
Relational Network Verification

Xieyang Xu[w] Yifei Yuan[a] Zachary Kincaid[p] Arvind Krishnamurthy[w]

Ratul Mahajan[w] David Walker[p] Ennan Zhai[a]

[w]University of Washington [a]Alibaba Cloud [p]Princeton University

ABSTRACT
Relational network verification is a new approach for validating net-
work changes. In contrast to traditional network verification, which
analyzes specifications for a single network snapshot, it analyzes
specifications that capture similarities and differences between two
network snapshots (e.g., pre- and post-change snapshots). Rela-
tional specifications are compact and precise because they focus on
the flows and paths that change between snapshots and then simply
mandate that all other network behaviors "stay the same", without
enumerating them. To achieve similar guarantees, single-snapshot
specifications would need to enumerate all flow and path behaviors
that are not expected to change in order to enable checking that
nothing has accidentally changed. Such specifications are propor-
tional to network size, which makes them impractical to generate
for many real-world networks.

We demonstrate the value of relational reasoning by developing
Rela, a high-level relational specification language and verification
tool for network changes. Rela compiles input specifications and
network snapshot representations to finite state automata, and
it then verifies compliance by checking automaton equivalence.
Our experiments using data from a global backbone with over 103
routers find that Rela specifications need fewer than 10 terms for
93% of the complex, high-risk changes. Rela validates 80% of the
changes within 20 minutes.

CCS CONCEPTS
• Networks → Network reliability; Network management;
• Theory of computation → Regular languages; Automated
reasoning;

KEYWORDS
Network verification, domain-specific language, relational specifi-
cation, regular language, network changes, reliability
ACM Reference Format:
Xieyang Xu, Yifei Yuan, Zachary Kincaid, Arvind Krishnamurthy, Ratul
Mahajan, David Walker, and Ennan Zhai. 2024. Relational Network Verifi-
cation. In ACM SIGCOMM 2024 Conference (ACM SIGCOMM ’24), August
4–8, 2024, Sydney, NSW, Australia. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3651890.3672238

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0614-1/24/08.
https://doi.org/10.1145/3651890.3672238

1 INTRODUCTION
Changing a running network, for instance, to alter its security pos-
ture, optimize resource usage, or add capacity, is one of the riskiest
network management activities today. Outages can occur during
changes because of incorrect change implementation (e.g., acciden-
tally blocking traffic) or latent bugs (e.g., traffic starts traversing
a longstanding filter). When changes go wrong, banks go offline,
airlines stop flying, emergency services become unreachable, and
businesses lose millions of dollars [4, 27–29, 31, 32, 35]. Since chang-
ing a network is unavoidable, we must make changes safer to make
networks more reliable.

The last decade has seen remarkable progress toward verifica-
tion technologies that can reason about large, real-world networks.
These technologies typically tell a user whether a single network
snapshot 𝑁 satisfies specification 𝑆 . The snapshot may represent
an updated network configuration that engineers wish to deploy,
and the specification may demand that DNS traffic is never blocked
or that external traffic always traverses a firewall before reaching
the high-security zone. Indeed, many large networks use these
technologies today [5, 13, 21, 38].

Single-snapshot verification tools, while valuable, do not suffice
for keeping networks running reliably as they are updated. Consider
a common network change that moves all traffic on link A to link
B as a precursor to shutting A for maintenance. To validate this
change, the engineer would want to ensure that all traffic on link A
is moved, that it is moved to link B and nowhere else, and that no
other traffic is impacted. Using single-snapshot verification for this
validation requires that the engineer (1) discover all traffic classes
on link A, (2) create a specification asserting that the discovered
traffic classes traverse link B in the new network, (3) discover all
other traffic classes and all their current paths, exactly, (4) create
a specification asserting all such other traffic classes continue to
follow these discovered paths.

Unless the network is configured using high-level intents (e.g.,
Robotron [30]), which is rare today [13], creating such specifica-
tions is almost impossible. One challenge is scale: The specification
needed scales with the size of the network, and modern networks
are enormous and continue to grow. The network in our experi-
ments has on the order of 103 routers, 104 routes per router, and
106 classes of flows with distinct forwarding paths, with up to 104
classes impacted by typical changes. Then there is an additional
challenge of incomplete information: Networks evolve organically
over the years, and their size and complexity mean an engineer may
have only partial knowledge of a network’s behavior. Creating pre-
cise, detailed specifications in these circumstances and maintaining
them through successive changes requires otherworldly effort.

https://doi.org/10.1145/3651890.3672238
https://doi.org/10.1145/3651890.3672238

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Xu et al.

The upshot is that while single-snapshot verification helps en-
sure coarse, long-term invariants, it is not helpful when it comes to
the fine details of many network updates. Yet network engineers
must check such details to prevent congestion-induced outages,
security breaches, or performance issues. Lacking appropriate tools,
network engineers today rely on manually inspecting the impact
of changes. Unsurprisingly, manual inspection is time-consuming,
tedious, and error-prone, sometimes taking weeks to check even
simple-seeming changes. See §2 for an example.

We introduce relational network verification and investigate if
it can make network changes more reliable, more efficient, and
less dependent on manual audits. Rather than reasoning about
the behavior of a single snapshot in isolation, relational network
verification reasons about the similarities and differences (i.e., the
relationships) in the behavior of two network snapshots.

Relational specifications make it easy to specify "no change"
for the behaviors that engineers do not want to modify (and may
not even know about). Indeed, the size of a relational network
specification is proportional to the complexity of the change rather
than that of the network as a whole. If a desired network change is
small (e.g., changing link A to link B), the relational specification
will also be small. It is no wonder that engineers already informally
use such ideas to specify intent in change request tickets. In a sense,
relational specifications formally capture the kind of thinking that
engineers use, but in a way that enables automatic checking.

Realizing relational network verification requires (1) a language
to compactly specify the intent of a network change, and (2) a de-
cision procedure to verify that the pre- and post-change network
snapshots adhere to the specification. We develop a tool called Rela
with these capabilities. Network engineers use a new high-level
source language to specify change intent, such as adding or re-
moving parts of a path. Rela compiles this user-friendly language
to a new low-level, regular intermediate representation (RIR). RIR
is a general language for describing regular languages and rela-
tions [20] and can encode specifications for a wide range of network
changes. Rela combines the generated RIR with data from the pre-
and post-change network snapshots, and it checks that the pair of
snapshots satisfies the RIR specification by reducing the problem
to equivalence-checking for finite state automata. The final result
is either a "thumbs up" (if the network satisfies the specification)
or a set of counterexample flows and paths.

We evaluate Rela using all complex, high-risk changes to a global
backbone network over the last seven months. These changes were
involved enough that each was reviewed (manually) by a committee
of experts. Despite that, Rela specs are compact—93% of the changes
need fewer than 10 terms in the language. And even though the
network has over 103 routers, validation takes under 20 minutes
for 80% of the changes. We are currently integrating Rela into the
change pipeline of this network.

The primary contribution of this paper is to consider network
verification in the context of a new kind of semantic model, which
analyzes two networks simultaneously rather than a single network.
It develops a high-level language with simple abstractions that are
useful for expressing network changes. It also develops a specialized
language (RIR) for describing relational specifications in terms of
classical operations on finite automata and transducers. Although

individual components of the language are well understood, the
challenge was identifying the combination of features necessary
for describing network changes. Our decision procedure, which we
show can scalably reason about network paths and path changes,
is based on a novel reduction of change specifications to automata-
theoretic machinery.

2 NETWORK CHANGES TODAY
Implementing network changes requires translating high-level
change intents into low-level device configuration changes. Unfor-
tunately, errors in this translation are common. Using a change from
Alibaba Cloud’s backbone, we illustrate the difficulty of making
even seemingly simple changes and how incomplete information
and scale limit the effectiveness of existing network analysis tools.

2.1 An Example Change
Figure 1a shows a change in the global backbone of Alibaba Cloud.
The part of the backbone shown has two BGP autonomous systems,
𝐴𝑆1 and 𝐴𝑆2, each enclosed by a grey box and comprising many
routers. Each circle denotes a group of routers that fulfill the same
functionality. An AS spans multiple geographic regions, encoded
using the prefix letter of router groups. So, 𝐴1 and 𝐴2 are in the
same region, which is different from that of 𝐵1 and 𝐵2.

The goal of the change is to prevent𝑇 1, which goes from region A
to region D, from traversing region B. That is, all traffic on the path
𝐴1-𝐵1-𝐵2-𝐵3-𝐷1 (solid line) should move to 𝐴1-𝐴2-𝐴3-𝐷1 (dotted
line). Importantly, no otherWAN traffic should be impacted. Despite
the simplicity of this abstract picture, it took network engineers four
iterations across three weeks to devise a working implementation of
the change.

First iteration. The engineers’ first iteration (Figure 1b) changed
the configuration of𝐴2 routers. They added𝑇 1 prefixes to an allow-
list on𝐴2, with the hope that𝐴1 would pick the shorter path𝐴1-𝐴2
over 𝐴1-𝐵1-𝐵2. However, on inspecting the impact of the change
(using the process in §2.3), the engineers found it ineffective: The𝑇 1
traffic followed the same path as before! Investigation revealed that
the routers in region 𝐵 were configured to announce T1 prefixes
with a high local preference. Since local preference overrides path
length in BGP,𝐴1 continued to prefer the route through 𝐵1 over𝐴2.
This failure illustrates the challenge of incomplete information: The
engineers who implemented this configuration change on 𝐴2 were
not necessarily familiar with configuration details for 𝐵2 routers,
as each configuration is accumulated from years of changes by
different individuals.

Second iteration. The engineers’ second iteration (Figure 1c) re-
configured 𝐴2 to increase the local preference of 𝑇 1 prefixes. As a
fail-safe, they also configured routers in region 𝐵 to lower the local
preference for these prefixes. This time, the engineers observed that
𝑇1 had indeed moved from 𝐵2 to 𝐴2. However, it turned out that
the implementation caused collateral damage: the path of traffic
T2, which should not have been impacted, changed. Debugging
revealed that the root cause was a typo in the import policy at 𝐵2.

Third iteration. The next iteration (Figure 1d) fixed the typo. Upon
testing, the engineers saw that it fixed the collateral damage but
found another issue. While T1 traffic had indeed moved away from

Relational Network Verification ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

(a) Change intent (b) v1: Unchanged path (c) v2: Collateral damage (d) v3: Still incorrect path

Figure 1: An example network change in a global WAN. T1 and T2 denote aggregate traffic bundles.

𝐵2, it was bouncing back to 𝐵3 due to an old configuration bug that
made the link costs of𝐴3−𝐵3−𝐷1 lower than those of𝐴3−𝐷1. This
undesirable behavior was present in the previous iteration as well,
but the engineers missed it amidst the information overload created
by the collateral damage. This failure illustrates the challenge of
scale: It is not enough to focus on one small set of paths because
even small configuration changes can impact many paths at once.

Fourth iteration. The fourth iteration finally achieved the in-
tended behavior after three weeks of labor.

