
Slim: OS Kernel Support for a Low-Overhead Container Overlay Network

Danyang Zhuo Kaiyuan Zhang Yibo Zhu†∗ Hongqiang Harry Liu#

Matthew Rockett Arvind Krishnamurthy Thomas Anderson

University of Washington † Microsoft Research # Alibaba

Abstract
Containers have become the de facto method for hosting
large-scale distributed applications. Container overlay net-
works are essential to providing portability for containers,
yet they impose significant overhead in terms of throughput,
latency, and CPU utilization. The key problem is a reliance
on packet transformation to implement network virtualiza-
tion. As a result, each packet has to traverse the network
stack twice in both the sender and the receiver’s host OS
kernel. We have designed and implemented Slim, a low-
overhead container overlay network that implements net-
work virtualization by manipulating connection-level meta-
data. Our solution maintains compatibility with today’s con-
tainerized applications. Evaluation results show that Slim
improves the throughput of an in-memory key-value store by
71% while reducing the latency by 42%. Slim reduces the
CPU utilization of the in-memory key-value store by 56%.
Slim also reduces the CPU utilization of a web server by
22%-24%, a database server by 22%, and a stream process-
ing framework by 10%.

1 Introduction
Containers [6] have quickly become the de facto method to
manage and deploy large-scale distributed applications, in-
cluding in-memory key-value stores [32], web servers [36],
databases [45], and data processing frameworks [1, 26].
Containers are attractive because they are lightweight and
portable. A single physical machine can easily host more
than ten times as many containers as standard virtual ma-
chines [30], resulting in substantial cost savings.

Container overlay networks—a key component in provid-
ing portability for distributed containerized applications—
allow a set of containers to communicate using their own
independent IP addresses and port numbers, no matter where
they are assigned or which other containers reside on the
same physical machines. The overlay network removes the
burden of coordinating ports and IP addresses between ap-
plication developers, and vastly simplifies migrating legacy
enterprise applications to the cloud [14]. Today, container
orchestrators, such as Docker Swarm [9], require the usage
of overlay network for hosting containerized applications.

∗Yibo now works at Bytedance.

a)

KernelContainer

Overlay Network
Stack

vSwitch

Kernel Container

Overlay Network
Stack

Host Network
Stack

ApplicationApplication

Host Network
Stack

b)

HypervisorVM

Overlay Network
Stack

Hypervisor VM

Application Host Network
Stack

vSwitch

vSwitch

Host Network
Stack

vSwitch Overlay Network
Stack

Application

Figure 1: Packet flow in: (a) today’s container overlay net-
works, (b) overlay networks for virtual machines.

However, container overlay networks impose significant
overhead. Our benchmarks show that, compared to a host
network connection, the throughput of an overlay network
connection is 23-48% less, the packet-level latency is 34-
85% higher, and the CPU utilization is 93% more. (See
§2.2.) Known optimization techniques (e.g., packet steer-
ing [40] and hardware support for virtualization [22, 14])
only partly address these issues.

The key problem is that today’s container overlay net-
works depend on multiple packet transformations within the
OS for network virtualization (Figure 1a). This means each
packet has to traverse network stack twice and also a virtual
switch on both the sender and the receiver side. Take sending
a packet as an example. A packet sent by a container appli-
cation first traverses the overlay network stack on the virtual
network interface. The packet then traverses a virtual switch
for packet transformation (e.g, adding host network head-
ers). Finally, the packet traverses the host network stack, and
is sent out on the host network interface. On the receiving
server, these layers are repeated in the opposite order.

This design largely resembles the overlay network for vir-
tual machines (Figure 1b). Because a virtual machine has its
own network stack, the hypervisor has to send/receive raw
overlay packets without the context of network connections.
However, for containers, the OS kernel has full knowledge
of each network connection.

In this paper, we ask whether we can design and imple-
ment a container overlay network, where packets go through



the OS kernel’s network stack only once. This requires us
to remove packet transformation from the overlay network’s
data-plane. Instead, we implement network virtualization by
manipulating connection-level metadata at connection setup
time, saving CPU cycles and reducing packet latency.

Realizing such a container overlay network is challenging
because: (1) network virtualization has to be compatible with
today’s unmodified containerized applications; (2) we need
to support the same networking policies currently enforced
by today’s container overlay network on the data-plane; and
(3) we need to enforce the same security model as in today’s
container overlay networks.

