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Abstract— In this paper we evaluate a method of using inter-
leaved spanning trees to compose a resilient, high performance
overlay mesh. Though spanning trees of arbitrary type could be
used to construct an overlay mesh, we focus on a distributed
algorithm that computes

�
minimum spanning trees on an

arbitrary graph. The principal motivation behind this strategy
is to provide applications with a

�
-redundant, high quality

mesh suitable for demanding applications like A/V broadcast,
video conferencing, data collection, multi-path routing, and file
mirroring/transfer. We elaborate details of

�
-MST, pointing out

advantages and potential problem points of the protocol, and
then analyze its performance using a variety of metrics with
simulation as well as a functional PlanetLab implementation.

Keywords: System design, Experimentation with real net-
works/Testbeds.

I. INTRODUCTION

Over the past several years, considerable work has been
done in designing overlay networks to optimize and enable ap-
plications over the Internet. Detour [1], for instance, improves
routing efficiency by exchanging congestion information be-
tween nodes and adaptively routing through overlay paths
that correspond to better routes. Resilient Overlay Network
(RON) [2] allows distributed applications to perform overlay
path selection in an application-specific manner, detect path
failures, and recover by routing data through other overlay
paths. High-performance streaming media systems [3], [4]
enable a pair of nodes to communicate through multiple
overlay paths simultaneously. Overlay networks have also
emerged as a powerful method for delivering content [5]–
[9] and coordinating multi-point communication algorithms.
CoopNet [10] streams media and employs striping over multi-
ple overlay trees to enhance both performance and reliability.
Byers et al. [11] propose a system for performing multi-
point transfers across richly connected overlays by judiciously
coordinating delivery of subsets of data in a highly distributed
and concurrent fashion. Cheng et al. [12] address the dual
problem of collecting data from several hosts by carefully
scheduling the movement of data.

The performance of these applications is highly dependent
on the ability to operate over good quality overlay paths. A
richly connected overlay network comprised of high quality
virtual paths provides the ideal setting for these applications;
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applications can then react quickly to fluctuating performance,
use application-specific path selection, or coordinate concur-
rent communication over multiple paths.

Proposed in this paper is a mesh-first approach, where
the dense graph of all possible overlay links is reduced to
a minimal topology composed of � trees. In particular, we
focus on a distributed algorithm to compute � Minimum
Spanning Trees ( � -MST), where edge weights correspond
to any one of the standard performance metrics, such as
latency, bandwidth, and loss rate. The mesh is constructed
using initial estimates of network properties and refined over
time. Like other unstructured overlays, such as End-System
Multicast [5], we view the tasks of mesh construction and
routing as independent. A standard routing protocol is used
to propagate the performance characteristics of the selected
links.

The primary motivation to construct an overlay mesh of
� trees is to ensure the existence of � edge disjoint over-
lay paths between any two nodes, to promote fault- and
performance-tolerance, and to enable path diversity. Though

� -MST includes the � best links of every node in the overlay,
it does not bound the diameter or the degree of the network.
However, it is possible to address these additional constraints
with other distributed heuristics that will be discussed in later
sections. Also, trees have important properties that simplify
aspects of mesh maintenance in the distributed environment.
For example, the addition of any link creates a fundamental
cycle, the removal of any link along a fundamental cycle
restores the tree property, and any edge failure partitions the
tree into two components. All these properties can be detected
and maintained with limited local knowledge.

Though we have been developing a prototype overlay net-
work that utilizes a � -tree methodology for mesh construction,
this paper focuses not on our architecture but primarily on
discussion and analysis of the � -tree strategy for high perfor-
mance mesh applications. We are not interested in using this
strategy in peer-to-peer file sharing or distributed object loca-
tion settings, but are more interested in applications requiring
resilient, high performance data delivery like A/V multicast,
video conferencing, data collection, multi-path routing, and
file transfer. The need for such applications is most pressing
in infrastructure-type settings like PlanetLab as well as in large
corporations where overlay networks of less than 1000 nodes
suffice. In such environments, a large amount of data concern-



ing neighbors and link quality is available or obtainable, and
we seek a distributed solution that makes efficient use of this
rich quantity of information.

II. BACKGROUND AND RELATED WORK

Over the last several years, extensive work has been done
in the realm of overlay network design. In general, these
systems can be broadly classified into two categories: tree-
first strategies and mesh-first strategies. Here we summarize a
few systems that are most relevant to our study.

A. Tree Construction Strategies

A number of projects have studied strategies for building
application-specific overlay trees, particularly for multicast
applications. The trees are constructed directly, and they de-
fine, implicitly, an unique communication path between every
pair of nodes in the overlay network. These approaches have
the advantage of not requiring the execution of a distributed
routing algorithm.

The ALMI (Application Level Multicast) project [13] lever-
ages a technique to compute a minimum spanning tree (MST)
at a centralized administration point based on information
retrieved from inter-node probes, which is subsequently pro-
grammed into the network.

Yoid, HMTP, and Overcast use the technique of constructing
a distribution tree by having group members explicitly choose
parents from their known set of neighbors [14] [15] [6]. Yoid’s
tree is static, but HMTP and Overcast trees adapt to changes in
link characteristics and peer addition/removal by periodically
trying to swap local links in the overlay. A good discussion
of switch-tree improvement protocols may be found in [16].

TMesh [17] improves upon single shared tree overlays
by randomly inserting “shortcut” links into the topology.
Effectively, this reduces the diameter of the network and better
supports multicast groups in which only some of the nodes are
participants.

OMNI [9] considers a two-tier multicasting infrastructure
consisting of service nodes and clients that connect to service
nodes. The system provides algorithms for organizing the
service nodes into an appropriate overlay structure based on
the changing distributions of client connectivity. An initial
centralized computation is followed by a distributed iterative
refinement to obtain a tree that minimizes the minimum
average latency and controls node degree.

NICE [18] partitions nodes into clusters of fixed size, elects
representative nodes to represent the cluster, and repeats the
process recursively in order to create a hierarchy of nodes.
Tree maintenance for � nodes costs only

�������	� ��
 resulting
in a highly scalable system.