Changes like this one are common in the backbone’s daily operation.
While some errors are caught prior to deployment, some make it
to the network and have a widespread impact.

2.2 Just Verify It?
Readers familiar with network verification might ask: Do the back-
bone network engineers have access to a verification tool; and does
it help find errors in changes? The answers are: Yes, they have a
verification tool [37]; and while it does flag some types of errors, it
does not uncover the types of errors above. We explain why.

Abstractly, existing network verification methods check whether
a network configuration 𝐶 satisfies a specification 𝑆 . We call this
method single-snapshot verification because it analyzes a single
network configuration against the specification. Typically, one ana-
lyzes the new (post-change) network configuration, and the original
(pre-change) network configuration is not used.

Single-snapshot verifiers are used to check coarse properties that
hold over long periods of time, such as "never block DNS traffic" and
"always block ssh from outside." These verifiers can validate that
such properties are not violated by a proposed change. However,
to catch finer-grained problems, such as the problems with specific
paths (described in the previous subsection), finer-grained specifi-
cations are needed. Unfortunately, with 106 traffic classes, creating
a detailed specification for all of them is an insurmountable barrier
to even getting started with single-snapshot network verification.
Said differently, the cost of creating network-wide single-snapshot
specifications is proportional to the size of the network. To make
verification worthwhile, we need to create specifications at a lower
cost, ideally proportional to the size of the change.

A naive tactic is to generate small but highly incomplete single-
snapshot specifications. For instance, if a network engineer wishes
to replace a path 𝑃1 with 𝑃2, they might verify that 𝑃2 exists in the
new network and 𝑃1 does not. But this tactic omits a key property:

all other traffic should remain unchanged, and hence does not help
identify accidental collateral damage.

Thus, while single-snapshot verification has a role in ensuring
network reliability, it is insufficient for precise change validation.
So the backbone’s network engineers resort to manual inspection,
which we discuss next.

2.3 Back to Manual Inspection
The primary change validation method that engineers use today is
manual inspection. Its workflow is:

(1) use a simulator [18, 37] to compute the network’s forwarding
state 𝑁 1, based on the current configuration;

(2) compute the network’s after-change forwarding state 𝑁2,
based on planned changes to the configuration;

(3) use 𝑁1 and 𝑁2 to compute the before- and after-change
forwarding paths for all flows that traversed the network
over the last hour;1 a flow is a packet that starts at a particular
point in the network;

(4) aggregate flows into flow equivalence classes that have flows
with identical paths in the current configuration and in the
planned configuration;

(5) manually inspect the path diff, which contains all equiva-
lence classes whose paths differ for the two configurations,
and check that all expected changes have occurred and no
unexpected changes have occurred.

Manual auditing is tedious and subject to human error. The path
diffs can have anywhere from tens to tens of thousands of differ-
ences. Experienced engineers can audit only tens of classes per day,
which makes a complete audit intractable for some changes. Engi-
neers may then resort to sampling, increasing the risk of missing
problems. Further, while it is relatively easy (but still hard) to spot
undesired path changes by inspecting the path diff, ensuring that
all desired path changes occur is harder.

3 A NEW APPROACH:
RELATIONAL NETWORK VERIFICATION

Relational network verification is inspired by today’s manual ap-
proach and relational program verification research from the formal
methods community (see Barthe [6] for an introduction). Relational
methods reason about similarities and differences in two versions of

1NetFlow [33] monitoring provides this data. Engineers prefer it over considering all
possible flows (i.e., symbolic analysis) because it reduces information they need to
inspect and helps focus on flows that matter.

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Xu et al.

a system, rather than considering one version in isolation. Because
network changes involve two network configurations, one old and
one new, these methods naturally apply.

Relational verification can be more effective at validating net-
work changes than single-snapshot verification when changes have
precise and compact specifications, even if the network itself is
enormous and the change moves many flows. Compact specifica-
tions are possible because network changes often involve a small
number of path (not necessarily flow) changes. To specify that a
path 𝑃1 should be replaced by 𝑃2, a relational specification can de-
clare that (a subset of) flows traversing 𝑃1 in the old network should
traverse 𝑃2 in the new network and that all other traffic should
follow the same path(s) in both networks. This change intent can
be expressed in just a few lines of code in part because specifying
"no change" (i.e., old equals new) is trivial with relational methods,
though next to impossible with single-snapshot specifications.

4 RELA BY EXAMPLE
Rela’s specifications describe the relationship between the forward-
ing behavior of two network snapshots. It focuses on networks with
stateless forwarding, the same context that was targeted by the first
wave of single-snapshot verification tools [10]. We defer extending
Rela to networks with richer forwarding and to non-forwarding
behavior changes (e.g., route attributes) to future work.

This section introduces Rela using the change in §2.1. The next
section formalizes its syntax and semantics. Recall that the intent
of the change in §2.1 has three elements: (1) only impact the traf-
fic from region 𝐴 to 𝐷 that traverses 𝐴1 and 𝐷1; (2) change the
forwarding sub-paths of this traffic from 𝐴1-𝐵1-𝐵2-𝐵3-𝐷1 to 𝐴1-
𝐴2-𝐴3-𝐷1, while preserving the sub-paths before 𝐴1 and after 𝐷1;
(3) no other traffic should be impacted.
Change Zones. In Rela, the first step in defining a change intent is
to define the change zone. Informally, change zones allows users to
create a focus area for the impact of a change and ignore behaviors
outside of that focus. Users define change zones using path patterns,
which are regular expressions over network locations.

A network location identifies one hop in a forwarding path. In
Rela, forwarding paths and locations can be viewed at different
levels of granularity, including at the interface level, the router
level and the router group level. Users choose the level that suits
their needs. Our example uses router-level locations because we do
not care which interfaces are used for forwarding as long as they
belong to the correct router.

Rela is used in concert with a database that stores information
about all locations available in the network. Users can refer to a
set of locations within the same entity (such as a router group
or a tier) by issuing "where" queries to select locations from the
database and return the union of them. We define below a1 and d1
as, respectively, sets of routers with group attributes 𝐴1 and 𝐷1.

regex a1 := where(group =="A1")

regex d1 := where(group =="D1")

Regular expressions a1 and d1 can now be used in the rest of the
Rela specification. For instance, the regex a1.*d1 denotes the set of
paths that starts from any location in 𝐴1 and ends at any location
in 𝐷1 after traversing zero or more (any) intermediate locations.

Change specifications. An atomic change specification is written
zone : modifier. Roughly speaking, such a specification indicates
that paths in the zone should be changed according to the modifier.
When desired, such specifications may be named as follows for
reuse and composition with other change specifications.

spec name := { zone : modifer; }

Path modifiers describe the sets of paths to add, remove, replace,
or preserve between old and new network snapshots. For example,
the following code presents one implementation of the second
element of our example change intent.

spec pathRepl := {

a1.*d1 : replace(a1b1b2b3d1 , a1a2a3d1);

}

This spec has zone a1.*d1, which cares about the subset of pre-
change forwarding paths that start from a1 and end in d1. Its mod-
ifier demands that if one or more paths in the zone are matched
by regex a1b1b2b3d1, then all paths in regular path set a1a2a3d1
should appear in the new network (assuming symbols a2, b1, etc.,
have all been defined earlier as the union of routers in the corre-
sponding router group). The semantics of replace also demands
that (1) if any path in regular path set a1a2a3d1 appears in the old
network, it continues to appear in the new network, and (2) paths
that belong to zone a1.*d1 but not belongs to regex a1b1b2b3d1
should remain the same throughout the change.

The replace modifier demands all paths in a1a2a3d1 appear in
the new network snapshot if any path in a1b1b2b3d1 appears. This
may be what the user wants in some cases, but it may not be in
others. After all, a1a2a3d1 represents the Cartesian product of four
router groups and contains a large number of possible paths—does
the user want all such paths to be present in the new network?
The initial informal English specification we gave is actually mute
on this issue; it simply says "change it." Indeed, we have found
that working with Rela requires thinking carefully about desired
semantics, and typically, there are corner cases to consider. Because
the specifications are short (as well as reuseable and executable),
one can afford to think carefully about their consequences.

Rela provides several built-in modifiers if replace is not the
right one. If the traffic should move to some (any) path in a1a2a3d1,
the any(regex1) modifier can be used as follows.

spec pathShift := {

a1.*d1 : any(a1a2a3d1);

}

Recall that traffic in our change zone may start upstream of 𝐴1
routers and continue downstream of 𝐷1 routers. The spec above
has not expressed changes expected for these starting and ending
sub-paths. The user may not even know all the paths leading to
this part of the network. In other systems, specifying a change
accurately with such incomplete information is challenging, or
perhaps impossible. But because Rela is compositional as well as
relational, users can stitch change specifications of different kinds
for different subpaths to construct an end-to-end specification. In
this case, to specify that the beginnings and ends of the paths should
not change, they can use change specifications with the preserve
modifier as follows.

Relational Network Verification ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

spec e2e := {

a* : preserve;

pathShift;

d* : preserve;

}

This spec, which concatenates three atomic specs, defines the change
zone as "a* (a1.*d1) d*". The first sub-spec’s zone is a*, which
denotes arbitrary length paths within region 𝐴. Even though users
may not know the details of sub-paths in this zone, they do under-
stand that these sub-paths are expected to remain unchanged, and
the preserve modifier does the trick. We then reuse pathShift
, which was defined earlier, to specify the sub-path changes in
the middle. The spec of the third and last sub-path is similar to
the first one. Rela thus allows end-to-end specs to be expressed
compositionally, even when users do not know some sub-paths.

Up to this point, we have a spec that defines which paths should
change and how they should change. Our third and final task is
to specify that no other paths are affected by the network change.
Rela makes this task easy via composition using the >> operator:

spec nochange := { .* : preserve; }

spec change := e2e >> nochange

All traffic that does not match the first spec will fall through to
the next spec chained by >>. Thus, all existing traffic except those
matched by e2e will be required to comply with nochange, which
demands preservation for everything.
Summary. Rela specifications describe relations between a pair
of network snapshots—that is, the paths that are added, removed,
replaced or preserved when a network is updated. It allows change
zones to be defined at a level of location granularity appropriate
to their task. Once a zone of interest is defined, one may craft
atomic change specifications that describe the relation between old
and new networks for (sub-)paths in a zone. Users may draw on a
collection of pre-defined modifiers to define relations of interest.
Finally, complex change specs may be built out of simple ones
through the use of Rela’s composition operators.

5 FORMALIZING RELA SPECIFICATIONS
This section specifies the formal syntax of Rela and provides its
semantics via translation to an intermediate representation with
regular relations, which we call the RIR. While the RIR is more
expressive than Rela’s surface language, it is low-level, making it
harder to use by network engineers. Indeed, Rela was created with
the goal of making it easier to write relational specifications for
networking use cases. Still, an expert user may use the RIR directly
if they choose.