We design and implement Slim, a low-overhead container
overlay network that provides network virtualization by ma-
nipulating connection-level metadata. Our evaluations show
that Slim improves the throughput of an in-memory key-
value store, Memcached [32], by 71% and reduces its latency
by 42%, compared to a well-tuned container overlay net-
work based on packet transformation. Slim reduces the CPU
utilization of Memcached by 56%. Slim also reduces the
CPU utilization of a web server, Nginx [36], by 22%-24%;
a database server, PostgreSQL [45], by 22%; and a stream
processing framework, Apache Kafka [1, 26], by 10%. How-
ever, Slim adds complexity to connection setup, resulting
in 106% longer connection setup time. Other limitations of
Slim: Slim supports quiescent container migration, but not
container live migration; connection-based network policies
but not packet-based network policies; and TCP, defaulting
to standard processing for UDP sockets. (See §7.)

The paper makes the following contributions:

• Benchmarking of existing container overlay network
with several data-plane optimizations. We identify per-
packet processing costs (e.g., packet transformation, ex-
tra traversal of network stack) as the main bottleneck in
today’s container overlay network. (See §2.2, §2.3.)
• Design and implementation of Slim, a solution that ma-

nipulates connection-level metadata to achieve network
virtualization. Slim is compatible with today’s con-
tainerized applications and standard OS kernels. Slim
supports various network policies and guarantees the
same security model as that of today’s container overlay
network. (See §4.)
• Demonstration of the benefits of Slim for a wide range

of popular containerized applications, including an in-
memory key-value store, a web server, a database
server, and a stream processing framework. (See §6.)

Fundamentally, Slim integrates efficient virtualization into
the OS kernel’s networking stack. A modern OS kernel al-
ready has efficient native support to virtualize file systems
(using mount namespace) and other OS components (e.g.,
process id, user group). The network stack is the remaining
performance gap for efficient container virtualization. Slim
bridges this gap.

Mode Applications use Routing uses

Bridge Container IP –
Host Host IP Host IP
Macvlan Container IP Container IP
Overlay Container IP Host IP

Table 1: Container networking mode comparison.

2 Background
We first describe the architecture of traditional container
overlay networks and why they are useful for containerized
applications. We then quantify the overhead of today’s con-
tainer overlay network solutions in terms of throughput, la-
tency, and CPU utilization. Finally, we show that the over-
head is significant even after applying known overhead re-
duction techniques (e.g., packet steering [40]).

2.1 Container Overlay Network
Containers typically have four options for communication:
bridge mode, host mode, macvlan mode, and overlay mode.
Table 1 shows the comparison between different modes in
terms of the IP addresses used by containerized applications
and routing in the host network. Bridge mode is used exclu-
sively for containers communicating on the same host. With
bridge mode, each container has an independent IP address,
and the OS kernel routes traffic between different containers.

How can we enable communication between containers
on different hosts? With host mode, containers directly use
the IP address of their host network interface. The network
performance of host mode is close to the performance of any
process that directly uses the host OS’s network stack. How-
ever, host mode creates many management and deployment
challenges. First, containers cannot be configured with their
own IP addresses; they must use the IP address of the host
network interface. This complicates porting: distributed ap-
plications must be re-written to discover and use the host IP
addresses, and if containers can migrate (e.g., after a check-
point), the application must be able to adapt to dynamic
changes in their IP address. Worse, because all containers
on the same host share the same host IP address, only one
container can bind to a given port (e.g., port 80), resulting
in complex coordination between different applications run-
ning on the same host. In fact, container orchestrators, such
as Kubernetes, do not allow usage of host mode [27] due to
these issues.

Macvlan mode or similar hardware mechanisms (e.g., SR-
IOV) allow containers to have their own IP addresses differ-
ent from their hosts. Macvlan or SR-IOV allow the physical
NIC to emulate multiple NICs each with a different MAC
address and IP address. Macvlan 1 extends the host network
into the containers by making the container IP routable on
the host network. However, this approach fundamentally

1There are software approaches (e.g., Calico [3]) to extend the host net-
work into containers. They have the same problem as macvlan.



