
iPlane: An Information Plane for Distributed Services

Harsha V. Madhyastha∗ Tomas Isdal∗ Michael Piatek∗ Colin Dixon∗

Thomas Anderson∗ Arvind Krishnamurthy∗ Arun Venkataramani†

Abstract

In this paper, we present the design, implementation, and
evaluation of iPlane, a scalable service providing accu-
rate predictions of Internet path performance for emerg-
ing overlay services. Unlike the more common black box
latency prediction techniques in use today, iPlane adopts
a structural approach and predicts end-to-end path per-
formance by composing the performance of measured
segments of Internet paths. For the paths we observed,
this method allows us to accurately and efficiently pre-
dict latency, bandwidth, capacity and loss rates between
arbitrary Internet hosts. We demonstrate the feasibility
and utility of the iPlane service by applying it to several
representative overlay services in use today: content dis-
tribution, swarming peer-to-peer filesharing, and voice-
over-IP. In each case, using iPlane’s predictions leads to
improved overlay performance.

1 Introduction
The Internet by design is opaque to its applications,
providing best effort packet delivery with little or no
information about the likely performance or reliabil-
ity characteristics of different paths. While this is a
reasonable design for simple client-server applications,
many emerging large-scale distributed services depend
on richer information about the state of the network. For
example, content distribution networks like Akamai [1],
Coral [16], and CoDeeN [52] re-direct each client to the
replica providing the best performance for that client.
Likewise, voice-over-IP systems such as Skype [45] use
relay nodes to bridge hosts behind NAT/firewalls, the
selection of which can dramatically affect call qual-
ity [39]. Peer-to-peer file distribution, overlay multicast,
distributed hash tables, and many other overlay services
can benefit from peer selection based on different met-
rics of network performance such as latency, available
bandwidth, and loss rate. Finally, the Internet itself can
benefit from more information about itself, e.g., ISPs can
monitor the global state of the Internet for reachability
and root cause analysis, routing instability, and onset of
DDoS attacks.

∗Dept. of Computer Science and Engineering, Univ. of Washington
†Dept. of Computer Science, Univ. of Massachusetts Amherst

If Internet performance were easily predictable, its
opaqueness might be an acceptable state of affairs. How-
ever, Internet behavior is well-known to be fickle, with
local hot spots, transient (and partial) disconnectivity,
and triangle inequality violations all being quite com-
mon [41, 2]. Many large-scale services adapt to this
state of affairs by building their own proprietary and
application-specific information plane. Not only is this
redundant, but it prevents new applications from lever-
aging information already gathered by other applica-
tions. The result is often sub-optimal. For example,
most implementations of the file distribution tool Bit-
Torrent choose peers at random (or at best using round
trip latency estimates); since downloads are bandwidth-
dependent, this can yield suboptimal download times. By
some estimates, BitTorrent accounts for roughly a third
of backbone traffic [37], so inefficiency at this scale is
a serious concern. Moreover, implementing an informa-
tion plane is often quite subtle, e.g., large-scale probing
of end-hosts can raise intrusion alarms in edge networks
as the traffic can resemble a DDoS attack. This is the
most common source of complaints on PlanetLab [38].

To address this, several research efforts, such as
IDMaps [15], GNP [34], Vivaldi [11], Meridian [54],
and PlanetSeer [55] have investigated providing a com-
mon measurement infrastructure for distributed applica-
tions. These systems provide only a limited subset of
the metrics of interest, most commonly latency between
a pair of nodes, whereas most applications desire richer
information such as loss rate and bandwidth. Second,
by treating the Internet as a black box, most of these
services abstract away network characteristics and atyp-
ical behavior—exactly the information of value for trou-
bleshooting as well as improving performance. For ex-
ample, the most common latency prediction methods use
metric embeddings which are fundamentally incapable
of predicting detour paths as such paths violate the trian-
gle inequality [41, 56]. More importantly, being agnostic
to network structure, they cannot pinpoint failures, iden-
tify causes of poor performance, predict the effect of net-
work topology changes, or assist applications with new
functionality such as multipath routing.

In this paper, we move beyond mere latency predic-
tion and develop a service to automatically infer sophis-

In Proceedings of the 7th USENIX Symposium on Operating Systems Design and Implementation
pp. 367-380, Seattle, WA, November 2006

ticated network behavior. We develop an Information
Plane (iPlane) that continuously performs measurements
to generate and maintain an annotated map of the Internet
with a rich set of link and router attributes. iPlane uses
structural information such as the router-level topology
and autonomous system (AS) topology to predict paths
between arbitrary nodes in the Internet. The path predic-
tions are combined with measured characteristics of path
segments to predict end-to-end path properties for a num-
ber of metrics such as latency, available bandwidth, and
loss rate. iPlane can also analyze isolated anomalies or
obtain a global view of network behavior by correlating
observations from different parts of the Internet.

iPlane is designed as a service that distributed appli-
cations can query to obtain information about network
conditions. Deploying iPlane as a shared service (as op-
posed to providing a library) has several benefits. First,
a common iPlane can exploit temporal and spatial local-
ity of queries across applications to minimize redundant
measurement overhead. Second, iPlane can selectively
refresh its knowledge of the IP address space based on
real query workloads. More generally, iPlane can assim-
ilate measurements made on behalf of all of its clients as
well as incorporate information reported by clients to de-
velop a more comprehensive model of Internet behavior
over time. We note that all of these arguments have been
recognized before [48, 8, 53, 23], however a convincing
validation has remained starkly absent.

Our primary contribution is in demonstrating the fea-
sibility of a useful iPlane, e.g., we can infer with high ac-
curacy an annotated map of the Internet every six hours
with approximately 100Kbps of measurement traffic per
PlanetLab node. In addition, we develop:

• A common structural model to predict path properties.
• A measurement infrastructure that is deployed on ev-

ery active PlanetLab site and almost a thousand trace-
route and Looking Glass server vantage points (with a
lower intensity of probing).

• A toolkit for using BitTorrent swarms to measure
links.

• Case studies of popular systems such as CDNs, peer-
to-peer file swarming, and VoIP. We show measurable
benefits of using iPlane for each of these applications.

iPlane is a modest step towards the vision of a knowl-
edge plane pioneered by Clark et al. [8]. iPlane supplies
information about the network and leaves the task of
adapting or repairing to the client. Nevertheless, the col-
lection, analysis, and distribution of Internet-scale mea-
surement information is itself a challenging systems en-
gineering problem and the focus of this paper. The goal
of gathering a complete picture of the Internet has been
recognized earlier in [48]. Our goal is more modest—to

gather a coarse-grained map of the Internet sufficient to
be of utility in improving overlay performance.

2 Design
We start by discussing the requirements of an Informa-
tion Plane for distributed services before presenting our
design that meets these requirements.

• Accuracy: iPlane should accurately estimate a rich set
of performance metrics such as latency, loss-rate, ca-
pacity, and available bandwidth.

• Wide coverage: iPlane must predict the performance
of arbitrary Internet paths. Many currently deployed
prediction services, such as RON [2] and S3 [29], limit
their focus to intra-overlay paths.

• Scalability: iPlane should not impose an undue com-
munication load on its measurement infrastructure.

• Unobtrusiveness: Active probes of end-hosts must be
coordinated and performed in an unobtrusive manner
in order to minimize the possibility of raising intrusion
detection alarms.

2.1 Overview

iPlane is designed to be deployed as an application-level
overlay network with the overlay nodes collectively co-
ordinating the task of generating and maintaining an “at-
las” of the Internet. The atlas is both extensive and
detailed—it comprises the topology of the Internet core
and the core’s connectivity to representative targets in
the edge networks, complete with a rich set of static at-
tributes (such as link delay and link capacity), and recent
observations of dynamic properties (such as routes be-
tween network elements, path loss rates, and path con-
gestion). iPlane uses systematic active measurements
to determine the attributes of the core routers and the
links connecting them. In addition, the system performs
opportunistic measurements by monitoring actual data
transfers to/from end-hosts participating in BitTorrent
swarms, thereby exposing characteristics of the edge of
the network that typically cannot be obtained from one-
way probing, e.g., capacities of access links.

