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Abstract
Deep Neural Networks (DNNs) have become the computational
tool of choice for many applications relevant to mobile devices.
However, given their high memory and computational demands,
running them on mobile devices has required expert optimization
or custom hardware. We present a framework that, given an ar-
bitrary DNN, compiles it down to a resource-efficient variant at
modest loss in accuracy. Further, we introduce novel techniques to
specialize DNNs to contexts and to share resources across multiple
simultaneously executing DNNs. Finally, we present a run-time sys-
tem for managing the optimized models we generate and scheduling
them across mobile devices and the cloud. Using the challenging
continuous mobile vision domain as a case study, we show that our
techniques yield very significant reductions in DNN resource usage
and perform effectively over a broad range of operating conditions.

1 Introduction
Over the past three years, Deep Neural Networks (DNNs)
have become the dominant approach to solving a variety of
computing problems such as speech recognition, machine
translation, handwriting recognition, and computer vision
problems such as face, object and scene recognition. Al-
though they are renowned for their excellent recognition per-
formance, DNNs are also known to be computationally in-
tensive: networks commonly used for speech, visual and lan-
guage understanding tasks routinely consume hundreds of
MB of memory and GFLOPS of computing power [19, 27],
typically the province of servers. However, given the rel-
evance of these applications to the mobile setting, and the
potential for new ones, there is a strong case for executing
DNNs on mobile devices. In this paper, we therefore present
a framework for implementing DNN-based applications for
(intermittently) cloud-connected mobile devices.

Recent approaches to enable DNNs on mobile devices in-
clude crafting efficient DNNs by hand [20] and devising cus-
tom co-processors for low-power execution on the phone [5].
However, these approaches still leave many challenges of
practical mobile settings un-answered. Resource availability
on devices may vary, often by the hour, multiple applications
may wish to execute multiple DNNs, mobile data quotas and
cloud server costs might make offloading prohibitive, devel-
opers may wish to deploy their own DNNs, good network
connectivity may imply that the cloud is after all the best
place to execute the network at a point in time, and the com-
plexity of the classification task itself may vary over time due
to the presence of context information.

To address these challenges, we design and implement a

face [27] scene [29] object [24]

training time (days) 3 6 14-28
memory (floats) 103M 76M 138M
compute (FLOPs) 1.00G 2.54G 30.9G
accuracy (%) 97 51 94

Table 1: Costs versus benefits of DNNs applied to common image recog-
nition tasks. Costs include time to train a model, memory to use it, and
computation to process a single image. Benefits include very high accuracy
of recognition, rivaling that of humans for object and face recognition.

system that provides machinery to not only automatically
produce efficient variants of DNNs, but also to execute them
flexibly across mobile devices and the cloud, across vary-
ing amounts of resources and in the presence of other ap-
plications using DNNs. We adapt a variety of well-known
systems-optimization techniques to mitigate resource con-
straints. These include trading off quality of results for com-
puting, splitting computations between client and the cloud
such that communications needs are modest while ensuring
that the pieces on the mobile device and the cloud satisfy re-
source availability constraints, sharing computations across
applications to reduce overall client power use, sharing re-
sources across users to pack the cloud efficiently, restruc-
turing computations to trade off a resource that is available
(e.g., computation) for one less so (e.g., memory), and ex-
ploiting locality of inputs (e.g., your work colleagues form a
small subset of all the people you may ever see) to produce
specialized solutions that consume fewer resources.

Our work leverages several key trends. First, the to-
tal computing power available on mobile devices and its
power efficiency are improving dramatically, with the mo-
bile device capable of supporting significant vision comput-
ing. This is further enhanced by the availability of very low-
power gating circuitry [14] that provide energy efficient fil-
ters for detecting interesting events. Second, we embrace
the convergence of the vision community on convolutional
neural networks as the standard algorithmic framework for
many continuous sensing tasks. By taking advantage of the
structure and semantics of these computations, we are able to
design techniques that transform relevant computations into
semantically (approximately) equivalent versions that bet-
ter address resource constraints. Third, as we are not han-
dling generic computations, we are able to specify DNNs in
a domain-specific language, statically compile them, apply a
suite of automated optimization steps, and produces variants
that implement the mitigating techniques mentioned above.
Finally, a suitably designed runtime is able to take advan-
tage of locality and sharing, the predictability of workloads,
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Figure 1: Basic components of a continuous mobile vision (CMV) system

and the ability to automatically factor DNNs across mobile
devices and the cloud. The compiler and runtime together
constitute our system, which we call MCDNN for Mobile-
Cloud Deep Neural Network.

As a running case study, and for purposes of evaluation,
we target the continuous mobile vision setting: in particu-
lar, we look at enabling a large suite of DNN-based face,
scene and object processing algorithms based on applying
DNNs to video streams from (potentially wearable) devices.
We consider continuous vision one of the most challenging
settings for mobile DNNs, and therefore regard it as an ad-
equate evaluation target. We evaluate our dataset on very
large standard datasets available from the computer vision
community. Our results show that MCDNN can make ef-
fective tradeoffs between resource utilization and accuracy
(e.g., transform models to use 4× fewer FLOPs and roughly
5× less memory with only a small accuracy loss), share mod-
els across DNNs with significant savings (e.g., 4-5 orders of
magnitude savings in computation and memory), effectively
specialize models to various contexts (e.g., specialize mod-
els with 5-25× fewer instructions, two orders of magnitude
less storage, and still achieve accuracy gains), and schedule
computations across both mobile and cloud devices for di-
verse operating conditions (e.g., disconnected operation, low
resource availability, and varying number of applications).

2 Continuous Mobile Vision
In this section, we introduce the continuous vision pipeline
case study, paying particular attention to resource costs and
budgets, and make the case that flexibility in where compu-
tations execute and the resources they consume is attractive.

The case for performing computer vision based on video
streaming continuously from a wearable device has been
made elsewhere [1, 13, 17, 22]. It is also common knowledge
that the associated computational workloads are extremely
demanding. The main response to this challenge has either
been to ignore it and focus on improving the performance
of recognition algorithms [12, 23] or to shift the core of the
computation off the mobile device under the assumption that
this workload is well beyond the capacity of the mobile de-
vice [9, 13, 22].

However, we believe that given advances in efficiency of
processing and shifts in the economics of networking and
cloud computing, the option to perform a large fraction (or
even all) of the computer vision calculation on the mobile de-

vice is both necessary and feasible. In this context, MCDNN
advocates paying the extra cost of restricting vision algo-
rithms to those based on deep neural networks (DNNs) for
the potential benefit of far more aggressive performance opti-
mizations that make on-board execution feasible, and allows
a true mobile/cloud sharing of this workload.

Figure 1 makes these challenges concrete by sketching
the architecture of a state-of-the-art mobile/cloud Continu-
ous Mobile Vision (CMV) system. The two main physi-
cal components are a battery-powered mobile device (typi-
cally some combination of a phone and a wearable) and a
powered computing infrastructure (some combination of a
cloudlet and the deep cloud). Given the high compute de-
mands of continuous vision, the simplest architecture is to
stream video from the mobile device to the cloud, perform
computer vision calculations there and send the results back.
Several constraints and trends complicate this model in prac-
tice.