B. Mesh Construction Strategies

Mesh-first strategies construct a richly connected graph first
and then compute overlay paths or source-specific multicast
trees using well known distributed routing algorithms. We now
review existing methods of mesh-first overlay construction,
summarizing the positive and negative properties of each and
highlighting previous approaches and results where relevant.

a) Complete Graph: It is possible to perform overlay
routing calculations based upon information that describes all
available network links. The RON project at MIT is evaluating
the benefits of overlay routing atop such a graph. Their results
indicate that a connected overlay provides improved fault
tolerance and performance to that observed in the underlying
infrastructure [2]. Though the routes provided by the overlay
are very near to optimal, from the standpoint of minimizing
each of several metrics, the actual execution of a routing
algorithm across a dense network, with

��� ���
 edges, is rather
expensive: inter-server traffic becomes unacceptably large with
networks even as small as 50 to 100 nodes [2].

b) � Random Links Graph: The k-Random links strategy
is simple and fully distributed: every node randomly selects �
of its edges for inclusion in the graph, resulting in a global
edge count that is less than or equal to ����� . This approach
allows for high partition resilience with little overhead, for if
a node detects a link failure, it may select another random
link from its pool without coordinating with another peer. If a
failed node returns to the network, it is similarly simple for it
to rejoin. A k-Random graph also has probabilistically uniform
degree distribution, which tends to promote load balancing
for multicast networks, as well as shallow diameter. The main
problem with this strategy is that the selected links may be bad,
leading to routing inefficiencies. The approach of choosing �
random peers is seen in numerous architectures. Narada, for
example, chooses links at random initially, and then improves
the quality of the mesh incrementally [5].

c) � Best Links Graph: This strategy is similar to the � -
Random graph, except that each node autonomously chooses
its � best links. Because pairs of nodes will independently
include each other in their selections, the k-Best-Links graph
is composed of as few as

� ������
���� and at most ����� low
weight links. While this graph has low aggregate weight, it
generally does not guarantee connectivity, and it might exhibit
large diameters even if it is connected. We have found this to
be especially true in real world scenarios like PlanetLab.

d) Short-Long Strategy: To select � links, a node may
choose ����� of the best (short) links of which it is aware and

���	� random (long) links. This strategy provides a low-weight
topology with probabilistic connectivity properties. This is
closely related to the � -MST strategy, which also includes
many of the best links of the graph.

e) Connect-Improve Strategies: Several architectures
take the approach of quickly choosing links, often randomly,
to provide fast joining and subsequently rely on local im-
provement to improve the “goodness” of the mesh. In the
Narada protocol, for example, a node joins the network by
choosing random peers [5]. As the node discovers more peers,
it evolves its randomly selected edges to include links of
higher utility, while preventing partitions through a special
mechanism. However, the initial graph is far below optimal
and every node must continuously run the improvement al-
gorithm, for evolution to proceed properly, causing relatively
slow convergence and high bandwidth utilization [5], [18].



f) DHT Mesh: Structured overlays like distributed hash
tables (DHTs) [19]–[22] view the overlay as a distributed data
structure that dictates both the network topology and message
routing. This integrated view has been shown to be mas-
sively scalable, requiring

�������	� ��
 neighbor information and
guaranteeing

��� � ��� ��
 diameter for arbitrarily sized networks.
Though originally developed for scalable object location, these
overlays are now being used for applications traditionally
supported on unstructured overlays [7], [8], [23]. The address
structure of systems like CAN, Pastry, and Tapestry provides
massive scalability and failure redundancy without the need
for a traditional routing algorithm. These systems are designed
with a scalability-first philosophy that focuses primarily on
routing based upon an arbitrary addressing scheme and secon-
darily on routing to maximize link performance. Consequently,
these systems tend to exhibit higher RDP, the overlay routing
latency compared to unicast routes provided by the infrastruc-
ture. The locality properties of these systems are currently
being investigated and improved upon [24]–[26] but it is as
yet unclear as to whether structured overlays can support
the minimization of arbitrary application-specific metrics and
provide the desired levels of path diversity.

III. � TREE OVERLAYS

In this section we describe major aspects of our architecture,
first giving an overview of the system, and then briefly
decomposing important aspects of the system.

A. Overview

The goals of our architecture are several:
High Performance: The mesh should retain many of the best

links (i.e., links with low latency, high bandwidth, and low loss
rate) from the original dense overlay network. In addition, the
mesh should exhibit bounded degree and diameter.

Multiple Paths: A configurable number of multiple paths
should be guaranteed by the network to improve real-time
performance in the event of failure, to tolerate fluctuations
in network performance, to enable application-specific path-
selection, and to allow for concurrent use of network resources.

Exploit Network Information: Whatever information is
available at startup and throughout the lifespan of the overlay
should be fully utilized to maximize the efficiency of the
network as quickly as possible.

Self Organizing: We seek a fully distributed solution that
allows for incremental peer addition, unexpected peer failure,
and other topological uncertainties.

We take a novel mesh-first approach of computing a sub-
graph of the known links that is composed of � spanning
trees. Because a � -tree network is composed in this manner, it
contains

��� � ��
 edges and is able to provide � overlay paths
between a pair of nodes. Though it is possible to compose
a network of � spanning trees of arbitrary type, we focus
primarily on the method of using � minimum spanning trees
after associating a cost metric to the communication links
between pairs of nodes. The � -MST strategy bears striking
resemblance to the best known approximation algorithm for

finding a � -connected minimum-weight subgraph, which is a
well known NP-Hard problem for � � � [27]. The resulting
mesh, therefore, partially satisfies some of our design goals
by providing multi-connectivity using many of the best links
in the overlay network. We also take advantage of the extant
foundation of research that has been devoted to the distributed
computation of minimum spanning trees beginning with Gal-
lagher, Humblet, and Spira in [28]. We build on their work by
developing an algorithm that computes � minimum spanning
trees in a concurrent and distributed fashion.

