U

til
iz

at
io

n

DCTCP, NetApp-T
DCTCP, MApp

DCTCP+hostCC, NetApp-T
DCTCP+hostCC, MApp

Figure 10: (left) hostCC allows network traffic to achieve
its target network bandwidth of 𝐵𝑇 = 80Gbps, while simul-
taneously reducing packet drop rates by orders of magni-
tude, even with a high degree of host congestion. (right) with
hostCC, MApps no longer acquire a large fraction of memory
bandwidth, even with high degree of host congestion.

1500B 4000B 9000B0
20
40
60
80

100

N
et

w
or

k
T

hr
ou

gh
pu

t
(G

bp
s)

1500B 4000B 9000B
MTU Size

10−5
10−4
10−3
10−2
10−1

100
101

Pa
ck

et
D

ro
p

R
at

e
(%

)

DCTCP DCTCP+hostCC

4 8 160
20
40
60
80

100

N
et

w
or

k
T

hr
ou

gh
pu

t
(G

bp
s)

4 8 16
Number of Active Flows

10−5
10−4
10−3
10−2
10−1

100
101

Pa
ck

et
D

ro
p

R
at

e
(%

)

DCTCP DCTCP+hostCC

Figure 11: Even with high degree of host congestion (3× in
this experiment), hostCC consistently maintains its benefits
across MTU sizes and number of flows.

• Deep dive into hostCC microscopic behavior (capturing host
congestion signals, host-local congestion response, and network
resource allocation) in the host congestion regime;

• Develop lessons for the host congestion regime that would be
useful to design future host hardware and network stacks that
can better enable the reaction to host congestion.

Throughout this section, we use Linux DCTCP as our network
congestion control protocol (network CC) since Linux DCTCP is a
stable open-sourced implementation that works with commodity
hardware. We primarily focus on the DDIO disabled case since
results are easier to explain (as discussed earlier, performance for
DDIO enabled case depends on cache eviction policies); hostCC
evaluation for the DDIO enabled case is presented in §5.2. Unless
mentioned otherwise, we use IIO occupancy threshold 𝐼𝑇 = 70 and
network target bandwidth 𝐵𝑇 = 80Gbps for hostCC (we present
sensitivity analysis of hostCC performance with 𝐼𝑇 and 𝐵𝑇 in §5.3);
for DCTCP, we use default parameters from [4]. We do not perform
any experiment-specific parameter optimization.

5.1 hostCC benefits
We first evaluate hostCC on the same setup as in §2.2—this setup
does not have any network congestion, allowing us to gain insights
about hostCC performance in the host congestion regime. We then
extend the setup to the one used in [1]; this setup includes network
congestion and allows us to gain insights on hostCC performance
in the presence of network congestion (with and without host
congestion).

104
105
106

128B 512B 2KB 8KB 32KB
RPC Size

50
100
150
200
250
300

L
at

en
cy

(µ
s)

DCTCP
(No host congestion)

DCTCP
(With host congestion)

DCTCP+hostCC
(With host congestion)

Figure 12: Even with a high degree of host congestion (3× in
this experiment), hostCC incurs minimal latency inflation
compared to no host congestion, significantly improving tail
latency across all RPC sizes.

hostCC avoids throughput degradation for network traffic
while simultaneously reducing packet drops at the host by
orders of magnitude. Figure 10(left) shows that, when the de-
gree of host congestion is so low that NetApp-T can reach its tar-
get network bandwidth without creating bottlenecks within the
host network (0× and 1× cases), hostCC has negligible impact on
NetApp-T throughput (which is bandwidth bottlenecked for the 0×
case and CPU bottlenecked for the 1× case). More interestingly,
in the presence of host congestion, hostCC allows NetApp-T to
achieve throughput close to the desired target network bandwidth
(80Gbps in this experiment), even with a high degree of host con-
gestion. Essentially, using the host congestion signals, the sub-RTT
host-local congestion response promptly reduces the resources al-
located to the MApp traffic whenever the network throughput falls
below 𝐵𝑇 in presence of host congestion (hostCC steady-state be-
havior illustrated later in §5.4) Moreover, Figure 10(right) shows
that these benefits to NetApp-T do not come at the cost of starving
MApp traffic: hostCC’s host-local congestion response also increases
resources allocated to the MApp traffic whenever NetApp-T is able
to sustain the target network bandwidth. Figure 10(left) also shows
that hostCC reduces packet drop rates to a bare minimum, since the
host-local congestion response and network CC (using host con-
gestion signals) work in tandem to keep the NIC buffer occupancy
low for a larger fraction of time.

