
This paper is included in the Proceedings of the
2020 USENIX Annual Technical Conference.

July 15–17, 2020
978-1-939133-14-4

Open access to the Proceedings of the
2020 USENIX Annual Technical Conference

is sponsored by USENIX.

End the Senseless Killing: Improving Memory
Management for Mobile Operating Systems

Niel Lebeck, Arvind Krishnamurthy, and Henry M. Levy, University of Washington;
Irene Zhang, Microsoft Research

https://www.usenix.org/conference/atc20/presentation/lebeck

End the Senseless Killing: Improving Memory Management

for Mobile Operating Systems

Niel Lebeck

University of Washington

Arvind Krishnamurthy

University of Washington

Henry M. Levy

University of Washington

Irene Zhang

Microsoft Research

Abstract
To ensure low-latency memory allocation, mobile operating

systems kill applications instead of swapping memory to disk.

This design choice shifts the burden of managing over-utilized

memory to application programmers, requiring them to con-

stantly checkpoint their application state to disk. This paper

presents Marvin, a new memory manager for mobile plat-

forms that efficiently supports swapping while meeting the

strict performance requirements of mobile apps. Marvin’s

swap-enabled language runtime is co-designed with OS-level

memory management to avoid common pitfalls of traditional

swap mechanisms. Its key features are: (1) a new swap mech-

anism, called ahead-of-time (AOT) swap, which pre-writes

memory to disk, then harvests it quickly when needed, (2) a

modified bookmarking garbage collector that avoids swapping

in unused memory, and (3) an object-granularity working set

estimator. Our experiments show that Marvin can run more

than 2x as many concurrent apps as Android, and that Mar-

vin can reclaim memory over 60x faster than Android with a

Linux swap file can allocate memory under memory pressure.

1 Introduction

Over the past decade, mobile apps have become bigger and

more complex [28], far outpacing increases in mobile de-

vice memory [4]. This trend has increased memory pressure

on mobile operating systems as apps compete for limited

space. Going forward, mobile OSes must more efficiently

share memory across demanding apps, or user experience

will suffer.

Unfortunately, while mobile apps have become more so-

phisticated, mobile memory management remains in its in-

fancy. Today’s popular mobile OSes set a fixed upper bound

on memory for each running application (e.g., 1.4GB for iOS

running on an iPhone X [36] and 512MB for Android running

on a Google Pixel XL). They never overcommit memory;

instead, they kill running applications and restart them later.

This simplistic approach worked well when mobile apps

were small and largely stateless. However, it is unsustainable

as mobile OSes replace desktop ones (e.g., Android is now

the most used OS in the world) and mobile apps replace

desktop counterparts (e.g., Google Docs and Word Online

replacing Microsoft Word). Today’s apps already do not fit

into their memory allocation, so they manually swap objects

between memory and local storage or use libraries to meet

their needs [11]. Because apps are increasingly likely to be

killed due to memory pressure, they must also continuously

save execution state to disk and strive to minimize their start-

up times to cope with frequent restarts. Despite significant

engineering effort [21, 27, 32], it still takes several seconds to

kill and restart popular apps.

Improving mobile memory management is difficult. Mo-

bile apps run in high-level language runtimes (e.g., Swift,

ART), which limit OS insight (e.g., working set estimation is

impossible) and are notoriously difficult for OS-level memory

managers to work with [20]. Further, mobile apps often allo-

cate large amounts of memory quickly (e.g., when starting,

or for cloud downloads); unless the OS keeps a large pool

of free memory, this is easier to accommodate by killing en-

tire applications. Finally, touch-based interfaces impose strict

latency requirements, which swapping to disk cannot meet.

In this paper, we improve mobile memory management

with a key observation: unlike other operating systems, mo-

bile OSes run all of their apps in a common language runtime.

For example, all apps running on Android must run in the

Android Runtime (ART). This difference lets us co-design the

language runtime to assist the mobile OS in optimizing mem-

ory management instead of hindering it. Due to its knowledge

of memory usage, the language runtime becomes an ideal

place for mechanisms that can better manage memory.

This paper demonstrates the value of leveraging the runtime

for OS tasks. We present Marvin, a new memory manager

for Android that efficiently supports memory overcommit.

Marvin implements most memory management in the lan-

guage runtime, which has more insight into an application’s

memory usage. Marvin relies on the operating system only

for cross-application resource allocation.

By integrating with the language runtime, Marvin can offer

USENIX Association 2020 USENIX Annual Technical Conference 873

● ●
● ● ● ● ● ● ● ● ● ●

● ●
●

●

●

●

● ● ● ● ●

0.00

0.25

0.50

0.75

1.00

1e+02 1e+04 1e+06
Object size (bytes, log scale)

C
u

m
u

la
ti
ve

 h
e

a
p

 f
ra

c
ti
o

n

App

● amazon
candycrush
googlemaps
instagram
pinterest
spotify
twitter
washingtonpost

Figure 1: CDF of object size and heap percentage occupied

by objects that size or smaller.

three new features that enhance memory management:

• A new swap mechanism, which performs ahead-of-time

swapping to disk to avoid synchronous disk writes when

reclaiming memory, and which leaves checkpointed ob-

jects in memory (unlike Linux’s kswapd [18]).

• A new object-level working set estimator, which sep-

arates garbage collector (GC) and app accesses, and

avoids false sharing with object-level access tracking.

• A new bookmarking garbage collector [20], which tracks

exact liveness data without accessing swapped-out ob-

jects.

We implement a prototype of Marvin by modifying the inter-

preter and compiler of the Android Runtime (ART). Experi-

ments show that our Marvin prototype is able to run more than

2x as many concurrent apps as Android, and that Marvin can

reclaim memory over 60x faster than Android with a Linux

swap file can allocate memory under memory pressure.

2 Limitations of Modern Mobile

OS Memory Resource Management

Although mobile OSes may be based on traditional OSes (e.g.,

Android and Linux), they diverge in two important ways:

(1) for each app, they bound memory usage to a fraction

of physical memory (e.g., 512MB on a 4GB device), rather

than letting apps allocate as much memory as they need, and

(2) they kill applications when physical memory runs out

rather than overcommitting memory through paging or other

mechanisms. To motivate our work, we ran experiments with

popular apps that show the reasoning and cost for these design

decisions. We ran all experiments on a Pixel XL phone with

4GB RAM and a quad-core Qualcomm Snapdragon 821 CPU.

2.1 Fixed Memory Allocation

Mobile OSes have poor insight into app memory usage. The

runtime garbage collector regularly touches all objects and

0

30

60

90

120

am
az

on

ca
nd

yc
ru

sh

go
og

le
m

ap
s

in
st
ag

ra
m

pi
nt

er
es

t

sp
ot

ify

tw
itt
er

w
as

hi
ng

to
np

os
t

M
e

m
o

ry
 (

M
B

)

Min. read WS

Heap size

Figure 2: The cost of fixed allocation. Each bar shows the

total Java heap size of a popular app alongside its minimum

Java working set during active use.

moves objects for heap compaction, and the OS cannot dis-

tinguish this activity from app accesses. Mobile apps also

access language-level objects, which vary in size, while the

OS can only track memory accesses at page granularity. To

understand the impact of object-level accesses on page-sized

access tracking, we measured the size of objects in popular

apps. Figure 1 shows a CDF of the size distribution. Most ob-

jects are not page-sized (e.g., up to 40% of objects are smaller

than 4KB), so the OS cannot accurately track their usage.

Without good insight into app memory usage, today’s mo-

bile OSes allocate all apps a fixed memory budget. On An-

droid, this memory limit is the same whether an app is in the

foreground or background. Android attempts to minimize the

memory footprint of apps using techniques such as forking

all apps from a single “zygote” process with copy-on-write

pages. These techniques reduce duplication of framework

data structures and shared libraries but do not impact appli-

cation objects in the Java heap. Using Marvin’s object-level

working set estimator, we measured the working set of popu-

lar apps. Figure 2 shows that although the heap footprint of

these apps is large, their working sets actually account for a

small fraction of their total heap size. This rarely accessed

memory would be better utilized keeping other apps alive,

rather than wasting space not being used.