Since it is impractical to probe every Internet end-host
to generate the atlas, we cluster end-hosts on the basis of
BGP atoms [4]. We approximate a client’s performance
by a representative target in the same atom as the client.
If the client desires greater prediction accuracy, it can
voluntarily perform some probes and contribute the paths
that it discovers to iPlane; multi-homed clients can ben-
efit from such an operational model. iPlane uses its col-
lected repository of observed paths to predict end-to-end
paths between any pair of end-hosts. This prediction is
made by carefully composing partial segments of known
Internet paths so as to exploit the similarity of Internet
routes [31], i.e., routes from two nearby sources tend to

Technique Description Goal Section
generate probe
targets

Obtain prefixes from Routeview’s BGP snapshot and cluster
groups of prefixes with similar routes.

coverage,
scalability

Section 2.2.1

traceroutes from
vantage points

PlanetLab nodes probe all targets, while Traceroute/Looking
Glass servers issue probes to a small subset of the targets.

map topology,
capture path diversity

Section 2.2.1

cluster network
interfaces

Identify network interfaces that are in the same AS and geograph-
ically colocated.

build structured topology,
scalability

Section 2.2.2

frontier algorithm Schedule measurements of link attributes to PlanetLab nodes such
that each link is probed by the vantage point closest to it.

accuracy,
balance load

Section 2.3.1

measure link
attributes

PlanetLab nodes measure the loss rate, capacity, and available
bandwidth over a subset of paths in the Internet core.

annotate topology Section 2.3.2

opportunistic
measurements

Leverage existing applications to discover the structure and per-
formance of edge networks.

minimize obtrusiveness,
access link properties

Section 2.4

route composition Compose segments of observed or reported paths to predict end-
to-end paths between a pair of nodes.

path prediction,
performance prediction

Section 2.5

Table 1: A summary of techniques used in iPlane.

converge when heading to the same destination. iPlane
predicts a path by splicing a short path segment from the
source to an intersection point from which a path going to
the destination has been observed in the atlas. To deter-
mine intersections between paths, we cluster interfaces
that are owned by the same AS and reside in the same
PoP, and deem two paths to have intersected if they pass
through the same cluster.

Once a path is predicted, iPlane simply composes the
measured properties of the constituent path segments to
predict the performance of the composite path. For in-
stance, to make a latency prediction, iPlane simply adds
the latencies associated with the individual path seg-
ments. Or, to predict the end-to-end bandwidth, iPlane
computes the minimum of the bandwidth measured of
each of the inter-cluster links along the predicted path,
and the bandwidth of the client’s access link, if available.

The rest of this section describes the techniques used
to develop a functional iPlane that has wide coverage,
incurs modest measurement load without unduly sacri-
ficing coverage or detail, and uses topology structuring
techniques to enable efficient measurement and accurate
inference. The techniques are summarized in Table 1.

2.2 Mapping the Internet Topology

iPlane requires geographically distributed vantage points
to map the Internet topology and obtain a collection
of observed paths. PlanetLab servers, located at over
300 sites around the world, serve as the primary van-
tage points. We also enlist the use of public Looking
Glass/Traceroute servers for low-intensity probing. Fur-
ther, we are currently exploring the option of using data
from DIMES [43], a system for aggregating low inten-
sity measurements from normal PCs. Our primary tool
for determining the Internet topology is traceroute,
which allows us to identify the network interfaces on the
forward path from the probing entity to the destination.

(On PlanetLab, we use an optimized version of the tool
to reduce measurement load.) Determining what desti-
nations to probe and how to convert the raw output of
traceroute to a structured topology is nontrivial, an issue
we address next.

2.2.1 Probe Target Selection

BGP snapshots, such as those collected by Route-
Views [33], are a good source of probe targets. iPlane
achieves wide coverage for the topology mapping pro-
cess by obtaining the list of all globally routable pre-
fixes in BGP snapshots, and choosing within each prefix
a target .1 address that responds to either ICMP or UDP
probes. A .1 address is typically a router and is hence
more likely to respond to probes than arbitrary end-hosts.

To reduce measurement load, iPlane clusters IP pre-
fixes into BGP atoms [4] for generating the target list.
A BGP atom is a set of prefixes, each of which has the
same AS path to it from any given vantage point. BGP
atoms can be regarded as representing the knee of the
curve with respect to measurement efficiency—probing
within an atom might find new routes, but it is less likely
to do so [4]. This task of determining a representative
set of IP addresses is performed relatively infrequently,
typically once every two weeks.

iPlane uses the PlanetLab nodes to perform exhaus-
tive and periodic probing of the representative targets. In
addition, iPlane schedules probes from public traceroute
servers to a small random set of BGP atoms, typically
making a few tens of measurements during the course
of a day. The public traceroute servers serve as a valu-
able source of information regarding local routing poli-
cies. Note that in the long run, a functioning iPlane may
actually serve to decrease the load on the public trace-
route servers as iPlane, rather than the traceroute servers
themselves, can be consulted for information on the In-
ternet topology.

2.2.2 Clustering of Interfaces

Traceroute produces a list of network interfaces on the
path from source to destination. However, interfaces on
the same router, or in the same PoP, may have similar
behavior. Hence, we partition network interfaces into
“clusters” and use this more compact topology for more
in-depth measurements and predictions. We define the
clusters to include interfaces that are similar from a rout-
ing and performance perspective, i.e., interfaces belong-
ing to the same PoP and interfaces within geographically
nearby portions of the same AS [46]. Note that this clus-
tering is performed on network interfaces in the Internet
core, whereas the clustering of prefixes into BGP atoms
was performed for end-host IP addresses. In fact, clus-
tering addresses in the same prefix will be ineffective in
the core as geographically distant interfaces are often as-
signed addresses in the same prefix.

First, iPlane identifies interfaces that belong to the
same router. Interfaces that are potential alias candidates
are identified using two different techniques. Employ-
ing the Mercator [19] technique, UDP probes are sent
to a high-numbered port on every router interface ob-
served in traceroutes. Interfaces that return responses
with the same source address are considered as possi-
ble aliases. In addition, candidate alias pairs are also
identified using the fact that interfaces on either end of
a long-distance link are usually in the same /30 prefix.
Candidate pairs that respond with similar IP-ID values
to the UDP probes, and also respond with similar TTLs
to the ICMP probes are deemed to be aliases. In one
of our typical runs, of the 396,322 alias candidate pairs
yielded by the Mercator technique, 340,580 pairs were
determined to be aliases. The 918,619 additional alias
candidate pairs obtained using the /30 heuristic yielded
another 320,150 alias pairs.

Second, iPlane determines the DNS names assigned
to as many network interfaces as possible. It then uses
two sources of information – Rocketfuel’s undns util-
ity [47] and data from the Sarangworld project [40] – to
determine the locations of these interfaces based on their
DNS names. This step alone does not suffice for our pur-
pose of clustering geographically co-located interfaces
because: 1) several interfaces do not have a DNS name
assigned to them, 2) rules for inferring the locations of all
DNS names do not exist, and 3) incorrect locations are
inferred for interfaces that have been misnamed. For IPs
whose locations can be inferred from DNS names, the
locations are validated by determining if they are consis-
tent with the measured delays from traceroutes [28].

Third, to cluster interfaces for which a valid loca-
tion was not determined, we develop an automated algo-
rithm that clusters interfaces based on responses received
from them when probed from a large number of vantage
points. We probe all interfaces from all of iPlane’s Pla-

netLab vantage points using ICMP ECHO probes. We
use the TTL value in the response to estimate the num-
ber of hops on the reverse path back from every router
to each of our vantage points. Our hypothesis is that
routers in the same AS that are geographically nearby
will have almost identical routing table entries and hence,
take similar reverse paths back to each vantage point.