We observe that, with a high degree of host congestion, the to-
tal memory bandwidth utilization is slightly reduced. We believe
this behavior is not due to hostCC’s architecture but rather due to
the coarse granularity of host resource allocation using existing
tools (Intel MBA, in this case). Due to such coarse granularity of
the allocation, the MApp sometimes gets backpressured much more
than than it needs to, in order to accommodate additional NetApp-T
traffic. Figure 9 shows an example of this behavior: when we switch
from host-local response level 3 to 4, NetApp-T gains 5.2GBps of
memory bandwidth, while MApp loses 13.8GBps of memory band-
width. We discuss potential avenues for future hardware support
for improved host-local congestion response in §6.

Figure 11 shows that hostCC consistently achieves benefits in
terms of maintaining target network bandwidth and reduced packet
drop rates across all evaluated MTU sizes and number for flows.

hostCC observes minimal tail latency inflation for latency-
sensitive traffic, even with high degree of host congestion.
Figure 12 shows the observed latency under the same multi-tenant

1x 1.5x 2x 2.5x0
20
40
60
80

100

N
et

w
or

k
T

hr
ou

gh
pu

t
(G

bp
s)

1x 1.5x 2x 2.5x
Increasing Degree of Incast

10−5
10−4
10−3
10−2
10−1

100

Pa
ck

et
D

ro
p

R
at

e
(%

)

DCTCP DCTCP+hostCC

(a) Network congestion

1x 1.5x 2x 2.5x0
20
40
60
80

100

N
et

w
or

k
T

hr
ou

gh
pu

t
(G

bp
s)

1x 1.5x 2x 2.5x
Increasing Degree of Incast

10−5
10−4
10−3
10−2
10−1

100

Pa
ck

et
D

ro
p

R
at

e
(%

)

DCTCP DCTCP+hostCC

(b) Host + Network congestion

Figure 13: (left) In the presence of network congestion and
absence of host congestion, hostCC achieves performance
similar to network CC indicating minimal overheads; (right)
in the presence of both host and network congestion, hostCC
consistently provides benefits similar to Figure 10.

evaluation setup as in Figure 4 (where we use all apps NetApp-T,
NetApp-L and MApp together). hostCC observes minimal latency
inflation in the regime of host congestion due to two reasons: (1)
hostCC’s host-local congestion response ensures minimal queueing
delay at the host; and (2) hostCC significantly reduces packet drop
rates, avoiding retransmission and timeout delays. Results for small-
sized RPCs provide evidence for the first reason: recall, from §2.2,
that P99 latency in this experiment is dominated by NIC queue-
ing delays; the figure shows that, despite the high degree of host
congestion, hostCC incurs a minuscule latency inflation of 13𝜇s
for 128B RPCs (when compared to no host congestion scenario).
All results provide evidence for the second reason: we observe no
timeouts even at P99.9 percentile.

hostCC maintains its benefits even in the presence of both
host and network congestion. Figure 13 evaluates hostCC per-
formance in the presence of network congestion, with and without
host congestion. For this experiment, we use an incast workload
with two senders and a single receiver, directly connected to a
switch. We vary the degree of network congestion by varying the
degree of incast (the total number of active concurrent flows at the
receiver) from 4 to 10 (1× to 2.5× degree of incast). We observe that,
in the absence of host congestion, network CC without hostCC
observes increased packet drop rates with an increase in the degree
of network congestion (as one would expect); since there is no host
congestion, hostCC performance is near-identical to the network
CC performance indicating that hostCC has minimal overheads in
the absence of host congestion. In the presence of both host and
network congestion, however, network CC performance without
hostCC suffers from high packet drops rates and reduced through-
put; in this scenario, hostCC provides significant benefits using all
three of its core ideas: it collects host congestion signals at sub-𝜇s
timescales, it is able to modulate host resources allocated to the net-
work traffic so as to maintain target network bandwidth, and incurs
minimal packet drops rates by ensuring that network CC converges
to a rate that matches available network and host resources. This ex-
periment demonstrates that hostCC interpolates well with network
CC even in the presence of both host and network congestion.