Popular apps often have large memory footprints but small

working set sizes because they cache as much as possible

from the cloud. This caching improves performance, but it

leads to poor memory utilization, and choosing the correct

cache parameters is difficult [30]. Worse, modern applications

frequently exceed their memory budgets. Coping with this

problem requires apps to implement manual swap-to-storage,

which adds significant programming complexity [10, 11].

While caching libraries like Glide [5] and Fresco [34] are

helpful, they do not apply to all memory objects. Therefore,

today’s apps use a complex combination of libraries and man-

ually shuffling data between memory and disk.

874 2020 USENIX Annual Technical Conference USENIX Association

0

100

200

300

400

500

0 2000 4000 6000 8000
Time (ms)

M
e

m
o

ry
 a

llo
c
a

te
d

 (
M

B
)

Memory pressure
No pressure

Figure 3: Progress over time of a memory allocation on An-

droid with a swap file and memory pressure vs. no memory

pressure.

2.2 No Memory Overcommit

Today’s mobile OSes kill applications rather than swapping

to disk when physical memory runs out. They take this ap-

proach because mobile apps must respond to user input within

hundreds of milliseconds, so traditional swap mechanisms,

which place synchronous disk writes on the critical path, im-

pose too much latency. To measure the effect of swapping

on memory allocation, we enabled a Linux swap file on our

Android test device [35], and we measured the amount of time

required to allocate 512MB when the Android OS had free

memory and when it had a swap file and memory pressure.

Figure 3 shows the progress of the memory allocation over

time. With memory available, the OS allocated all 512MB

in 450ms; however, with a swap file and memory pressure, it

took almost 8 seconds for the OS to allocate the same amount.

Such high allocation latency would be unacceptable if an app

were allocating memory in response to user input.

Unfortunately, killing and restarting apps comes at a cost.

As shown in Figure 2, modern apps have large memory foot-

prints, and a restarted app must fetch all of its cached data

from the network or disk. We measured the amount of time

needed to restart popular apps and compared it to that needed

to fetch their entire checkpointed memory image from disk.

As shown in Figure 4, restarting apps takes 4-27x longer than

fetching the all of the app’s memory from disk.

The ability to kill and restart apps at any time also imposes

a programming burden on app developers. Modern OSes give

apps a limited time budget to perform cleanup before being

killed. This limit leads apps to constantly write state to stor-

age; in fact, Android encourages it [9]. Such constant check-

pointing in response to app lifecycle events adds program-

ming complexity, a challenge described in prior work [14].

Not only do app developers have to manage the checkpointing

process, they have to correctly use a variety of mechanisms to

do so with good performance [12]. The programming effort

required to prepare for unexpected app deaths is an additional

cost that app developers must pay.

0

4

8

12

Am
az

on
 A

pp
 S

to
re

C
an

dy
 C

ru
sh

 S
ag

a

G
oo

gl
e

M
ap

s

In
st
ag

ra
m

Pin
te

re
st

Spo
tif
y

Tw
itt
er

W
as

hi
ng

to
n

Pos
t

A
p

p
 s

w
it
c
h

 t
im

e
 (

s
)

App startup time
Disk read time

Figure 4: The cost of re-starting apps compared to reading

their memory image from disk.

3 Our Approach

The primary barrier to improving memory resource manage-

ment in mobile operating systems is the OS’s lack of insight

into the language runtime. To overcome this barrier, we co-

designed the language runtime and the mobile OS. Mobile

operating systems are uniquely suited to such co-design be-

cause, unlike their desktop counterparts (e.g., Linux), they

force all applications to use the same language runtime.

Marvin’s design focuses on Android (and the Android

Runtime (ART)), which is now the most popular OS in the

world [25]. Using the language runtime, Marvin manages

memory entirely at object granularity, tracking, reclaiming

and faulting in entire objects. This section describes in more

detail the barriers to better memory resource management in

a mobile OS and how Marvin addresses those challenges.

3.1 Object-Level Working Set Estimation

The first step to better memory resource management is a

better understanding of each application’s working set. Thus,

Marvin implements language-aware working set estimation

in the language runtime, which tracks app reads and writes

at object granularity. Marvin uses this mechanism to identify

candidates for ahead-of-time swap (Section 3.2) and separate

garbage collector accesses from app accesses (Section 3.3).

Lacking hardware access bits to help with this tracking, Mar-

vin implements software access tracking in both the ART in-

terpreter and compiler, as modern mobile language runtimes

run both interpreted and compiled code.

3.2 Ahead-of-time Swap

As noted, swapping to disk when the OS needs memory is not

feasible for mobile OSes and their touch-based apps. Marvin

takes a different approach. While traditional swapping mech-

anisms write to disk when memory is needed, Marvin uses

a new ahead-of-time swap technique. This technique saves

memory to disk before it is needed and then reclaims those

USENIX Association 2020 USENIX Annual Technical Conference 875

pages under memory pressure. Ahead-of-time swap separates

swapping to disk from reclaiming memory; thus, we distin-

guish between saved objects, which have been copied to disk

but still reside in memory, and reclaimed objects, which no

longer reside in memory but are only on disk.

Swapping objects before they are needed leaves a large

pool of clean memory that the OS can quickly reclaim and

reallocate. While this technique lets apps continue using mem-

ory until the OS reclaims it, whenever the app dirties a page,

the swap mechanism must update the on-disk copy before the

OS can reclaim it. Due to this trade-off, Marvin prioritizes

swapping objects that are infrequently or never written.

3.3 Bookmarking Garbage Collector

Like traditional swapping, ahead-of-time swapping is affected

by friction with the language-level garbage collector. As noted

by Hertz et al. [20], the garbage collector can inadvertently

page in memory when walking the object heap to look for

unused objects. With ahead-of-time swapping, the garbage

collector can also inadvertently dirty pages when updating

references, causing unnecessary writes to disk. Marvin solves

this problem by integrating a modified bookmarking garbage

collector [20] into the Android Runtime.

Marvin’s swap mechanism leaves stubs – analogous to

bookmarks – for each reclaimed object that detail the objects’

references to other objects. Using these stubs, its garbage

collector can process a reclaimed object during a mark-and-

sweep run without faulting in the entire swapped object. Mar-

vin’s swap mechanism can further optimize swapping from

disk by dropping dead objects without faulting them in.

4 Marvin Overview

Marvin is a new mobile memory manager that supports flexi-

ble memory allocation between apps and memory overcom-

mit through swapping. Marvin includes components in the

language runtime and OS, which are co-designed to provide

better memory management. This section overviews both.

4.1 Design Goals

Marvin’s design meets the following goals:

1. Fast memory allocation. Marvin must allocate mem-

ory quickly on-demand, avoiding disk accesses on the

critical path for memory allocation.

2. High memory utilization. Marvin must provide the il-

lusion of unlimited memory, provided working sets do

not exceed the size of physical memory.

3. Minimal overhead. Marvin must impose low runtime

overhead and require no app code changes.

While the last two goals are common to all memory man-

agement systems, existing mobile platforms sacrifice high

memory utilization for fast memory allocation. Marvin aims

to achieve all of these goals.

4.2 Marvin System Model

Marvin assumes a systems environment that meets three re-

quirements: (1) all apps are written in a single managed

language (e.g., Java), (2) all apps run in a single managed

language runtime (e.g., ART), and (3) the runtime performs

garbage collection or some form of automatic memory man-

agement. Marvin’s design targets Android, which meets all

of these requirements. Android also runs some libraries us-

ing native code; however, Marvin is not needed to manage

their memory because they do not have the same issues with

OS-level memory management as managed languages.

Marvin’s optimizations could apply to other operating sys-

tems as well (e.g., iOS). For example, Swift uses automatic

reference counting as an alternative to garbage collection, so

it would require a bookmarking reference counter that can

track references without faulting in the entire object.

Marvin runs unmodified Android apps on ARM64-based

devices. Android distributes apps in a bytecode format called

DEX. ART runs DEX bytecode directly in an interpreter

and also compiles DEX to native ARM64 instructions both

at install time (ahead-of-time, or AOT, compilation) and at

runtime (just-in-time, or JIT, compilation). Marvin modifies

both the interpreter and compiler.