To translate this hypothesis into a clustering algorithm,
each interface is associated with a reverse path length
vector. This is a vector with as many components as the
number of vantage points, and the ith component is the
length of the reverse path from the interface back to the
ith vantage point. We define the cluster distance between
two vectors to be the L1 distance—the sum of the abso-
lute differences between corresponding components, di-
vided by the number of components. In our measure-
ments, we have observed that the cluster distance be-
tween reverse path length vectors of co-located routers
in an AS is normally less than 1.

Based on the metric discussed above, we can now
present a technique for assigning interfaces without
known locations to clusters. We start by initializing our
clusters to contain those interfaces for which a location
has been determined. Interfaces that have been deter-
mined to be co-located in an AS are in the same cluster.
For each cluster, we compute the median reverse path
length vector, whose ith component is the median of the
ith components of the vectors corresponding to all inter-
faces in the cluster. We then cluster all interfaces that do
not belong to any cluster as follows. For each interface,
we determine the cluster in the same AS as the interface,
with whose median vector the interface’s vector has the
least cluster distance. If this minimum cluster distance is
less than 1, the interface is added to the chosen cluster,
otherwise a new singleton cluster is created. This clus-
tering algorithm, when executed on a typical traceroute
output, clusters 762,701 interfaces into 54,530 clusters.
653,455 interfaces are in 10,713 clusters of size greater
than 10, while 21,217 interfaces are in singleton clusters.

2.3 Measuring the Internet Core

After clustering, iPlane can operate on a compact rout-
ing topology, where each node in the topology is a cluster
of interfaces and each link connects two clusters. iPlane
then seeks to determine a variety of link attributes that
can be used to predict path performance. To achieve this
goal, a centralized agent is used to distribute the mea-
surement tasks such that each vantage point is assigned
to repeatedly measure only a subset of the links. The cen-
tralized agent uses the compact routing topology to de-
termine the assignments of measurement tasks to vantage
points, communicates the assignment, and monitors the
execution of the tasks. Only iPlane infrastructure nodes
(namely, PlanetLab nodes) are used for these tasks.

2.3.1 Orchestrating the Measurement Tasks

There are three objectives to be satisfied in assigning
measurement tasks to vantage points. First, we want
to minimize the measurement load by measuring each
link attribute from only a few vantage points (we employ
more than one to correct for measurement noise). Sec-
ond, the measurement should be load-balanced across all
vantage points, i.e., each vantage point should perform a
similar number of measurements. Third, in order to mea-
sure the properties of each link as accurately as possible,
we measure every link in the topology from the vantage
point that is closest to it.

We have developed a novel “frontier” algorithm to per-
form the assignment of tasks to vantage points. The algo-
rithm works by growing a frontier rooted at each vantage
point and having each vantage point measure only those
links that are at its frontier. The centralized agent per-
forms a Breadth-First-Search (BFS) over the measured
topology in parallel from each of the vantage points.
Whenever a vantage point is taken up for consideration,
the algorithm performs a single step of the BFS by fol-
lowing one of the traceroute paths originating at the van-
tage point. If it encounters a link whose measurement
task has been assigned already to another vantage point,
it continues the BFS exploration until it finds a new link
that has not been seen before. This process continues un-
til all the link measurements have been assigned to some
vantage point in the system.

The centralized agent uses the above algorithm to
determine the assignment of tasks and then ships the
tasklist to the respective vantage points. Each target link
is identified by the traceroute path that the vantage point
can use to reach the link and by its position within the
traceroute path. If a vantage point is no longer capable
of routing to the link due to route changes, the vantage
point reports this to the centralized agent, which in turn
reassigns the task to a different vantage point.

Most link attributes, however, cannot be directly de-
termined by the vantage points. For instance, when mea-
suring loss rates, a vantage point can only measure the
loss rate associated with the entire path from the vantage
point to the target link; the loss rates of individual links
have to be inferred as a post-processing operation. Once
all vantage points report their measurements back to the
centralized agent, the agent can perform the BFS style
exploration of the topology to infer link properties in the
correct order. For instance, assume that a vantage point
v had probed the path v, . . . , x, y and obtained a (one-
way) loss rate measurement of lv,y for the entire path.
The centralized agent can then infer the loss rate along
the link (x, y) after inferring the loss rates for each of the
links in v, . . . , x, composing these individual loss rates to
compute the loss rate lv,x along the segment v . . . x, and
then calculating the loss rate for (x, y) using the equation

(1− lv,y) = (1− lv,x) ·(1− lx,y). Since the link property
inference is performed as a BFS traversal, we are guar-
anteed that loss rates for all the links along v, . . . , x have
been inferred before we consider the link (x, y).

In our current system, the centralized agent schedules
and monitors roughly 2700K measurements per day, a
management load that a single centralized agent can eas-
ily bear. Fault tolerance is an issue, but is addressed by a
simple failover mechanism to a standby controller. Note
that the processed data is served to applications from a
replicated database to ensure high availability.

2.3.2 Measurement of Link Attributes

We next outline the details of the loss rate, bottleneck ca-
pacity and available bandwidth measurements performed
from each vantage point. Previous research efforts have
proposed specific ways to measure each of these proper-
ties; our goal is to integrate these techniques into a use-
ful prediction system. Latencies of path segments can be
derived directly from the traceroute data gathered while
mapping the topology, and therefore do not need to be
measured explicitly.

Loss Rate Measurements: We perform loss rate mea-
surements along path segments from vantage points to
routers in the core by sending out probes and determin-
ing the fraction of probes for which we get responses.
We currently use the simple method of sending TTL-
limited singleton ICMP probes with a 1000-byte pay-
load. When the probe’s TTL value expires at the target
router, it responds with a ICMP error message, typically
with a small payload. When a response is not received,
one cannot determine whether the probe or the response
was lost, but there is some evidence from previous stud-
ies that small packets are more likely to be preserved
even when routers are congested [32]. We therefore cur-
rently attribute all of the packet loss to the forward path;
the development of more accurate techniques is part of
ongoing work.

Capacity Measurements: We perform capacity
measurements using algorithms initially proposed by
Bellovin [3] and Jacobson [24] that vary the packet size
and determine the delay induced by increased packet
sizes. For each packet size, a number of probes (typically
30–40) of that size are sent to an intermediate router and
the minimum round-trip time is noted. The minimum
round-trip time observed over many probes can be re-
garded as a baseline path latency measurement with min-
imal queueing delays. By performing this experiment for
different packet sizes, one can determine the increased
transmission cost per byte. When this experiment is per-
formed for a sequence of network links in succession,
the capacity of each link can be determined. Note that
our capacity measurements may underestimate a cluster
link if it consists of multiple parallel physical links.

Available Bandwidth Measurements: Once we have
link capacities, we can probe for available bandwidth
along path segments using packet dispersion techniques
such as Spruce [50], IGI [21], Pathload [25]. A sim-
ple measurement is performed by sending a few, equally
spaced, short probes at the believed bottleneck capacity
of the path segment, and then measuring how much de-
lay they induce. The slope of the delay increase will in-
dicate how much background traffic arrived during the
same time period as the probe. For instance, if the probes
are generated with a gap of ∆in through a path segment
of capacity C and if the measured gap between between
the probe replies is ∆out, one can estimate the available
bandwidth as C · (1− ∆out−∆in

∆in
). An important detail is

that the packets have to be scheduled at the desired spac-
ing, or else the measurement is not valid. Fortunately,
even on heavily loaded PlanetLab nodes, it is possible to
realize the desired scheduling most of the time.