0x 1x 2x 3x0
20
40
60
80

100

N
et

w
or

k
T

hr
ou

gh
pu

t
(G

bp
s)

0x 1x 2x 3x
Degree of Host Congestion

10−5
10−4
10−3
10−2
10−1

100

Pa
ck

et
D

ro
p

R
at

e
(%

)

DCTCP DCTCP+hostCC

0x 1x 2x 3x
Degree of Host Congestion

0.0

0.2

0.4

0.6

0.8

1.0

M
em

or
y

B
an

dw
id

th
U

til
iz

at
io

n

DCTCP, NetApp-T
DCTCP, MApp

DCTCP+hostCC, NetApp-T
DCTCP+hostCC, MApp

Figure 14: hostCC, with DDIO enabled, provides benefits sim-
ilar to the DDIO disabled case in Figure 10.

104
105
106

128B 512B 2KB 8KB 32KB
RPC Size

50
100
150
200
250
300

L
at

en
cy

(µ
s)

DCTCP
(No host congestion)

DCTCP
(With host congestion)

DCTCP+hostCC
(With host congestion)

Figure 15: hostCC, with DDIO enabled, provides benefits in
terms of latency improvements similar to the DDIO disabled
case in Figure 12.

5.2 hostCC results with DDIO enabled
Figure 14 shows hostCC results using the same setup as in Figure 10,
but with DDIO enabled. We use 𝐼𝑇 = 50 here because the observed
IIO occupancy value when there is no host congestion is smaller
when DDIO is enabled (∼45, compared to ∼65 when disabled). This
is due to smaller average IIO-to-memory latencywith DDIO enabled
as discussed in §2.1. We observe similar trends as in Figure 10—
hostCC ensures that network traffic is able to achieve the target
network bandwidth, while reducing packet drop rates to a bare
minimum.With large degree of host congestion, the absolute packet
drop rate with hostCC is slightly higher than other evaluated cases
(hostCC still helps reduce packet drop rates by ∼37× compared to
the case without hostCC); identifying the precise reasons for this
observation requires more visibility into DDIO-related hardware
operations like cache eviction policies (as also noted in [9, 11]).

We also observe that, with DDIO enabled, MApp is able to ac-
quire larger fraction of memory bandwidth (compared to DDIO
disabled case in Figure 10) for any given degree of host conges-
tion. Figure 9 helps explain this behavior—when DDIO is enabled,
NetApp-T is able to sustain higher average throughput at a lower
host-local response level; hence, MApp experiences smaller amount
of backpressure to achieve the target network bandwidth.

Figure 15 shows benefits of hostCC in terms of latency for
NetApp-L using the same setup as in Figure 4, but with DDIO en-
abled. We observe that latency inflation without and with hostCC
is identical to that of Figure 12; this is because both DDIO enabled
and disabled cases observe similar level of packet drop rates for 3×
degree of host congestion (as shown in Figure 2), leading to similar
tail latency inflation for NetApp-L (as discussed in §2.2).

10 20 30 40 50 60 70 80 90 1000
20
40
60
80

100

N
et

w
or

k
T

hr
ou

gh
pu

t
(G

bp
s)

10 20 30 40 50 60 70 80 90 100
Target Network Bandwidth (BT)

10−5
10−4
10−3
10−2
10−1

100

Pa
ck

et
D

ro
p

R
at

e
(%

)

10 20 30 40 50 60 70 80 90 100
Target Network Bandwidth (BT)

0.0

0.2

0.4

0.6

0.8

1.0

M
em

or
y

B
an

dw
id

th
U

til
iz

at
io

n

NetApp-T MApp

Figure 16: hostCC consistently maintains its benefits across
varying network target bandwidth 𝐵𝑇 . Discussion in §5.3.