Some have criticized the use of Minimum Spanning Tree
algorithms in Internet contexts for several valid reasons [16]:

Criticism - MSTs require a large amount of information to
compute: In order to find the MST of a graph with � edges,���
��
 information is required. For a complete graph, this value

is
��� � ��
 . However, it is possible to reduce the amount of

information considered by the algorithm by “binning” [29] or
by only feeding a small percentage of random links to the
algorithm. Though this does not compute a true MST, our
results indicate that the quality of the tree does not suffer
much with incomplete information.

Criticism - MSTs must be recomputed in the event of node
addition: In order to address this problem, we have developed
a multi-hop tree improvement protocol that can restore a sub-
optimal MST to an MST.

Criticism - MSTs do not bound degree or diameter, and
therefore are subject to “hotspots” and long latency: This is
true, but it is possible to add greedy degree bound and diameter
heuristics to the protocol to provide these constraints.

Criticism - MSTs take a long time to compute and have high
message complexity: The fastest algorithm for the distributed
MST algorithm produces a solution in

��� ������� 
 ���	� ��
 time,
where

�
is the maximum node degree of the input graph and

�

is the diameter of the constructed tree [30]. When the diameter
heuristic is enforced and when the initial MST is computed
using

��� � ��� ��
 connectivity information for each node, the
resulting spanning tree can be computed in

�������	� � ��
 time.
The message complexity of the algorithm is

��� � � ��� � � ��
 ,
where � is the number of edges in the input graph. By
limiting

�
, the message complexity could be lowered to��� � ���	� ��
 . �������	� � ��
 convergence and

��� � � ��� ��
 message
complexity for sparse graphs makes the system viable for
a wide range of applications. We also observe that

��� ��

convergence and

��� ����
 messages on complete graphs may
be considered expensive in many circumstances; however,
for high performance infrastructure applications, where the
mesh must be very good before it will perform acceptably,
the � -MST approach is typically much faster and consumes
fewer messages than random-improve strategies, which take
considerable time and bandwidth to converge to a similar
“goodness” metric. This will be discussed more later.

Criticism - MST protocols are too complex: In compari-
son to many network protocols, MST algorithms are indeed
complex. However, they can be implemented correctly; our
implementation performs well in real-world scenarios like
PlanetLab.



B. � -MST Background

� -MSTs are computed in the following greedy fashion.
Let ����� ��� 
 represent the edges of the minimum weight
spanning tree of graph

�
; if graph

�
is not connected,

then ����� ��� 
 would correspond to a forest of disconnected
components. Furthermore, let

�	� ����� ��� 
 refer to a sub-
graph of

�
obtained after removing the edges in ���
� ��� 
 .

We compute:
������
� �  �������
for ���  ��������� � 
 do���  ����� ��� �! �" 
� �  � �! �"
# ���� � $� �! �" � ���
end for

More simply, the �&%�' MST of the composite graph is the
minimum spanning tree of the initial graph excluding the edges
of previously computed MSTs. The algorithm then outputs a
subgraph

�)(  ��" # �
�
����� � ( that is comprised of the �

minimum spanning trees.
The motivation for pruning the original graph to a � -MST is

three-fold. First, the � -MST provides an approximation to the
best known theoretical algorithms for graph pruning. Second,
the � -MST approach extends previous efforts that employ
centrally computed minimum spanning trees for streaming
applications. Third, a � -MST sub-graph has a number of de-
sirable properties that facilitate the task of mesh maintenance
in a distributed setting. We now examine each one of these
considerations.

1) Related Graph Theoretic Results: Techniques for using
interleaved spanning trees to compute constrained minimum-
weight connected subgraphs have been well explored in
previous literature. The algorithm with the lowest known
approximation factor for the � -connected minimum weight
subgraph problem is by Khuller and Vishkin [27] and uses a
graph algorithm developed by Gabow [31]. The approximation
algorithm works as follows. It takes the undirected graph
and forms a directed graph

�
where every undirected edge

is replaced by two anti-parallel directed edges of the same
weight. A polynomial-time algorithm, discovered by Gabow,
is then used to find � edge-disjoint directed trees with the
smallest cumulative weight. If at least one of the directed edges
is picked by Gabow’s algorithm, the corresponding undirected
edge is included in the pruned subgraph. It can be shown
that the pruned subgraph is � -connected and is at least a 2-
approximation to the minimum-weight � -connected subgraph
of
�

. The resulting subgraph has between � � ��	� to � � � �*� 

edges.

A related approach is the algorithm by Roskind and Tar-
jan [32], which can be used to find � disjoint spanning trees
of minimum total weight given an undirected graph. These
spanning trees accumulate to generate a � -connected subgraph.
This approach differs from the previous one in that it performs
this computation on an undirected graph and yields � � � �+� 


edges. Consequently, it might result in a subgraph with more
edges than the Khuller-Vishkin strategy.

Both algorithms exhibit limited concurrency, do not lend
themselves to distributed computation, and do not factor in
diameter and degree. However, given their similarity to � -
MST, they become an interesting point of reference. In fact,
we have empirically observed that the � -MST algorithm, when
executed without degree and diameter constraints, computes
solutions that closely approximates the solutions computed
by the Roskind-Tarjan algorithm for the various network
topologies that we have studied.

2) Related Overlay Construction Strategies: Other closely
related work includes ALMI, in which the authors demonstrate
that a single MST, computed in a centralized fashion and
then disseminated to overlay peers, provides for a good
multicast tree. Also relevant is the work done on TMesh,
which augments a multicast tree with random “shortcut” links
to improve latency performance by reducing network diame-
ter [17]. However, instead of augmenting the initial structure
with only sparse links, we augment with complete trees that
provide “shortcuts” while also increasing global redundancy.

3) � -MST Properties: We briefly note a few properties
of the subgraphs computed by the � -MST algorithm when
executed without the degree and diameter constraints. While
these properties hold only in an approximate manner if the
degree and diameter constraints are imposed, they still provide
insight into a number of interesting properties that are useful
for maintaining the mesh. All of these properties can be proved
with simple graph-theoretic refutation arguments, which are
omitted for brevity.