2.4 Opportunistic Edge Measurements
To provide a comprehensive data set on which to infer
current properties of paths to end-hosts, it is necessary
for iPlane to maintain an up-to-date map of the network
that extends to the very edge. However, the measurement
techniques outlined above are unlikely to work as they, as
most other active measurements, require end-hosts to re-
spond to unsolicited ICMP, UDP or TCP packet probes.
Also, measurements to end-hosts are frequently misinter-
preted by intrusion detection systems as attacks. Hence,
we pursue an opportunistic approach to data collection—
measuring paths to end-hosts while interacting with them
over normal connections. We participate in the popu-
lar file-distribution application BitTorrent [9] and gather
measurements from our exchanges with the peers in this
swarming system. Note that BitTorrent has the further
desirable property that anyone can connect to anyone, al-
lowing us to arrange measurements of multiple paths to
participating edge hosts.

BitTorrent is used daily by thousands of end users to
distribute large files. BitTorrent is one example of a large
class of swarming data distribution tools. By participat-
ing in several BitTorrent swarms, we have the opportu-
nity to interact with a large pool of end-hosts. We mea-
sure properties of the paths to peers while exchanging
data with them as part of the swarming system.

We currently gather two kinds of measurements using
our opportunistic measurement infrastructure.

• Packet traces of TCP flows to end-hosts. These traces
provide information about packet inter-arrival times,
loss rates, TCP retransmissions and round trip times.
We use the inter-arrival times between data packets
to measure bottleneck bandwidth capacities of paths
from clients to vantage points, as described further in
Section 3.

S

V1

Actual route

I'

I

Predicted route

Route from distant vantage point
merges close to destination

Choose closer
intersection point I Route from nearby vantage point

merges nearer to the source

(dotted line)

V2

BGP1

BGP2

D

Figure 1: The path from S to D is obtained by composing a
path from S with a path going into D from a vantage point close
to S (V1). BGP1 and BGP2 are destinations in two random
prefixes to which S performs traceroutes.

• Traceroutes to end-hosts. When a peer connects to
our measurement node, we conduct a traceroute to that
host. We record this data and add it to our atlas.

2.5 Performance Prediction
Next, we describe how to predict path properties between
an arbitrary pair of nodes based on the above measure-
ments. The prediction proceeds in two steps. First, we
predict the forward and reverse paths connecting the two
nodes. Second, we aggregate measured link-level prop-
erties to predict end-to-end path properties.

Path Prediction We use a technique we earlier devel-
oped [31] based on composing observed path segments
to predict unknown paths. Consider a source S and des-
tination D. If S is a vantage point, then we simply re-
turn the measured path from S to D. Else, we determine
an appropriate intersection point I in the measured sub-
graph of the Internet such that—(a) the AS hop count of
the path S.I.D is minimum, and (b) the latency from S
to the point where the path S.I.D exits the first-hop AS
is minimum, in that order (Figure 1). The underlying
principle is similarity of routes, i.e., with a sufficiently
large number of vantage points, the path to a destination
(D) from any node (S) will be similar to the path from a
vantage point or router (I) located nearby. Condition (a)
encodes the default path selection criterion used by BGP
in the absence of conflicting local preference policies.
Condition (b) encodes the default early exit intradomain
routing policy. Note that the above technique is guaran-
teed to return a path (albeit an inflated one), since every
path of the form S.V.D, for each vantage point V , be-
longs to the measured subgraph.

As we noted earlier, we make measurements to BGP
atoms rather than to all destinations. In [31], we note
that adding a small number of measured paths originat-
ing from the client S significantly improves the predic-
tion accuracy for paths sourced at S. Using these mea-
surements, the path from S to D is S to I to D’s atom
to D. If there is a measurement of the last hop from D’s
atom to D, we use it; otherwise, we estimate it using

a representative node in the atom (e.g., from BitTorrent
measurements). Briefly summarizing the main results
from [31], we can predict the AS path exactly right for
around 70% of the paths evaluated, and the latency esti-
mates obtained using this model were significantly better
than those yielded by Vivaldi [11], a popular network co-
ordinate system.

Path Properties Given predicted paths as above, we
can estimate end-to-end properties by aggregating link-
level properties. For example, we predict TCP transfer
time using widely accepted models [35, 5]. For this, we
separately predict the forward and reverse paths between
the source and the destination. The latency on the for-
ward path S.I.D-atom.D is estimated as the sum of the
latency estimates for each segment. We similarly esti-
mate the latency along the reverse path, and then com-
pute the RTT between the two end-hosts to be the sum
of our latency estimates along the forward and reverse
paths. The loss rate on the predicted forward path is
estimated from the probability of a loss on any of its
constituent links while bandwidth is the minimum value
across the links. The access link capacities of these end-
hosts, if available based on BitTorrent measurements to
hosts in the same /24 prefixes, are also used to estimate
the end-to-end bottleneck bandwidth.

Recently, He et al. [20] argued that the best way to
accurately predict TCP throughput is to send TCP flows
and use history-based predictors. Although we have not
implemented these, our use of passive BitTorrent logs is
amenable to incorporating such predictors.

2.6 Securing iPlane

iPlane allows untrusted users to contribute measure-
ments, so it is vulnerable to attacks aimed at polluting its
information. For instance, a client can claim to have bet-
ter connectivity than actuality in order to improve its po-
sition within an overlay service that uses iPlane. iPlane
reduces this risk by using client data only for those
queries issued by the same client; falsified measurements
will not affect the queries issued by other clients.

We do however trust traceroute servers to provide un-
biased data, though the traceroute servers are not un-
der our control. An ISP hosting a traceroute server
might bias its replies from the server to better position
its clients, for example, to attract more BitTorrent traffic
and thereby generate more revenue. We have the ability
to use verification to address this – compare the results
from multiple vantage points for consistency – but have
not implemented it yet.

2.7 Query Interface

The query interface exported by iPlane must be care-
fully designed to enable a diverse range of applications.
Our current implementation of the query interface ex-

poses a database-like view of path properties between
every pair of end-hosts in the Internet. For every source-
destination pair, there exists a row in the view with
iPlane’s predicted path between these hosts and the pre-
dicted latency, loss rate, and available bandwidth along
this path. Any query to iPlane involves an SQL-like
query on this view – selecting some rows and columns,
joining the view with itself, sorting rows based on val-
ues in certain columns, and so on. The database view is
merely an abstraction. iPlane does not compute apriori
the entire table comprising predictions for every source-
destination pair; instead it derives necessary table entries
on-demand.

For example, a CDN can determine the closest replica
to a given client by selecting those rows that predict the
performance between the client and any of the CDN’s
replicas. A suitable replica can then be determined by
sorting these rows based on a desired performance met-
ric. To choose a good detour node for two end-hosts to
conduct VoIP, the rows predicting performance from the
given source can be joined with the set of rows predict-
ing performance for the given destination. A good detour
is one that occurs as the destination in the first view and
as the source in the second view, such that the composed
performance metrics from these rows is the best. These
queries can be invoked in any one of the following ways.

Download the Internet Map: We have implemented
a library that provides an interface to download the cur-
rent snapshot of the entire annotated Internet map or a
geographic region, to process the annotated map, and to
export the above SQL-like view. An application simply
links against and invokes the library locally.

On-the-fly Queries: Applications that do not wish to
incur the costs of downloading the annotated map and
keeping it up-to-date, can query a remote iPlane service
node using non-local RPCs. Note that clients of CDNs,
such as Akamai and Coral, typically tolerate some indi-
rection overhead in determining the nearest replica. To
support such applications, iPlane downloads the anno-
tated map of the Internet to every PlanetLab site, and
then provides an RPC interface to the data. Further, as
some applications might need to make multiple back-to-
back queries to process iPlane’s measurements, we assist
the application in lowering its overheads by allowing it to
upload a script that can make multiple local invocations
of iPlane’s library. The current implementation requires
that this script be written in Ruby, as Ruby scripts can be
executed in a sandboxed environment and with bounded
resources [49]. The output of the script’s execution is
returned as the response to the RPC.