5.3 hostCC sensitivity analysis
hostCC has only two parameters 𝐵𝑇 and 𝐼𝑇 . Figure 16 shows that
hostCC consistently achieves benefits in terms ofmaintaining target
network bandwidth and minimal packet drop rates for all values of
𝐵𝑇 (while only applying as much backpressure on MApp as needed to
maintain target network bandwidth). The drop rates are particularly
low for small values of 𝐵𝑇 ; this is because the arrival rate of packets
at the NIC is smaller than the PCIe bandwidth utilization (that is,
the rate at which packets are drained from the NIC buffer). To see
this, recall from Figure 2 that, even without hostCC, network traffic
achieves ∼43Gbps throughput at 3× degree of host congestion; thus,
average PCIe utilization must be at least 43Gbps. Here, hostCC
maintains average network throughput less than 40Gbps, resulting
in NIC buffers rarely filling up and no packet drops. We also observe
low drop rates with large values of 𝐵𝑇 . As discussed in §3.2, NIC
buffer build up depends onR−𝐵𝑇 , larger values of 𝐵𝑇 gives network
traffic more time to converge to the right rate; since hostCC ensures
the average PCIe bandwidth utilization remains close to 𝐵𝑇 , the
time it takes for NIC buffer to fill up reduces with increasing 𝐵𝑇 .

Figure 17 shows hostCC performance with varying 𝐼𝑇 values:
increasing 𝐼𝑇 leads to an increasingly delayed reaction to the onset
of host congestion, leading to larger packet drops and higher MApp
throughput.

5.4 Deep dive into hostCC performance
We now provide more insights into hostCC’s performance.

Necessity of the three hostCC ideas. Figure 18 demonstrates that
each of the three key technical ideas in the hostCC architecture—
generating host congestion signals at sub-𝜇s granularity, sub-RTT
host-local congestion response, and network resource allocation
based on both host and network congestion signals—contribute to
hostCC’s performance.

In particular, without host-local congestion response, it is possi-
ble to minimize packet drop rates but only at the cost of degraded
throughput: network traffic achieves merely ∼28Gbps of through-
put. To explain the root cause for this observation, we plot in Fig-
ure 18(b) measured IIO occupancy and PCIe bandwidth utilization
(including the PCIe-level overheads that turn out to be ∼5% with
4K MTU and hardware default TLP size) with time for a 1000𝜇s
horizon for the case of 3×memory contention. We observe that IIO
occupancy often increases beyond 𝐼𝑇 = 70, indicating a possible
onset of host congestion (whenever the network traffic increases
using AIMD; network CC reacts to this by reducing rate, thus bring-
ing down the host congestion and drop rate, but also suffering from

70 75 80 85 900
20
40
60
80

100

N
et

w
or

k
T

hr
ou

gh
pu

t
(G

bp
s)

70 75 80 85 90
Target IIO Threshold (IT)

10−5
10−4
10−3
10−2
10−1

100

Pa
ck

et
D

ro
p

R
at

e
(%

)

70 75 80 85 90
Target IIO Threshold (IT)

0.0

0.2

0.4

0.6

0.8

1.0

M
em

or
y

B
an

dw
id

th
U

til
iz

at
io

n

NetApp-T MApp

Figure 17: (left) Increasing 𝐼𝑇 values lead to increasing drop
rates due less aggressive hostCC reaction to congestion.
(right) MApp acquires larger memory bandwidth with larger
𝐼𝑇 due to less aggressive backpressure.

low throughput. On the other hand, without performing network
resource allocation based on both host and network congestion
signals, it is possible to achieve high throughput but at the cost of
large packet drop rates. Figure 18(c) demonstrates the reason for
this observation: IIO occupancy 𝐼𝑆 frequently saturates to the max-
imum value of ∼93, indicating NIC buffer build-up and subsequent
packet drops at the host.

Figure 18(d) shows that, by carefully allocating both host re-
sources (using host-local congestion response) and network re-
sources (using both host and network congestion signals), hostCC
is able to simultaneously achieve high throughput and low packet
drops rates. Using the host-local congestion response, hostCC is
able to modulate host resources allocated to network traffic in a
manner that NIC queue buffer buildup can be avoided (as suggested
by smaller IIO occupancy immediately upon crossing the 𝐼𝑇 thresh-
old) until network traffic converges to the right throughput using
both host and network congestion signals.