Property 1: � -MST includes the � best links of every node
in the graph.

Property 2: Let , be an edge belonging to the tree
� �

. Let, connect two sets of nodes � " and � � in
� �

. If the cost
of , rises dramatically (due to a fault or fluctuating network
conditions), then

�-�
can be repaired by adding the minimum

weight edge connecting � " and � � in
���/.0"

. One does not need
to consider any other edges to repair

�1�
.

Property 3: Consider an edge , that is in
�-�

. Let the
cost associated with , be lowered, potentially when new
information is revealed about the overlay network. Let ,32
be the edge with the maximum cost in the cycle created in� � #54 ,76 . If weight(e) 8 weight(e’), then the minimum-weight
property of

� �
could be restored by swapping in , for ,92 . One

does not need to make any other changes to
� �

.

C. Distributed Minimum Spanning Tree Algorithm

The distributed computation of a minimum spanning tree
was solved by Gallagher, Humblet, and Spira in their ground-
breaking paper [28]. We now provide a brief review of their
algorithm, referred to as GHS in this paper. Please refer to
[28] or [34] for a thorough discussion of GHS.

We assume that neighbor information comes from some out-
of-band mechanism, and that all probing has been done by the
start of the algorithm.



The algorithm builds the components in levels. At the start
of the algorithm, each individual node comprises a component
of size one and is at level 0. At each step, one of the nodes in
each component is elected as a leader of the component. The
leader’s UID and the component’s level number is used as the
component identity, compid. The leader broadcasts an initiate
message along the spanning tree edges of the component to
start a search to find the minimum weight outgoing edge, or
mwoe. On receipt of the initiate message, each node probes its
remaining links in order of increasing weight to identify the
lowest-cost edge that leads to a different component. A node
performs a probe by sending a test message containing the
node’s compid to its best neighbor. The neighbor sends back
an accept message only if it belongs to a different component.
If it belongs to the same component, it responds with a reject
message. The results of the search are convergecast back to the
leader through report messages. The leader then identifies the
mwoe of the entire component and sends a changeroot message
to the node that is adjacent to the mwoe. On receipt of the
changeroot message, a node sends a connect message across
its mwoe. When connect messages have been sent both ways
along this edge between two components of the same level, a
merge operation occurs to create a new component with level =
level + 1, and one of the two endpoints of the mwoe is elected
as the leader of this new component. If a connect message is
sent to a component that is at a higher level than the sender,
an absorb operation occurs, and the lower level component
gets incorporated into the higher level component. When the
algorithm terminates, there is just one component that includes
all the nodes in the graph connected by the minimum spanning
tree.

GHS is message efficient in that it uses
��� � ���	� � � ��


messages, which is optimal. However, its time complexity,��� � � ��� ��
 , is not optimal. Subsequently, several others have
developed faster versions of the protocol [30], [33].

D. Distributed � -MST

The distributed � -MST algorithm may be considered
as � instances of the distributed ����� algorithm, la-
beled ����� "�� ����� � �

����� � ����� ( , which generate � forests� "�� �
�
� ����� � � ( . Each process sorts its � �$�

links and feeds
them in non-decreasing order by weight to ����� " . If an edge, can be added to

� "
without creating a cycle and if it is

identified as the mwoe by a component in
� "

, then , is added to� "
. Otherwise, ���
� " hands , off to ����� � , which performs

the same operation, and the edge is similarly promoted to
subsequent instances of MST until it can be successfully added
to a tree. If ���
� ( is unable to add the edge to

� ( , the edge
is tagged in a manner similar to the original MST algorithm
so as to exclude it from further computations.

The � -MST algorithm computes the � trees concurrently,
and therefore, at any given time, a single process has member-
ship in � trees. For this reason, additional state with respect
to each MST must be kept internally and additional infor-
mation must be appended to messages. First, the component
identifier requires an additional field treeid denoting the MST

a) b)

c) d)

Test message for tree 1

Test message for tree 2

Branch for tree 1

Branch for tree 2

Fig. 1. The minimum spanning trees computed by 2-MST for a 4 node
network. In

�����
, peers test their closest edges. Since no peer yet has any

branches, all these edges are included in the first MST. In
�	�
�

, peers test
the next closest neighbors. Because these are interior edges, they are rejected
and promoted to the second MST. In

�����
, the second instance of the MST

algorithm tests the newly injected edges, and because the second tree has no
links yet, all these edges are accepted.

�	��
shows the completed � -MST.

with which the subtree is associated. Second, each process� maintains ��� , ,�� ����� ��� to store the tree to which the link� � � � 
 belongs or is being considered for. In GHS, every
link belongs to one of three categories: branch denoting a
spanning tree edge, rejected denoting a non-outgoing edge,
or basic denoting the initial state. In the � -MST algorithm,
� , �7,���� messages cause link ��� , ,�� � s to be incremented, thereby
allowing the links to be processed by higher instances of MST.
When ��� , ,�� � � � ���� � ���

, the link has failed to join all trees��� ��� � ����� � � 
 and may therefore be considered as rejected.
At the start of the algorithm, every process in the network

wakes up and begins searching for peers to join to. At �  �
in GHS, there are � subtrees of size one; in � -MST, there are

� � subtrees, each node constituting � trees. Each process �
stores a vector �"! � � � � � � � � ����� � �

�
to specify the � different

components to which it belongs.
Let � be a particular process in the execution. For each�#� � ������� � 
 , the process searches through its links to find

the lowest weight basic edge, best, that also has the property
��� , ,�� � � � ���  � . This edge is the minimum weight outgoing
edge under consideration by the process � for inclusion in
forest

� �
. Let

�
be the remote node associated with best.� sends a ��,%$�� message to

�
containing �"! � � � � � � � � 

� ��,�& � ,�� � � � � � ��,�' , � � � � � � ��
 . Node
�

processes the message as
follows:

if
� ��� , ,�� �%��� ���)( ��� , ,�� �+*�� � � 
 then wait

if
� ��� , ,�� � � � ���), ��� , ,�� � * � � � 
 then reject

if
� ��� , ,�� �%��� ����  ��� , ,�� �+*%� � � 
 then DoMSTCheck

where DoMSTCheck checks whether the two subtrees belong
to the same component.