5.1 Rela Syntax
Figure 2 presents Rela’s formal syntax, which includes sub-languages
for (regular) sets of paths (𝑟), modifiers (𝑚), simple specifications
(𝑠), header constraints (ℎ) and guarded specifications (𝑔). The paths
are built from a set of locations Σ, which includes a single special
location 𝑑𝑟𝑜𝑝—that place (akin to /dev/null) where intentionally
dropped packets go. We use 𝑎 to range over elements of the set Σ.

Path Sets 𝑟 F 𝑎

| (𝑟1|𝑟2)
| 𝑟1𝑟2
| 𝑟*

Modifiers 𝑚 F preserve
| add(𝑟)
| remove(𝑟)
| replace(𝑟1,𝑟2)
| drop
| any(𝑟)

Simple Specs 𝑠 F 𝑟:𝑚
| 𝑠1𝑠2
| 𝑠1 >> 𝑠2

Header Constraints ℎ F 𝑡𝑟𝑢𝑒

| dst in 𝑝𝑟𝑒 𝑓 𝑖𝑥

| src in 𝑝𝑟𝑒 𝑓 𝑖𝑥

| dscp == 𝑑𝑖𝑔𝑖𝑡𝑠

| (ℎ1|ℎ2)
| ℎ1 & ℎ2
| !ℎ

Guarded Specs 𝑔 F 𝑠

| if(ℎ) {𝑔}
| if(ℎ) {𝑔1} else {𝑔2}

Figure 2: The syntax of Rela’s front-end language.

This syntax omits named definitions spec𝑛𝑎𝑚𝑒 := {𝑔 } and regex
𝑛𝑎𝑚𝑒 := { 𝑟 }, which are easily inlined. It also excludes where
queries to select locations from database, which are implemented
as a prepass.

We saw several of the modifiers (𝑚) in the previous section. One
that we did not see is drop, which replaces old pathswith a new path
that drops a packet. Each modifier is defined by a straightforward
translation into the RIR. While our experiments suggest that we
have developed a useful set of modifiers, new ones can be added by
encoding their semantics in the RIR.

A simple specification (𝑠) defines an expected change between a
set of old paths and a set of new paths in a network. Simple specs
include path modifiers (𝑟 :𝑚), concatenation of simple specs (𝑠1𝑠2),
and prioritized union of simple specs (𝑠1 >> 𝑠2).

Sets of packets are described by header constraints (ℎ). In our
current implementation, programmers may use the source IP (e.g.,
src in prefix), destination IP, or DSCP (a field in the IP header that
encodes the priority of the packet) to describe packet sets.

Guarded specifications (𝑔) describes changes for the paths taken
by different subsets of packets. For example, the conditional state-
ment if(ℎ) {𝑠} specifies that when packets described by ℎ take
paths 𝑀 in the old network and 𝑁 in the new network, 𝑀 and
𝑁 should be related by 𝑠 . This specification says nothing about
the paths taken by packets outside the set described by ℎ. More
concretely, consider the common change of decommissioning an IP
prefix. For this change, we want to remove the paths used by traffic
to the target prefix, but preserve the paths for all other traffic, even
if the other traffic traverses similar or identical sets of paths. We can

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Xu et al.

encode this decommissioning requirement for address 10.0.0.0/24
using the following specification.

spec deallocP :=

if (dst in 10.0.0.0/24) {

.* : remove (.*);

} else {

.* : preserve;

}

5.2 Regular IR (RIR)
The Rela RIR is an intermediate language for defining regular sets
of paths and regular relations between paths. A regular set is a set
created through the usual operations on regular languages (con-
catenation, union, and Kleene star). Likewise, regular relations are
binary relations between paths (i.e., sets of pairs of paths), also
constructed with the usual operations on regular languages. Since
all RIR-expressible sets and relations are regular, we are able to
make use of known, efficient constructions and decision procedures
from automata theory as the basis of a decision procedure for RIR.

Figure 3 presents the syntax of the RIR, which contains four sub-
languages. The language of path sets (𝑃) describes regular sets of
paths over the alphabet Σ (as defined in §5.1). The path sets 𝑎, 0, and
1 denote sets with a single one-hop path, no paths at all, and a single
0-length path (written 𝜖). The special symbol PreState denotes
the set of paths in the pre-change network. Similarly, PostState
denotes the set of paths in the post-change network. The expres-
sions 𝑃1 |𝑃2, 𝑃1𝑃2, and 𝑃∗ denote union, concatenation, and Kleene
star operations over path sets. Finally, 𝑃 ⊲ 𝑅 denotes the image, the
path set derived by applying relation 𝑅 to paths recognized by 𝑃 .
In other words, 𝑃 ⊲ 𝑅 describes the set of paths that are related (via
𝑅) to some path recognized by 𝑃 .

Figure 4 (a) presents the evaluation functions that define the se-
mantics of path sets. These equations have the form𝒫⟦𝑃⟧(𝑀, 𝑁) ≜
𝑆 , meaning that 𝑃 describes the set of paths 𝑆 when 𝑀 is the pre-
change set of forwarding paths and 𝑁 is the post-change set of
forwarding paths.

Relations in Figure 3 denote regular relations, which are sets
of pairs of paths. Alternately, a relation may be viewed as a map
from each path in the domain to zero or more related paths in the
image. The cross-product relation 𝑃1 × 𝑃2 denotes the relation that
associates every path in 𝑃1 with all paths in 𝑃2. The identity relation
I(𝑃) associates every path in 𝑃 with itself; paths not in 𝑃 are not
related to any other path by I(𝑃). The symbols 0 and 1 denote
the empty relation and the relation associating 𝜖 with itself. 𝑅1 |𝑅2,
𝑅1𝑅2, 𝑅∗, and 𝑅1 ◦𝑅2 denote union, concatenation, Kleene star, and
composition of relations. (Rational relations are closed under all of
these operations [16].)

Figure 4 (b) shows the semantics of relations. The equations have
the formℛ⟦𝑅⟧(𝑀, 𝑁) ≜ 𝑇 , meaning that 𝑅 describes a set of pairs
of paths 𝑇 when𝑀 is the pre-change set of forwarding paths and
𝑁 is the post-change set of forwarding paths.

Simple specs (Figure 3) may be equations (𝑃1 = 𝑃2) or subset
relations (𝑃1 ⊆ 𝑃2). As an example, consider this spec:

PreState ⊲ 𝑅 = PostState

Assuming the relation 𝑅 is an intended transformation of network
forwarding paths, the spec says that if one applies the transforma-
tion 𝑅 to the pre-change path set, then one should obtain a result
that equals the post-change path set. Our translation from Rela’s
surface language into the RIR uses this sort of idiom.

Figure 4 (c) presents the semantics of simple specs. The satis-
faction relation has the form 𝑀, 𝑁 |= 𝑆 , which may be read as
“pre-change forwarding paths𝑀 and post-change forwarding paths
𝑁 satisfy 𝑆”

Finally, guarded specs (Figure 3) allow programmers to specify
that the paths travelled by different sets of packets should change
in different ways. Guarded specs (𝐺) include simple specs (𝑆) as
well as restricted specs (ℎ ↦→ 𝐺) and conjunctions thereof.

Figure 4 (d) shows the semantics of guarded specs in terms of
traffic equivalence classes (TECs), which are triples of the form
(𝑇,𝑀, 𝑁) where 𝑇 is a set of packets, 𝑀 is a set of paths that 𝑇
follows in the pre-change network, and 𝑁 is a set of paths that 𝑇
follows in the post-change network. Flow equivalence classes used
in manual inspection (§2.3) are a refinement of TECs where every
string in M and N originates at the same starting location.

The semantics in Figure 4 (d) depends upon a functionℋ, which
maps header constraints to the set of headers that satisfy it. For
example, the constraint dst in 10.0.0.0/24 specifies the set of
packets with destination IP prefix in the given range. We omit
the full definition of ℋ for brevity. In general, the satisfaction
relation for guarded specs has the form 𝑇,𝑀, 𝑁 |= 𝐺 , which may
be read as “traffic equivalence class (𝑇,𝑀, 𝑁) satisfies the guarded
specification 𝐺 .” A class (𝑇,𝑀, 𝑁) satisfies a spec 𝐺 whenever 𝑇
is an empty set of packets, and if 𝑇 is non-empty, satisfaction is
defined by induction on the structure of 𝐺 .

5.3 Compilation from Rela to RIR
In this subsection, we show how to compile any Rela simple spec
expression (𝑠) into an RIR simple spec (𝑆) and any Rela guarded
spec (𝑔) into an RIR guarded spec (𝐺).

Ultimately, a simple specification 𝑠 is translated into an RIR
expression of the following form.

PreState ⊲ℛ𝑝𝑟𝑒⟦𝑠⟧ = PostState ⊲ℛ𝑝𝑜𝑠𝑡⟦𝑠⟧

In this process, we generate two relation expressions from 𝑠 . The
first relation (ℛ𝑝𝑟𝑒⟦𝑠⟧) transforms the pre-change paths, and the
second relation (ℛ𝑝𝑜𝑠𝑡⟦𝑠⟧) transforms the post-change paths.

In what follows, we show how to compute relations for some of
the key modifiers in the Rela language.
Encoding path preservation. Consider the translation of the
path preservation modifier “D: preserve”. Intuitively, this change
specification says that all paths that appear in the zone 𝐷 in the
pre-state should also appear in the post-state. If the pre- and post-
relations are as follows:

ℛ𝑝𝑟𝑒⟦𝐷 : preserve⟧ ≜ I(𝐷)
ℛ𝑝𝑜𝑠𝑡⟦𝐷 : preserve⟧ ≜ I(𝐷)

then our overall translation will be:

PreState ⊲ I(𝐷) = PostState ⊲ I(𝐷)

Relational Network Verification ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

𝑃 ∈ 𝑃𝑎𝑡ℎ 𝑆𝑒𝑡 F 𝑎 | 0 | 1 | PreState | PostState | (𝑃1 |𝑃2) | 𝑃1𝑃2 | 𝑃∗ | 𝑃1 ∩ 𝑃2 | 𝑃1 \ 𝑃2 | 𝑃 | 𝑃 ⊲ 𝑅

𝑅 ∈ 𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛 F 𝑃1 × 𝑃2 | I(𝑃) | 0 | 1 | (𝑅1 |𝑅2) | 𝑅1𝑅2 | 𝑅∗ | 𝑅1 ◦ 𝑅2
𝑆 ∈ 𝑆𝑖𝑚𝑝𝑙𝑒 𝑆𝑝𝑒𝑐 F 𝑃1 = 𝑃2 | 𝑃1 ⊆ 𝑃2
𝐺 ∈ 𝐺𝑢𝑎𝑟𝑑𝑒𝑑 𝑆𝑝𝑒𝑐 F 𝑆 | ℎ ↦→ 𝐺 | 𝐺1 ∧𝐺2