Network disconnection is inevitable in mobile devices.
Unless applications can be designed to not use continuous vi-
sion services for long periods, it is essential to accommodate
end-to-end processing on board the mobile device for ex-
tended periods. Fortunately, both the total computing power
available on mobile devices and its power efficiency are im-
proving dramatically. The latest Tegra K1-GPU based Jetson
board from NVIDIA [7], for example supports 290GOPS at
a 10W whole-system-wide power draw. Even duty cycled by
100× (yielding an average power draw of 100mW, imply-
ing that the GPU gets 10% of the 10Wh mobile battery for
10 hours), the resulting 2.9GOPS could support significant
vision computing.

Even with full network connectivity, and assuming very
aggressive video encoding at 1Mbps, streaming all video
is prohibitive both from a mobile-energy and a wireless-
bandwidth point of view. For instance, the corresponding
135GB/month is an order of magnitude more than the typical
cap on customer data quota in the US. Further, keeping the
radio on continuously consumes a constant 700mW, which is
substantially more than the 10-30% of a generous 10Wh mo-
bile battery that is a realistic budget for CMV applications.
Combined with a low-power wide-field-of-view imager and
a video encoder (a state-of-the-art Ambarella A7LW codec
consumes 200mW), the costs are clearly prohibitive. Fortu-
nately, we believe that very low-power gating circuitry [14]
integrated with proportional-power imagers [21] will often
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Figure 2: (a) DNN “layers” are array operations on lists of arrays called
feature maps. (b) A state-of-the-art network for scene recognition, formed
by connecting layers.

detect interesting events (e.g., new faces, handled objects and
places) in the video at low power. For instance, face detec-
tion circuitry consumes only 30mW at 30fps [15]. We expect
only 1-10% of all frames to pass this gate, so that transmit-
ting relevant frames to the cloud may be feasible.

If transmitting relevant frames is within the power budget,
conventional wisdom seems to favor offloading the entire vi-
sual processing of the frame to the cloud. Although full of-
floading at the frame level may often be the right choice, it
should be weighed against two other options. First, offload-
ing must be cheaper (from a power perspective) than full on-
board processing. At 47nJ/b, a 10kB (compressed) frame
will cost 3.8mJ to transmit by WiFi [25]. (WWAN num-
bers are similar.) The 10W NVIDIA K1-based system men-
tioned above will run for 0.38ms (at 290GOPS) and execute
110MOPs at this budget, possibly adequate for some vision
operations. A second and perhaps less appreciated point is
that cloud operators may prefer to execute as few CMV com-
putations as possible. Note that unlike textual search queries,
or even audio-based queries a la Siri, continuous vision (even
at 1-10% duty cycle) entails a continuous and heavy work-
load per user. Given the net annual operational cost of hun-
dreds of dollars per cloud server, a system design that runs
part, most, or all of the computation on a high-performance
mobile GPU paid for and powered by the end-user may be
appealing.

The question of where best to perform (parts of) the vision
computation, and how to fit these into available resources at
each location, will thus vary across mobile devices, network
conditions, mobile device workloads, the nature of the com-
putation, and cost of cloud computing. Almost all these pa-
rameters vary through the day. The goal of MCDNN is to
provide an easy-to-use framework that helps computations
such as these fit available resources while providing flexi-
bility in choosing where the computation occurs. The past
few years have seen a dramatic shift in the computer vision
community toward standardizing on DNNs, and in particu-
lar a variant called Convolutional Neural Networks (CNNs),
across many key problems [24, 27, 29]. The requirement to
use them is therefore not as restrictive as it may first appear.

3 Convolutional Neural Networks
We now examine convolutional neural networks (CNNs) in
detail, with a view to identifying opportunities for managing
their resource usage. A CNN can be viewed as a dataflow
graph where the nodes, or “layers”, are array-processing op-
erations (see Figure 2). The layers are typically parameter-
ized by weight arrays that are estimated from data using ma-
chine learning techniques. We call the network description
before training a model schema and the trained network with
weights instantiated a model. Unlike much recent (systems)
work in CNNs [6, 10], we are not concerned here with the
efficient learning of CNNs, but rather, their efficient execu-
tion. Most CNNs today tend to be linear [19, 24], but DAGs
[26] and loopy graphs, known as Recurrent Neural Networks
(RNNs) [18], which are fully unrolled over incoming data
before execution, have also been considered. We focus on
linear networks below, but our techniques carry over with
little modification to DAGs and RNNs.

Each layer accepts and returns a list of arrays called fea-
ture maps. Table 2 provides a complete list of the types of
layers used in popular networks, along with the amount of
computation to execute the operation, the amount of mem-
ory required to represent the weights representing the opera-
tion, and the amount of space to represent the output of the
layers. Layers are typically chained together starting from
an input layer, and ending in a softmax layer, which has
one output variable per class to be detected.

Some points are worth noting. First, although the CNN
as a whole has complex semantics, individual layers are se-
lected from a small number of simple, well-known, vector-
izable array operations including convolution, (partial-) ma-
trix product, local maximization, pointwise non-linearization
and re-scaling (to “sum to one”). Second, the resource usage
of the entire network can be estimated quite accurately by
adding up usages of individual layers in the model schema,
i.e., before the model is trained, although the accuracy of the
network can only be characterized post training. Third, given
that resource usage of layers is quadratic in some parameters
(e.g., convolution kernel size, stride and input array size), it
is possible to significantly reduce resource usage by small,
judicious reductions in these parameters. Improved resource
usage is typically at the cost of accuracy, and a key question
is whether useful decreases in resource usage sacrifice too
much accuracy. Fourth, changing parameters also reduces
ouput sizes of individual layers, so that a reduction in one
layer could cause cascading reductions downstream. These
observations suggest that reducing the sizes of layers and re-
training models may be a systematic way to reduce resource
usage, at potentially lower accuracy.

Table 3 shows how these layers are composed into state-
of-the-art networks for face-[27], scene-[29] and object-
recognition [24]. The resource usage (to process a single
image window) and accuracy figures in Table 1 are for these
models. Figure 3 shows resource usage per layer: for each
layer on the x-axis, the y-axis reports the number of opera-
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Operation [Weight Parameters] Definition Operations Rep. Size Output Size
(FLOPS) (# floats) (# floats)

input Pass through an M × M × H
input feature map.

a′mnh = amnh 0 0 M2H (same as
input)

conv[K, H′, s] Convolve incoming array
by H′ kernels of size K ×K, stride s.

For m,n ∈ [0, M−K
s

): a′
mnh′ =∑

m′,n′∈{m,n}×s+ K
2

0≤i,j<K

i′,j′=i,j−K
2

0≤h<H

am′+i′,n′+j′,hcijhh′

2((M −K)/s)2

K2HH′
K2HH′ ((M −K)/s)2

H′

lconn[K, H′, s] Replace each stride-s
K ×K window in input array with H′

uniquely weighted sums of its elements.