When process � receives a Reject message from
�
, the link� � � � 
 is not a part of

� �
. It must then increment the ��� , ,�� �



associated with that link so that the algorithm can attempt to
join it to the next forest. When �  � � �

, the algorithm
has failed to join the link to any tree, and may be considered
rejected.

As links are rejected from early trees, they become available
for evaluation by higher instances of the algorithm. Because
edges are always selected in order of minimum weight, each
successive instantiation of MST receives as input the edges
with the lowest possible weights. When all links in the graph
have state either � �%&�� ��� or � , �&,�����, � , i.e., ��� , ,�� � � � ���� � � � ,
the algorithm is complete and outputs the graph consisting of

� forests.

E. Routing Atop � -Trees

We utilize a link state protocol to compute robust, dynami-
cally adaptive routes within our constrained mesh. Link state
protocol enables quick dissemination of network conditions
and allows for flexible, application-specific, path selection.
The protocol we use is based upon Radia Perlman’s New,
Improved Link State Distribution Protocol [35]. Link state
routing also facilitates our fault recovery and improvement
mechanisms, which we describe in the following sections.

F. Peer Addition

The GHS algorithm can be easily extended to allow for
incremental node addition. Because each node begins at level
0 upon startup for each tree that is being constructed, the first
node it tests will always absorb it. This does not guarantee
optimal placement, however, and the improvement phase of
the protocol must be used to reposition the node into the global
MST. Most MST algorithms offer a similar facility.

G. Fault Recovery

Consider a single GHS tree. If a node or link failure occurs,
each adjacent node independently detects this failure and
performs an action according to whether or not the failed link
is its parent, meaning a link that points towards the leader, or
a child. If the link pointing to the tree’s leader fails, the node� that detects the failure designates itself as the new leader
of the component consisting of itself and its children. If the
failed link points to a child, � sends a failure message across
the overlay to the leader of its component. The leaders of
the two components then change their component identifiers
and broadcast a message along each tree to tell the nodes
to update their component identifier and roll back rejected
edges to basic. When the leaders receive a convergecast
acknowledgement from each of its children, they broadcast
an initiate message to begin a new search for the mwoe.

In the case of multiple concurrent faults at different parts of
the tree, or failures taking place during a merge or absorb, sev-
eral initiate messages may traverse a component concurrently,
each tagged with a different component identifier. If a node
receives a different initiate with the same level as itself, it must
come from upstream. Such messages are accepted only if they
are more recent than other initiate messages that it receives, the
ordering of which is determined by a simple sequence counter.

initiate messages of higher level result only from merge and
absorb operations, and are accepted without exception.

The protocol described above rolls GHS back to an ex-
pensive phase, where nodes must test all interior edges of
their component. This drawback could be addressed in one
of three ways. First, the message count complexity may be
avoided by disseminating internal node member knowledge,
which we describe later, so that interior edges are not probed.
Second, the system could roll back only some of the rejected
edges to basic, thereby allowing the partition to be repaired
using a possibly sub-optimal link. The issue of optimizing the
sub-optimal tree could then be addressed by the improvement
phase of the protocol. Third, one could exploit Property 2
described in Section III-B.3, which states that the lowest
weight link , that could repair the partition in

�-�
is in

���/.0"
.

In the event of a single link failure in � , the process � that
discovers the fault could identify the edge , from

� �/.1"
that

connects the two partitions of
� �

and notify the endpoints of, to shift the edge from
� �/.1"

to
� �

. This procedure would
continue until either no link can be added or until the failure
shifts into the last forest, at which point it executes the full-
blown repair procedure described above.

H. Incremental Improvement

Our improvement protocol exploits the properties of trees
to restore the global optimality after peer addition or changes
in link characteristics. Central to this is the use of a link state
protocol to propagate information about the current conditions
of a spanning tree.

Assume that the overlay is currently in a sub-optimal state.
Once in a while, each node checks to see if it is able to
make an improvement using local information gathered from
periodic probes and the link state that has been propagated
throughout the network. Locally, a node picks a non-branch
link , and adds it to this tree, thus creating a fundamental
cycle. If any of the links along the cycle are heavier than , ,
then an improvement could be performed by swapping this link
for , . We will call the decrease in weight associated with this
change delta. The node then performs a similar computation
using each of its other non-branch edges, and the improvement
that is found with the largest delta is the improvement that will
be made; if no such link exists, then the tree is already a MST
and nothing is done.

Once the best improvement is determined locally, a peer
may then execute the swap on the network. In a distributed
setting, we must be careful to avoid possible partitions and
loops that may form as a result of disagreement about the
network’s link state. Figure 2 shows a tree where two separate
processes, � and � , wish to perform an improvement at the
same time on different links, but there are shared links in the
cycles created by the improvement process. Note that if the
two processes modify the same link or links on the shared
path, it is possible that a loop and/or partition may occur, thus
obliterating the spanning tree.

The protocol to execute the improvement, without creating
loops or partitions, works as follows. A process � first sends a



a) original tree b) A wants to swap e1 and e2.
B wants to swap e3 and e4.

e1

e2

e3

e4

A

B

c) A and B both make
the improvements.

Fig. 2. Possible concurrency errors resulting in loops and/or partitions.

lock message along the improvement cycle to all of the edges
that may be affected by the improvement. Next, it sends an
improve message along the cycle to add the improvement link,
remove the bad link, and readjust parent pointers appropriately.
Finally it forwards an unlock message in the reverse direction
to finalize the improvement. A full description of this protocol
is beyond the scope of this paper, but we have devised simple
ways to ensure that no concurrent improvements take place
on shared links, and that the tree remains in a survivable
state at all times; parent pointers are always such that the
fault recovery mechanism works if any link or node along the
improvement cycle goes down.

I. Degree and Diameter Bound Heuristics

On real world topologies, it is possible that an MST could
exhibit hot spots and suffer from high diameter. However, it
is possible to modify the distributed MST algorithms to add
heuristics that approximately limit the degree and diameter of
the MST.