Network Newspaper: Apart from downloading the
Internet graph and issuing on-the-fly queries, a third
model that we plan to support is a publish-subscribe in-
terface that allows users to register for information up-

Measurement storage

Other measurement sources
1. Traceroutes from Looking
 Glass servers / DIMES
2. RouteViews

PlanetLab
1. Traceroutes
2. Loss rate / bottleneck capacity /
 available bandwidth
3. Probe all interfaces
4. BitTorrent measurements

Server

1. Measurement scheduler for:
 i). Topology
 ii). Link metreics
2. IP to AS mapping
3. Interface clustering
4. Solver for loss rate / capacity /
 available bandwidth of links
5. Archival of measurements

Measurement
processing and

storage

Distributed query interface

Query
interface

node

Query
interface

node

Query
interface

node

1. Add measurements
 from clients
2. Feedback to trigger
 measurements

Ship processed
measurements Client

1. Init (add traceroutes)

2. Make queries

Response

ClientClients

Query interface node

Query interface

Inference
1. Path prediction
2. Prediction of metrics
 i). Latency
 ii). Loss rate
 iii). Bottleneck capacity
 iv). Available bandwidth

Gathering dataTriggering measurements

Figure 2: Overall architecture of iPlane.

dates about specific portions of the Internet graph. This
interface allows users to subscribe to their “view” of the
Internet, i.e., all paths originating from a user to all BGP
atoms, or insert triggers to be notified of specific events,
e.g., when a critical link fails. Implementing such an in-
terface is part of our future work.

The various components in our current implementa-
tion of iPlane, and the interaction between these compo-
nents is depicted in Figure 2.

3 System Setup and Evaluation
In this section, we present details of our deployment of
iPlane. We provide an overview of the measurements we
conducted as part of our deployment. We also outline the
tests we conducted to validate our measurements. All of
our validation is performed on paths between PlanetLab
nodes; our goal in the future is to use client measure-
ments (e.g., DIMES [43]) to broaden the validation set.
The number of PlanetLab nodes used varies with each
experiment because of the variable availability of some
nodes.

3.1 Measuring the Core

We first consider results from a typical run of our map-
ping process. We performed traceroutes from PlanetLab
nodes in 163 distinct sites. The targets for our trace-
routes were .1 addresses in each of 91,498 prefixes deter-
mined from the RouteViews BGP snapshot, though mea-

(a)

(b)

Figure 3: Distribution of errors in (a) latency, and (b) loss rate
estimation.

suring paths to one address in each BGP atom should suf-
fice. We probed all interfaces observed in our measured
topology with UDP and ICMP probes, and clustered the
interfaces based on their responses.

Once a map of the Internet’s core was gathered, we
employed our “frontier” BFS algorithm to determine
paths to be probed from each of the 385 PlanetLab nodes
present at the 163 sites used; for link metrics, we use
multiple nodes per site. To determine the properties of
270,314 inter-cluster links seen in our measured topol-
ogy, each vantage point was assigned to measure only
around 700 paths. Loss rate, capacity, and available
bandwidth were measured for each of the assigned paths.
These measurements were then processed to determine
properties for every cluster-level link in our measured
topology.

To validate the predictive accuracy of iPlane, we com-
pared properties of paths between PlanetLab nodes with
the corresponding values predicted by iPlane. We mea-
sured the latency and loss rate along every path beween
any two PlanetLab nodes. To predict the performance,
we assume that we have the probe information collected
by the other 161 sites, excluding the source and desti-
nation under consideration. We then added 10 tracer-
outes from the source and destination to random nodes
to simulate the behavior of participating clients. Each
experiment was performed independently to ensure no
mixing of the measurement and validation set. Figure 3
compares the latency and loss rate estimates made by

Figure 4: Rank correlation coefficient between actual and pre-
dicted TCP throughput.

iPlane with the true values. For 77% of paths, iPlane’s
latency estimates have error less than 20ms, and for 82%
of paths, loss rate estimates have error less than 10%.

Further, we evaluated how predictive of path perfor-
mance are iPlane’s estimates of latency and loss rate in
combination. The desired property of these estimates is
that they help distinguish between paths with good and
bad performance. We compared the order of paths from
each PlanetLab node in terms of actual and predicted per-
formance. For each node, we ranked all other nodes in
terms of TCP throughput, considering throughput to be
inversely proportional to latency and the square root of
loss rate [35]. These rankings were computed indepen-
dently using measured path properties and using iPlane’s
predictions for these properties. Figure 4 plots the cor-
relation coefficient between the actual and iPlane pre-
dicted rankings across all PlanetLab nodes. For 80% of
the nodes, the correlation coefficient is greater than 0.7.

3.2 Scalability

We now discuss the measurement load required to gen-
erate and maintain a frequently refreshed map of the
Internet. The measurement tasks performed by iPlane
have two primary objectives—mapping of the Internet’s
cluster-level topology and determination of the proper-
ties of each link in the measured topology. Measurement
of link properties incurs higher measurement overhead
when compared to the probe traffic needed to perform a
traceroute, but scales better. With more vantage points,
the topology discovery traffic per node remains the same,
but the overhead per node for measuring link metrics
scales down, allowing the same fidelity for less over-
head per node. The measurement load associated with
each technique in our measurement apparatus is summa-
rized in Table 2. These numbers assume the availability
of 400 PlanetLab nodes at 200 sites. Our main result
is that iPlane can produce an updated map of the Inter-
net’s routing topology every day with as little as 10Kbps
of probe traffic per vantage point, and update the map
of link-level attributes once every 6 hours with around
100Kbps of probe traffic per vantage point, suggesting
that iPlane can refresh the Internet map frequently.

(a)

(b)

Figure 5: Stationarity of measurements over different intervals
over the course of a day.

3.3 Stationarity of Measurements

iPlane’s measurements change over time with changes
in the routes in the Internet and the traffic they carry. We
again use PlanetLab data to estimate whether it suffices
for iPlane to update its map every 6 hours. We are cur-
rently in the process of evaluating the stationarity of path
properties for non-PlanetLab destinations as well.

Over a period of 2 days, we measured the latency and
loss rate between PlanetLab nodes once every 30 min-
utes. For this study, we used a dataset of 174 Planet-
Lab sites spanning 29 countries. In every interval, we
computed for each node the ranking of all other nodes
in terms of TCP throughput. To evaluate the flux in
path properties over a 30 minute timescale, we compared
these rankings between adjacent 30 minute intervals. For
each PlanetLab node, we computed the correlation coef-
ficient between the ranking vectors from adjacent inter-
vals as well as computed the intersection between the top
10 nodes in these ranking vectors. To compare this with
the flux in measurements over longer timescales, we also
performed these computations across intervals 1 hour, 2
hours, 4 hours, 8 hours, 16 hours and 24 hours apart.

Figure 5(a) shows that the median correlation coeffi-
cient between the rankings is greater than 0.8 across all
intervals from 30 minutes to a day. Similarly, Figure 5(b)
shows that in the median case, 7 of the top 10 nodes in
this ranking are identical on timescales from 30 minutes
to a day. Though these results are only for paths between

Measurement Task Tool / Technique Frequency Probing rate / node
Topology Mapping traceroute Once a day 200 vantage points× 50K

atoms — 2.5Kbps
Clustering UDP probes for source-address-based alias resolution,

ICMP-ECHO probes for RTTs and reverse TTLs
One day
every week

100 vantage points ×
800K interfaces — 6Kbps

Capacity measurements “frontier” algorithm applied to cluster-level topology
for path assignment, pathchar for bandwidth capacity

Once a day 400 vantage points × 700
links — 13Kbps

Loss rate and available
bandwidth measurements

“frontier” algorithm for path assignment, TTL-limited
probes for loss rate, spruce for available bandwidth

Continuous
(every 6 hours)

400 vantage points × 700
links — 80Kbps

Table 2: Complexity of measurements techniques used in iPlane based on the following assumptions. A UDP/ICMP probe is 40
bytes. A traceroute incurs a total of 500B on average. The per-link loss rate, available bandwidth, and capacity measurements
require 200KB, 100KB, and 200KB of probe traffic respectively.