For m,n ∈ [0, M−K
s

): a′
mnh′ =∑

m′,n′∈{m,n}×s+ K
2

0≤i,j<K

i′,j′=i,j−K
2

0≤h<H

am′+i′,n′+j′,hcm′n′ijhh′

2((M −K)/s)2

K2HH′
((M −K)/s)2

K2HH′
((M −K)/s)2

H′

relu Apply the rectified linear unit
pointwise to input.

a′mnh = max(0, amnh) 0 0 M2H (same as
input)

mpool[K, s] Replace every stride-s K×
K window in the input array with its
maximum.

For m,n ∈ [0, M−K
s

): a′mnh =

max
m′,n′∈{m,n}×s+ K

2

−K
2
≤i,j<K

2
0≤h<H

am′+i,n′+j,h

((M −K)/s)2

K2H
(comparison
operations)

0 ((M −K)/s)2

H

fconn[MI = M2H, M′] Multiply size-MI

input vector by weight matrix of size
M ′ ×MI .

A′
M′ = FM′MI

AMI
2M2HM ′ M2HM ′ M ′

softmax Re-scale inputs, representing
C classes, to be in the range [0,1].

a′i =
eai

ΣC
c=1e

ac
2C 0 1

Table 2: Cost of key DNN operations. The fconn layer assumes incoming feature maps are (flattened to) a vector of size MI = M2H .

tions to execute the layer, the number of floats to represent
the layer and the number of floats generated by the layer.
Several points are relevant to resource management.

First, as noted in the introduction, trained models indeed
use substantial resources (Table 1, rows 2 and 3), from 1-
30 GFLOPs of processing per image window classified to
several hundred MB of memory, motivating carefully man-
aging their resource/quality/location tradeoff. For instance,
the 110MOP-threshold identified in Section 2, below which
local execution beats off-loading, seems distant.

Second, model schema (Table 3) are small, with at most
tens of layers. If we wished to rewrite them in order to lower
resource use, approaches that take high-polynomial or even
exponential time to analyze them are plausible. On the other
hand, training these schema takes days to weeks (Table 1,
row 1); repeatedly training whole models is infeasible.

Finally, model structure both favors and challenges split
client/cloud execution. On the one hand, the size of inter-
mediate data passed between layers is large compared to
the roughly 10kB for a compressed variant of the input im-
age, and will need to be addressed carefully in a split set-
ting where the data needs to be passed from device to cloud.
On the other, the distribution of compute and memory use
across layers is favorable to splitting. Convolutional lay-
ers, which appear earlier in the pipeline, are compute-heavy
and memory-light, and vice-versa for fully connected lay-
ers. This supports split schemes where the early layers run
on (GPU-accelerated-) devices, which are compute rich and
memory poor, and later layers in the cloud where memories

are large enough to keep models loaded, so that computation
is the significant recurring cost.

Some aspects of CNNs relevant to resource management
are not readily apparent from their resource usage patterns
alone. In particular, one of the most appealing properties
of deep networks is that it learns a hierarchical representa-
tion of the input domain. Layers close to the input represent
low-level aspects of the input data (e.g., edges in images),
whereas those progressively further away represent higher-
level concepts (e.g., body parts, their relative orientation and
entire faces). From an optimization viewpoint, this suggests
several opportunities. First, different but related classifica-
tion tasks that infer different aspects, e.g., face identification
versus gender detection, of the same input, e.g., images of
aces, can share lower layers. Second, if the classification
task only changes slightly (e.g., the particular faces to be
classified are different), it may be adequate to retrain just the
top layer(s), avoiding very long training times. Finally, if the
classification task is simplified (e.g., we only need to distin-
guish between a small set of faces rather than the thousands
targeted by the general model), a simpler representation and
smaller model may suffice.

To summarize, DNN model schema are small dataflow
programs, typically comprised of tens of array-processing
operations and trained on large datasets. Training is some-
what akin to whole-program compilation in traditional pro-
grams: it is slow and yields a resource-hungry “executable”
or model. Familiarly, opportunities for managing execu-
tion overhead include rewriting individual operations with
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(c) VGGNet
Figure 3: Resource usage of CNNs across layers (note log scale on y-axes)

DeepFaceNet
(faces)

AlexNet/CNN-
Places (scenes)

VGGNet (objects)

input[152,152,3]
conv1[11,32,1]
relu
mpool1[3,2]
conv2[9,16,1]
relu
lconn3[9,16,1]
relu
lconn4[9,16,2]
relu
lconn5[7,16,1]
relu
fconn[4096]
relu
fconn[4030]
softmax

input[224,224,3]
conv1[11,96,4]
relu
mpool1[3,2]
conv2[5,256,1]
relu
mpool2[3,2]
conv3[3,384,1]
relu
conv4[3,384,1]
relu
conv5[3,256,1]
relu
mpool5[3,2]
fconn[4096]+relu
fconn[4096]+relu
fconn[205]
softmax

input[224,224,3]
conv[3,64,1]+relu
conv[3,64,1]+relu
mpool[2,2]
conv[3,128,1]+relu
conv[3,128,1]+relu
mpool[2,2]
conv[3,256,1]+relu
conv[3,256,1]+relu
conv[3,256,1]+relu
mpool[2,2]
conv[3,512,1]+relu
conv[3,512,1]+relu
conv[3,512,1]+relu
mpool[2,2]
conv[3,512,1]+relu
conv[3,512,1]+relu
conv[3,512,1]+relu
mpool[2,2]
fconn[4096]+relu
fconn[4096]+relu
fconn[1000]
softmax

Table 3: Model schema for state-of-the-art CNNs for face, scene and object
recognition. We exclude M and H parameters in the definition, using values
implicit from the previous layer

less expensive variants, sharing “common subexpressions”
across models, specializing on runtime values and splitting
across local and remote venues for execution.

DNNs, in addition, have properties that make them more
amenable to optimization than traditional programs. Most
fundamentally, they have a well-defined notion of approxi-
mation, which allows fully automated trade offs between ac-
curacy and resource use for any model. Further, it is pos-
sible to predict precisely the resources a model will con-
sume before it is executed. MCDNN exploits these insights
by combining a “static optimizer” that produces a portfo-
lio of variants of each model (of varying accuracy and re-
source use) with a run-time that seeks to use this predicted
resource/accuracy tradeoff to select and schedule the optimal
variant at the optimal execution location.