To limit degree, for example, a node can reject ��,%$��
messages from peers if its degree target has been reached.
However, this is not sufficient by itself. Consider that there
may be a “hub” node � that is close to a large number of
peers. In such a case, at �  � , many nodes will test � ,
and because � has no links at the start of the algorithm, it
will accept all requests. To bound its degree, � will accept
the first

� �"!�� ��,���� messages, and will then send a special
� ,%$��
& ��� message to the remaining peers, notifying them that
their respective components must restart the search round. All
subsequent ��,�$�� messages will then be rejected. We note that
the greedy algorithm does not attempt to build the lowest-
weight spanning tree for a given degree bound, which is an
NP-Hard problem.

A similar methodology may be used to control network di-
ameter. Let $����7, ��� 
 denote the number of nodes in component�

, and let
� ��& ��� 
 denote the distance from a node

� � �

to the node farthest from
�

within the same component. A
component can compute the $����&, and

� ��& values for each
node inside the component through a pair of carefully designed
broadcast-convergecast operations. The diameter constraint is
then enforced by requiring that a merge of two components� "

and
�
� along an edge

� � � ' 
 can happen only if
� ��& � � 
 �� ��& � ' 
 , � � ���	� � $����7, ��� " 
 � $����7, ��� � 
 
 , for some fixed constant

� . Again, this is a greedy approach, which does not necessarily

compute the lowest weight spanning tree for a given diameter
bound.

J. Reducing kMST Complexity

All techniques for improving the performance of distributed
MST algorithms may be applied to the � -MST algorithm. Such
techniques may be found in [36] [30].

An additional method that can be used to reduce the
message count and time complexity is to simply let every node
know the members of its component. This may be done in the
Report and Initiate phases of the protocol by having all nodes
report a list of their children to the root, who subsequently
broadcasts this list when initiating the next search phase.
This eliminates intra-component testing, which always leads to
rejection, thus reducing the message count to

��� � ���	� ��
 at the
expense of increasing the size of report and initiate messages
from

����� 
 to
��� ��
 .

A similar technique can be used by employing Bloom filters
instead of complete lists, thus providing nodes an approximate
view of component membership; some configurable percent-
age of the time, a node will conclude that a remote peer is
already a member of its component, even when it is not, and
mistakenly reject it in a pre-emptive fashion. However, with
high probability, the final tree will still be connected and close
to the optimal result.

K. Bandwidth and Loss Rate Metrics

The designers of RON pointed out the benefits of being
able to route according to multiple metrics, such as latency,
bandwidth, and loss rate. Because pruning a graph based
on only one metric could limit a routing algorithm’s ability
to optimize other important factors, we take the approach
of computing multiple overlay networks, each composed of
trees that either minimize latency or loss rate or maximize
bandwidth. This allows several applications to execute concur-
rently, each routing atop a graph optimized for an appropriate
metric (as illustrated in Figure 3). For bandwidth-intensive
applications, it would be ideal if the mesh provides paths
that have few bottlenecks at the physical link layer. We are
currently extending our algorithms to incorporate physical
topology information, if such information is available.

Framework

Link-State
Protocol

Spanning Trees
Protocol

Spanning Trees
Protocol

File Transfer
Video

Conferencing

Link-State
Protocol

Bandwidth Probe Latency Probe Loss Rate Probe

Link-State
Protocol

A/V Multicast

Spanning Trees
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Fig. 3. Interaction Between � -MST Maintenance and Routing
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Fig. 4. (a) Time to compute number of links for various values of � , ���
���

. (b) Bandwidth consumed by � -MST construction for various values of � .
Data values are plotted until the � -MST construction is completed.

IV. EVALUATION

In this section, we evaluate various aspects of � -MST
meshes in simulation and also study the PlanetLab deployment
of a � -MST overlay network.

A. � -MST Complexity Measurements from PlanetLab

To evaluate the performance of � -MST, we use an 80 node
deployment of the algorithm across PlanetLab. The algorithm
is implemented as described in Section III-D. Protocol mes-
sages are queued at nodes and handled in a batched mode
once every second. Traffic measurements include the message
overhead for constructing the mesh as well as heartbeat and
other maintenance traffic.

Figure 4(a) shows global link count as a function of time
for several values of � . Near time �  � , there is very little
parallelism in the construction of the different trees. This is
because before tree � � � may test any edges, it must first wait
for tree � to reject some. Once there are some links in the
pipeline, higher tree instances begin to successfully execute,
creating branches and rejecting links. Finally, the tail end of
the curve again demonstrates limited concurrency, as the last
trees are waiting for lower instances to process their links,
most of which will be interior.

Figure 4(b) illustrates the bandwidth consumption of the
algorithm. The bandwidth utilization of MST is at its highest
when components are probing for outgoing edges, particularly
the later stages where interior edges become increasingly
numerous. At the start of the run, when all sub-trees are
composed of a small number of nodes, a larger proportion
of test messages are accepted by peers. As components form
into larger trees, more of a process’s test messages result in
rejection, since its better links correspond to nodes that are
already part of its component. Towards the end of the run,
when components span much of the network, the rejection rate
is at its highest, particularly when the network demonstrates
large localized pockets.

In Figure 4(b), the “bumpy” pattern corresponds to points in
time when large local subtrees have formed. In the first steep
portion of each curve, bandwidth is increasing as trees in the
Western US, Eastern US, and Europe form. Once these regions
finish testing their relatively local links, they begin merging

with one another, decreasing bandwidth utilization temporarily
and causing the downturn in the first “hill.” Bandwidth con-
sumption again increases once these inter-locality links have
formed, and is highest during the last phases of the algorithm
as nodes test peers to which they are already connected. We
will continue our analysis of � -MST’s bandwidth utilization
in the following section with simulations of larger executions.