Understanding example hostCC steady-state behavior. Fig-
ure 19 shows a snapshot of hostCC’s behavior over a 250𝜇s time
horizon. Figure 19(a) shows the measured PCIe bandwidth utiliza-
tion with time for 𝐵𝑇 = 80Gbps (including PCIe-level overheads,
this amounts to 84Gbps, denoted by the green line). We note from
Figure 9 that PCIe bandwidth utilization lies between the host-
local response levels 3 and 4 (which provide ∼77Gbps and 100Gbps
throughput, respectively). Therefore, as expected, hostCC host-local
congestion response oscillates between levels 3 and 4, ensuring that
the measured PCIe bandwidth utilization remains close to 𝐵𝑇 in
Figure 19(a). The switches across levels happen in accordance with
the host-local congestion response logic in §3.2: hostCC switches
from level 3 to 4 when the IIO occupancy goes higher than 𝐼𝑇 (de-
noted by red line in Figure 19(c)) and the PCIe bandwidth is still
lower than 𝐵𝑇 ; and switches back to level 3 when PCIe bandwidth
has increased beyond 𝐵𝑇 and IIO occupancy is again lower than 𝐼𝑇 .

6 DISCUSSION AND LESSONS LEARNT
Adoption of high-bandwidth access links and relatively stagnant
technology trends for resources within hosts have led to emergence
of host congestion—that is, congestion within the host network
that enables data exchange between NIC and CPU/memory. hostCC
is a congestion control architecture that handles both host and
network fabric congestion. hostCC achieves this using three key
ideas—generation of host congestion signals, a sub-RTT host-local

Echo congestion
signals only

Host-local
response only

Echo congestion signals
+ Host-local response

0
20
40
60
80

100

N
et

w
or

k
T

hr
ou

gh
pu

t
(G

bp
s)

Echo congestion
signals only

Host-local
response only

Echo congestion signals
+ Host-local response

10−5
10−4
10−3
10−2
10−1

100

Pa
ck

et
D

ro
p

R
at

e
(%

)

(a) Necessity of using both kinds of
hostCC responses in tandem

0 200 400 600 800 1000
0

20
40
60
80

100
120

PC
Ie

B
W

(G
bp

s)

0 200 400 600 800 1000
Time (µs)

50

60

70

80

90

100

II
O

O
cc

up
an

cy

(b) hostCC behavior when it
only echoes congestion signals

0 200 400 600 800 1000
0

20
40
60
80

100
120

PC
Ie

B
W

(G
bp

s)

0 200 400 600 800 1000
Time (µs)

50

60

70

80

90

100

II
O

O
cc

up
an

cy

(c) hostCC behavior with only
host-local congestion response

0 200 400 600 800 1000
0

20
40
60
80

100
120

PC
Ie

B
W

(G
bp

s)

0 200 400 600 800 1000
Time (µs)

50

60

70

80

90

100

II
O

O
cc

up
an

cy

(d) Default hostCC behavior
with both responses in tandem

Figure 18: Each of the three key technical ideas in the hostCC architecture—generating host congestion signals at sub-𝜇s
granularity, sub-RTT host-local congestion response, and network resource allocation based on both host and network
congestion signals—contribute to hostCC’s performance. Discussion in §5.4.

0 50 100 150 200 250
Time (us)

60
65
70
75
80
85
90
95

100

PC
Ie

B
an

dw
id

th
(G

bp
s)

(a) PCIe Write Bandwidth

0 50 100 150 200 250
Time (us)

0

1

2

3

4

R
es

po
ns

e
L

ev
el

(b) Host-local Response Level

0 50 100 150 200 250
Time (us)

50

60

70

80

90

100

II
O

O
cc

up
an

cy

(c) IIO Occupancy
Figure 19: In steady-state, hostCC keeps PCIe bandwidth
close to the target network bandwidth, while ensuring that
IIO occupancy remains smaller than the congestion thresh-
old. Discussion in §5.4.

congestion response that uses host congestion signals to allocate
host resources between network and host-local traffic, and using
host and network congestion signals to perform network resource
allocation at RTT granularity. We have realized hostCC within
the Linux network stack without any modifications in applications,
host hardware, and/or network hardware. We outline interesting av-
enues of future research based on our experience building hostCC.

Existing tools for host resource allocation are insufficient.
We need more support from hardware to perform fine-grained host
resource allocation. For instance, the tool currently used in hostCC—
MBA—has two main limitations. First, while a write to a typical
MSR register takes < 1𝜇s, it takes ∼22𝜇s to write into the MBA
MSR register, thus precluding finer-grained response. Second, MBA
has non-linear performance: increasing latency using successive

MBA levels results in a non-linear and coarse-grained response
(also observed in [37]). We also need more tools to enable QoS at
the memory controller.