4 System Design
DNNs for individual classification tasks (e.g., face recogni-
tion) can, by themselves, consume a substantial fraction of
the resources of a mobile device or cloud server. Given that

compiler

input type
model schema

training/validation data

development time

cloud runtime
scheduler

data router
profiler

specialization time

apps

input input

classes

classes

trained 
model 
catalog

device runtime
scheduler

data router

run time

specializer

statsspecialized models

clouddevice

Figure 4: Architecture of the MCDNN system.

devices routinely run dozens of applications, with applica-
tions potentially registering multiple tasks, it is quite plau-
sible that dozens of tasks will apply in parallel to incoming
video, audio, touch and other input streams. For instance,
not only may applications seek to identify faces, objects or
scenes, they may seek to infer their attributes (e.g., whether a
face is happy, a door is ajar, or a scene is outdoor). Key sys-
tem resources, such as device memory, compute and com-
munication capabilities will likely often be oversubscribed,
and aggregate limits such as device battery capacities, de-
vice/cloud communication caps and cloud computing budget
will be exceeded without careful management.

MCDNN uses two complementary techniques to control
costs. First, it uses a variety of model optimization tech-
niques to produce variants of each model that use signif-
icantly less resources than the original. Model optimiza-
tion requires a combination of compile-time and run-time ac-
tions. Second, when an input requires classification, it uses
model scheduling to select which variant to execute, paging
it in if required while evicting other models, and where (de-
vice, cloud or both) to execute it, depending on availability
and budgets.

Figure 4 illustrates the architecture of the MCDNN sys-
tem. An application developer interested in using a DNN
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in resource-constrained settings provides the compiler with
the type of input to which the model should be applied (e.g.,
faces), a model schema, and training data. The compiler de-
rives a catalog of trained models from this data, mapping
each trained variant of a model to its resource costs, accu-
racy, and information relevant to executing them (e.g., the
runtime context in which they apply). When a user installs
the associated application, the catalog is stored on disk on
the device and cloud and registered with the MCDNN run-
time as handling input of a certain type for a certain app.

At run time, inputs for classification stream to the device.
For each input, the scheduler selects the appropriate variant
of all registered handler-models from their catalogs, selects a
location for executing them, pages them into memory if nec-
essary and executes them. Executing models may require
routing data between fragments of models that are shared
across tasks and across locations. After executing the model,
the classification results (classes) are dispatched to the ap-
plications that registered to receive them. Finally, a profiler
continuously collects context statistics on input data. The
statistics are used occasionally by a specializer running in
the background to specialize models to detected context, or
to select model variants specialized for the context. We detail
these components below.

4.1 Model optimization
The fundamental premise of MCDNN is that managing
many variants of a given model, with varying accuracy, re-
source utilization and applicability, is key to maintaining
accuracy in the face of variations in resource availability.
MCDNN uses four techniques to generate these variants,
given a single model schema proposal and corresponding
training data from developers. These techniques require a
mix of compile- and run-time-support for their functioning.

4.1.1 Static transformations
Like conventional programs, DNNs can be transformed,
or rewritten, to perform better. For instance, as noted
in Section 3, changes in individual parameters of DNN
layers can significantly reduce resource usage. For in-
stance, the first non-input layer of the DeepFaceNet schema
consumes 0.468GFLOPs (Figure 3). Since that layer
is a convolution layer, Table 2 implies that doubling
its stride (i.e., “re-writing” it from conv[11,32,1] to
conv[11,32,2]) will reduce the number of operations by
4× to 0.164GFLOPs, a substantial gain relative to the whole-
network cost of 1GFLOPs.

More generally, the MCDNN compiler considers the fol-
lowing rewrite rules derived from Table 2. (1) For convo-
lutional and locally connected layers, increase kernel/stride
size or decrease number of kernels, to yield quadratic or lin-
ear reduction in computation. (2) For fully connected layers,
reduce the size of the output layer to yield a linear reduction
in size of the layer. (3) Turn locally connected layers into
convolution layers to yield ((M −K)/s)2 reduction in size
of the layers, while possibly adding a small compensatory

fully connected layer further along in the network. (4) Elim-
inate convolutional or locally connected layers.
Even considering this restricted set of rewrites, the space of
possible rewrites for typical DNNs is large. We therefore fur-
ther restrict ourselves to rewriting a small set of heuristically
selected layers in sequence, akin to a traditional optimizing
compiler. Intuitively, we seek to decrease computation use
by increasing the stride of the most expensive convolutional
layer(s), and to decrease memory use by reducing the output
size of the largest fully connected layer(s) and by avoiding
local connectivity. We consider increasing stride size and
reducing the number of kernels in the two most expensive
convolution layers each by a factor of 2; reducing the output
vector size of the largest fully connected layer by 2, 4, 8, 16
and 32 (with much smaller layers, training is much faster);
replacing individual locally connected layers with convolu-
tion layers with the possible addition of a single fully con-
nected layer. Further, for each variant we generate, we pick
up to three of these rewrites to apply.

Unlike with conventional programs, no analysis is re-
quired to ensure that the transformed network is “semantics
preserving”: we simply retrain it and record accuracy on val-
idation data; bad transformations beget inaccurate networks.
However, we can go about transformation in two ways. The
conceptually simple approach is to transform schemas and
retrain the resulting schemas. Alternately, adapting recent
results from the machine learning community, we can incre-
mentally transform parts of (trained) models. The techniques
have their pros and cons and MCDNN uses both. On the
one hand, retraining schemas can be extremely time consum-
ing (e.g., recall that it can take weeks to retrain the VGGNet
schemas), although the variants can be trained in parallel. On
the other, the efficacy of incrementally transforming models
is still poorly understood in many cases.

MCDNN uses two techniques to transform trained mod-
els. First [20], recall that fully connected layers are memory
hogs because they are parameterized by dense weight arrays
W of size M ′ ×M , where M and M ′ are sizes of their in-
put and output vectors respectively. A simple optimization is
to replace these arrays by their low-rank matrix approxima-
tions. Essentially we can replace W with Uk,Σk, and Vk of
sizes M ′×k, k×k, and k×Msuch that Wk = UkΣkVk ≈W
for various k < rank(W ). Progressively smaller values of k
correspond to less accurate approximations of W (and there-
fore presumably of the network as a whole). The size of the
new layer, however, is k(M+M ′+1), which is considerably
less than the size MM ′ of W .

While the matrix approximation technique works to re-
duce the size of individual fully connected layers, it does
not address more general rewriting. For example, suppose
we wished to replace multiple convolution layers L (with
schema S) with a single one L′ (with schema S′). Figure 5 il-
lustrates our generic approach to perform this transformation
with only local training. We first handle the problem that the
shape of the output of S′ may not match that of S; we there-
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fore attach to S a linear transformation layer that takes the
output of S′ and produces an output matching the shape of
S. We are now ready to train the resulting augmented schema
S′′. Since we want the model L′ resulting from training S′′

to mimic L, we train it to input tL (the inputs to L in the orig-
inal network on training data) and to output t′L (the outputs
from L). We use the same back propagation algorithm as for
training the whole network to perform this training, using a
square loss function since our “mini-DNN” S′′ is performing
regression rather than classification.