4.3 Marvin Architecture

Marvin has two key components: (1) the Marvin Kernel (MK),

a modified Android/Linux kernel, and (2) the Marvin Runtime

(MRT), a modified ART. Most memory management occurs

in MRT; it performs working set estimation, ahead-of-time

swapping, and bookmarking garbage collection. MK’s sole

responsibility is to balance memory allocation among apps

by deciding when and from which app to reclaim memory.

Marvin performs working set estimation and swapping

at object granularity; however, there is no CPU support for

object-level access bits and memory faults. As a result, Mar-

vin implements software object access tracking and faulting

in the MRT interpreter and compiler. The interpreter marks

access bits and checks for swapped-out objects as it runs DEX

bytecode; the compiler inserts that functionality as additional

ARM64 instructions. Marvin reserves four bytes in each ob-

ject header and uses them to store swapping metadata and

access bits. Implementing these features in software imposes

overhead, which we quantify in Section 8. Hardware improve-

ments in future mobile devices could reduce this overhead.

876 2020 USENIX Annual Technical Conference USENIX Association

Swap out

Save objects Create stubs Reclaim Swap in

Swap in

Need memory Access page

Move to
foregroundNeed memory

Traditional

swapping

Marvin

swapping

Move to
background

Swap in

Access object

Scan WSE bits
(during GC)

Set WSE bits

Access object

Scan WSE bitsSet WSE bits

Access page

Object state In Memory Reclaimable Reclaimed Reclaimable

Figure 5: A timeline of actions performed by Marvin’s swap mechanism as compared to traditional (e.g., Linux) swap mechanisms.

Events are listed above the timeline while Marvin’s actions in response are listed below.

4.4 Marvin Memory Management Timeline

Objects managed by Marvin move through several states over

time, driven by app behavior and app lifecycle events. Figure 5

illustrates these events and states and compares Marvin’s

swapping to a traditional swap mechanism. When an app

first starts, MRT begins tracking its working set. It identifies

objects that are suited for swapping by examining whether

they are cold (have not been read or written recently by the

app). MRT begins saving checkpoints of those objects to

disk in the background. We refer to an object with a saved

checkpoint as a saved object.

When the app moves from foreground to background, MRT

pauses app threads and creates stubs, small proxy objects that

add a layer of indirection over swap candidate objects. Stubs

ensure that Marvin can intercept accesses to objects and fault

them back in, if necessary. Once MRT creates a stub for

an object, that object becomes reclaimable; the object is still

memory-resident, but MK can reclaim its memory at any time.

When MK reclaims an object, it enters the reclaimed state;

only the object’s stub remains in memory, and the object’s

checkpoint will need to be faulted back into memory before

the object can be accessed again. The garbage collector uses

only the stub and need not fault the object back into memory.

5 Marvin Core Mechanisms

As noted in Section 3, Marvin’s key features are ahead-of-time

swap, language-aware working set estimation, and bookmark-

ing garbage collection. Designing these features required

addressing three challenges: adding a layer of indirection for

object references, coordinating between the OS and runtime,

and interposing on object accesses. This section describes

Marvin’s mechanisms for addressing these challenges.

5.1 Stubs for Object Reference Indirection

According to the Java language specification, object refer-

ences are opaque. However, in practice, object references in

the Android Runtime are direct pointers to the heap memory

holding the referenced object. This design requires Marvin

to inject a layer of indirection to implement features like soft-

ware object faulting and the bookmarking garbage collector.

Marvin creates this layer of indirection using special objects,

called stubs. Each stub contains a pointer to its underlying

object along with a copy of each reference held by the object.

All references to an object point instead to its stub, and only

the stub holds a pointer to its underlying object. Accessing an

object through a stub adds overhead, so Marvin creates stubs

only for objects that are cold and at least 2KB in size.

When creating a stub for an object, Marvin moves the

object to a separate page-aligned region of memory and then

redirects all references to the object to point to its stub instead.

These tasks require that all app threads be paused. Therefore,

they can be performed more efficiently if Marvin can create

stubs for many objects at once, using a single scan of the

heap to redirect all affected references. As a result, Marvin

periodically executes a heap task that pauses all app threads

and creates stubs, and it executes this heap task only when the

app is in the background and its threads can be safely paused.

Stubs are only created once for each object, so the cost is low,

especially because Marvin does not restart apps frequently.

5.2 Reclamation Table for OS-Runtime Coor-

dination

Modern mobile platforms have multicore processors that let

system services run concurrently with apps. In this environ-

ment, the OS should be able to reclaim memory quickly from

a running app without scheduling the app’s threads for execu-

tion. However, the OS cannot simply seize memory from an

app whose threads are not scheduled—a pointer to the mem-

ory in question may be present in an app thread’s stack or

registers, waiting to be used as soon as the thread is scheduled

once again. As a result, the OS and runtime need a way to

coordinate concurrent accesses to objects so the OS does not

try to reclaim one that the runtime is accessing.

Marvin uses a shared-memory reclamation table to provide

USENIX Association 2020 USENIX Annual Technical Conference 877

this coordination. MRT populates the table with reclaimable

objects, and MK uses it to identify memory to reclaim. Each

reclamation table entry is a small, fixed-size data structure that

holds the address of an object, its size, a set of flags indicating

whether the object is memory-resident and the entry is valid,

and a set of bits used for locking by the runtime and OS. To

reclaim an object, MK first acquires an exclusive lock on the

object’s reclamation table entry. Similarly, whenever an app

thread prepares to access an object, MRT acquires a shared

lock on the reclamation table entry.

The reclamation table is necessary because it provides an

agreed-upon location that MK can quickly scan to identify

reclaimable objects. If the metadata in the reclamation table

were instead stored inside the stubs themselves, then MK

would need to scan MRT’s entire Java heap to identify re-

claimable objects, and stub headers would need to contain a

magic number or provide some other way for the kernel to

recognize them.

5.3 Object Access Interposition

All of Marvin’s features require the runtime to interpose and

perform specific tasks whenever an app accesses an object.

On every object access, MRT must set read and write bits

for working set estimation; check for the presence of a stub

and redirect the object access through the stub if necessary;

and fault in the object if it has been reclaimed. It must also

set a dirty bit whenever an object is modified so the ahead-

of-time swap mechanism knows which objects need to be

saved, and it must update stubs whenever reference member

variables in their corresponding objects change to support the

bookmarking garbage collector.

Android apps execute both as DEX bytecode running in an

interpreter and as compiled native code running directly on the

hardware, and Marvin must interpose on all object accesses

in both kinds of code. As a result, Marvin features a set of

paired interpreter and compiler modifications that add the

required object access interposition. For each additional task

performed by the interpreter when it accesses an object, there

is a corresponding change to the compiler, adding assembly

instructions performing the same task to compiled code.

6 Marvin Memory Management

This section describes how we use Marvin’s mechanisms

(stubs, the reclamation table, and object access interposition)

to design the features that make up Marvin’s memory man-

agement system.

6.1 Working Set Estimation

MRT performs object-granularity working set estimation by

maintaining two access bits in each object header, a read bit

and a write bit, and scanning those access bits.

Setting access bits. MRT uses object access interposition

to set an object’s read and write bits whenever that object is

read or written from either interpreted or compiled code. It

avoids including garbage collector reads in its working set

estimation by setting a flag in the object header when the

garbage collector is visiting an object and leaving the read bit

untouched if that flag is set.

Access tracking in MRT is performed on a best-effort basis

to minimize its overhead: MRT uses non-atomic operations

with relaxed memory ordering semantics when setting read

and write bits. As a result, concurrent reads and writes to the

same object could result in a lost update to one of the access

bits. An update to the read bit could also be lost if an app

thread reads an object that the garbage collector is processing.

These optimizations may decrease swapping performance if

the estimated and actual working sets differ significantly, but

they do not affect correctness.

Scanning access bits. MRT periodically walks the heap

and uses the Clock algorithm [8] to track each object’s long-

term usage. Each object header holds two four-bit shift regis-

ters, one for reads and the other for writes. The time between

heap walks constitutes an access-tracking “round,” and each

shift register tracks whether the object was read or written in

the last four rounds. During a heap walk, MRT updates an

object’s shift registers and then clears the object’s access bits.