Would new technologies help? Two important emerging tech-
nologies are RDMA [39] and CXL [36]. RDMA does not handle host
congestion by itself [24]; and, the benefits of CXL to alleviate host
congestion are unclear. For instance, consider the two use cases
of CXL. First, reducing PCIe to IIO latency; our analysis in §3.1
suggests that reducing ℓ𝑝 does not alleviate memory interconnect
congestion (ℓ𝑚 is the core problem). Second, CXL may enable mem-
ory expansion where CPUs can directly read from CXL-attached
memory; this requires massive changes in the host infrastructure,
and whether it will provide benefits to host congestion remains an
interesting avenue of future research. Furthermore, as discussed
in §2.1, host congestion may occur due to bottlenecks at any of
the resources along the host network; one particularly interesting
case is PCIe underutilization due to bottlenecks within hardware
devices for memory protection (e.g., IOMMU) [1, 9]. New technolo-
gies like ATS [3] can help IOMMU-induced host congestion, but
we believe more work needs to be done to avoid IOMMU-induced
host congestion.

Host congestion signals. hostCC can be easily extended to in-
corporate additional congestion signals. For instance, in §3.1, we
discussed simple extensions in hostCC to generate delay-based con-
gestion signals. Using this signal could allow hostCC to also work
with delay-based CC protocols [22]. While commodity hardware
does not provide NIC buffer occupancy, it would also be interesting
to explore whether NIC buffer occupancy can provide accurate in-
formation on time, location and reason for host congestion. Finally,
we need additional congestion signals to capture IOMMU-induced
host congestion [1].

ACKNOWLEDGMENTS
Wewould like to thank SIGCOMM reviewers for insightful feedback
that helped shape the final version of the paper. We would also
like to thank Qizhe Cai and Midhul Vuppalapati for many useful
discussions during this project. This research was in part supported
by NSF grants CNS-2047283, a Google faculty research award, a
Sloan fellowship, and a gift from Enfabrica. This paper does not
raise any ethical concerns.

REFERENCES
[1] Saksham Agarwal, Rachit Agarwal, Behnam Montazeri, Masoud Moshref, Khaled

Elmeleegy, Luigi Rizzo, Marc Asher de Kruijf, Gautam Kumar, Sylvia Ratnasamy,
David Culler, et al. 2022. Understanding Host Interconnect Congestion. In ACM
HotNets.

[2] Amit Aggarwal, Stefan Savage, and Thomas Anderson. 2000. Understanding the
Performance of TCP Pacing. In IEEE INFOCOM.

[3] Jasmin Ajanovic. 2008. PCI Express* (PCIe*) 3.0 Accelerator Fea-
tures. (2008). https://www.intel.com.ec/content/dam/doc/white-paper/
pci-express3-accelerator-white-paper.pdf

[4] MohammadAlizadeh, Albert Greenberg, David AMaltz, Jitendra Padhye, Parveen
Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. 2010. Data
Center TCP (DCTCP). In ACM SIGCOMM.

[5] AMD. 2020. AMD64 Technology Platform Quality of Service Extensions. (2020).
https://developer.amd.com/wp-content/resources/56375.pdf

[6] Nadav Amit, Muli Ben-Yehuda, and Ben-Ami Yassour. 2010. IOMMU: Strategies
for mitigating the IOTLB bottleneck. In ACM/IEEE ISCA.

[7] Rachata Ausavarungnirun, Kevin Kai-Wei Chang, Lavanya Subramanian,
Gabriel H Loh, and Onur Mutlu. 2012. Staged Memory Scheduling: Achieving
High Performance and Scalability in Heterogeneous Systems. In ACM SIGARCH
Computer Architecture News.

[8] Qizhe Cai, Mina Tahmasbi Arashloo, and Rachit Agarwal. 2022. dcPIM: Near-
Optimal Proactive Datacenter Transport. In ACM SIGCOMM.

[9] Qizhe Cai, Shubham Chaudhary, Midhul Vuppalapati, Jaehyun Hwang, and
Rachit Agarwal. 2021. Understanding Host Network Stack Overheads. In ACM
SIGCOMM.