4.1.2 Specialization
One impressive ability of DNNs is their ability to classify ac-
curately across large numbers of classes. For instance, Deep-
Face achieves roughly 93% accuracy over 4000 people [27].
When data flow from devices embedded in the real world,
however, it is well-known that classes are heavily clustered
by context. For instance you may tend to see the same 10
people 90% of the time you are at work, with a long tail of
possible others seen infrequently; the objects you use in the
living room are a small fraction of all those you use in your
life; the places you visit while shopping at the mall are like-
wise a tiny fraction of all the places you may visit in daily
life. With model specialization, MCDNN seeks to exploit
class-clustering in contexts to derive more efficient DNN-
based classifiers for those contexts.

We adopt a cascaded approach (Figure 6(a)) to exploit this
opportunity. Intuitively, we seek to train a resource-light
“specialized” variant of the developer-provided model for
the few classes that dominate each context. Crucially, this
model must also recognize well when an input does not be-
long to one of the classes; we refer to this class as “other”
below. We chain this specialized model in series with the
original “generic” variant of the model, which makes no as-
sumptions about context, so that if the specialized model re-
ports that an input is of class “other”, the generic model can
attempt to further classify it.

Figure 6(b) shows the machinery in MCDNN to support
model specialization. The profiler maintains a cumulative
distribution function (CDF) of the classes resulting from
classifying inputs so far to each model. The specializer,
which runs in the background in the cloud, determines if a
small fraction of possible classes “dominate” the CDF for a
given model. If so, it adds to the catalog specialized versions
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models

generic 
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to scheduler

from classifier

input

class

specialized 
variant

class

generic 
variantcheck 

for 
“other”
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Figure 6: Model specialization: (a) Cascading specialized models. (b)
MCDNN infrastructure for specialization.

of the generic variants (stored in the catalog) of the model
by “re-training” them on a subset of the original data domi-
nated by these classes. If a few classes do indeed dominate
strongly, we expect even smaller models, that are not partic-
ularly accurate on the general inputs, to be quite accurate on
inputs drawn from the restricted context.

Implementing the above raises three main questions. What
is the criterion for whether a set of classes dominates the
CDF? How can models be re-trained efficiently? How do
we avoid re-training too many variants of models and focus
our efforts on profitable ones? We describe how MCDNN
addresses these below.

The specializer determines that a CDF C is n, p-
dominated if n of its most frequent classes account for at
least fraction p of its weight. For instance, if 10 of 4000 pos-
sible people account for 90% of faces recognized, the corre-
sponding CDF would be (10,0.9)-dominated. The specializer
checks for n, p-dominance in incoming CDFs. MCDNN cur-
rently takes the simple approach of picking n ∈ {7, 14, 21}
and p ∈ {0.6, 0.7, 0.8, 0.9, 0.95}. Thus, for instance, if the
top 7 people constitute over 60% of faces recognized, the
specializer would add model variants to the catalog that are
specialized to these seven faces.

The straightforward way to specialize a model in the cata-
log to a restricted context would be to re-train the schema for
that model on the corresponding restricted dataset. Full re-
training of DNNs is often expensive, as we discussed in the
previous section. Further, the restricted datasets are often
much smaller than the original ones; the reduction in data
results in poorly trained models. The MCDNN specializer
therefore uses a variant of the in-place transformation dis-
cussed in the previous section to retrain just the output layer,
i.e., the last fully-connected layer and softmax layers, of the
catalog model on the restricted data. We say that we re-target
the original model.

Finally, even with relatively fast re-training cost, applying
it to every variant of a model and for up to n× p contexts is
potentially expensive at run time. In fact, typically many of
the specialized variants are strictly worse than others: they
use more resources and are less accurate. To avoid this run-
time expense, we use support from the MCDNN compiler.
Note that the compiler cannot perform relevant specializa-
tion because the dominant classes are not known at com-
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pile time. However, for each model variant and (n, p) pair,
the compiler can produce a representative dataset with ran-
domly selected subsets of classes consistent with the (n, p)
statistics, retarget the variant to the dataset and winnow out
models that are strictly worse than others. At run time, the
specializer can restrict itself to the (hopefully many fewer)
remaining variant/context pairs.

4.1.3 Sharing
Until now, we have considered optimizing individual models
for resource consumption. In practice, however, multiple ap-
plications could each have multiple models executing at any
given time, further straining resource budgets. The model
sharing optimization is aimed at addressing this challenge.

Figure 7(a) illustrates model sharing. Consider the case
where (possibly different) applications wish to infer the iden-
tity (ID), race, age or gender of incoming faces. One option
is to train one DNN for each task, thus incurring the cost of
running all four simultaneously. However, recall that layers
of a DNN can be viewed as increasingly less abstract lay-
ers of visual representation. It is conceivable therefore that
representations captured by lower levels are shareable across
many high-level tasks. If this were so, we would save the
cost of re-executing the shared bottom layers. Given that the
lower (convolutional) layers of a DNN dominate its compu-
tational cost, the savings could be considerable. Indeed, we
will show in the results section that re-targeting, where the
shared fragment is close to the whole model in size is com-
monly applicable.

Implementing sharing requires cooperation between the
MCDNN compiler and runtime. When defining input model
schema, the compiler allows programmers to pick model
schemas or prefixes of model schemas from a library appro-
priate for each domain. We currently simply use prefixes of
AlexNet, VGGNet and DeepFace and their variants. Sup-
pose the model schema s input to the MCDNN compiler has
the form s = sl + su, and t/v is the training/validation data,
where layers sl are from the library and intended for sharing.
Let ml be the trained version of sl, also available pre-trained
from the library. The compiler assembles a trained model
ml + mu consisting of two fragments. The lower fragment
is ml. The upper fragment, mu, is a freshly trained variant
of su, trained on t′ = ml(t), v

′ = ml(v), i.e., the train-
ing “input” to the upper fragment is the result of running
the original training input through the lower fragment. The

compiler records the fragments and their dependence in the
catalog passed to the runtime.

Figure 7(b) illustrates the runtime infrastructure to support
sharing. The scheduler loads complete models and model-
fragments into memory for execution, notifying the router of
dependencies between fragments. Given an input for classi-
fication the router sends it to all registered models (or their
fragments). In the cases of fragments without output layers,
the router collects their intermediate results and sends them
on to all dependent fragments. The results of output layers
are the classification results of their respective models. The
router returns classification results as they become available.

4.1.4 Splitting
When the connection between device and cloud is available,
one option for the scheduler is to split models by executing
one fragment on the client device and the other on the cloud.
Similar to the case of sharing, for every model variant in the
catalog, the compiler identifies a point at which the model
could be split at run time. The broad strategy is to exploit the
fact that initial layers of DNNs are computationally heavy
whereas later ones are storage heavy. Further, convolution
and pooling result in the size of intermediate data (i.e., the
feature maps) dropping by up to an order of magnitude (c.f.
Figure 3, “output size” line). The compiler writes the com-
putational load of every layer of every model variant into the
catalog. The runtime decides which layer to split at, based
on the capacity of the device: it fragments the model at the
last convolutional layer that fits on the device, but before the
first (locally- or fully-) connected layer. The routers on the
device and cloud co-ordinate to execute the two fragments
sequentially and to deliver results back to the device.