Figure 3: RIR syntax

(a) Path Sets

𝒫⟦𝑎⟧(𝑀, 𝑁) ≜ {𝑎}
𝒫⟦0⟧(𝑀, 𝑁) ≜ ∅
𝒫⟦1⟧(𝑀, 𝑁) ≜ {𝜖}

𝒫⟦PreState⟧(𝑀, 𝑁) ≜ 𝑀

𝒫⟦PostState⟧(𝑀, 𝑁) ≜ 𝑁

𝒫⟦𝑃1 | 𝑃2⟧(𝑀, 𝑁) ≜ 𝒫⟦𝑃1⟧(𝑀, 𝑁) ∪𝒫⟦𝑃2⟧(𝑀, 𝑁)
𝒫⟦𝑃1𝑃2⟧(𝑀, 𝑁) ≜ {𝑝1𝑝2 | 𝑝1 ∈ 𝒫⟦𝑃1⟧(𝑀, 𝑁),

𝑝2 ∈ 𝒫⟦𝑃2⟧(𝑀, 𝑁)}
𝒫⟦𝑃∗⟧(𝑀, 𝑁) ≜ {𝑝1 ...𝑝𝑛 | 𝑝1, ..., 𝑝𝑛 ∈ 𝒫⟦𝑃⟧(𝑀, 𝑁)}

𝒫⟦𝑃1 ∩ 𝑃2⟧(𝑀, 𝑁) ≜ 𝒫⟦𝑃1⟧(𝑀, 𝑁) ∩𝒫⟦𝑃2⟧(𝑀, 𝑁)
𝒫⟦𝑃1 \ 𝑃2⟧(𝑀, 𝑁) ≜ 𝒫⟦𝑃1⟧(𝑀, 𝑁) \𝒫⟦𝑃2⟧(𝑀, 𝑁)

𝒫⟦𝑃⟧(𝑀, 𝑁) ≜ Σ∗\𝒫⟦𝑃⟧(𝑀, 𝑁)
𝒫⟦𝑃 ⊲ 𝑅⟧(𝑀, 𝑁) ≜ {𝑞 : ∃𝑝. ⟨𝑝, 𝑞⟩ ∈ ℛ⟦𝑅⟧(𝑀, 𝑁)

∧ 𝑝 ∈ 𝒫⟦𝑃⟧(𝑀, 𝑁)}

(b) Relations

ℛ⟦𝑃1 × 𝑃2⟧(𝑀, 𝑁) ≜ {⟨𝑝1, 𝑝2⟩ | 𝑝1 ∈ 𝒫⟦𝑃1⟧(𝑀, 𝑁),
𝑝2 ∈ 𝒫⟦𝑃2⟧(𝑀, 𝑁)}

ℛ⟦I(𝑃)⟧(𝑀, 𝑁) ≜ {⟨𝑝, 𝑝⟩ | 𝑝 ∈ 𝒫⟦𝑃⟧(𝑀, 𝑁)}
ℛ⟦0⟧(𝑀, 𝑁) ≜ ∅
ℛ⟦1⟧(𝑀, 𝑁) ≜ {(𝜖, 𝜖)}

ℛ⟦𝑅1 |𝑅2⟧(𝑀, 𝑁) ≜ ℛ⟦𝑅1⟧(𝑀, 𝑁) ∪ℛ⟦𝑅2⟧(𝑀, 𝑁)
ℛ⟦I(𝑃)⟧(𝑀, 𝑁) ≜ {⟨𝑝, 𝑝⟩ | 𝑝 ∈ 𝒫⟦𝑃⟧(𝑀, 𝑁)}
ℛ⟦𝑅1𝑅2⟧(𝑀, 𝑁) ≜ {⟨𝑝1𝑝2, 𝑞1𝑞2⟩ | ⟨𝑝1, 𝑞1⟩ ∈ ℛ⟦𝑅1⟧(𝑀, 𝑁),

⟨𝑝2, 𝑞2⟩ ∈ ℛ⟦𝑅2⟧(𝑀, 𝑁)}
ℛ⟦𝑅∗⟧(𝑀, 𝑁) ≜ {⟨𝑝1 ...𝑝𝑛, 𝑞1 ...𝑞𝑛⟩ |

⟨𝑝1, 𝑞1⟩, ..., ⟨𝑝𝑛, 𝑞𝑛⟩ ∈ ℛ⟦𝑅⟧(𝑀, 𝑁)}
ℛ⟦𝑅1 ◦ 𝑅2⟧(𝑀, 𝑁) ≜ {⟨𝑥, 𝑧⟩ | ∃𝑦.⟨𝑥,𝑦⟩ ∈ ℛ⟦𝑅1⟧(𝑀, 𝑁),

⟨𝑦, 𝑧⟩ ∈ ℛ⟦𝑅2⟧(𝑀, 𝑁)}

(c) Simple Specs

𝑀, 𝑁 |= 𝑃1 = 𝑃2 ⇐⇒ 𝒫⟦𝑃1⟧(𝑀, 𝑁) = 𝒫⟦𝑃2⟧(𝑀, 𝑁)
𝑀, 𝑁 |= 𝑃1 ⊆ 𝑃2 ⇐⇒ 𝒫⟦𝑃1⟧(𝑀, 𝑁) ⊆ 𝒫⟦𝑃2⟧(𝑀, 𝑁)

(d) Guarded Specs
𝑇,𝑀, 𝑁 |= 𝑆 if 𝑇 = ∅, and otherwise:
𝑇,𝑀, 𝑁 |= 𝑆 ⇐⇒ 𝑀, 𝑁 |= 𝑆

𝑇 ,𝑀, 𝑁 |= ℎ ↦→ 𝐺 ⇐⇒ 𝑇 ∩ℋ⟦ℎ⟧, 𝑀, 𝑁 |= 𝐺

𝑇,𝑀, 𝑁 |= 𝐺1 ∧𝐺2 ⇐⇒ 𝑇,𝑀, 𝑁 |= 𝐺1 and 𝑇,𝑀, 𝑁 |= 𝐺2

Figure 4: RIR semantics.

which is equivalent to the equation:

(PreState ∩ 𝐷) = (PostState ∩ 𝐷) ,

as desired.
Encoding path additions. Consider adding the paths 𝑃 when
the pre-change network contains a path in 𝐷 .2 Our goal now is to
preserve all of the paths in the zone (and also P, if it exists) from
the pre-state into the post-state. In other words, we would like to
apply the identity relation I(𝐷 | 𝑃). In addition, we would like a
relation that adds the path 𝑃 . We can use the relation 𝐷 ×𝑃 to do so.
Overall, our pre-relation is the combination of those two relations.

2The Rela surface language can not express the addition of a path in 𝐷 when the
pre-change network contains no path in𝐷 . Such “unconditional” path additions can be
expressed in the RIR, however. For instance, the equation PostState = PreState |𝑃
expresses that exactly the set of paths recognized by 𝑃 are added to the network.

Hence, we generate the following equations.

ℛ𝑝𝑟𝑒⟦𝐷 : add(𝑃)⟧ ≜ I(𝐷 | 𝑃) | (𝐷 × 𝑃)
ℛ𝑝𝑜𝑠𝑡⟦𝐷 : add(𝑃)⟧ ≜ I(𝐷 | 𝑃)

Encoding path removals. Next, consider path removals using the
modifier “D: remove(P)”. This modifier expresses that the paths
in 𝐷 in the pre-state should be preserved in the post-state, except
the paths in 𝑃 that should be removed. Hence, our relations are as
follows.

ℛ𝑝𝑟𝑒⟦𝐷 : remove(𝑃)⟧ ≜ I(𝐷 \ 𝑃)
ℛ𝑝𝑜𝑠𝑡⟦𝐷 : remove(𝑃)⟧ ≜ I(𝐷)

Encoding non-deterministic path replacement. The modifier
“D: any(P)” demands that (1) if there is any path in 𝐷 | 𝑃 in the
pre-state, there must be some path in 𝑃 in the post-state and (2)
all paths in 𝐷 | 𝑃 in the post-state must be in 𝑃 . To encode this

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Xu et al.

condition, we use a relation for the pre-state that replaces paths
in 𝐷 | 𝑃 with a symbol #. Likewise, the relation for the post-state
replaces all paths in 𝑃 with #, while also retaining the paths in 𝐷 \𝑃 .
Since paths in 𝐷 \ 𝑃 are not retained in the pre-state relation, this
relation encodes that there are no paths in 𝐷 \ 𝑃 in the post-state
network. Together, the two relations enforce the desired condition.

ℛ𝑝𝑟𝑒⟦𝐷 : any(𝑃)⟧ ≜ (𝐷 | 𝑃) × #
ℛ𝑝𝑜𝑠𝑡⟦𝐷 : any(𝑃)⟧ ≜ (𝑃 × #) | I(𝐷 \ 𝑃)

Encoding prioritized union.Aprioritized union “𝑠1 >> 𝑠2” should
apply the change specification 𝑠1 to 𝑠1’s zone and 𝑠2 to everything
else in 𝑠2’s zone. To achieve this specification in the RIR, we need
to explicitly extract 𝑠1’s zone. We do so with an auxiliary function
Z⟦𝐷 : modifier⟧. See Figure 5 for the full definition ofZ⟦·⟧.

To translate “𝑠1 >> 𝑠2”, we first translate 𝑠1, and then take the
union with the translation of 𝑠2 applied exclusively to the comple-
ment of the zone of 𝑠1.
Summary of simple specs. See Figure 5 for the complete transla-
tion for simple specs.
Translation for guarded specs. A guarded spec is simply an
if-then-else structure that applies different header constraints to
different simple specs. Based on the translation of simple specs, we
define the following evaluation functions for guarded specs (𝒢⟦·⟧)

𝒢⟦𝑠⟧ ≜ 𝒮⟦𝑠⟧
𝒢⟦if(ℎ) {𝑔}⟧ ≜ ℎ ↦→ 𝒢⟦𝑔⟧

𝒢⟦if(ℎ) {𝑔1} else {𝑔2}⟧ ≜ ℎ ↦→ 𝒢⟦𝑔1⟧
∧ !ℎ ↦→ 𝒢⟦𝑔2⟧

6 DECISION PROCEDURE
Rela’s decision procedure models a network change as a set of traffic
equivalence classes (TEC). Given an RIR spec and a network change,
the decision procedure determines whether each TEC in the change
meets the spec. If not all TECs meet the spec, an exhaustive list of
counterexamples will be provided in the form of specific packets
and paths that violate the spec.

6.1 Checking Guarded Specs
To validate a guarded spec against a TEC, we may follow the rules
described in §5.2. Thus, we are left with the problem of checking
whether a pair of path sets𝑀, 𝑁 satisfies a simple spec.

6.2 RIR to Finite-State Automaton (FSA)
To validate an RIR simple spec regarding two sets of paths, we first
construct a finite-state automaton (FSA) from each 𝑃𝑎𝑡ℎ 𝑆𝑒𝑡 and
𝑅𝑒𝑙 expression in the simple spec. Per Kleene’s Theorem, every
regular language can be represented by an FSA that moves from
one state to another in response to the input sequence of symbols.
Similarly, every regular relation can be represented as a finite-state
transducer (FST) [16].