MRT piggybacks off of garbage collection to scan access

bits, since GC requires walking the heap anyways. Some of

ART’s GCs only walk subsets of the heap, so MRT limits its

access bit scanning to full-heap collections. It also periodi-

cally invokes GC to ensure up-to-date working set estimates

in the absence of app activity.

Producing the working set. As MRT walks the heap and

scans access bits, it tabulates the app’s working set. Our cur-

rent MRT implementation considers an object part of the

working set if it has been written within the last four access-

tracking rounds. The precise policy is an implementation

detail that can be easily changed.

6.2 Ahead-of-Time Swapping

In Marvin’s ahead-of-time swap mechanism, MK reclaims ob-

jects and decides which apps to target for reclamation. MRT

performs all other functions, including saving object check-

points to disk, restoring reclaimed objects, and preventing the

operating system from reclaiming objects in use by app code.

Saving objects to disk. MRT identifies suitable objects for

swapping (i.e., cold objects) using its working set estimation

feature, and it proactively saves checkpoints of them to a swap

file on disk so they can be reclaimed quickly under memory

pressure. MRT saves objects to disk in a periodic heap task

that runs on a background thread concurrently with app code.

878 2020 USENIX Annual Technical Conference USENIX Association

After app code modifies an object, MRT must save an up-

dated copy of that object to disk. It does not need to save the

updated copy immediately as long as it prevents the kernel

from reclaiming the object while it is “dirty.” To do so, MRT

maintains a dirty bit in the object header. It uses object access

interposition to set this dirty bit whenever app code writes to

an object, and its object-saving heap task clears this dirty bit

when saving the object to disk. MK checks dirty bits when

looking for objects to reclaim and avoids reclaiming dirty

objects. MRT and MK use strong memory-ordering seman-

tics when reading and writing the dirty bit to ensure that no

modifications to objects are lost.

MRT begins saving swap candidate objects to disk even be-

fore those objects have had stubs created for them. Once MRT

creates a batch of stubs, those objects become immediately

reclaimable without requiring further disk I/O.

Reclaiming objects. MK selects apps to target for recla-

mation and reclaims objects from the MRT instances corre-

sponding to those apps. It never targets the foreground app, in

order to avoid any swapping delays on the foreground app’s

user interface (UI) thread. After selecting an MRT instance to

target, MK scans the MRT instance’s reclamation table until

it finds an entry for an object that is neither dirty nor locked

by the runtime. MK then locks that entry and reclaims the ob-

ject’s pages. It continues scanning the reclamation table and

reclaiming objects until it has harvested the desired amount

of memory from the MRT instance.

Each MRT instance ensures that MK does not reclaim

an object currently being accessed by its app code. To do

so, it uses object access interposition to detect whenever a

reclaimable object is being read or written, and it locks the

object’s reclamation table entry before the access and unlocks

its entry after the access.

Restoring objects. MRT restores reclaimed objects either

eagerly or on-demand. Either way, whenever MRT restores an

object, it locks the object’s reclamation table entry, copies the

saved checkpoint data of the object into memory, and copies

any modified references from the object’s stub into the object

itself. This last step is necessary because references in the

stub may have been modified by the garbage collector while

the object was not memory-resident.

Marvin’s eager object restoration uses app lifecycle infor-

mation to restore objects before app code needs them. We

implemented a simple eager restoration policy, where an MRT

instance restores all reclaimed objects when it transitions to

the foreground. This policy increases the transition delay in

exchange for a guarantee that no swapping delays will block

the foreground app’s UI thread. Our design is flexible and

could support more advanced policies; for instance, the run-

time could predict which objects are likely to be touched

immediately after a foreground transition and restore those

objects first, trading off a shorter pause time in exchange for

the risk of user-perceptible stuttering.

If an object has not been eagerly restored, MRT restores

it on-demand when app code accesses it, a process that we

call software object faulting. Whenever app code accesses a

reclaimable object, MRT uses object access interposition to

check if the object is memory-resident by inspecting a bit in

its reclamation table entry. If not, MRT executes an object

fault handler that calls into its C++ object restoration function.

6.3 Bookmarking Garbage Collector

A tracing garbage collector touches every object in the heap

(or a subset of the heap), causing live objects to be swapped

back into memory even if app code is not using them. Mar-

vin’s garbage collector avoids touching reclaimed objects by

storing an object’s references inside its stub and using the

stub during the mark phase of garbage collection. Stubs play

a similar role as bookmarks in the bookmarking collector [20].

During the mark phase, the garbage collector maintains a

mark stack and repeatedly pops an object from the mark stack,

marks all its references, and pushes those references onto the

mark stack. Marvin’s garbage collector checks whether an

object is a stub when it pops the object from the mark stack;

if so, it reads the references off the stub instead of accessing

the underlying object.

For the garbage collector to use stubs in place of their ob-

jects, MRT must ensure that the stub of a memory-resident

object has up-to-date copies of the object’s references. It uses

object access interposition to update the stub of a reclaimable

object whenever Java code modifies one of the object’s refer-

ence member variables.

MRT must also properly clean up after any saved objects

that are freed by the garbage collector. MRT records when

saved objects have been freed by the garbage collector, and

when the fraction of the swap file consisting of freed objects

passes a set threshold (25% in our implementation), it com-

pacts the swap file in a heap task. MRT also cleans up after

reclaimable and reclaimed objects by checking whether an ob-

ject being freed is a stub; if so, it deletes the reclamation table

entry corresponding to the stub. If an object is reclaimable,

MRT deletes the memory-resident copy of the underlying

object; if the object is reclaimed, MRT simply marks its copy

in the swap file for deletion without needing to fault it in.

6.4 Design Tradeoffs and Alternatives

By tracking working sets and faulting in objects in software

at the runtime level, Marvin achieves a clean design, albeit

with some drawbacks. First, Marvin cannot reclaim objects

accessed by native libraries: native libraries have no way to

detect stubs and no recourse for faulting in reclaimed objects.

Second, software working set estimation and object faulting

USENIX Association 2020 USENIX Annual Technical Conference 879

add overhead, particularly to compiled code. We evaluate this

overhead in Section 8.

Marvin moves almost all memory management into the

runtime because we believe that the runtime’s better access

to information about app behavior makes it better suited for

managing memory. The functionality remaining in the kernel

is the minimum required by existing Linux kernel design; if

Marvin was built on top of an exokernel [13, 23], it could

move even more functionality into the runtime. A variety of

other designs are possible that split functionality between the

runtime and kernel in different ways.

Kernel-level working set estimation would reduce the over-

head of accessing objects, but it would suffer from false shar-

ing if an app’s working set is mixed with unused objects across

4KB pages. Faulting in memory at the kernel level would sim-

ilarly reduce object access overhead but would require more

extensive re-design of the runtime garbage collector to avoid

unnecessary swapping activity. By tying the granularity of

memory management to the size of pages, kernel-level mem-

ory management will also become inflexible as large pages

become more common and the disparity between object sizes

and page sizes widens. In any case, kernel-level memory

management would require some sort of ahead-of-time swap

mechanism to satisfy the latency requirements of modern

mobile platforms (Figure 3), and even adding ahead-of-time

swap to the Linux kernel would require significant effort.

Marvin’s garbage collector is different from the original

bookmarking collector [20] in that it maintains exact reacha-

bility information with stubs rather than conservatively stor-

ing approximate reachability information. The latter approach

requires the garbage collector to perform less work when

evicting pages and scanning the heap, but it can result in the

heap being needlessly occupied with dead objects.

7 Marvin Prototype

We implemented a prototype of MRT by modifying ART on

Android 7.1.1 (which includes Linux 3.18.31). Our implemen-

tation includes a modified version of ART’s ARM64 compiler,

allowing our prototype to support Android devices with 64-bit

ARM processors. Our changes to the ART codebase resulted

in 3475 additional lines of code [38].