4.2 Model scheduling
When applications are installed, they register with the sched-
uler a map from input types to a catalog of model fragments
to be used to process those inputs, and handlers to be in-
voked with the result from each model. The catalog is stored
on disk. When a new input appears, the scheduler (with help
from the router and profiler) is responsible for identifying
the model variants that need to be executed in response, pag-
ing if needed the appropriate model variants in from disk
to the in-memory model-fragment cache in the appropriate
location (i.e., on-device, split device/cloud, or on-cloud) for
execution, executing the models on the input and dispatching
the results to the registered handlers.

This online scheduling problem is challenging because
it combines several elements considered separately in the
scheduling literature. First, it has an “online paging” ele-
ment [2], in that every time an input is processed, it must
reckon with the limited capacity of the model cache. If no
space is available for a model that needs to be loaded, it
must evict existing models and page in new ones. Second,
it has an “online packing” [3] element: over a long period of
use (we target 10 hrs), the total energy consumed on device
and the total cash spent on the cloud must not exceed battery
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budgets and daily cloud cost budgets. Third, it must con-
sider processing a request either on-device, on-cloud or split
across the two, introducing a multiple-knapsack element [4].
Finally, it must exploit the tradeoff between model accuracy
and resource usage, introducing a fractional aspect.

It is possible to show that even a single-knapsack vari-
ant of this problem has a competitive ratio lower-bounded
proportional to log T , where T is the number of incoming
requests. The dependency on T indicates that no very effi-
cient solution exists. We are unaware of a formal algorithm
that approaches even this ratio in the simplified setting. We
present a heuristic solution here. The goal of the scheduler is
to maximize the average accuracy over all requests subject to
paging and packing constraints. The overall intuition behind
our solution is to back in/out the size (or equivalently, accu-
racy) of a model as its use increases/decreases; the amount
of change and the location (i.e., device/cloud/split) changed
to are based on constraints imposed by the long-term budget.

Algorithm 1 provides details when processing input i on
model n. On a cache miss, the key issues to be decided are
where (device, cloud or split) to execute the model (Line 15)
and which variant to execute (Line 16). The variant and
location selected are the ones with the maximum accuracy
(Line 16) under estimated future resource (energy on the de-
vice, and cash on the cloud) use (Lines 13,14).

To estimate future resource use, for model n (Lines 20-
30), we maintain its frequency of use fn, the number of times
it has been requested per unit time since loading. Let us fo-
cus on how this estimation works for the on-device energy
budget (Line 25) (cloud cash budgets are identical, and de-
vice/cloud split budgets (Line 27) follow easily) . If e is the
current total remaining energy budget on the device, and T
the remaining runtime of the device (currently initialized to
10 hours), we allocate to n a per-request energy budget of
en = efn/TΣif

2
i , where the summation is over all models

in the on-device cache. This expression ensures that every
future request for model n is allocated energy proportional
to fn and, keeping in mind that each model i will be used
Tfi times, that the energy allocations sum to e in total (i.e.,
ΣieifiT = e). To dampen oscillations in loading, we at-
tribute a cost ∆en to loading n. We further track the time
∆tn since the model was loaded, and estimate that if the
model were reloaded at this time, and it is reloaded at this
frequency in the future, it would be re-loaded T/∆tn times,
with total re-loading cost ∆enT/∆tn. Discounting this cost
from total available energy gives a refined per-request energy
budget of en = (e−∆enT/∆tn)fn/TΣif

2
i (Line 24).

Given the estimated per-request resource budget for each
location, we can consult the catalog to identify the variant
providing the maximum accuracy for each location (Line 33)
and update the cache at that location with that variant
(Line 17). Note that even if a request hits in the cache,
we consider (in the background) updating the cache for that
model if a different location or variant is recommended. This
has the effect of “backing in”/“backing out” models by accu-

Algorithm 1 The MCDNN scheduler.
1: function PROCESS(i, n) . i: input, n: model name
2: if l,m← CACHELOOKUP(n) 6= null then . Cache hit
3: r ← EXEC(m, i) . Classify input i using model m
4: async CACHEUPDATE(n, (l,m)) . Update cache in background
5: else . Cache miss
6: m← CACHEUPDATE(n)
7: r ← EXEC(m, i)
8: end if
9: return r

10: end function
11:
12: function CACHEUPDATE(n, (l,m) = nil) . Insert n; variant m is already in
13: ed, ecs, cc ← CALCPERREQUESTBUDGETS(n)
14: ad, as, ac ← CATALOGLOOKUPRES(n, ed, ecs, cc,m)
15: a∗, l∗ ← maxl al, argmaxl al . Find optimal location and its accuracy
16: v∗ ← CATALOGLOOKUPACC(n, a∗) . Look up variant with accuracy a∗

17: m← CACHEINSERT(l∗, v∗) if m.v 6= v∗ or l 6= l∗ else m
18: return m
19: end function
20:
21: function CALCPERREQUESTBUDGETS(n)
22: e, c← REMAININGENERGY(), REMAININGCASH()
23: . Allocate remaining resource r so more frequent requests get more resources.

fi is the profiled frequency of model mi, measured since it was last paged into
the cache. T and r are the remaining time and resource budgets. ∆rn is the cost
to load n. ∆tn is the time since n was loaded, set to∞ if n is not in any cache.

24: def RESPERREQ(r, l) = (r −∆rnT/∆tn)fn/(TΣi∈Cachelf
2
i )

25: ed, cd ← RESPERREQ(e, “dev”), RESPERREQ(c, “cloud”)
26: . Account for split models. tn is the fraction of time spent executing the

initial fragment of model n relative to executing the whole.
27: es, cs ← edtn, cd(1− tn)
28: return ed, (es, cs), cd
29: end function
30:
31: function CATALOGLOOKUPRES(n, e, s, c,m)
32: . CLX2A(n, r) returns accuracy of model n in location X using resources r
33: ae, as, ac ← CLD2A(n, e), CLS2A(n, s), CLC2A(n, c)
34: . On a miss, bound load latency. a∗l is the accuracy of the most accurate

model that can be loaded to location l at acceptable miss latency.
35: if m = nil then
36: ae, as, ac ← min(a∗e , ae), min(a∗s , as), min(a∗c , ac)
37: end if
38: return ae, as, ac

39: end function
40:
41: . Insert variant v in location l, where l ∈ “dev”, “split”, “cloud”
42: function CACHEINSERT(l, v)
43: s← SIZE(v)
44: if (a = CACHEAVAILABLESPACE(l)) < s then
45: CACHEEVICT(l, s− a) . Reclaim space by evicting LRU models.
46: end if
47: m← CACHELOAD(l, v) . Load variant v to location l
48: return m
49: end function

racy and dynamically re-locating them: models that are used
a lot (and therefore have high frequencies fn) are replaced
with more accurate variants (and vice-versa) over time at
their next use.