PlanetLab nodes, they seem to indicate that there is lit-
tle value in updating the map more frequently than once
every few hours, compared to once every 30 minutes.

3.4 Measurements to End-Hosts

To measure the edges of the Internet, we deployed a mod-
ified BitTorrent client on 367 PlanetLab nodes. As de-
scribed in Section 2.4, our infrastructure for measuring
the edge involves the millions of users who frequently
participate in the BitTorrent filesharing application. Ev-
ery hour, we crawl well-known public websites that pro-
vide links to several thousand .torrent files to put
together a list of 120 popular swarms. The number of
swarms for consideration was chosen so as to ensure
the participation of several of our measurement vantage
points in each swarm. The number of PlanetLab nodes
designated to a swarm is proportional to the number of
peers participating in it.

Each PlanetLab node runs a BitTorrent client that we
have modified in several ways to aid in our measure-
ments. First, the modified client does not upload any data
nor does it write any data that it downloads onto disk.
Second, our client severs connections once we have ex-
changed 1MB of data, which suffices for purposes of our
measurements. Finally, we introduce a shadow tracker—
a database that coordinates measurements among all Pla-
netLab nodes participating in a single swarm. Instead of
operating only on the set of peers returned by the origi-
nal tracker for the swarm, our modified client also makes
use of the set of peers returned to any measurement node.
Clients preferentially attempt to connect and download
data from peers that have not yet been measured by a
sufficient number of vantage points. These modifica-
tions are crucial for measurement efficiency and diver-
sity since typical BitTorrent trackers permit requesting
only a restricted set (50–100) of participating peers once
every 30 minutes or more. Such short lists are quickly
exhausted by our modified client.

During a 48 hour period, our measurement nodes con-
nected to 301,595 distinct IP addresses, and downloaded
sufficient data to measure the upload bandwidth capacity

S3

Kbps

Figure 6: CDFs of estimated bandwidth capacity on paths be-
tween PlanetLab nodes as measured by iPlane and S3.

from 70,428. These hosts span 3591 distinct ASs, 19,639
distinct BGP prefixes, and 160 different countries.

3.5 Validation of BitTorrent capacity measurements

Our edge bandwidth capacity measurement relies on
inter-arrival times observed between data packets in the
connections we maintain with BitTorrent peers. We im-
plemented the multiQ [27] technique to infer end-to-end
bottleneck bandwidth capacity from these inter-arrival
times. Although the accuracy of multiQ presented in
previous studies is encouraging, the unique properties of
PlanetLab motivated us to provide further validation. To
verify that multiQ yields reasonable data with short TCP
traces in the presence of cross traffic on machines under
heavy load, we compared our measurements with those
made by S3 [13].

We setup a test torrent and had our measurement
clients running on 357 PlanetLab nodes participate in this
torrent. From this setup, we opportunistically measured
the bottleneck bandwidth capacities between these Pla-
netLab nodes. The dataset we gathered from this exper-
iment had 10,879 paths in common with measurements
made by S3 on the same day. Figure 6 compares the
bandwidth capacities measured by the two methods. The
measurements made by iPlane closely match those of S3

for capacities less than 10 Mbps. At higher bandwidth
capacities, they are only roughly correlated. We attribute

Figure 7: CDF of the ratio of maximum to minimum measured
bandwidth capacity for /24 address prefixes with multiple mea-
surements from the same vantage point across time.

this difference to the use of user-level timestamps by S3.
As inter-packet spacing can be rather small for high ca-
pacity paths, user-level timestamps are likely to be inac-
curate in the highly loaded PlanetLab environment. Our
measurement setup makes use of kernel-level timestamps
and is therefore less sensitive to high CPU load. For typ-
ical access link bandwidths, the two tools produce sim-
ilar data; the value of using BitTorrent is that it works
with unmodified clients that sit behind firewalls or NATs
that would drop active measurement probes. The more
discernible steps in the iPlane line in Figure 6 are at
10Mbps, 45Mbps (T3), and 100Mbps, which correspond
to typical ISP bandwidth classes.

3.6 Clustering of end-hosts

Although the data produced by our opportunistic strat-
egy is extensive, it is by no means complete. Not every
client participates in popular torrents. In Figure 7, we
explore the validity of using BitTorrent measurements to
predict the performance of other clients in the same pre-
fix. For every /24 prefix in which we have measurements
to multiple end-hosts from the same vantage point, we
compute the ratio of the maximum to the minimum mea-
sured bandwidth capacity. For 70% of /24 prefixes, the
capacities measured differ by less than 20%.

4 Application Case Studies
In this section, we show how applications can benefit
from using iPlane. We evaluate three distributed services
for potential performance benefits from using iPlane.

4.1 Content Distribution Network

Content distribution networks (CDNs) such as Akamai,
CoDeeN and Coral [1, 52, 16] redirect clients to a nearby
replica. The underlying assumption is that distance de-
termines network performance. However, there is more
to network performance than just distance, or round trip
time. TCP throughput, for example, depends on both dis-
tance and loss rate [35, 5]. Even for small web docu-
ments, loss of a SYN or a packet during slow start can
markedly inflate transfer time. A CDN using iPlane can
track the RTT, loss rate, and bottleneck capacity from

Figure 8: CDF of download times from replicas in the CDN
chosen by the iPlane and from replicas closest in terms of la-
tency. Each download time is the median of 5 measurements.

Figure 9: CDFs of BitTorrent download completion times
with and without informed peer selection at the tracker.

each replica to the rest of the Internet. The CDN can
then arrange for its name servers to redirect the client to
optimize using the model of its choice.

We emulate a small CDN comprising 30 randomly
chosen PlanetLab nodes. Each node serves 3 files of
sizes 10KB, 100KB and 1MB. We use 141 other Planet-
Lab nodes to emulate clients. Each client downloads all 3
files from the replica that provides the best TCP through-
put as predicted by the PFTK model [35] using iPlane’s
estimates of RTT and loss rate, and from the replica clos-
est in terms of actual measured RTT. Note that this com-
parison is against an optimum that cannot be achieved
without extensive probing. A real CDN will only have
estimated RTTs available. Figure 8 compares the down-
load times experienced by the clients in either case, ex-
cluding the latency of redirecting to the replica. Choos-
ing the replica for optimized TCP throughput based on
iPlane’s predictions provides slightly better performance
than choosing the closest replica. Though these results
are only indicative, they suggest that iPlane with its abil-
ity to provide multi-attribute network performance data
will be more effective than systems such as OASIS [17]
that simply optimize for RTT.

4.2 BitTorrent

We next show how iPlane can enable informed peer se-
lection in popular swarming systems like BitTorrent. In
current implementations, a centralized BitTorrent tracker

serves each client a random list of peers. Each client en-
forces a tit-for-tat bandwidth reciprocity mechanism that
incents users to contribute more upload bandwidth to ob-
tain faster downloads. However, the same mechanism
also serves to optimize path selection at a local level—
peers simply try uploading to many random peers and
eventually settle on a set that maximizes their download
rate. Because reasoning about peer quality occurs lo-
cally at each client, each client needs to keep a large pool
of directly connected peers (60–100 for typical swarms)
even though at any time only a few of these (10–20) are
actively engaged in data transfer with the client. This
overhead and consequent delayed convergence is funda-
mental: with only local information, peers cannot reason
about the value of neighbors without actively exchang-
ing data with them. iPlane’s predictions can overcome
the lack of prior information regarding peer performance
and can thus enable a clean separation of the path selec-
tion policy from the incentive mechanism.

We built a modified tracker that uses iPlane for in-
formed peer selection. Instead of returning random
peers, the tracker uses the iPlane’s loss rate and latency
estimates to infer TCP throughput. It then returns a set
of peers, half of which have high predicted throughput
and the rest randomly selected. The random subset is
included to prevent the overlay from becoming discon-
nected (e.g., no US node preferring a peer in Asia).