In addition to modifying ART, we made a small modifica-

tion to the version of OpenJDK included with Android 7.1.1,

namely, we added fields to the Object class definition to mirror

the bytes added to the object header in ART. We also changed

a source file in the Android framework (ProcessList.java)

to increase a hard-coded limit on the number of concurrently

running apps since Marvin is able to run more.

Our experiments require us to manually trigger reclamation,

so we did not implement automated reclamation in the MK.

However, our MRT implementation includes the reclamation

table and performs all operations required to support kernel

memory reclamation.

7.1 Object Access Interposition

We implemented MRT’s object access interposition by adding

specialized functionality to the ART interpreter and compiler.

This lets MRT interpose on object accesses from both DEX

bytecode running in the interpreter and compiled OAT code

running natively. The following section describes in detail

how we modified each component.

MRT interpreter. The ART interpreter internally repre-

sents each Java object as a C++ mirror object, which it manip-

ulates when executing DEX bytecode instructions that read or

write an object. The mirror object’s type definition includes

methods to read or write the data at a given offset within the

object’s memory footprint, and the interpreter code calls these

methods when executing DEX instructions. To add object

access interposition to the interpreter, we modified the mirror

object methods to implement Marvin’s features.

For example, to redirect object accesses through stubs and

perform on-demand object faulting, we added a preamble

macro to each mirror object method. The preamble first

checks if the object is actually a stub. If so, it casts the this

pointer to a stub, calls a method that locks the stub’s reclama-

tion table entry (RTE), checks the RTE’s resident bit, and if

the resident bit is cleared, calls a method to fault in the object

from disk. The preamble then gets the address of the underly-

ing object from the RTE and invokes the mirror object method

on the underlying object. Finally, the preamble unlocks the

RTE and returns the result of the mirror object method, if any.

ART contains multiple interpreter implementations, and

the default is the “mterp interpreter,” an interpreter written

in assembly. When the mterp interpreter executes DEX in-

structions that read or write an array, it directly accesses the

array’s memory, bypassing the mirror object methods. To al-

low Marvin to interpose on array accesses, we instead use the

“switch interpreter,” an interpreter written in C++ that calls

the mirror object methods when executing array accesses.

MRT compiler. Java code in Android framework libraries

and portions of app Java code execute as native code, which

is compiled by the ART compiler either statically after instal-

lation or dynamically with just-in-time (JIT) compilation. We

added object access interposition to this compiled code by

modifying the compiler’s assembler to generate additional

assembly instructions that implement Marvin’s features when

it performs code generation for object accesses. We used

ARM64 devices for testing and evaluation, so we added sup-

port for object access interposition to the ARM64 assembler.

Each operation described above for the interpreter’s imple-

mentation of stub redirection and object faulting has a corre-

sponding block of ARM64 instructions in compiled code. The

main difference is that when a stub is detected, the compiled

code must explicitly overwrite the register holding the stub’s

address with the address of the underlying “real object;” it

880 2020 USENIX Annual Technical Conference USENIX Association

then loads the stub’s address back into that register when it

is done with the object. In the common case, when an object

is not a stub (or when it is, but its underlying “real object” is

memory-resident), execution branches past many of the added

object-faulting instructions.

7.2 Limitations and Potential Optimizations

Our MRT implementation is a research prototype and has

some limitations as a result. One is instability when reclaim-

ing objects from black-box commercial apps. When running

apps that we create in Android Studio, MRT reliably and

consistently reclaims and restores objects, but when running

commercial apps with stub creation and reclamation enabled,

it tends to crash. MRT’s object access interposition works

correctly with commercial apps, so by disabling stub creation

and reclamation, we can test its overhead and collect working

set data. Our MRT prototype also does not support reclaiming

objects with live JNI global references or directly accessing a

reclaimable array’s memory through JNI.

Our implementation of object access interposition in the

MRT compiler is unoptimized, and the per-object-access over-

head of compiled code could be reduced with deeper compiler

integration. We modified the ARM64 assembler, which trans-

lates intermediate representation (IR) instructions to ARM64

binary code. Our implementation generates ARM64 instruc-

tions performing object access interposition for every IR in-

struction that reads or writes an object, even though many

of those instructions only need to execute when the object’s

register allocation begins or ends. An optimized version of the

compiler, with modifications at the IR level, could decrease

both the execution and size overhead of compiled code.

The MRT compiler has other areas for optimization. For

instance, we noticed situations where ARM64 parameter reg-

isters (x0–x7 and d0–d7) appear to be live but are not re-

ported as such by the ART compiler’s LocationSummary

class; therefore, we conservatively save all parameter regis-

ters to the stack when performing a procedure call. Saving

only live parameter registers would further reduce code size

overhead. In addition, the ARM64 assembler makes a max-

imum of two scratch registers available at any time, which

required us to save backpointers and add more instructions to

juggle required state among the limited available registers.

8 Evaluation

Our evaluation demonstrated that Marvin successfully met

its design goals. It could: (1) quickly reclaim memory on-

demand; (2) maintain high memory utilization by sharing

memory among apps rather than killing them; and (3) achieve

the previous two goals with low overhead and no app changes.

0

100

200

300

400

500

−200 0 200 400
Time (ms)

R
S

S
 (

M
B

 a
b

o
ve

 b
a

s
e

lin
e

)

Working set

0MB
100MB
250MB

Figure 6: Memory usage as Marvin reclaims memory from a

benchmark app with different working set sizes.

8.1 Evaluation Setup

We ran our experiments on a Google Pixel XL smartphone

with 4GB RAM and a quad-core Qualcomm Snapdragon 821

CPU. The smartphone ran either the open-source release of

Android 7.1.1 (AOSP tag android-7.1.1_r57) or our Marvin

implementation based on that release. Both our Marvin imple-

mentation and our baseline Android build included a change

to the Android framework to increase a hard-coded cap on

the number of concurrently running apps.

Our experiments used a mix of synthetic apps for bench-

marking and real-world apps. We built several synthetic work-

loads that simulate various memory footprints and working set

sizes to measure their effect on Marvin compared to Android.

We also used PCMark for Android, a commercial benchmark

app based on real-world apps, to measure Marvin’s overhead

on real apps [3]. We chose two benchmarks from the test suite

(Writing 2.0 and Data Manipulation) since the remaining

three test the performance of native libraries.

8.2 Memory Reclamation

Marvin must be able to quickly reclaim memory from run-

ning apps when a new or existing app needs to allocate large

amounts of memory. Its ahead-of-time swap mechanism en-

sures that each MRT instance has a pool of clean memory that

can be quickly reclaimed without swapping to disk. In this

section, we measure the latency of reclaiming memory for

apps with different working set sizes. Reclamation latency de-

pends on the app’s working set size since Marvin can reclaim

more memory from apps with smaller working set sizes.

For our prototype, we use madvise to return memory from

MRT to the kernel. This design lets us trigger reclamation

rather than waiting for memory pressure. Our MRT prototype

reclaims memory when an app transitions to the background

and then periodically while it is in the background.

Figure 6 shows memory usage over time for apps with a

500MB heap and differing working set sizes. RSS values

shown are relative to the RSS reported for a minimal Android

app with a single empty Activity (approx. 80MB). At time

0ms, MRT begins to return memory from the app to the OS.

USENIX Association 2020 USENIX Annual Technical Conference 881

0

10

20

30

0 10000 20000 30000
Time (s)

N
u

m
 a

c
ti
v
e

 a
p

p
s

Android
Android+swap (4KB)
Android+swap (mix)
Marvin (4KB)
Marvin (mix)

1

2

3

4

5
1

2

5

4

3

Figure 7: Count of active benchmark app instances over time.

Marvin runs more than twice as many apps as regular Android

before needing to kill any apps; on Android with a swap file,

most apps are alive but inactive due to constant swapping

activity.

Marvin returned 250MB of memory in 52ms and 500MB

of memory in 108ms. In comparison, as shown in Figure 3,

Android with a Linux swap file took nearly 8 seconds to

free and allocate 500MB of memory under memory pressure.

Using ahead-of-time swap let Marvin reclaim memory over

60x faster than Android with Linux swap could allocate the

same amount of memory, allowing Marvin to meet the strict

latency requirements of mobile apps.