5 Evaluation
We have implemented the MCDNN system end-to-end.
We adapt the open source Caffe [16] DNN library with
NVIDIA’s cuDNN accelerators for our DNN infrastructure.
As our embedded device, we target the NVIDIA Jetson board
TK1 board [7], which includes the NVIDIA Tegra K1 mo-
bile GPU (with a roughly 300 gflops nominal peak perfor-
mance), a quad-core ARM Cortex C15 CPU, and 2GB of
shared memory between CPU and GPU. The Jetson is a
developer-board variant of the NVIDIA Shield [8] tablet,
running Ubuntu 14.04 instead of Android as the latter does.
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For cloud server, we use a Dell PowerEdge T620 with an
NVIDIA K20c GPU (with 5GB dedicated memory and a
nominal peak of 3.52 tflops), a 24-core Intel Xeon E5-2670
processors with 32 GB of memory running Ubuntu 14.04.

We have assembled 11 distinct classification tasks (a
combination of model schema and training data, the in-
formation a developer would input to MCDNN) to drive
our benchmarking. We use state-of-the art schemas and
standard large datasets when possible, or use similar vari-
ants if necessary. The wide variety of tasks hints at the
broad utility of DNNs, and partially motivates systems like
MCDNN for managing DNNs. Task A is uses the AlexNet
schema on ImageNet object recognition data. The Ima-
genet [11] dataset is the standard for object recognition,
providing 1.28M/50K images for training/validation over
1000 classes. We substitute a web-crawled face “Web-
Faces” dataset with 50,000/5000 training/validation images
and 200 celebrity identities for the proprietary DeepFace
dataset [27] from Facebook, which is much bigger, with 4M
images and 4000 identities. Task C applies a carefully hand-
crafted variant of DeepFaceNet, called CompactNet, aimed
at better balancing resource usage with accuracy, to Web-
Faces. Task D applies DeepFaceNet to WebFaces. Task
G applies DeepFaceNet to WebFaces re-labeled with gen-
der labels for each face. Task R applies DeepFace to Web-
Faces re-labeled with race (“African American”, “White”,
“Hispanic”, “East Asian”, “South Asian”, “other”). Task
Y applies DeepFace to WebFaces re-labeled with age (“0-
30”,“30-60”,“60+”). Task S, aimed at scene recognition,
applies AlexNet to the MITPlaces205 dataset (7.08M im-
ages, 205 classes) [29]. Task H applies a retargeted version
of AlexNet to the MITPlaces205 dataset augmented with
Sun405 [28] labels for detecting horizons in scenes. Task L
uses this AlexNet/MITPlaces205/Sun405 combination with
labels for inferring natural/artificially-lit scenes. Task M
uses the AlexNet/MITPlaces205/Sun405 combination with
labels for inferring manmade/natural scenes. Task V applies
VGGNet [24] to ImageNet data.

5.1 Evaluating model optimization
We now examine closely the model catalogs generated by
the MCDNN compiler given the above datasets. The goal is
to understand whether the catalogs capture a useful variety
of accuracy/resource datapoints, whether optimizations yield
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Figure 9: Incremental cost of shared models.

significant benefits on real data.

We applied static transformations to the input tasks A
through V to generate catalogs of 10 to 68 variants for each
input schema. Figure 8a shows how accuracy of a sample of
the generated variants changes with resource use estimated
by op- and parameter-counts (the figure shows parameter-
counts). For each task, we plot the set of variants for a fixed
compute cost; the legend specifies this cost in ops. Each
point in the graph represents a model variant, and we use
the letter designating each task as the symbol for its variants.
The key point is that, for most tasks, static transformation
can reduce resource use significantly with very modest
loss of accuracy. This is critical for MCDNN: if our trans-
formations caused accuracy to drop off precipitously with re-
source use, the catalog would not very useful. A related point
applies to the points for tasks M, L, Y and G. These tasks use
models defined for a more sophisticated task (scene and face
recognition across hundreds of classes) for simpler tasks (bi-
nary classification of scemes (M,L) and up to 3- and 2-way
classification of faces (Y and G)). We believe that this will
be a common pattern with unsophisticated developers: they
will seek to use, e.g., “the face model” for all tasks involv-
ing faces, even if that generic model is far over-provisioned
for their task. Static transformations are able to automat-
ically and dramatically simplify these models while pre-
serving high accuracy. Finally, in most cases, the absolute
resources used by accurate variants of optimized mod-
els fall comfortably below resources available on mobile
devices: e.g., for most tasks, models with 20M parameters
retain most of their accuracy. Figure 8b shows memory and
compute demands for select variants of select tasks. It shows
that static transformations are not restricted to improvements
along a single resource dimension: they often produce mod-
els that are significantly smaller and faster than the input
schema at modest accuracy cost.

Figure 9 illustrates the potential of sharing. We gener-
ated model variants for age, gender and race classification
by sharing all but the top (classification) layer with variants
of DeepFaceNet for face recognition. Similarly, we gener-
ated variants for horizon, lighting and manmade scene detec-
tion by sharing with the scene recognition model. The figure
shows that the additional size and compute requirements are
miniscule for all these variants, of the order of 10k parame-
ters and FLOPs, relative to (hundreds of) millions for whole
models. Further, as the points labeled Y, G, M and L show,
these derived variants all have very good accuracy. The im-
plication is that when basic face and scene recognition algo-
rithms are running, additional related inference tasks that
can exploit sharing require many orders of magnitude
less incremental memory and processing per additional
model than without sharing. Sharing by retargeting seems
to enable almost unbounded scaling within a domain, possi-
bly key to running large variety of tasks efficiently both on
mobile device and on the cloud. In particular, it is possible
to run DNN-based age, face and race (and presumably many
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Figure 8: Various views of the model catalog resulting from static transformation (best viewed in color).

Model #Flops #Params FaceID 60% Context 80% Context 90% Context 95% Context 14 persons@90% 21 persons@90%

C0 225M 21.9M 79.7% 96.0/88.1% 95.3/91.0% 97.3/94.9% 97.2/96.2% 95.0% 90.8%
C1 202M 10.0M 79.6% 95.0/87.5% 95.8/90.0% 96.6/93.7% 97.2/95.8% 95.6% 91.1%
C2 190M 4.31M 74.3% 93.8/82.1% 94.3/90% 96.1/94.0% 97.2/95.8% 95.4% 90.3%
C3 183M 581K 69.2% 89.6/87.3% 91.4/85% 95.2/92.2% 96.2/94.5% 92.8% 86.2%
C4 38.6M 150K 62.1% 85.2/74.1% 86.4/78% 88.7/84.4% 89.0/87.5% 86.3% 79.7%

Table 4: Specializing the face recognition task (configuration C).

other face-related classifiers) on a mobile device simultane-
ously using under 2.14 floats×4B/floatu 8.8MB of memory
and kBs of incremental cost.