An FST is essentially an FSA that uses two tapes. It may be
viewed as a “translating machine” that reads from an input tape
and writes to the output tape. The following diagram presents an

𝒮⟦𝑠⟧ ≜ PreState ⊲ℛ𝑝𝑟𝑒⟦𝑠⟧ = PostState ⊲ℛ𝑝𝑜𝑠𝑡⟦𝑠⟧

ℛ𝑝𝑟𝑒⟦𝐷 : preserve⟧ ≜ I(𝐷)
ℛ𝑝𝑟𝑒⟦𝐷 : add(𝑃)⟧ ≜ I(𝐷 | 𝑃) | (𝐷 × 𝑃)

ℛ𝑝𝑟𝑒⟦𝐷 : remove(𝑃)⟧ ≜ I(𝐷 \ 𝑃)
ℛ𝑝𝑟𝑒⟦𝐷 : replace(𝑃1, 𝑃2)⟧ ≜ I((𝐷 | 𝑃2) \ 𝑃1)

| ((𝐷 ∩ 𝑃1) × 𝑃2)
ℛ𝑝𝑟𝑒⟦𝐷 : drop⟧ ≜ (𝐷 | 𝑑𝑟𝑜𝑝) × 𝑑𝑟𝑜𝑝

ℛ𝑝𝑟𝑒⟦𝐷 : any(𝑃)⟧ ≜ (𝐷 | 𝑃) × #
ℛ𝑝𝑟𝑒⟦𝑠1𝑠2⟧ ≜ ℛ𝑝𝑟𝑒⟦𝑠1⟧ℛ𝑝𝑟𝑒⟦𝑠2⟧

ℛ𝑝𝑟𝑒⟦𝑠1 >> 𝑠2⟧ ≜ ℛ𝑝𝑟𝑒⟦𝑠1⟧

|
(
I(Z⟦𝑠1⟧) ◦ℛ𝑝𝑟𝑒⟦𝑠2⟧

)
ℛ𝑝𝑜𝑠𝑡⟦𝐷 : preserve⟧ ≜ I(𝐷)

ℛ𝑝𝑜𝑠𝑡⟦𝐷 : add(𝑃)⟧ ≜ I(𝐷 | 𝑃)
ℛ𝑝𝑜𝑠𝑡⟦𝐷 : remove(𝑃)⟧ ≜ I(𝐷)

ℛ𝑝𝑜𝑠𝑡⟦𝐷 : replace(𝑃1, 𝑃2)⟧ ≜ I(𝐷 | 𝑃2)
ℛ𝑝𝑜𝑠𝑡⟦𝐷 : drop⟧ ≜ I(𝐷 | 𝑑𝑟𝑜𝑝)

ℛ𝑝𝑜𝑠𝑡⟦𝐷 : any(𝑃)⟧ ≜ (𝑃 × #) | I(𝐷 \ 𝑃)
ℛ𝑝𝑜𝑠𝑡⟦𝑠1𝑠2⟧ ≜ ℛ𝑝𝑜𝑠𝑡⟦𝑠1⟧ ℛ𝑝𝑜𝑠𝑡⟦𝑠2⟧

ℛ𝑝𝑜𝑠𝑡⟦𝑠1 >> 𝑠2⟧ ≜ ℛ𝑝𝑜𝑠𝑡⟦𝑠1⟧

|
(
I(Z⟦𝑠1⟧) ◦ℛ𝑝𝑜𝑠𝑡⟦𝑠2⟧

)
Z⟦𝐷 : preserve⟧ ≜ 𝐷

Z⟦𝐷 : add(𝑃)⟧ ≜ 𝐷 | 𝑃
Z⟦𝐷 : remove(𝑃)⟧ ≜ 𝐷

Z⟦𝐷 : replace(𝑃1, 𝑃2)⟧ ≜ 𝐷 | 𝑃2
Z⟦𝐷 : drop⟧ ≜ 𝐷 | 𝑑𝑟𝑜𝑝

Z⟦𝐷 : any(𝑃)⟧ ≜ 𝐷 | 𝑃
Z⟦𝑠1𝑠2⟧ ≜ Z⟦𝑠1⟧ Z⟦𝑠2⟧

Z⟦𝑠1 >> 𝑠2⟧ ≜ Z⟦𝑠1⟧ | Z⟦𝑠2⟧

Figure 5: Rela to RIR translation for simple specs (𝒮⟦·⟧).

FST for relation 𝑎 × 𝑏, which translates path 𝑎 into path 𝑏.

𝑞0start 𝑞1
a:b

The label a:b on the arc means 𝑎 should be read from the input tape
and 𝑏 should be written to the output tape.

From small, simple FSAs, like the one above, we can build larger,
more complex ones using standard automaton composition algo-
rithms. In what follows, we sketch some of the algorithms used
to construct Rela-specific symbols and operators. Most other as-
pects of the compilation strategy are well-established and are thus
omitted (see Thompson’s construction [34], for instance).

Relational Network Verification ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

Packet Pre-change paths Post-change paths Cause of violation

(𝑑𝑠𝑡1, 𝑠𝑟𝑐1, 𝑑𝑠𝑐𝑝1) {𝑥1𝐴1𝐵1𝐵2𝐵3𝐷1𝑦1} {𝑥1𝐴1𝐴2𝐴3𝐵3𝐷1𝑦1} e2e: {𝑥1𝐴1𝐴2𝐴3𝐷1𝑦1} ≠ {𝑥1𝐴1𝐴2𝐴3𝐵3𝐷1𝑦1}
(𝑑𝑠𝑡2, 𝑠𝑟𝑐2, 𝑑𝑠𝑐𝑝2) {𝑥2𝐶1𝐵1𝐵2𝐵3𝐷1𝑦2} {𝑥2𝐶1𝐶2𝐷1𝑦2} nochange: {𝑥2𝐶1𝐵1𝐵2𝐵3𝐷1𝑦2} ≠ {𝑥2𝐶1𝐷2𝐷1𝑦2}

Figure 6: A subset of counterexamples generated by Rela when verifying the change implementation in Figure 1c. The first row
shows a flow in traffic class T1, and the second row shows a flow in T2.

PreState and PostState symbols. Conceptually, the input to
the decision procedure contains two sets of forwarding paths that
correspond to PreState and PostState respectively. In practice,
however, the number of ECMP forwarding paths may explode in
a large network. This problem is prominent when forwarding be-
havior is modeled at the interface level, because the network may
employ 10s of parallel links between any two hops to increase ca-
pacity. Indeed, we recorded a flow with 108 interface-level ECMP
paths for our backbone, and it takes several hours just to deserialize
the paths from file input. To address this challenge, Rela defines a
graph format to represent the interface-level input path set. Each
vertex in the graph denotes a router that appears as a forwarding
hop for this traffic, and each directed edge denotes a physical link
that is used to forward this traffic between the two hops. There is
also extra metadata to identify all source vertices and sink vertices
(start and end locations of paths) in the DAG. With this format, the
108 paths of the aforementioned traffic class can be encoded with a
DAG with 38 vertices and 50K edges.

Constructing an FSA for PreState and PostState from the
forwarding graph is straightforward: We turn vertices and edges in
the DAG into FSA states and transitions, respectively. If the user
has specified a coarser granularity than interface-level (e.g., router
level), we do granularity conversion in this step by merging vertices
that belong to the same coarser entity. Next, we add an initial state
𝑞0 and draw an 𝜖-transition from 𝑞0 to each source node identified
by the metadata. Finally, we set all sink nodes to be accepting states
of the FSA.
𝑃1 × 𝑃2 relation. The FST for 𝑃1 × 𝑃2 may be obtained by (1)
translating the FSA for 𝑃1 into an FST that accepts 𝑃1 on its first
tape and 𝜖 on its second, (2) translating the FSA for 𝑃2 to a FST that
accepts 𝑃2 on its second tape and 𝜖 on its first, and (3) concatenating
the results. An illustration of this construction for 𝑎×𝑏 can be found
in figure below (recall that 𝜖 is the empty string).

𝑞0start 𝑞1 𝑞2
𝑎 : 𝜖 𝜖 : 𝑏

I(𝑃) relation. The FST of I(𝑃) is the same as the FSA of 𝑃 except
that each FST transition has an output symbol that duplicates the
input symbol on the same transition.
𝑃 ⊲ 𝑅 image. To obtain the FSA of 𝑃 ⊲ 𝑅, one may compute the
composition of relations I(𝑃) and 𝑅, and then compute the output
projection of I(𝑃) ◦𝑅. The output projection of an FST removes the
input symbols from all transition arcs (while keeping the output
symbols) to derive an FSA from an FST. The composition of two
regular relations 𝑅1 ◦ 𝑅2 may be compiled using standard FST
algorithms [16].

6.3 Compliance Checking
Once we have the FSA representation of both sides of an equation
(𝑃1 = 𝑃2 or 𝑃1 ⊆ 𝑃2 in simple specs), we can check for equality (or
inclusion) using standard automaton equivalence algorithms.

6.4 Counterexample Generation
If previous steps found any TEC that violates an RIR specification,
then we generate an exhaustive list of counterexamples, where each
entry contains a traffic equivalence class (TEC) and a reason that
explains the failure. Figure 6 shows a subset of counterexamples
reported by Rela when verifying the change implementation in
Figure 1c using the change spec in §4. The two entries indicate
incorrect path changes for traffic T1 and collateral damage for T2.

The forwarding paths that violate a simple spec are derived by
extracting paths from the difference of two FSAs. Recall that a Rela
simple spec 𝑠 is translated to an equation of the form 𝑃1 = 𝑃2 in RIR,
where 𝑃1 = PreState ⊲ R𝑝𝑟𝑒⟦𝑠⟧ and 𝑃2 = PostState ⊲ R𝑝𝑜𝑠𝑡⟦𝑠⟧.
The difference 𝑃1\𝑃2 represents the expected forwarding paths that
are missing from the observed post-change network, and 𝑃2 \ 𝑃1
represents the unexpected paths in the post-change network.

For each violating TEC, we generate a reason to help understand
why it failed the spec. For simple specs that are composed using
the >> operator, we can find the exact sub-spec that failed a flow by
matching the flow with the zone of each sub-spec. We then apply
R𝑝𝑟𝑒 and R𝑝𝑜𝑠𝑡 of this sub-spec to the flow’s pre- and post-change
path set, respectively. The difference between the two derived sets
explains the failure of set equation and inclusion assertions made
by the spec. For special symbols introduced by rewriting in the
compilation process, we rewrite them back to their original forms
to make the counterexamples more human-readable. For example,
the before paths in the first row of Figure 6 yield {𝑥1#𝑦1} when
applying R𝑝𝑟𝑒 , where “#” rewrites 𝐴1𝐴2𝐴3𝐷1. After undoing this
rewriting, the “Cause of violation” column clearly shows that the
flow failed the sub-spec e2e, which expected the path set to be
{𝑥1𝐴1𝐴2𝐴3𝐷1𝑦1} after the change. This set is not equal to the
observed path set {𝑥1𝐴1𝐴2𝐴3𝐵3𝐷1𝑦1}.