We used our modified tracker to coordinate the distri-
bution of a 50 megabyte file over 150 PlanetLab nodes.
We measured the time taken by each of the peers to
download the file after the seed was started. Figure 9
compares the download times observed with iPlane pre-
dictions against those of peerings induced by Vivaldi co-
ordinates [11] and an unmodified tracker. Informed peer
selection causes roughly 50% of peers to have signifi-
cantly lower download times.

Although preliminary, these performance numbers are
encouraging. We believe that better use of information
from the iPlane can lead to even further improvements
in performance. Our selection of 50% as the fraction of
random peers was arbitrary, and we are currently investi-
gating the tradeoff between robustness and performance,
as well as the degree to which these results extend to
swarms with a more typical distribution of bandwidths.

4.3 Voice Over IP

Voice over IP (VoIP) is a rapidly growing application
that requires paths with low latency, loss and jitter for
good performance. Several VoIP implementations such
as Skype [45] require relay nodes to connect end-hosts
behind NATs/firewalls. Choosing the right relay node
is crucial to providing acceptable user-perceived perfor-
mance [39]. Reducing end-to-end latency is important
since humans are sensitive to delays above a thresh-

(a)

(b)
Figure 10: Comparison of (a) loss rate and (b) jitter with and
without use of iPlane for end-to-end VoIP paths.

old. Low loss rates improve sound quality and reduce
throughput consumed by compensating codecs. Mea-
sures of user-perceived sound quality such as mean opin-
ion score [51] have been shown to be highly correlated
with loss rate and end-to-end delay. Thus, VoIP applica-
tions can benefit from iPlane’s predictions of latency and
loss rate in choosing the best possible relay node.

To evaluate iPlane’s ability to successfully pick good
relay nodes, we emulated VoIP traffic patterns on Pla-
netLab. We considered 384 pairs of PlanetLab nodes,
chosen at random, as being representative of end-hosts
participating in a VoIP call. Between each pair, we emu-
lated a call by sending a 10KBps UDP packet stream via
another PlanetLab node chosen as the relay node. We
tried 4 different relay options for each pair chosen based
on (i) the iPlane’s estimates of latency and loss rate, (ii)
latency to the source, (iii) latency to the destination, and
(iv) random choice. The iPlane-informed choice was
obtained by first querying for the 10 relay options that
minimize end-to-end loss and then, choosing the one that
minimized end-to-end delay among these options.

Each emulated call lasted for 60 seconds, and the end-
to-end loss rate and latency were measured. Figure 10(a)
shows that significantly lower loss rates were observed
along relay paths chosen based on iPlane’s predictions.
Additionally, Figure 10(b) shows that iPlane also helps
to reduce jitter, which we computed as the standard de-
viation of end-to-end latency. These results demonstrate
the potential for the use of iPlane in VoIP applications.

5 Related Work
iPlane bridges and builds upon ideas from network mea-
surement, performance modeling, Internet tomography,
and recent efforts towards building a knowledge plane
for the Internet. We believe that an Internet-scale instan-
tiation of iPlane is greater than the sum of its parts, and
relate individual contributions to prior work.

Information Plane Clark et al. [8] pioneered the
broad vision of a knowledge plane to build large-scale,
self-managing and self-diagnosing networks based on
tools from AI and cognitive science. Several research
efforts have since addressed pieces of this problem.

Several efforts have looked at monitoring end-host
performance and in optimizing the query processing
engine of the information plane. Examples include
Sophia [53], PIER [23], and IrisNet [18]. The above
systems have a different focus than ours. They manage
information about nodes (e.g., PlanetLab nodes, routers
in an ISP, or sensors) under control of the information
plane. We target predictions of path performance at
Internet-scale.

Link Metrics IDMaps [15] is an early example of a
network information service that estimates the latency
between an arbitrary pair of nodes using a small set
of vantage points as landmarks. Subsequently, Ng and
Zhang [34] discovered that Internet distances can be em-
bedded on to a low-dimensional Euclidean space. Such
embeddings can be used to predict latencies between
a large number of nodes by measuring latencies from
a small number of vantage points to these nodes—a
methodology refined by several others [54, 10, 11, 44]. A
key limitation of these techniques is that they treat the In-
ternet as a black box and are only predictive, i.e., they do
not explain why, if at all, their predictions are correct. As
a result, they have serious systematic deficiencies, e.g., a
significant fraction of Internet paths are known to have
detours [41], however, metric embeddings obey the tri-
angle inequality and will predict no detours.

Our previous work on a structural technique [31] to
predict Internet paths and latencies, and experiences
reported by independent research groups with respect
to latency prediction [17], available bandwidth estima-
tion [22], and the practical utility of embedding tech-
niques [30] echo the need for structural approaches to
predict sophisticated path metrics.

Inference Techniques Chen et al. [7] proposed an al-
gebraic approach to infer loss rates on paths between all
pairs of nodes based on measured loss rates on a subset of
the paths. Duffield et al. [14] proposed a multicast-based
approach to infer link loss rates by observing loss corre-
lations between receivers. Rocketfuel [47] estimates ISP
topologies by performing traceroutes from a set of van-
tage points, while the Doubletree [12] system efficiently
prunes redundant traceroutes. Our frontier (Section 2.3)

algorithm to efficiently target specific links for measure-
ment is similar in spirit.

Passive Measurements Padmanabhan et al. [36] and
Seshan et al.[42] propose passive measurements at Web
servers and end-hosts respectively to predict path met-
rics. PlanetSeer by Zhang et al. [55] is a failure mon-
itoring system that uses passive measurements at CDN
caches under their control to diagnose path failures post-
mortem. Jaiswal et al. [26] propose a “measurements-in-
the-middle” technique to infer end-to-end path properties
using passive measurements conducted at a router. In
contrast to these systems that perform passive measure-
ments of existing connections, we participate in BitTor-
rent swarms and opportunistically create connections to
existing peers for the explicit purpose of observing net-
work behavior. Previously, opportunistic measurements
have relied on sprurious traffic in the Internet [6]. iPlane
could also validate and incorporate measurement data
from passive measurement sources, such as widely de-
ployed CDNs, and such integration is part of future work.

6 Conclusion
The performance and robustness of overlay services crit-
ically depends on the choice of end-to-end paths used
as overlay links. Today, overlay services face a tension
between minimizing redundant probe overhead and se-
lecting good overlay links. More importantly, they lack
an accurate methods to infer path properties between an
arbitrary pair of end-hosts. In this paper, we showed
that it is possible to accurately infer sophisticated path
properties between an arbitrary pair of nodes using a
small number of vantage points and existing infrastruc-
ture. The key insight is to systematically exploit the In-
ternet’s structural properties. Based on this observation,
we built the iPlane service and showed that it is feasible
to infer a richly annotated link-level map of the Inter-
net’s routing topology once every few hours. Our case
studies suggest that iPlane can serve as a common in-
formation plane for a wide range of distributed services
such as content distribution, file swarming, and VoIP.

Acknowledgments
We would like to thank Jay Lepreau, Ratul Mahajan, Ky-
oungSoo Park, Rob Ricci, Neil Spring and the anony-
mous OSDI reviewers for their valuable feedback on
earlier versions of this paper. We also thank Peter Dr-
uschel for serving as our shepherd. This research was
partially supported by the National Science Foundation
under Grants CNS-0435065 and CNS-0519696.

References
[1] Akamai, Inc. home page. http://www.akamai.com.
[2] D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, and

R. Morris. Resilient Overlay Networks. In SOSP, 2001.
[3] S. Bellovin. A best-case network performance model.

Technical report, ATT Research, 1992.

[4] A. Broido and kc claffy. Analysis of routeViews BGP
data: policy atoms. In Network Resource Data Manage-
ment Workshop, 2001.

[5] N. Cardwell, S. Savage, and T. Anderson. Modeling TCP
latency. In INFOCOM, 2000.