Table 4 evaluates the potential of context-specialization.
We ask the question: if we knew that 60, 80, 90 or 95% of the
people you see belong to a small group (in this case, 7 people
randomly picked from the larger WebFaces dataset) and the
rest are random other faces, can you use this information to
produce a specialized model with higher accuracy and lower
resource consumption as per Section 4.1.2? For each in-
context percentage, we report numbers averaged over 5 such
7-person contexts, with roughly 350 different faces tested in
each experiment (with four times that many used for train-
ing). We refer to these sub-datasets as WebFaces-Context60
through -Context95 below. We use the CompactNet model
as the baseline “C0” for specialization.

We are interested in two settings. First, the “in-context-
only” case, we assume the application is only interested in
identifying people in context and it is adequate for all oth-
ers to be reported as “other”. In the other, “overall”, setting
we seek to identify the names of other people in the dataset
as well. When Table 4 reports an accuracy as X/Y% (e.g.,
96.0/86.3%), X is in-context-only accuracy whereas Y is the
overall accuracy.

Columns 5-8 of the table establish that specialization still
makes a sharp difference. We train specialized models
for these columns by retargeting C0 to datasets WebFaces-
Context60 through -Context95. The recognition accuracy of
this classifier on the dataset is reported as the in-context-only
result. If the classifier reports “other”, we also further invoke
the generic C0 to identify the nominally out-of-context face.
We aggregate over the classification results to calculate the
overall. In the C1-C4 rows, we generated simpler versions
of C0 and specialize these simpler versions.

A few points are worth noting. If an application re-

quires just in-context-only classification results, as the re-
sults for C3 illustrate, specialization yields roughly 90% ac-
curacy even if 40% of faces encountered are out of context;
moreover, the systems requires 38× less memory and 1.2×
fewer FLOPs than the highly optimized C0 model. In the
entirely plausible case that 90-95% of faces seen are the
same (e.g., picture an office worker in a small group of 7 or
less), the last two columns of the C3 row indicate that face
identification can be over 95% accurate. Finally, if higher
accuracy is required, using C0 itself uniformly yields over
95% accuracy over all sub-datasets. And if somewhat lower
(e.g., 85%) accuracy is tolerable, then as the C4 row shows,
we require 146× less memory and 5.8× fewer FLOPs.

If an application requires overall classification results,
the table illustrates that specialization very significantly in-
creases overall accuracy of classification relative to the base-
line C0. On digging deeper into the data, we determined that
the good performance can be explained by the fact that the
in-context-only not only has good classification accuracy, it
also specifically has has excellent precision and recall in rec-
ognizing the “other” class. Thus, to a first approximation,
overall accuracy is simply a weighted average of accuracies
of the in-context-only and unspecialized models, weighted
by the in/out-of-context percentage. As the fraction of the
dataset in context increases, the benefit of specialization for
overall classification decreases. However, clearly if an ap-
plication is able to identify 7 or fewer classes that con-
stitute over 60% of cases seen, specialization could yield
gains of 10% or in overall accuracy.

How does the context-sensitivity degrade with size of con-
text? As per the last two columns of the table, which re-
port in-context accuracy for models C0-C4 with 14- and 21-
person contexts, the degradation is noticeable but not catas-
trophic, at least for contexts where 90% of test cases are in-
context.
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Figure 10: End-to-end performance with MCDNN versus strawmen.

Description Apps Disconnect Special

S1 Professional D, G, R, Y, V, S Medium High
S2 Home maker D, V Rare Medium
S3 Transit worker D, G, R, Y, S Often N/A

Table 5: Description of synthesized traces. Face apps: D, G, R, Y. Object:
V, Scene: S. Special column indicates probability to see the same person
repeatedly.

5.2 Evaluating model scheduling
We have examined how MCDNN optimizations fare on in-
dividual inputs. We now examine how well the MCDNN
scheduler handles variations in resource availability, app re-
source demands and input patterns. In order to test various
scenarios, we synthesize input traces for three different per-
sons usage model: a professional worker (S1), a home maker
(S2), and a transit worker (S3). Each trace has different prop-
erties in the set of applications, face arrival pattern, and con-
nectivity. For example, a transit worker sees always different
people, while it is likely for a home maker to see the same
faces repeatedly. Note that these traces are not representing
real usage patterns, but designed to test the scheduler in var-
ious situations. The settings for each scenario is described in
Table 5.

We build a simulator to run these traces over our schedul-
ing algorithm, which makes decisions of which model to use
and where to load given resource availability when each task
arrives. Instead of running actual recognition, the simulator
uses the average accuracy number of the used model. We run
our scheduler implementing MCDNN scheduling and with
four other options to compare against: two strawman sys-
tems, running always on the client, and always on the server,
and two cases assuming one of features is missing, special-
ization and sharing. We configure energy budget as 0.5Wh
for the mobile device, and $0.0667 ($2 for a month) as cloud
budget for running 10 hours. Also we assume running a task
for 1 second in a cloud server costs $1.8e-4 according to
Amazon AWS GPU server pricing.

Figure 10 depicts the average accuracy of tasks in the three
traces. In S2, there is no sharable applications, and in S3,
there is no specializable situation, so these features do not
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Figure 11: Accuracy of each application over time for S3. Each line shows
a single application.

have effects on the result. Across all three traces, MCDNN
outperforms other settings while staying in the specified en-
ergy and cost budget. To take a closer look, we show changes
of accuracy for each application in Figure 11 with connec-
tivity changes. When disconnected, the server-only scheme
cannot perform recognition, thus gets 0% accuracy while
MCDNN moves all tasks to the client, which causes a slight
degradation to fit into the client’s energy budget. For the
client-only scheme, it consumes all the energy in the middle,
and falls into 0% accuracy after then. In S1 and S2, there
are cases when specialized models can be used—seeing the
same set of people repeatedly, as MCDNN can pick the spe-
cialized models which has higher accuracy, it shows better
accuracy then no-specialized mode. For no-sharing case, all
face apps need to process images separately, it need to pick
lower accuracy models to fit all of them, which makes it have
lower average accuracy than MCDNN.

6 Conclusions
To enable efficient convolutional neural network usage on
the mobile devices, we explored a variety of optimization
techniques that balance the resource usage, in terms of mem-
ory and computation, and accuracy. We developed and ex-
perimented a wide range of optimized models. The results
show that local optimization can achieve up to 4.9× reduc-
tion in computation and 47.7× reduction in memory with
15% loss in accuracy, which can be compensated by a com-
bination with global optimization. Specialized context spe-
cific models can be highly compact but also with a decent
accuracy. Model sharing experiments suggest that huge re-
sources can be saved by bundling similar recognition tasks
together shared with bottom layers. Further, we proposed
the system design of a model compiler and specializer which
can automatically optimize CNN models and create special-
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ized compact models conforming to the resource specifica-
tions. Finally, we designed a mobile/cloud runtime system
for managing and scheduling various optimized models re-
sulting in significant performance gains.
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