[10] Qizhe Cai, Midhul Vuppalapati, Jaehyun Hwang, Christos Kozyrakis, and Rachit
Agarwal. 2022. Towards 𝜇 s Tail Latency and Terabit Ethernet: Disaggregating
the Host Network Stack. In ACM SIGCOMM.

[11] Alireza Farshin, Amir Roozbeh, Gerald Q Maguire Jr, and Dejan Kostić. 2020.
Reexamining Direct Cache Access to Optimize I/O Intensive Applications for
Multi-Hundred-Gigabit Networks. In USENIX ATC.

[12] Mario Gerla and Leonard Kleinrock. 1980. Flow control: A comparative survey.
In IEEE Transactions on Communications.

[13] Giulia Guidi, Marquita Ellis, Aydin Buluç, Katherine Yelick, and David Culler.
2021. 10 Years Later: Cloud Computing Is Closing the Performance Gap. In
ACM/SPEC ICPE.

[14] Intel. 2012. Intel® Data Direct I/O Technology (Intel® DDIO): A Primer.
(2012). https://www.intel.com/content/dam/www/public/us/en/documents/
technology-briefs/data-direct-i-o-technology-brief.pdf

[15] Intel. 2023. Intel® 64 and IA-32 Architectures Software Developer Manuals.
(2023). https://www.intel.com/content/www/us/en/developer/articles/technical/
intel-sdm.html

[16] Intel. 2023. Intel® Memory Latency Checker. (2023). https://www.intel.com/
content/www/us/en/developer/articles/tool/intelr-memory-latency-checker.
html

[17] iperf. 2023. iPerf - The Ultimate Speed Test Tool for TCP, UDP and SCTP. (2023).
https://iperf.fr/

[18] Bruce Jacob, David Wang, and Spencer Ng. 2010. Memory Systems: Cache, DRAM,
Disk.

[19] Raj Jain. 1996. Congestion Control and Traffic Management in ATM Networks:
Recent Advances and a Survey. In Computer Networks and ISDN Systems.

[20] Rick Jones. 2012. Netperf Benchmark. http://www.netperf.org/ (2012).
[21] Anuj Kalia, Michael Kaminsky, and David Andersen. 2019. Datacenter RPCs Can

Be General and Fast. In USENIX NSDI.

[22] Gautam Kumar, Nandita Dukkipati, Keon Jang, Hassan MG Wassel, Xian Wu,
Behnam Montazeri, Yaogong Wang, Kevin Springborn, Christopher Alfeld,
Michael Ryan, et al. 2020. Swift: Delay Is Simple and Effective for Congestion
Control in the Datacenter. In ACM SIGCOMM.

[23] Chang Joo Lee, Veynu Narasiman, Eiman Ebrahimi, Onur Mutlu, and Yale N
Patt. 2010. DRAM-Aware Last-Level Cache Writeback: Reducing Write-Caused
Interference in Memory Systems. (2010). https://users.ece.cmu.edu/~omutlu/
pub/dram-aware-caches-TR-HPS-2010-002.pdf

[24] Qiang Li, Qiao Xiang, Derui Liu, YuxinWang, HaonanQiu, Gexiao Tian, Xiaoliang
Wang, Lulu Chen, Ridi Wen, Jianbo Dong, et al. 2022. From RDMA to RDCA:
Toward High-Speed Last Mile of Data Center Networks Using Remote Direct
Cache Access. (2022). https://arxiv.org/abs/2211.05975

[25] Qiang Li, Qiao Xiang, Yuxin Wang, Haohao Song, Ridi Wen, Wenhui Yao,
Yuanyuan Dong, Shuqi Zhao, Shuo Huang, Zhaosheng Zhu, et al. 2023. More
Than Capacity: Performance-Oriented Evolution of Pangu in Alibaba. In USENIX
FAST.

[26] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan Zhuang, Fei Feng, Lingbo Tang,
Zheng Cao, Ming Zhang, Frank Kelly, Mohammad Alizadeh, et al. 2019. HPCC:
High precision congestion control. In ACM SIGCOMM.

[27] John DC Little and Stephen C Graves. 2008. Little’s Law. In Building Intuition:
Insights From Basic Operations Management Models and Principles.