B. � -MST Complexity Measurements from Simulation

In order to study more general trends of � -MST in networks
of various sizes, we executed a � -MST simulation across two
topologies. The first was created by using Internet router in-
formation obtained by the Internet Mapping Project at Lucent
Bell Laboratories circa November 1999. From this map, 1000
edge-nodes were chosen and a pair-wise distance, measured
in terms of hop count, was used as the cost metric to compute
the subgraph, since actual latency data was unavailable (as
discussed in [37], [38]). The other topology was a Transit-
Stub network produced by Georgia Tech’s GT-ITM topology
generator; we generated a 50,000 node network and then chose
1000 nodes at random to perform our experiments. For both
topologies, when fewer than 1000 nodes were needed, the
required set of nodes was chosen randomly from these 1000
node pools.

Although in practice input meshes for � -MST will likely
be sparse, in these experiments we use fully connected
graphs, which give worst-case measures for convergence and
communication. Recall that the message complexity of an
optimal implementation of MST is

��� � ���	� � � ��
 , and with
a fully connected graph, the � term is �� . For this reason,
we are interested primarily in the time and the number of
messages required before all trees are formed, when the mesh
is connected and usable, not the complexity required for the
algorithm to exhaust all internal edges in the last phase. The
� � bandwidth that is used by the algorithm can be dealt with
by reducing the number of edges considered by the algorithm.

In our simulation, one “count” indicates the time required
to perform a send-receive operation or internal action. For
example, at time �  � , process � may wake up and send
a message to

�
, which

�
will receive at time �  �

. Broadcasts
and convergecasts, therefore, each take

���
diameter 
 time.



100

150

200

250

300

350

400

450

500

100 200 300 400 500 600 700 800 900 1000

T
im

e

Network Size

k=4
k=3
k=2
k=1

100

150

200

250

300

350

400

450

500

100 200 300 400 500 600 700 800 900 1000

T
im

e

Network Size

k=4
k=3
k=2
k=1

0

500

1000

1500

2000

2500

3000

100 200 300 400 500 600 700 800 900 1000

T
im

e

Network Size

k=4
k=3
k=2
k=1

0

500

1000

1500

2000

2500

3000

100 200 300 400 500 600 700 800 900 1000

T
im

e

Network Size

k=4
k=3
k=2
k=1

0

50

100

150

200

250

300

350

400

100 200 300 400 500 600 700 800 900 1000

T
im

e

Network Size

k=4
k=3
k=2
k=1

0

50

100

150

200

250

300

350

400

100 200 300 400 500 600 700 800 900 1000

T
im

e

Network Size

k=4
k=3
k=2
k=1

Fig. 5. Time to compute � -MSTs on (a) router topology, (b) transit stub topology, (c) transit stub topology with group member knowledge.
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Fig. 6. Messages required to compute � -MSTs on (a) router topology, (b) transit stub topology, (c) transit stub topology with group member knowledge.

We first executed � -MST on the Internet Mapping Project
router topology with network sizes up to 1000 nodes and
values of � varying from 1 to 4. On this topology, the protocol
performed surprisingly well, demonstrating fast tree building
on networks of all sizes and showing constant changes in
time for various � s. Also, there was only a linear increase in
bandwidth as the number of nodes in the network increased,
which is the best possible case; this indicates that very few
interior nodes were tested at each level of the algorithm.

On the Transit-Stub topology, however, we observed worse
behavior. As the number of nodes increased, the time required
to compute � trees increased much more steeply than in the
previous topology; the time required to compute � trees is
roughly five times that required to perform a similar execution
on the Internet Mapping Project topology. Furthermore, the
number of messages required to perform the distributed com-
putation increased quadratically with the node count. This is
because the Transit-Stub graph exhibits more localization than
the previous topology, causing an increase in intra-component
testing and pushing the complexity of creating the mesh close
to the worst case of

��� � ��
 .
In order to reduce the worst case complexity of MST

algorithms, one could reduce edge count (by choosing a
subset of links) or disseminate group membership information.
The latter approach automatically forces the message size
complexity of the algorithm to

��� ����
 for even sparse graphs,
but reduces the message count complexity to

��� � ���	� ��
 . This
is because if peers know which edges are already interior, they
need not test them. Despite the seemingly expensive nature
of this strategy, in a practical setting it adds only minimal
overhead. Because the network is a tree, when a peer joins
to another peer through a merge or an absorb operation,

the affected edges can exchange membership information
and then broadcast new member updates to the rest of the
sub-component, thereby requiring membership information to
traverse a link only once. Consider that for a 1024 node
network, where each peer has a 4 byte address, a total of
4KB of information must be sent to each node during a run
of MST, amortized over the duration of the execution.

We used simulation to test the effectiveness of group mem-
bership dissemination for the poorly performing Transit-Stub
topology. Because there is no need to test interior edges using
this method, the algorithm is extremely fast, requiring only
100 steps for a 1000 node tree, versus over 800 steps without
the optimization. Also note that the message count produced
with enhanced group knowledge is along the same order of
magnitude as the message count from the Internet Mapping
Project graph.

C. � -MST Performance Results from Simulation

We next evaluated the quality of the � -MST mesh using
simulation. First, we compared the average cost of redundant,
edge-disjoint, shortest paths for the meshes generated by sev-
eral different mesh construction strategies. We also evaluated
the quality of the computed paths when there is incomplete
knowledge regarding edge costs, a situation that might arise
when one wants to minimize the probing costs as well as
lower the time required to compute � trees. In such situations,

� -MST simply computes the MSTs of the sparse graph.
Figure 7 plots the average shortest-path hop count of four

edge-disjoint shortest paths for three pruning strategies while
varying the number of mesh edges. The experiments were
performed on the router topology from the Internet Mapping
project. The three plots correspond to hop counts when there is
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Fig. 7. Average hop count of four edge-disjoint shortest paths under different levels of information for router-level topology from the Internet Mapping
Project. (a) All the edge weights in the original graph are known. (b) Each node knows the edge weights to forty other nodes in the system. (c) Each node
knows the edge weights to forty other nodes, including five of its closest neighbors.
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Fig. 8. Average latency of four edge-disjoint shortest paths under different levels of information for topology from GT-ITM. (a) All the edge weights in the
original graph are known. (b) Each node knows the edge weights to forty other nodes in the system. (c) Each node knows the edge weights to forty other
nodes, including five of its closest neighbors.

complete edge information, when each node knows of only 40
edges, and lastly when each node knows of 40 edges of which
5 are closest neighbors. In all cases, � -MST demonstrates a
lower hop count, with other strategies performing as expected.