7 IMPLEMENTATION
We implemented Rela with 6,000 lines of Python code. Rela and RIR
are implemented as domain-specific languages embedded in Python.
The decision procedure uses the OpenFST library [2] and the Python
bindings provided by HFST [24] to construct and compose finite
state automata and transducers.We implemented certain automaton
operations, such as the product relation (𝑃1 × 𝑃2), ourselves using
low-level HFST APIs that manipulate automata directly.

For each traffic equivalence class (TEC), Rela reads the before
and after forwarding paths from file input, which is produced by

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Xu et al.

the network simulator described in §2.3. We modified the simulator
to output forwarding paths in the Rela-defined graph format and
to enable efficient FSA construction for PreState and PostState
expressions (§5.3). Each TEC is processed in parallel.

The Rela source code is publicly available [15].

8 QUALITATIVE EVALUATION
We evaluated Rela qualitatively and quantitatively. This section
presents the qualitative evaluation, which focuses on user experi-
ence. The next section presents a quantitative evaluation of Rela’s
expressiveness and performance. For the qualitative evaluation, we
ran Rela on historical changes to Alibaba Cloud’s backbone. Our
workflow shared the first four steps with the current workflow in
§2.3: simulate pre- and post-change networks, compute forwarding
paths, and aggregate them into equivalence classes. The final step
is different: the forwarding data is given to Rela as input, along
with a spec, and we analyze all equivalence classes rather than just
the diff. We describe how this process played out for the change
in §2.1, compared to the original experience of the engineers, and
then draw lessons from our experience.

8.1 Revisiting the Example Change
For each proposed change (i.e., "iteration"), we used Rela to check
the change against a relational specification.
First iteration. We invoked Rela with the change implementation
v1 (Figure 1b) and the change spec in §4. For this implementation,
the path diff of the manual inspection tool had 17 flow equivalence
classes. Engineers investigated each class and discovered that none
of them corresponded to the desired path change, and all of them
stemmed from either issues with the simulation tool or benign side
effects of the change. The allow-list change on 𝐴2 routers caused
unexpected but acceptable traffic changes.

Rela produced 17 counterexamples for nochange and 15 for e2e.
The 15 violations for e2e clearly signaled that the change failed
to move T1 traffic, as the pre-change and post-change paths were
still the same for such flows. The counterexamples for nochange
are the same as those reported by the path diff tool. To automati-
cally exclude such benign violations in future iterations (and avoid
triaging them again), we extended the spec with a new component
called sideEffects, to explicitly permit such changes.
Second iteration. In the second iteration, we provided the change
implementation v2 (Figure 1c) and the refined spec. For this im-
plementation, the current path diff tool produced a path diff with
46 flow equivalence classes. Engineers waded through them to dis-
cover the collateral damage and, because of information overload,
missed that the change to T1 traffic was incorrect.

Rela produced 15 counterexamples for e2e, 24 for nochangeand
0 for sideEffects. The violations signaled that changes to T1
traffic were wrong and that there was collateral damage as well.
The refined sideEffects spec helped suppress benign differences.
Final iteration. Because Rela discovered two errors at the same
time, we skipped the third iteration (which was needed during the
original manual analysis), and jumped straight to the final iteration.
In this iteration, we supply the correct change implementation to
Rela and the refined spec. Rela validated the change automatically

and completely. In contrast, in their original debugging effort, the
engineers had to manually inspect the path diff to certify the change.

8.2 Lessons Learned
Based on our experience with Rela, we draw these lessons:

(1) Rela’s categorization of violations based on which sub-spec
is violated speeds up error diagnosis and reduces the num-
ber of iterations. Errors are quickly diagnosed because the
violated sub-spec provides strong hints about the root cause;
the types of errors that violate nochange are different from
those that violate e2e. The number of iterations is reduced
because multiple errors in an implementation are easier to
spot, especially when spread across different sub-specs. With
manual inspection, when analyzing a big bag of path diffs, it
is hard to spot multiple errors.

(2) Rela specs may need refinement because the original change
intent (in natural language) is under-specified or the network
is not configured as expected. Under-specification and unex-
pected behaviors are common for large networks. However,
while the effort put into a manual audit is hard to reuse, the
effort put into refining a Rela spec pays off. The refined spec
saves work during future iterations of the same change or
other similar changes. Multiple changes of the same type are
a common occurrence for production networks.

(3) When a change (sub) spec does not match an implementation,
there is less data to analyze. Change implementations are of-
ten partially correct, and Rela produces only violations. The
current path diff contains both compliant and non-compliant
changes. The engineers must analyze both to find violations.

(4) When the change spec matches the implementation, the engi-
neers need to do nothing. They can have greater confidence
in the change compared to manually inspecting the path diff.

9 QUANTITATIVE EVALUATION
To quantify the expressiveness and performance of Rela, we apply
it to a set of real network changes in the global backbone of Alibaba
Cloud. This dataset has all changes that were reviewed by the
network’s technical committee from Jun 2023 to Jan 2024. The
committee reviews all high-risk, complex changes. There are 10s of
changes in the dataset. We omit the exact count for confidentiality.
Appendix A lists a subset of these changes and their Rela specs.

9.1 Expressiveness
We used Rela to specify the engineers’ intent for each change in
the dataset. We determined the intent by examining change tickets,
which contain a description of the intent in natural language as
well as a change implementation plan. The tickets describe change
intents pertaining to the network data plane as well as those of
other aspects, such as configuration settings and route attributes.
Change 3 in Appendix A, which modifies BGP communities, is an
example change whose full intent includes aspects beyond the data
plane intent. We focused on data plane change intents. All changes
in our dataset have a data plane change intent, and three in four
have only data plane change intents.

Relational Network Verification ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

0 10 20 30 40
Number of Atomic Specs

0.0

0.2

0.4

0.6

0.8

1.0
CD

F

Figure 7: Distribution of spec size in our dataset.

We found that Rela can specify the intended data plane change
for 97% of the changes in our dataset. That Rela can support this
high a fraction of high-risk changes in a large, complex network is
a highly encouraging indicator of its expressiveness.

For the remaining 3% of the changes, Rela could only partially
specify the intended data plane change. Rela’s key current limitation
is a lack of support for path counting: In addition to path shape,
users sometimes want to limit the number of paths that a flow can
take. For example, because of router hardware limits, one might
not want the number of ECMP (equal cost multipath routing) paths
for a flow to exceed 128. We will explore supporting such intents in
the future by generalizing the any modifier to include a path count.

To assess the compactness of specifications, we quantify their
size as the number of atomic Rela specs (of the form r: m). This
analysis excludes any spec refinement that may be needed to ac-
commodate benign side effects (§8.1); we do not have the data to
make that determination. Figure 7 shows a cumulative distribution
function (CDF) of the number of atomic specs needed across all
changes. The vast majority of the changes (93%) can be expressed
with fewer than 10 atomic specs. The outliers correspond to in-
frequent changes to the backbone’s routing architecture in which
significant traffic carried by the network is shifted.

Half the changes require only one atomic spec, corresponding to
no expected impact on the forwarding behavior. It may seem odd at
first that so many high-risk changes fall into this bucket. But fully
preserving forwarding behavior while something is changed under
the hood (e.g., modifying the routing policy to replace concrete
routes with aggregate routes or standardizing on community tags)
is common. It is also high-risk. Indeed, there are changes in our data
where no behavior change was expected but the path diff revealed
forwarding changes that could have led to an outage.

9.2 Performance
Webenchmark Rela’s performance using the time to validate changes
in our dataset, including the time to deserialize the forwarding path
data, FSA/FST construction and equivalence checking. This exper-
iment was done on a computer with 96 CPU cores and 768 GB
DRAM. Because we did not have access to the precise data plane
states of historical changes, we ran all specs on the same data plane
state produced by a recent snapshot. We release a subset of this
data plane state [11]. Appendix B has details on its content.

102 103 104

Time (sec)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Figure 8: Time (log scale) to validate changes with Rela.

N=1 N=4 N=7 N=13 N=37
Number of Atomic Specs

102

103

104

Ti
m

e
(s

ec
)

Router group
Router
Interface

Figure 9: Rela’s validation time (log scale) for different spec
sizes and location granularity.

Figure 8 shows a CDF of the validation time. Half of the changes
take 93 seconds, which is the time to check the "no change" spec.
Four in five changes need less than 20 minutes, and the most com-
plex change needs 150 minutes. For context, we observe that it
takes 140 minutes to simulate both network snapshots and com-
pute forwarding paths. We conclude from these results that the
performance of Rela is acceptable for the backbone network, espe-
cially considering how long manual inspection takes today.

Diving deeper into Rela’s performance, we find that the two
most important factors are the size of the spec (number of atomic
specs) and the location granularity. Figure 9 shows this impact by
running specs in our data at different granularities. (Figure 8 used
the granularity indicated by the change intent, so it has a mix.) We
exclude granularity-size combinations that need over 3 hours.

We see that validation time grows with the spec size, and finer
granularity analysis takes more time (as expected). The impact
of going from the router group level to the router level is small,
but the impact of going to the interface level is substantial (10x),
due to the substantially higher number of paths at the interface
level. Fortunately, under 4% of the changes in our data require
interface-level granularity. 7% require device-level.

10 RELATEDWORK
Our work builds on the foundation laid by single-snapshot verifi-
cation tools [1, 3, 9, 17–19, 21–23, 25, 26, 36, 37]. The application

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Xu et al.

of these tools to real-world networks has improved reliability and
provided insights into the problems they do and do not solve. We
act upon one such insight: that many large, real-world networks
are difficult to specify accurately in their entirety. Without such
single-snapshot specifications, engineers need different kinds of
tools to help them validate network changes automatically.

Differential network analysis (DNA) [39] shares our perspec-
tive on network verification—that it is crucial to track similarities
and differences between pre- and post-change networks. It sim-
ulates the pair of pre- and post-change control planes efficiently
to generate differences in their data plane states. (Rela makes no
contributions to control plane simulation.) In addition to show-
ing path diffs, DNA can generate differences in single-snapshot
invariants, e.g., "A can reach B in the pre-change network but not
the post-change network." Engineers must manually inspect the
path and invariant diffs to determine whether or not they indicate
errors. In contrast, Rela specifications characterize what constitutes
an error, and our decision procedures check these specifications
automatically. Importantly, Rela’s specifications can be perfectly
precise, more precise than "A can reach B"—any specific path or
regular set of paths may be specified. This precision takes manual
audits completely out of the loop when changes are conformant.

Batfish supports differential analysis as well [8]. It independently
analyzes two snapshots and formats the output such that the differ-
ences are easier to analyze. Like DNA, it requires humans to certify
correctness and does not have a relational spec. Once again, Rela
improves on this situation using a relational specification language
and deciding the validity of specifications without human auditing.

Our language design is inspired in part by NetKAT [3], which
has shown that using regular languages (Kleene algebra) is an effec-
tive way to specify network behavior. Rela builds on this idea and
uses regular relations in addition to regular languages to express
differences and similarities between pairs of networks.