[6] M. Casado, T. Garfinkel, W. Cui, V. Paxson, and S. Sav-
age. Opportunistic measurement: Extracting insight from
spurious traffic. In HotNets, 2005.

[7] Y. Chen, D. Bindel, H. Song, and R. H. Katz. An alge-
braic approach to practical and scalable overlay network
monitoring. In SIGCOMM, 2004.

[8] D. D. Clark, C. Partridge, J. C. Ramming, and J. T. Wro-
clawski. A knowledge plane for the Internet. In SIG-
COMM, 2003.

[9] B. Cohen. Incentives build robustness in BitTorrent. In
P2PEcon, 2003.

[10] M. Costa, M. Castro, A. Rowstron, and P. Key. PIC:
Practical Internet coordinates for distance estimation. In
ICDCS, 2004.

[11] F. Dabek, R. Cox, F. Kaashoek, and R. Morris. Vivaldi: A
decentralized network coordinate system. In SIGCOMM,
2004.

[12] B. Donnet, P. Raoult, T. Friedman, and M. Crovella. Ef-
ficient algorithms for large-scale topology discovery. In
SIGMETRICS, 2005.

[13] C. Dovrolis, P. Ramanathan, and D. Moore. Packet dis-
persion techniques and a capacity estimation methodol-
ogy. IEEE/ACM Transactions on Networking, 2004.

[14] N. G. Duffield, F. L. Presti, V. Paxson, and D. F. Towsley.
Inferring link loss using striped unicast probes. In INFO-
COM, 2001.

[15] P. Francis, S. Jamin, C. Jin, Y. Jin, D. Raz, Y. Shavitt, and
L. Zhang. IDMaps: A global Internet host distance esti-
mation service. IEEE/ACM Transactions on Networking,
2001.

[16] M. J. Freedman, E. Freudenthal, and D. Mazières. De-
mocratizing content publication with Coral. In NSDI,
2004.

[17] M. J. Freedman, K. Lakshminarayanan, and D. Mazieres.
OASIS: Anycast for any service. In NSDI, 2006.

[18] P. Gibbons, B. Karp, Y. Ke, S. Nath, and S. Seshan. Iris-
Net: An architecture for a world-wide sensor web. IEEE
Pervasive Computing, 2(4), 2003.

[19] R. Govindan and H. Tangmunarunkit. Heuristics for In-
ternet map discovery. In INFOCOM, 2000.

[20] Q. He, C. Dovrolis, and M. Ammar. On the predictability
of large transfer TCP throughput. In SIGCOMM, 2005.

[21] N. Hu and P. Steenkiste. Evaluation and characterization
of available bandwidth probing techniques. IEEE JSAC,
21(6), 2003.

[22] N. Hu and P. Steenkiste. Exploiting Internet route sharing
for large scale available bandwidth estimation. In IMC,
2005.

[23] R. Huebsch, J. M. Hellerstein, N. L. Boon, T. Loo,
S. Shenker, and I. Stoica. Querying the Internet with
PIER. In VLDB, 2003.

[24] V. Jacobson. Pathchar. ftp://ftp.ee.lbl.gov/pathchar.
[25] M. Jain and C. Dovrolis. End-to-end available bandwidth:

measurement methodology, dynamics, and relation with
TCP throughput. In SIGCOMM, 2002.

[26] S. Jaiswal, G. Iannaccone, C. Diot, J. Kurose, and
D. Towsley. Formal analysis of passive measurement in-
ference techniques. In INFOCOM, 2006.

[27] S. Katti, D. Katabi, C. Blake, E. Kohler, and J. Strauss.
MultiQ: Automated detection of multiple bottleneck ca-
pacities along a path. In IMC, 2004.

[28] E. Katz-Bassett, J. P. John, A. Krishnamurthy, D. Wether-
all, T. Anderson, and Y. Chawathe. Towards IP geolo-
cation using delay and topology measurements. In IMC,
2006.

[29] S. Lee, P. Sharma, S. Banerjee, S. Basu, and R. Fonseca.
Measuring bandwidth between planetlab nodes. In PAM,
2005.

[30] E. K. Lua, T. Griffin, M. Pias, H. Zheng, and J. Crowcroft.
On the accuracy of embeddings for Internet coordinate
systems. In IMC, 2005.

[31] H. V. Madhyastha, T. E. Anderson, A. Krishnamurthy,
N. Spring, and A. Venkataramani. A structural approach
to latency prediction. In IMC, 2006.

[32] R. Mahajan, N. Spring, D. Wetherall, and T. Anderson.
User-level Internet path diagnosis. In SOSP, 2003.

[33] D. Meyer. RouteViews. http://www.routeviews.org.
[34] T. S. E. Ng and H. Zhang. Predicting Internet network dis-

tance with coordinates-based approaches. In INFOCOM,
2002.

[35] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Mod-
eling TCP throughput: A simple model and its empirical
validation. CCR, 28(4), 1998.

[36] V. N. Padmanabhan, L. Qiu, and H. J. Wang. Passive
network tomography using bayesian inference. In IMW,
2002.

[37] A. Parker. CacheLogic. http://www.cachelogic.com/
research/slide1.php.

[38] L. Peterson. Personal communication.
[39] S. Ren, L. Guo, and X. Zhang. ASAP: an AS-aware peer-

relay protocol for high quality VoIP. In ICDCS, 2006.
[40] Sarangworld project. http://www.sarangworld.com/

TRACEROUTE/.
[41] S. Savage, T. Anderson, A. Aggarwal, D. Becker,

N. Cardwell, A. Collins, E. Hoffman, J. Snell, A. Vahdat,
G. Voelker, and J. Zahorjan. Detour: a case for informed
Internet routing and transport. IEEE Micro, 19(1), 1999.

[42] S. Seshan, M. Stemm, and R. Katz. SPAND: Shared pas-
sive network performance discovery. In USITS, 1997.

[43] Y. Shavitt and E. Shir. DIMES: Let the Internet measure
itself. CCR, 35(5), 2005.

[44] Y. Shavitt and T. Tankel. On the curvature of the Internet
and its usage for overlay construction and distance esti-
mation. In INFOCOM, 2004.

[45] Skype home page. http://www.skype.com.
[46] N. Spring, R. Mahajan, and T. Anderson. Quantifying the

causes of path inflation. In SIGCOMM, 2003.
[47] N. Spring, R. Mahajan, D. Wetherall, and T. Anderson.

Measuring ISP topologies with Rocketfuel. IEEE/ACM
Transactions on Networking, 2004.

[48] N. Spring, D. Wetherall, and T. Anderson. Reverse-
engineering the Internet. In HotNets, 2003.

[49] N. Spring, D. Wetherall, and T. Anderson. Scriptroute: A
public Internet measurement facility. In USITS, 2003.

[50] J. Strauss, D. Katabi, and F. Kaashoek. A measurement
study of available bandwidth estimation tools. In IMC,
2003.

[51] S. Tao, K. Xu, A. Estepa, T. Fei, L. Gao, R. Guerin,
J. Kurose, D. Towsley, and Z.-L. Zhang. Improving VoIP
quality through path switching. In INFOCOM, 2005.

[52] L. Wang, K. Park, R. Pang, V. S. Pai, and L. L. Peterson.
Reliability and security in the CoDeeN content distribu-
tion network. In USENIX, 2004.

[53] M. Wawrzoniak, L. Peterson, and T. Roscoe. Sophia: An
information plane for networked systems. In HotNets-II,
2003.

[54] B. Wong, A. Slivkins, and E. G. Sirer. Meridian: A
lightweight network location service without virtual. In
SIGCOMM, 2005.

[55] M. Zhang, C. Zhang, V. Pai, L. Peterson, and R. Wang.
PlanetSeer: Internet path failure monitoring and charac-
terization in wide-area services. In OSDI, 2004.

[56] H. Zheng, E. K. Lua, M. Pias, and T. Griffin. Internet
routing policies and round-trip-times. In PAM, 2005.