8.3 Memory Utilization

To demonstrate Marvin’s more efficient memory manager, we

ran multiple instances of an app with a large memory footprint

and a limited working set, and we counted the number of

active apps that were alive and making progress on their

workloads. Each app had a 220MB heap filled with arrays,

and it deleted and reallocated 20MB of those arrays every

5 seconds. We used two different heap compositions: one

where the apps had heaps filled with 4KB arrays, and one

where they had an even mix of 4KB and 1MB arrays (similar

to the bimodal distribution of real apps in Figure 1). We

consider an app “inactive” if it fails to perform a round of its

workload for 20 seconds after the previous round; we consider

it “active” once again if it succeeds in performing a round

of its workload within 7 seconds of the previous round. We

started a new app instance every 10 minutes to give Marvin

time to perform background work. For unmodified Android,

only the data for the apps with 4KB arrays is shown, because

its behavior was nearly identical for the 4KB/1MB mix.

As shown in Figure 7, Marvin ran over 2x as many active

apps concurrently as unmodified Android and over 1.5x-2x as

Android with a Linux swap file enabled, where swapping left

almost all apps unusable as the experiment went on. While

baseline Android begins killing apps when physical memory

runs out, Android with swap keeps more apps alive. However,

without a bookmarking garbage collector, the system experi-

enced constant swapping activity, which prevented most apps

from making progress on their workloads. Our experimental

0

1000

2000

3000

4000

Data Manipulation Writing 2.0

Benchmark

S
c
o
re

Android
Marvin

Figure 8: PCMark for Android benchmark results.

runs of Android with a swap file consistently ended early due

to the device crashing.

Marvin made better use of device memory because it re-

claimed unused memory from apps and used its bookmark-

ing garbage collector to avoid touching that unused memory

when running garbage collection. While Android only ran 10

apps concurrently, and Android with a swap file only briefly

reached a maximum of 13 concurrent apps (4KB arrays) or

20 apps (4KB/1MB mix), Marvin ran 27 apps (4KB arrays)

or 30 apps (4KB/1MB mix) concurrently. Marvin’s memory

reclamation and bookmarking garbage collector let it execute

1.5-2x as many apps concurrently while neither killing apps

nor suffering performance degradation.

8.4 Runtime Overhead

While Marvin provides better memory management, it comes

with a set of trade-offs. This section quantifies Marvin’s four

sources of overhead: (1) execution time overhead caused by

Marvin’s object access interposition in compiled OAT code;

(2) increased compiled code size due to object access interpo-

sition; (3) CPU utilization overhead caused by Marvin’s heap

walks for working set estimation; and (4) faulting overhead

when an app accesses a reclaimed object.

Execution time overhead of object access interposition.

Native code produced by the MRT compiler has additional

ARM64 instructions to support object access interposition.

Some instructions (stub checks, dirty bit updates, and access-

tracking bit updates) execute on every object access. Other

instructions (indirecting object accesses through stubs and

locking RTEs) execute only on accesses to reclaimable ob-

jects. We measured the overhead of the added instructions that

apply to all object accesses using PCMark for Android, and

we used a synthetic benchmark to illustrate the dependence

of that overhead on the makeup of application code.

Figure 8 compares the performance of Marvin and unmodi-

fied Android on the PCMark benchmarks in our test set. Each

bar shows the mean and standard deviation of five runs. We

turned off stub creation and swapping when running PCMark,

using the benchmarks to measure the overhead of the instruc-

tions added to every object access for stub checks and working

882 2020 USENIX Annual Technical Conference USENIX Association

●

●

●

●

●

●

●0

1

2

3

4

0.0 0.1 0.2 0.3 0.4
Fraction of DEX instructions with OAI

M
a

rv
in

 o
ve

rh
e

a
d

Figure 9: Overhead of Marvin for a synthetic workload with

different proportions of object access interposition (OAI). The

point (0,0) represents the theoretical scenario of running with-

out any OAI, while other points show experimental results.

set estimation. Marvin’s score on the Writing 2.0 benchmark

was nearly identical to Android’s, and its score on the Data

Manipulation benchmark was only 15% lower. These scores

show that Marvin’s overhead for accessing regular (i.e., non-

reclaimable) objects is low for real-world apps.

Figure 9 explores the dependence of Marvin’s overhead

on the DEX instruction mix of application code. The graph

shows Marvin’s overhead executing a synthetic workload that

performed a tunable proportion of object accesses (array reads

and writes) and integer operations (addition and multiplica-

tion). Each point represents the mean and standard deviation

of Marvin’s execution time overhead relative to Android for

40 iterations of the workload. For large proportions of object

accesses, Marvin had relatively high overhead (e.g., 350%

overhead for 40% object accesses), while for low proportions

of object accesses, Marvin’s overhead was minimal (e.g., 10%

overhead for 1% object accesses). PCMark’s 15% overhead

indicates that the real app workloads represented by PCMark

have low proportions of object accesses.

Although these overheads are already reasonable, they

could be improved with optimizations. As noted in Section 7,

deeper compiler integration would let Marvin reduce overhead

by performing object access interposition less frequently.

Code size overhead of object access interposition. The

ARM64 instructions added by Marvin’s object access in-

terposition also increase the size of compiled native code.

To measure the increase in code size, we compared the

compiled Android framework libraries generated by Mar-

vin to the framework libraries on unmodified Android.

Marvin increased the total size of the ARM64 frame-

work libraries (in the /system/framework/arm64 and

/system/framework/oat/arm64 directories on the Android

filesystem) from 117 MB to 292 MB. This code size over-

head, while relatively high, could be reduced significantly

with deeper compiler integration (Section 7).

CPU utilization overhead of heap walks. Our Marvin pro-

totype performs the heap walks required for working set es-

0

50,000

100,000

150,000

200,000

1% faults 10% faults 20% faults

S
p

e
e

d
 (

o
b

je
c
ts

 t
o

u
c
h

e
d

/s
e

c
)

Figure 10: Speed of a benchmark app as it touches objects in

its heap with different fractions of reclaimed objects.

timation by invoking the concurrent garbage collector and

piggybacking off its heap walk. Our prototype performs a

heap walk every 5 seconds when an app is in the foreground

and every 30 seconds for an app in the background. In theory,

this periodic invocation of the garbage collector across mul-

tiple MRT instances could add CPU utilization overhead. In

practice, when running multiple apps in the background, we

found that the difference between Marvin’s and unmodified

Android’s CPU utilization was negligible, likely because GC

invocations were so infrequent for background apps.

Overhead of faulting in objects. When an app first ac-

cesses a reclaimed object, Marvin must fault it in from disk,

adding significant latency to that initial access. Marvin’s de-

fault policy eagerly restores all objects when an app moves to

the foreground, trading off a longer transition delay for a guar-

antee that object-faulting latencies will never block the app’s

UI thread once it is in the foreground. The added transition

delay is proportional to the amount of reclaimed memory and

the restoration rate. Anecdotally, our prototype restored mem-

ory at about 100 MB/s, but we believe that rate could improve

to around 260 MB/s with optimization. (The slower rate is the

disk read speed of the C++ standard library implementation

used by ART, while the faster rate is the speed of the stan-

dard library implementation linked by the Android standalone

toolchain.) Object faults may occur for background apps, but

the Java working sets of apps in the background are generally

quite small (less than 4MB for all commercial apps in our test

set), so we expect object faulting to happen infrequently in

practice.

We nonetheless studied the effect of object faulting on

performance, to understand how Marvin would perform in

situations where different policies or workloads result in more

object faulting. Figure 10 shows the effect of object faulting

on a heap-walking benchmark app as it touches different

fractions of reclaimed objects. The app looped over a set of

4KB arrays, reading five member variables of each array, and

measured the speed of traversing the objects. Each bar shows

the mean and standard deviation of five measurements, and the

device’s disk cache was cleared before each run. As expected,

USENIX Association 2020 USENIX Annual Technical Conference 883

there was an inverse relationship between heap-walking speed

and fraction of faults; for instance, speed dropped by 49% as

the fraction of faults increased from 10% to 20%.