Researchers have explored relational verification for ordinary
programs many times in the past [7, 12, 14]. The archetypal goal
here is to verify that the two programs are equivalent. At least su-
perficially, the techniques for relational program verification differ
from those in Rela. A common method is to consider a “product”
program that combines two input programs and verify the safety
properties of this product. An interesting avenue for future work is
to consider whether specific relational program verification tech-
niques can help us verify networks more efficiently or vice versa.

11 SUMMARY
We develop the concept of relational network verification and real-
ize it in the Rela tool for validating network changes. Our key obser-
vation is that relational specifications can compactly and precisely
capture change intents; they need only express what is expected to
change, which is often a miniscule fraction of the overall network,
and simply say "no change" for the rest. For a global backbone with
over 103 routers, 93% of the high-risk changes need fewer than 10
terms and 80% of them can be validated in under 20 minutes.

While we focus on change verification, we expect that relational
reasoning for networks will prove effective in other contexts as well.
For instance, it could help verify if two parts (e.g., two geographic
regions) of the same snapshot are similar modulo a few exceptions.

It could also compactly describe a large network for the purposes
of synthesis by describing a baseline network behavior and local
modifications to the behavior. We look forward to exploring other
applications of relational network analysis.

Acknowledgements. We thank the SIGCOMM reviewers and our
shepherd Dave Maltz for feedback that helped improve this paper.
This work was supported in part by NSF awards 2007073, 2219862,
and 2219863 and by the partners of UW FOCI.

Ethics. This work does not raise any ethical issues.

REFERENCES
[1] Anubhavnidhi Abhashkumar, Aaron Gember-Jacobson, and Aditya Akella. 2020.

Tiramisu: Fast Multilayer Network Verification. In Proceedings of NSDI 20. USENIX
Association, 201–219.

[2] Cyril Allauzen, Michael Riley, Johan Schalkwyk, Wojciech Skut, and Mehryar
Mohri. 2007. OpenFst: A General and Efficient Weighted Finite-State Transducer
Library: (Extended Abstract of an Invited Talk). In Implementation and Application
of Automata: 12th International Conference, CIAA 2007, Praque, Czech Republic,
July 16-18, 2007, Revised Selected Papers 12. Springer, 11–23.

[3] Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jeannin, Dexter
Kozen, Cole Schlesinger, and David Walker. 2014. NetKAT: Semantic Foundations
for Networks. In Proceedings of POPL ’14. ACM, 113–126.

[4] Mae Anderson. 2014. Time Warner Cable Says Outages Largely Re-
solved. http://www.seattletimes.com/business/time-warner-cable-
says-outages-largely-resolved. (2014). Retrieved June 23, 2021 from
http://www.seattletimes.com/business/time-warner-cable-says-outages-
largely-resolved

[5] John Backes, Sam Bayless, Byron Cook, Catherine Dodge, Andrew Gacek, Alan J
Hu, Temesghen Kahsai, Bill Kocik, Evgenii Kotelnikov, Jure Kukovec, et al. 2019.
Reachability analysis for AWS-based networks. In International Conference on
Computer Aided Verification. Springer, 231–241.

[6] Gilles Barthe. 2020. An introduction to relational program verification. (2020). Re-
trieved Feb 2, 2024 from https://software.imdea.org/~gbarthe/__introrelver.pdf

[7] Gilles Barthe, Juan Manuel Crespo, and César Kunz. 2011. Relational Verification
Using Product Programs. In FM 2011: FormalMethods, Michael Butler andWolfram
Schulte (Eds.).

[8] batfish-differential 2022. Differential Questions. (2022). Retrieved Feb 2, 2024 from
https://batfish.readthedocs.io/en/latest/notebooks/differentialQuestions.html

[9] Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker. 2017. A General
Approach to Network Configuration Verification. In Proceedings of SIGCOMM
’17. ACM, 155–168.

[10] Ryan Beckett and Ratul Mahajan. 2020. Capturing the state of research on
network verification. (2020). Retrieved Feb 2, 2024 from https://netverify.fun/2-
current-state-of-research/

[11] Anonymized benchmarking data. [n. d.]. ([n. d.]). Retrieved June 8, 2024 from
https://github.com/alibaba/rela/tree/main/dataset

[12] Nick Benton. 2004. Simple relational correctness proofs for static analyses and
program transformations. In POPL.

[13] Matt Brown, Ari Fogel, Daniel Halperin, Victor Heorhiadi, Ratul Mahajan, and
Todd Millstein. 2023. Lessons from the Evolution of the Batfish Configuration
Analysis Tool. In Proceedings of SIGCOMM ’23. ACM, 122–135.

[14] Jia Chen, Jiayi Wei, Yu Feng, Osbert Bastani, and Isil Dillig. 2019. Relational
verification using reinforcement learning. In OOPSLA.

[15] Rela Source Code. 2024. (2024). Retrieved June 3, 2024 from https://github.com/
alibaba/rela

[16] C. C. Elgot and J. E. Mezei. 1965. On relations defined by generalized finite au-
tomata. IBM J. Res. Dev. 9, 1 (jan 1965), 47–68. https://doi.org/10.1147/rd.91.0047

[17] Seyed K. Fayaz, Tushar Sharma, Ari Fogel, Ratul Mahajan, Todd Millstein, Vyas
Sekar, and George Varghese. 2016. Efficient Network Reachability Analysis Using
a Succinct Control Plane Representation. In Proceedings of (OSDI 16. USENIX
Association, 217–232.

[18] Ari Fogel, Stanley Fung, Luis Pedrosa, Meg Walraed-Sullivan, Ramesh Govindan,
Ratul Mahajan, and Todd Millstein. 2015. A General Approach to Network
Configuration Analysis. In Proceedings of NSDI 15. USENIX Association, 469–
483.

[19] Aaron Gember-Jacobson, Raajay Viswanathan, Aditya Akella, and Ratul Maha-
jan. 2016. Fast Control Plane Analysis Using an Abstract Representation. In
Proceedings of SIGCOMM ’16. ACM, 300–313.

[20] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. 2006. Introduction to
Automata Theory, Languages, and Computation (3rd Edition). Addison-Wesley
Longman Publishing Co., Inc., USA.

http://www.seattletimes.com/business/time-warner-cable-says-outages-largely-resolved
http://www.seattletimes.com/business/time-warner-cable-says-outages-largely-resolved
http://www.seattletimes.com/business/time-warner-cable-says-outages-largely-resolved
http://www.seattletimes.com/business/time-warner-cable-says-outages-largely-resolved
https://software.imdea.org/~gbarthe/__introrelver.pdf
https://batfish.readthedocs.io/en/latest/notebooks/differentialQuestions.html
https://netverify.fun/2-current-state-of-research/
https://netverify.fun/2-current-state-of-research/
https://github.com/alibaba/rela/tree/main/dataset
https://github.com/alibaba/rela
https://github.com/alibaba/rela
https://doi.org/10.1147/rd.91.0047

Relational Network Verification ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

[21] Karthick Jayaraman, Nikolaj Bjørner, Jitu Padhye, Amar Agrawal, Ashish Bhar-
gava, Paul-Andre C Bissonnette, Shane Foster, AndrewHelwer, Mark Kasten, Ivan
Lee, Anup Namdhari, Haseeb Niaz, Aniruddha Parkhi, Hanukumar Pinnamraju,
Adrian Power, Neha Milind Raje, and Parag Sharma. 2019. Validating Datacenters
at Scale. In Proceedings of SIGCOMM ’19. ACM, 200–213.

[22] Peyman Kazemian, George Varghese, and Nick McKeown. 2012. Header Space
Analysis: Static Checking for Networks. In Proceedings of NSDI 12. USENIX
Association, 113–126.

[23] Ahmed Khurshid, Xuan Zou, Wenxuan Zhou, Matthew Caesar, and P Brighten
Godfrey. 2013. Veriflow: Verifying network-wide invariants in real time. In
Proceedings of NSDI 13. USENIX Association, 15–27.

[24] Krister Lindén, Miikka Silfverberg, and Tommi Pirinen. 2009. Hfst tools for
morphology–an efficient open-source package for construction of morphological
analyzers. In State of the Art in Computational Morphology: Workshop on Systems
and Frameworks for Computational Morphology, SFCM 2009, Zurich, Switzerland,
September 4, 2009. Proceedings. Springer, 28–47.

[25] Haohui Mai, Ahmed Khurshid, Rachit Agarwal, Matthew Caesar, P. Brighten
Godfrey, and Samuel Talmadge King. 2011. Debugging the Data Plane with
Anteater. In Proceedings of SIGCOMM ’11. ACM, 290–301.

[26] Santhosh Prabhu, Kuan Yen Chou, Ali Kheradmand, Brighten Godfrey, and
Matthew Caesar. 2020. Plankton: Scalable network configuration verification
through model checking. In Proceedings of NSDI 20. USENIX Association, 953–
967.

[27] Steve Ragan. 2016. BGP errors are to blame for Monday’s Twit-
ter outage, not DDoS attacks. (2016). Retrieved June 23, 2021
from https://www.csoonline.com/article/3138934/security/bgp-errors-are-to-
blame-for-monday-s-twitter-outage-not-ddos-attacks.html

[28] Deon Roberts. 2018. It’s been a week and customers are still mad at BB&T. (2018).
Retrieved June 23, 2021 from https://www.charlotteobserver.com/news/business/
banking/article202616124.html

[29] Mike Robuck. 2020. Due to a router misconfiguration, Cloudflare suf-
fers short outage on Friday. (2020). Retrieved Feb 23, 2022 from
https://www.fiercetelecom.com/telecom/due-to-a-router-misconfiguration-
cloudflare-suffers-short-outage-friday

[30] Yu-Wei Eric Sung, Xiaozheng Tie, Starsky H.Y. Wong, and Hongyi Zeng. 2016.
Robotron: Top-down Network Management at Facebook Scale. In Proceedings of
SIGCOMM ’16. ACM, 426–439.

[31] Yevgeniy Sverdlik. 2014. Microsoft Says Config Change Caused Azure Outage.
(2014). Retrieved Feb 23, 2022 from https://www.datacenterknowledge.com/
archives/2014/11/20/microsoft-says-config-change-caused-azure-outage

[32] Yevgeniy Sverdlik. 2017. United Says IT Outage Resolved, Dozen
Flights Canceled Monday. (2017). Retrieved June 23, 2021 from
https://www.datacenterknowledge.com/archives/2017/01/23/united-says-
it-outage-resolved-dozen-flights-canceled-monday

[33] Cisco Systems. 2021. Overview of Netflow. (2021). Retrieved Feb 2, 2024
from https://www.cisco.com/c/dam/en/us/td/docs/routers/asr920/configuration/
guide/netmgmt/fnf-xe-3e-asr920-book.html

[34] Ken Thompson. 1968. Programming Techniques: Regular expression search
algorithm. Commun. ACM 11, 6 (jun 1968), 419–422. https://doi.org/10.1145/
363347.363387

[35] Zach Whittaker. 2020. T-Mobile hit by phone calling, text message outage.
(2020). Retrieved June 23, 2021 from https://techcrunch.com/2020/06/15/t-mobile-
calling-outage/

[36] Hongkun Yang and Simon S. Lam. 2016. Real-time Verification of Network
Properties Using Atomic Predicates. IEEE/ACM Trans. Netw. 24, 2 (April 2016),
887–900.