In Figure 8 we run a similar test across the GT-ITM
topology. On this topology, � -MST performs well, while the
random strategy performs very poorly. As we had found
in our other simulation experiments, the Transit Stub graph
demonstrates a large amount of localization, where groups of
nodes are in relatively dense areas that are quite distant from
similar groups. Choosing random links in this scenario ignores
this locality property; though picking random neighbors upon
startup is fast, it may not provide adequate performance for
demanding applications.

D. � -MST Performance Results from PlanetLab

1) Latency Measurements: We extended our testing to a
practical environment using an 89 node PlanetLab network. In
Figure 9, the round trip latency of three edge-disjoint shortest
paths were computed for meshes with various edge counts.
The results we obtained from this were similar to that of the
GT-ITM topology, with � -MST performing much better than
the other strategies (as shown in Figure 9).

2) Mesh Improvement: Choosing random links generally
produces a poor quality mesh, which means that it must
be improved considerably before it is of reasonably good
quality. We illustrate this in Figure 10, where we run a
Narada improvement [5] simulation atop � -Random and � -
MST graphs and plot how the average latency of the shortest
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Fig. 9. Round trip latency of three edge-disjoint shortest paths for varying
edge counts.

paths changes over time. For each mesh we apply incremen-
tal improvements by having each node periodically probe a
random non-neighbor, and add the corresponding link if the
resulting improvement to the shortest paths is above some
threshold. For the � -Random mesh, the improvement algorithm
periodically drops low-utility links while preventing partitions
using the heuristic mechanisms proposed by Narada. For the

� -MST mesh, the improvement algorithm drops a low-utility
link immediately after adding a high-utility link, with the link
to be dropped chosen from the fundamental cycle created by
the newly added link; the ability to detect this cycle is unique
to � -MST.

At time �  � , the � -MST mesh is already very close to
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graphs.

optimal, though the random mesh must go through over 3000
improvement cycles before the mesh quality is similar to � -
MST. Of course, in order to compute � -MST in the first place,
the upfront expense of the MST algorithms must be incurred.
But because Narada probes require transfer of routing tables
with

��� ��
 values, such an improvement strategy can be much
more expensive and time consuming than MST computation.
The Narada improvement algorithm also does not ensure � -
connectivity as the mesh is refined. Even though every pair
of nodes has three edge-disjoint paths in the random mesh at
�  � , our experiments indicate that fewer than 50% of the
redundant paths remain after 3000 improvement cycles. The � -
MST mesh, on the other hand, is always composed of � trees,
thereby ensuring the existence of � edge-disjoint overlay paths
between any two nodes.

3) Loss-rate Measurements: We then evaluated the quality
of the � -MST mesh for transmitting data streams over overlay
paths. We used observed loss-rates from periodic PlanetLab
probes as the link-weight metric in order to compute the � -
MST. We then transferred a constant bit-rate data stream of
1 Mbps through � distinct overlay paths between every pair
of nodes and monitored the packet loss. Figure 11 compares
the different mesh construction strategies by calculating the
cumulative distribution function of the loss-rates associated
with the overlay paths. � -MST overlay paths exhibited signif-
icantly lower loss-rates than the other pruning schemes, with
loss-rates that were lower by more than 5% for about 20%
of the paths. A 5% improvement is considered substantial for
streaming applications.

E. Application Performance

As a benchmark application, we implemented a multicast
file mirroring utility to reliably send 100 megabytes of files
to each overlay node along the edges of degree-constrained
multicast trees that were computed atop meshes built using
the bandwidth cost metric. In the transfer protocol, each child
computes its shortest path, using link state information, to a
file source and periodically requests an advertised file until
it becomes available from its parent. When the file becomes
available, the child transfers it using TCP and immediately
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Fig. 11. Cumulative distribution function of the loss-rates on overlay paths.

writes each packet to disk so as to make it available to its own
children. Though this methodology is not a real-time multicast
transfer scheme, it still gives insight into the efficiency of the
system by illustrating its ability to delegate transfer load along
the network.

The average data rates (as shown in Figure 12) for all three
strategies were surprisingly high, with the constrained � -MST
topology and the complete graph producing trees that sustained
over 2.5 megabits-per-second for the bulk of the transfer. The
pipelined TCP transfer method we employed seems to allow
for substantial transfer concurrency. For trees computed on
both the � -MST and complete graph, 100 megabytes were
transferred to each of 80 geographically dispersed nodes in
less than 8 minutes, for a total transfer of 8 gigabytes. The tree
computed atop the random graph finished most of its transfers
within 12 minutes, though the remaining nodes took over 30
minutes to synchronize.

V. CONCLUSIONS

In our paper, we proposed using interleaved spanning trees
to compose an overlay mesh. We focus specifically on a strat-
egy of using � minimum spanning trees for mesh construction,
and evaluate the methodology using simulation and a working
implementation, which was run atop PlanetLab. Our results
show that � -MST mesh demonstrates good characteristics,
including low weight and good path diversity, despite the
sparseness of the graph, for networks of less than 1000 nodes.
On our PlanetLab implementation, our prototype demonstrated
reasonable bandwidth utilization during construction, low loss-
rates for data streams, and high performance in a realistic
multicast file transfer scenario. Though there is an initial
expenditure to construct a high quality network, seen both
in terms of message count and time complexity, this cost is
modest compared to the cost required for random-improve
strategies to converge to a similar result. Though our pre-
liminary results are promising, we are still investigating the
behavior of � spanning tree networks in medium-scale, real-
world applications.
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Fig. 12. Results from the file mirroring application. (a) Plot of average data transfer rate vs. Time. (b) Time required to complete data transfer to 80 nodes.
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