9 Related Work

Several recent systems provide swapping for mobile platforms

but focus on page-granularity rather than object-granularity

swapping. SmartSwap [43] predicts which apps are unlikely

to be used and swaps out pages from those apps ahead-of-time.

A2S [22] takes the opposite approach; it avoids swapping

out pages from unused apps, since their pages will be freed

anyways when they are terminated. MARS [19] optimizes

Linux swapping to improve performance on flash storage

devices. It disables garbage collection in background apps

and reclaims memory from those apps. DR. Swap [42] uses

NVRAM rather than flash storage to store swapped-out pages

and satisfies reads by reading directly from NVRAM. Choi et

al. [6] improve the performance of an in-memory file system

by co-designing the swap mechanism to minimize I/O.

The Linux kernel includes a daemon, kswapd, which frees

unused pages in the background to maintain a reserve pool of

unallocated memory [18]. Like Marvin, kswapd proactively

checkpoints unused memory, but unlike Marvin, kswapd re-

claims pages when it checkpoints them. As a result, kswapd

is limited in how much memory it can checkpoint ahead-of-

time—keeping a large proportion of memory checkpointed

and reclaimed would make that memory unusable and shrink

the device’s effective memory footprint.

Liang et al. [24] present FAST, an Android memory man-

agement system that modifies kswapd to improve its suitabil-

ity for Android. FAST changes kswapd to prioritize reclaim-

ing pages from apps in the background. It also identifies a

mismatch between the large reclamation sizes of kswapd and

the small sizes of typical Android allocations, and it includes a

predictor to determine the reclamation size based on workload

patterns. Like FAST, Marvin avoids reclaiming memory from

the foreground app, but Marvin differs in its runtime-level

memory management and its decoupling of checkpointing

and reclamation.

A significant body of work examines the issue of providing

persistent memory for object-oriented languages [1, 7, 26, 31,

33, 40]. These systems checkpoint objects to disk or non-

volatile memory, but they do so to ensure safety in the face of

failures rather than swapping out unused memory. As a result,

they focus on supporting transactional programming models

that provide strong guarantees under failure [7, 31] and on

implementing crash-safe garbage collection [7,40] rather than

on maximizing the number of apps that can run concurrently.

SSDAlloc [2] is a persistent memory system that, like

Marvin, is motivated by the goal of helping apps with large

memory footprints avoid memory pressure. Unlike Marvin’s

runtime-level object faulting and working set estimation, SS-

DAlloc allocates objects in separate virtual pages and uses

the existing virtual memory system to estimate the working

set and trigger its object fault handler.

Like Marvin, the bookmarking collector [20] aims to im-

prove the performance of Java apps in memory-constrained

environments. It assumes that the OS uses a traditional page-

level swapping mechanism and focuses on letting the garbage

collector run without unnecessary swapping. It conservatively

stores approximate reachability information (bookmarks) that

is used during garbage collection, whereas Marvin stores

exact reachability information (stubs). The BMX garbage col-

lector [15] also uses stubs to avoid expensive object accesses,

but in the context of a distributed persistent object store.

Other recent work on garbage collection focuses on co-

designing the GC and runtime to manage software caches

more efficiently [30], co-designing the GC and virtual mem-

ory manager to improve performance [41], measuring the

effect of GC on scalability [16], and designing GCs or mem-

ory managers for domains such as big data systems [17, 29].

With multiple runtimes managing their own memory on

top of a single operating system, Android’s architecture re-

sembles that of a virtual machine manager, where multiple

guest operating systems run on top of a hypervisor. Marvin’s

runtime–OS cooperation is analogous to that between guest

OS and hypervisor in the VMware ESX server [37], which

uses a balloon driver to induce guest OSes to reclaim memory.

Wright et al. [39] present a system in which the architec-

ture and Java runtime are co-designed for improved memory

access performance. It features hardware modifications that

allow an object-addressed CPU cache and an in-cache GC.

10 Conclusion

Users of mobile devices expect to use apps and switch be-

tween apps with low latency. As mobile apps have become

more memory-hungry, device RAM capacities have not kept

pace, and traditional swapping mechanisms cannot meet user

latency expectations. Marvin overcomes this challenge with a

novel runtime-level swapping mechanism that accurately esti-

mates working sets, moves disk I/O off the allocation critical

path, and avoids unnecessary swapping during garbage collec-

tion. As our experiments demonstrate, Marvin lets more apps

run simultaneously and reclaims memory faster than unmodi-

fied Android while adding reasonable overhead. The source

code for our Marvin prototype and experiments is available

at https://github.com/UWSysLab.

Acknowledgments

We thank our anonymous reviewers and our shepherd, Malte

Schwarzkopf, for their insightful feedback. We also thank

Sandy Kaplan for editing and writing advice and Ali Razeen

for help with Android troubleshooting. This work was funded

in part by Futurewei.

884 2020 USENIX Annual Technical Conference USENIX Association

References

[1] Malcolm Atkinson and Ronald Morrison. Orthogonally

persistent object systems. The VLDB Journal, 4(3):319–

402, July 1995.

[2] Anirudh Badam and Vivek S. Pai. Ssdalloc: Hybrid

ssd/ram memory management made easy. In Proceed-

ings of the 8th USENIX Symposium on Networked Sys-

tems Design and Implementation (NSDI ’11), 2011.

[3] UL Benchmarks. Pcmark for android. https://

benchmarks.ul.com/pcmark-android. Accessed:

2019-1-9.

[4] Kofi Amankwah Boamah. iphone on-board RAM,

July 2017. https://www.researchgate.net/

figure/Phone-on-board-RAM-From-figure-8-

it-is-clear-that-Apple-either-maintains-

the-iPhone_fig1_319307164.

[5] Bumptech. Glide v4: Fast and efficient image loading

for android. https://bumptech.github.io/glide/.

Accessed: 2018-11-28.

[6] J. Choi, J. Ahn, J. Kim, S. Ryu, and H. Han. In-memory

file system with efficient swap support for mobile smart

devices. IEEE Transactions on Consumer Electronics,

62(3):275–282, August 2016.

[7] Joel Coburn, Adrian M. Caulfield, Ameen Akel,

Laura M. Grupp, Rajesh K. Gupta, Ranjit Jhala, and

Steven Swanson. Nv-heaps: Making persistent objects

fast and safe with next-generation, non-volatile memo-

ries. In Proceedings of the Sixteenth International Con-

ference on Architectural Support for Programming Lan-

guages and Operating Systems, ASPLOS XVI, pages

105–118, New York, NY, USA, 2011. ACM.

[8] Peter J Denning and Stuart C Schwartz. Properties of

the working-set model. Communications of the ACM,

15(3):191–198, 1972.

[9] Android Documentation. Activity. https:

//developer.android.com/reference/android/

app/Activity, 2018. Accessed: 2018-11-28.

[10] Android Documentation. Caching bitmaps.

https://developer.android.com/topic/

performance/graphics/cache-bitmap, 2018.

Accessed: 2018-11-30.

[11] Android Documentation. Manage your app’s mem-

ory. https://developer.android.com/topic/

performance/memory, 2018. Accessed: 2018-11-28.

[12] Android Documentation. Saving ui states.

https://developer.android.com/topic/

libraries/architecture/saving-states, 2018.

Accessed: 2018-11-28.

[13] D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr. Exok-

ernel: An operating system architecture for application-

level resource management. In Proceedings of the Fif-

teenth ACM Symposium on Operating Systems Princi-

ples, SOSP ’95, pages 251–266, 1995.

[14] Umar Farooq and Zhijia Zhao. Runtimedroid:

Restarting-free runtime change handling for android

apps. In Proceedings of the 16th Annual International

Conference on Mobile Systems, Applications, and Ser-

vices, MobiSys ’18, pages 110–122, 2018.

[15] Paulo Ferreira and Marc Shapiro. Garbage Collec-

tion and DSM Consistency. In Proceedings of the 1st

USENIX Conference on Operating Systems Design and

Implementation (OSDI ‘94), pages 229–241, Monterey

CA, USA, United States, 1994.