[37] Fangdan Ye, Da Yu, Ennan Zhai, Hongqiang Harry Liu, Bingchuan Tian, Qiaobo
Ye, Chunsheng Wang, Xin Wu, Tianchen Guo, Cheng Jin, Duncheng She, Qing
Ma, Biao Cheng, Hui Xu, Ming Zhang, Zhiliang Wang, and Rodrigo Fonseca.
2020. Accuracy, Scalability, Coverage: A Practical Configuration Verifier on a
Global WAN. In Proceedings of SIGCOMM ’20. ACM, 599–614.

[38] Hongyi Zeng, Shidong Zhang, Fei Ye, Vimalkumar Jeyakumar, Mickey Ju, Junda
Liu, Nick McKeown, and Amin Vahdat. 2014. Libra: Divide and Conquer to
Verify Forwarding Tables in Huge Networks. In Proceedings of NSDI 14. USENIX
Association, 87–99.

[39] Peng Zhang, Aaron Gember-Jacobson, Yueshang Zuo, Yuhao Huang, Xu Liu, and
Hao Li. 2022. Differential network analysis. In Proceedings of NSDI 22. USENIX
Association, 601–615.

https://www.csoonline.com/article/3138934/security/bgp-errors-are-to-blame-for-monday-s-twitter-outage-not-ddos-attacks.html
https://www.csoonline.com/article/3138934/security/bgp-errors-are-to-blame-for-monday-s-twitter-outage-not-ddos-attacks.html
https://www.charlotteobserver.com/news/business/banking/article202616124.html
https://www.charlotteobserver.com/news/business/banking/article202616124.html
https://www.fiercetelecom.com/telecom/due-to-a-router-misconfiguration-cloudflare-suffers-short-outage-friday
https://www.fiercetelecom.com/telecom/due-to-a-router-misconfiguration-cloudflare-suffers-short-outage-friday
https://www.datacenterknowledge.com/archives/2014/11/20/microsoft-says-config-change-caused-azure-outage
https://www.datacenterknowledge.com/archives/2014/11/20/microsoft-says-config-change-caused-azure-outage
https://www.datacenterknowledge.com/archives/2017/01/23/united-says-it-outage-resolved-dozen-flights-canceled-monday
https://www.datacenterknowledge.com/archives/2017/01/23/united-says-it-outage-resolved-dozen-flights-canceled-monday
https://www.cisco.com/c/dam/en/us/td/docs/routers/asr920/configuration/guide/netmgmt/fnf-xe-3e-asr920-book.html
https://www.cisco.com/c/dam/en/us/td/docs/routers/asr920/configuration/guide/netmgmt/fnf-xe-3e-asr920-book.html
https://doi.org/10.1145/363347.363387
https://doi.org/10.1145/363347.363387
https://techcrunch.com/2020/06/15/t-mobile-calling-outage/
https://techcrunch.com/2020/06/15/t-mobile-calling-outage/

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Xu et al.

APPENDIX
Appendices are supporting material that has not been peer-
reviewed.

A EXAMPLE CHANGES AND RELA SPECS
We present ten example changes, drawn from the dataset in §9, and
their Rela specs. Various aspects of these specifications, such as
locations and IP addresses, have been anonymized.

Change 1: Disabling certain internal forwarding paths. Net-
work engineers want to disable forwarding paths inside the back-
bone network from region A to region B for certain prefixes, such
that traffic to these prefixes will exit the backbone network via
exit2 in region A and take another path to region B, as requested
by users. No other traffic should be affected. The implementation of
the change modifies the configurations on the iBGP route reflectors
in region B, such that the iBGP announcements from region B to
region A with related prefixes will be denied by routing policies.

The intent of this change can be expressed in Rela as:
regex a := where(region =="A")

regex b := where(region =="B")

spec change1 := if (dst in 1.1.1.0/24) {

a* : preserve;

b*exit1 : replace (.*, exit2);

>>

.* : preserve;

} else {

.* : preserve;

}

The granularity of this spec is device group level.

Change 2: Expanding a device group. Network engineers want
to expand a device group from 𝑛 routers to 2𝑛 routers, such that
traffic that traversed one or more pre-existing routers should now
go through one or more routers in the new group. No other traffic
should be affected.

The intent of this change can be expressed in Rela as:
regex dg_old := r_1 |...| r_n

regex dg_new := r_1 |...| r_2n

spec change2 := {

.* : preserve;

dg_old : any(dg_new);

.* : preserve;

>>

.* : preserve;

}

The granularity of this spec is device level.

Change 3: Adding community tag to certain BGPprefixes.Net-
work engineers want to add a new community tag to certain BGP
routes. The implementation involves changing the export routing
policy in the configurations of border routers. Despite the changes
to routing policies, engineers want to ensure that no existing flow
changes its paths at the device level.

The intent of this change can be expressed in Rela as:

spec change3 := .* : preserve;

The granularity of this spec is device level.

Change 4: Publishing a new internal IP prefix. Network engi-
neers want to establish connectivity from certain source datacen-
ters (S1, etc.) to a particular destination datacenter (D) for a newly
assigned IP prefix (e.g., 1.1.1.0/24).

The intent of this change can be expressed in Rela as:
regex s := where(datacenter =="S1") | ...

regex d := where(datacenter =="D")

spec change4 := if (dst in 1.1.1.0/24) {

.* : any(s.*d);

} else {

.* : preserve;

}

The granularity of this spec is device group level.

Change 5: Shifting traffic to new interconnection routers.
Network engineers want to shift traffic that leaves three regions
(R1, R2, R3) from an old set of interconnection routers (i1, i2, i3),
which denote the device group that serves this purpose in the
three regions respectively, to a new set of router groups (i1’, i2’,
i3’). The traffic between these three regions should be shifted from
interconnection links such as i1-i2 to new links such as i1’-i2’, while
traffic to regions other than R1, R2 and R3 should exit via the same
border routers as before. As always, traffic in other parts of the
backbone should not be affected by this change.

The intent of this change can be expressed in Rela as:
spec change5 := {

region1 : preserve;

i1 : replace(i1, i1 ');

border1 .* : preserve;

>>

region1 : preserve;

i1i2 : replace(i1i2 , i1 'i2 ');

region2* : preserve;

>>

region1 : preserve;

i1i3 : replace(i1i3 , i1 'i3 ');

region3* : preserve;

>>

...

/*

3 specs for R2->R2, R2->R1, R2->R3 flows

3 specs for R3->R3, R3->R1, R3->R2 flows

*/

...

>>

.* : preserve;

}

The granularity of this spec is device group level.

Change 6: Shrinking edge links. Network engineers want to
shrink the capacity of an edge link connected to an external peer.

Relational Network Verification ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

This is implemented by disconnecting some of the parallel links
connected to this peer.

The intent of this change can be expressed in Rela as:
spec change6 := {

.* : preserve;

exits_old : any(exits_new);

}

The granularity of this spec is interface level. But our evaluation
uses a device-level version because the network simulation tool
does not retain information about exit interfaces.

Change 7: Upgrading router firmware. Network engineers want
to upgrade the firmware of a router. After the upgrade, the configu-
ration syntax was updated by the manufacturer, and thus engineers
updated the configuration content accordingly. In such cases, it
is critical to check that the forwarding behaviors are equivalent
before and after the change.
spec change7 := .* : preserve;

The granularity of this spec can be at any level. Finer-grained specs
may catch more errors, but will have a higher computational cost.

Change 8: Shifting local traffic. Network engineers want to
disable the link between a high-tier router group H1 and its low-
tier neighbor router group L1, and they would like the H1-L1 traffic
to detour via L1’s sibling group L2, i.e., H1-L2-L1.

The intent of this change can be expressed in Rela as:
spec change8 := {

.* : preserve;

H1L1 : any(H1L2L1);

.* : preserve;

>>

.* : preserve;

L1H1 : any(L1L2H1);

.* : preserve;

>>

.* : preserve;

}

The granularity of this spec is device level.

Change 9: Fixing IGP cost. Network engineers want to lower the
IGP (interior gateway protocol) cost of the link between R1 and
R2, such that traffic will go through direct R1-R2 link instead of
detouring via other routers.

The intent of this change can be expressed in Rela as:
spec change9 := {

.* : preserve;

R1.*R2 : replace(R1.*R2, R1R2);

.* : preserve;

>>

.* : preserve;

}

The granularity of this spec is device level.

Change 10: Modifying topology. Network engineers aim to mod-
ify the topology such that a low-tier router group L is connected
to mid-tier router group M. The router group L was originally
connected to a high-tier router group H before the change.

The intent of this change can be expressed in Rela as:

spec change10 := {

.* : preserve;

LHM : any(LM);

.* : preserve;

>>

.* : preserve;

LH : any(LMH);

.* : preserve;

>>

.* : preserve;

MHL : any(ML);

.* : preserve;

>>

.* : preserve;

HL : any(HML);

.* : preserve;

>>

.* : preserve;

}

The granularity of this spec is device group level.

B PERFORMANCE EVALUATION DATASET
We released a subset of the data plane generated by simulation of the
same backbone network as studied in §9 [11]. It contains 22,000 traf-
fic equivalent classes (TECs) and the the set of packets used for sim-
ulation, the before-change forwarding paths, and the after-change
forwarding paths of each TEC. Router names, interface names, and
IP addresses in the dataset have been anonymized for confidential-
ity. This dataset works out-of-the-box with the open-sourced Rela
tool [15] and can be used to benchmark the performance of Rela or
other change validation tools. But because it contains only a subset
of TECs compared to what we used in §9, while it can be used to
benchmark per-TEC verification performance, it will produce the
same results as §9. Total verification time grows in proportion to
the number of TECs in the change.

	Abstract
	1 Introduction
	2 Network Changes Today
	2.1 An Example Change
	2.2 Just Verify It?
	2.3 Back to Manual Inspection

	3 A New Approach:Relational Network Verification
	4 Rela by Example
	5 Formalizing Rela specifications
	5.1 Rela Syntax
	5.2 Regular IR (RIR)
	5.3 Compilation from Rela to RIR

	6 Decision procedure
	6.1 Checking Guarded Specs
	6.2 RIR to Finite-State Automaton (FSA)
	6.3 Compliance Checking
	6.4 Counterexample Generation

	7 Implementation
	8 Qualitative Evaluation
	8.1 Revisiting the Example Change
	8.2 Lessons Learned

	9 Quantitative Evaluation
	9.1 Expressiveness
	9.2 Performance

	10 Related Work
	11 Summary
	References
	A Example changes and Rela specs
	B Performance Evaluation Dataset