[28] Moshe Malka, Nadav Amit, Muli Ben-Yehuda, and Dan Tsafrir. 2015. rIOMMU:
Efficient IOMMU for I/O devices that employ ring buffers. In ACM SIGPLAN
Notices.

[29] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christopher Alfeld, Sean Bauer,
Carlo Contavalli, Michael Dalton, Nandita Dukkipati, William C Evans, Steve
Gribble, et al. 2019. Snap: A Microkernel Approach to Host Networking. In ACM
SOSP.

[30] Matthew Mathis, Jeffrey Semke, Jamshid Mahdavi, and Teunis Ott. 1997. The
Macroscopic Behavior of the TCP Congestion Avoidance Algorithm. In ACM
SIGCOMM CCR.

[31] Radhika Mittal, Vinh The Lam, Nandita Dukkipati, Emily Blem, Hassan Wassel,
Monia Ghobadi, Amin Vahdat, Yaogong Wang, David Wetherall, and David
Zats. 2015. TIMELY: RTT-based Congestion Control for the Datacenter. In ACM
SIGCOMM.

[32] Robert Morris. 1997. TCP Behavior With Many Flows. In IEEE ICNP.
[33] Rolf Neugebauer, Gianni Antichi, José Fernando Zazo, Yury Audzevich, Sergio

López-Buedo, and Andrew WMoore. 2018. Understanding PCIe Performance for
End Host Networking. In ACM SIGCOMM.

[34] Mohammad Rajiullah, Per Hurtig, Anna Brunstrom, Andreas Petlund, and
Michael Welzl. 2015. An Evaluation of Tail Loss Recovery Mechanisms for
TCP. In ACM SIGCOMM CCR.

[35] K Ramakrishnan, Sally Floyd, and D Black. 2001. RFC3168: The Addition of
Explicit Congestion Notification (ECN) to IP. (2001). https://datatracker.ietf.org/
doc/html/rfc3168

[36] Debendra Das Sharma. 2022. Compute Express Link (CXL): Enabling Hetero-
geneous Data-Centric Computing With Heterogeneous Memory Hierarchy. In
IEEE MICRO.

[37] Parul Sohal, Michael Bechtel, Renato Mancuso, Heechul Yun, and Orran Krieger.
2022. A Closer Look at Intel Resource Director Technology (RDT). In RTNS.

[38] Harald Welte. 2000. The Netfilter Framework in Linux 2.4. In Linux-Kongress.
[39] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong Guo, Marina Lipshteyn,

Yehonatan Liron, Jitendra Padhye, Shachar Raindel, Mohamad Haj Yahia, and
Ming Zhang. 2015. Congestion control for large-scale RDMA deployments. In
ACM SIGCOMM.

https://www.intel.com.ec/content/dam/doc/white-paper/pci-express3-accelerator-white-paper.pdf
https://www.intel.com.ec/content/dam/doc/white-paper/pci-express3-accelerator-white-paper.pdf
https://developer.amd.com/wp-content/resources/56375.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/data-direct-i-o-technology-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/data-direct-i-o-technology-brief.pdf
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/tool/intelr-memory-latency-checker.html
https://www.intel.com/content/www/us/en/developer/articles/tool/intelr-memory-latency-checker.html
https://www.intel.com/content/www/us/en/developer/articles/tool/intelr-memory-latency-checker.html
https://iperf.fr/
https://users.ece.cmu.edu/~omutlu/pub/dram-aware-caches-TR-HPS-2010-002.pdf
https://users.ece.cmu.edu/~omutlu/pub/dram-aware-caches-TR-HPS-2010-002.pdf
https://arxiv.org/abs/2211.05975
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168

	Abstract
	1 Introduction
	2 Host Congestion
	2.1 Background: the host network
	2.2 Understanding impact of host congestion

	3 hostCC
	3.1 Host congestion signals
	3.2 Host-local congestion response at sub-RTT granularity
	3.3 Network resource allocation at RTT granularity

	4 hostCC Implementation
	4.1 Host congestion signals
	4.2 Host-local congestion response
	4.3 Network resource allocation

	5 hostCC Evaluation
	5.1 hostCC benefits
	5.2 hostCC results with DDIO enabled
	5.3 hostCC sensitivity analysis
	5.4 Deep dive into hostCC performance

	6 Discussion and Lessons Learnt
	Acknowledgments
	References