[16] Lokesh Gidra, Gaël Thomas, Julien Sopena, and Marc

Shapiro. Assessing the scalability of garbage collectors

on many cores. In Proceedings of the 6th Workshop on

Programming Languages and Operating Systems (PLOS

’11), 2011.

[17] Ionel Gog, Jana Giceva, Malte Schwarzkopf, Kapil

Vaswani, Dimitrios Vytiniotis, Ganesan Ramalingam,

Manuel Costa, Derek G. Murray, Steven Hand, and

Michael Isard. Broom: Sweeping out garbage collection

from big data systems. In 15th Workshop on Hot Topics

in Operating Systems (HotOS XV), Kartause Ittingen,

Switzerland, 2015.

[18] Mel Gorman. An investigation into the theoretical foun-

dations and implementation of the linux virtual memory

manager, 2003.

[19] Weichao Guo, Kang Chen, Huan Feng, Yongwei Wu,

Rui Zhang, and Weimin Zheng. Mars: Mobile appli-

cation relaunching speed-up through flash-aware page

swapping. IEEE Transactions on Computers, 65(3):916

– 928, March 2016.

[20] Matthew Hertz, Yi Feng, and Emery D. Berger. Garbage

collection without paging. In Proceedings of the 2005

ACM SIGPLAN Conference on Programming Language

Design and Implementation, PLDI ’05, pages 143–153,

2005.

[21] Tyler Kieft. Building a better instagram app for android.

https://instagram-engineering.com/building-

a-better-instagram-app-for-android-

c08f973662b, 2014. Accessed: 2018-11-9.

USENIX Association 2020 USENIX Annual Technical Conference 885

[22] Sang-Hoon Kim, Jinkyu Jeong, and Jin-Soo Kim.

Application-aware swapping for mobile systems. ACM

Trans. Embed. Comput. Syst., 16(5s):182:1–182:19,

September 2017.

[23] Ian M. Leslie, Derek McAuley, Richard Black, Timothy

Roscoe, Paul Barham, David Evers, Robin Fairbairns,

and Eoin Hyden. The design and implementation of

an operating system to support distributed multimedia

applications. IEEE Journal on Selected Areas in Com-

munications, 14(7):1280–1297, September 1996.

[24] Yu Liang, Jinheng Li, Rachata Ausavarungnirun, Ri-

wei Pan, Liang Shi, Tei-Wei Kuo, and Chun Jason Xue.

Acclaim: Adaptive memory reclaim to improve user ex-

perience in android systems. In Proceedings of the 2020

USENIX Annual Technical Conference, 2020.

[25] Michelle Meyers. Android inches ahead of

windows as most popular os. CNET, April

2017. https://www.cnet.com/news/android-

most-popular-os-beats-windows-statcounter/.

[26] J. Eliot B. Moss. Design of the mneme persistent object

store. ACM Trans. Inf. Syst., 8(2):103–139, April 1990.

[27] Mike Nakhimovich. Improving startup time in the

nytimes android app. https://open.blogs.nytimes.

com/2016/02/11/improving-startup-time-in-

the-nytimes-android-app/, 2016. Accessed:

2018-11-9.

[28] Randy Nelson. The size of iphone’s top apps has in-

creased by 1,000% in four years. Sensor Tower, Jun

2017. https://sensortower.com/blog/ios-app-

size-growth.

[29] Khanh Nguyen, Lu Fang, Guoqing Xu, Brian Demsky,

Shan Lu, Sanazsadat Alamian, and Onur Mutlu. Yak:

A high-performance big-data-friendly garbage collec-

tor. In Proceedings of the 12th USENIX Symposium on

Operating Systems Design and Implementation (OSDI

’16), 2016.

[30] Diogenes Nunez, Samuel Z. Guyer, and Emery D.

Berger. Prioritized garbage collection: Explicit gc sup-

port for software caches. In Proceedings of the 2016

ACM SIGPLAN International Conference on Object-

Oriented Programming, Systems, Languages, and Appli-

cations, OOPSLA 2016, pages 695–710, New York, NY,

USA, 2016. ACM.

[31] James O’Toole, Scott Nettles, and David Gifford. Con-

current compacting garbage collection of a persistent

heap. In Proceedings of the Fourteenth ACM Sympo-

sium on Operating Systems Principles, SOSP ’93, pages

161–174, New York, NY, USA, 1993. ACM.

[32] Anshu Rustagi. How we improved our android

app “cold start” time by 28%. https://redfin.

engineering/how-we-improved-our-android-

app-cold-start-time-by-28-a722e231314a,

2018. Accessed: 2018-11-9.

[33] Vivek Singhal, Sheetal V. Kakkad, and Paul R. Wilson.

Texas: An efficient, portable persistent store. In Antonio

Albano and Ron Morrison, editors, Persistent Object

Systems, pages 11–33, London, 1993. Springer London.

[34] Facebook Open Source. Fresco. https://frescolib.

org/. Accessed: 2018-11-28.

[35] StackExchange. Creating and enabling an internal stor-

age swap partition on rooted android kitkat. https://

android.stackexchange.com/a/89030. Accessed:

2019-4-4.

[36] StackOverflow. ios app maximum memory bud-

get. https://stackoverflow.com/a/15200855. Ac-

cessed: 2019-1-9.

[37] Carl A. Waldspurger. Memory resource management

in vmware esx server. In Proceedings of the 5th Sympo-

sium on Operating Systems Design and Implementation

(OSDI ’02), 2002.

[38] David A. Wheeler. SLOCCount, 2013. http://www.

dwheeler.com/sloccount/.

[39] Greg Wright, Matthew L. Seidl, and Mario Wolczko.

An object-aware memory architecture. Technical re-

port, Sun Microsystems, Inc., Mountain View, CA, USA,

2005.

[40] Mingyu Wu, Ziming Zhao, Haoyu Li, Heting Li, Haibo

Chen, Binyu Zang, and Haibing Guan. Espresso: Brew-

ing java for more non-volatility with non-volatile mem-

ory. In Proceedings of the Twenty-Third International

Conference on Architectural Support for Programming

Languages and Operating Systems, ASPLOS ’18, pages

70–83, New York, NY, USA, 2018. ACM.

[41] Ting Yang, Emery D. Berger, Scott F. Kaplan, and

J. Eliot B. Moss. Cramm: virtual memory support for

garbage-collected applications. In Proceedings of the

7th Symposium on Operating Systems Design and Im-

plementation (OSDI ’06), 2006.

[42] K. Zhong, X. Zhu, T. Wang, D. Zhang, X. Luo, D. Liu,

W. Liu, and E. H.-M. Sha. Dr. swap: Energy-efficient

paging for smartphones. In 2014 IEEE/ACM Interna-

tional Symposium on Low Power Electronics and Design

(ISLPED), pages 81–86, Aug 2014.

[43] Xiao Zhu, Duo Liu, Kan Zhong, Jinting Ren, and Tao

Li. Smartswap: High-performance and user experience

886 2020 USENIX Annual Technical Conference USENIX Association

friendly swapping in mobile systems. In Proceedings of

the 54th Annual Design Automation Conference 2017,

DAC ’17, pages 22:1–22:6, New York, NY, USA, 2017.

ACM.

USENIX Association 2020 USENIX Annual Technical Conference 887

	Introduction
	Limitations of Modern MobileOS Memory Resource Management
	Fixed Memory Allocation
	No Memory Overcommit

	Our Approach
	Object-Level Working Set Estimation
	Ahead-of-time Swap
	Bookmarking Garbage Collector

	Marvin Overview
	Design Goals
	Marvin System Model
	Marvin Architecture
	Marvin Memory Management Timeline

	Marvin Core Mechanisms
	Stubs for Object Reference Indirection
	Reclamation Table for OS-Runtime Coordination
	Object Access Interposition

	Marvin Memory Management
	Working Set Estimation
	Ahead-of-Time Swapping
	Bookmarking Garbage Collector
	Design Tradeoffs and Alternatives

	Marvin Prototype
	Object Access Interposition
	Limitations and Potential Optimizations

	Evaluation
	Evaluation Setup
	Memory Reclamation
	Memory Utilization
	Runtime Overhead

	Related Work
	Conclusion