KernelCgroup

Namespace

Application

Virtual Network Interface 
IP = 10.0.0.1 

vSwitch 

Host Network Interface 
IP = 1.2.3.4 

Figure 2: Architecture of container overlay network.

complicates data center network routing. Let’s say a dis-
tributed application with IP addresses IP 1.2.3.[1-10] is not
co-located on the same rack, or starts co-located but then
some containers are migrated. Then the host IP addresses
will not be contiguous, e.g., one might be on host 5.6.7.8
and another might be on host 9.10.11.12. Macvlan requires
the cloud provider to change its core network routing to redi-
rect traffic with destination IP 1.2.3.[1-10] to 5.6.7.8 and
9.10.11.12, potentially requiring a separate routing table en-
try for each of the millions of containers running in the data
center. Another limitation is that containers must choose IP
addresses that do not overlap with the IP addresses of any
other container (or host). Because of these complications,
today, most cloud providers block macvlan mode [29].

To avoid interference with routing on the host network, the
popular choice is to use overlay mode. This is the analog of
a virtual machine, but for a group of containers—each appli-
cation has its own network namespace with no impact or vis-
ibility into the choices made by other containers or the host
network. A virtual network interface (assigned an IP address
chosen by the application) is created per-container. The vir-
tual network interface is connected to the outside world via a
virtual switch (e.g., Open vSwitch [42]) inside the OS kernel.
Overlay packets are encapsulated with host network headers
when routed on the host network. This lets the container
overlay network have its own IP address space and network
configuration that is disjoint from that of the host network;
each can be managed completely independently. Many con-
tainer overlay network solutions are available today—such
as Weave [52], Flannel [15], and Docker Overlay [8]—all of
which share similar internal architectures.

Figure 2 presents a high-level system diagram of a con-
tainer overlay network that uses packet transformation to im-
plement network virtualization. It shows an OS kernel and
a container built with namespaces and cgroups. Namespace
isolation prevents a containerized application from access-
ing the host network interface. Cgroups allow fine-grained
control on the total amount of resources (e.g., CPU, mem-
ory, and network) that the application inside the container
can consume.

The key component of a container overlay network is a vir-
tual switch inside the kernel (Figure 2). The virtual switch
has two main functionalities: (1) network bridging, allowing
containers on the same host to communicate, and (2) net-

work tunneling to enable overlay traffic to travel across the
physical network. The virtual switch is typically configured
using the Open vSwitch kernel module [42] with VXLAN as
the tunneling protocol.

To enforce various network policies (e.g., access control,
rate limiting, and quality of service), a network operator or a
container orchestrator [27, 9, 18] issues policy updates to the
virtual network interface or the virtual switch. For example,
firewall rules are typically implemented via iptables [20],
and rate limiting and quality of service (QoS) can also be
configured inside the Open vSwitch kernel module. These
rules are typically specified in terms of the application’s vir-
tual IP addresses, rather than the host’s IP addresses which
can change depending on where the container is assigned.

The hosts running a set of containers in an overlay network
must maintain a consistent global network view (e.g., virtual
to physical IP mappings) across hosts. They typically do this
using an external, fault-tolerant distributed datastore [13] or
gossiping protocols.

2.2 Overhead in Container Overlay Networks
The overhead of today’s container overlay networks comes
from per-packet processing (e.g., packet transformation, ex-
tra traversal of the network stack) inside the OS kernel.

2.2.1 Journey of an Overlay Network Packet

In our example (Figure 2), assume that a TCP connection has
previously been established between 10.0.0.1 and 10.0.0.2.
Now, the container sends a packet to 10.0.0.2 through this
connection. The OS kernel’s overlay network stack first
writes the virtual destination IP address 10.0.0.2 and source
IP address 10.0.0.1 on the packet header. The OS kernel also
writes the Ethernet header of the packet to make the packet a
proper Ethernet frame. The Ethernet frame traverses a virtual
Ethernet link to the virtual switch’s input buffer.

The virtual switch recognizes the IP address 10.0.0.2 in-
side the Ethernet frame as that of a container on a remote
host. It adds a physical IP header to the Ethernet frame using
host source and destination addresses from its routing table.
The packet now has both a physical and a virtual header. On
the host network, the packet is simply a UDP packet (assum-
ing the tunneling protocol is VXLAN) and its UDP payload
is the Ethernet frame. The OS kernel then delivers the en-
capsulated packet to the wire using the host network stack.

The receiving pipeline is the same except that the virtual
switch removes the host network header instead of adding
one. The receiving side receives the exact same Ethernet
frame from the sending side’s virtual network interface.

We can thus see why the overlay network is expensive:
delivering a packet on the overlay network requires one extra
traversal of the network stack and also packet encapsulation
and decapsulation.



Setup Throughput (Gbps) RTT (µs)

Intra, Host 48.4 ± 0.7 5.9 ± 0.2
Intra, Overlay 37.4 ± 0.8 (23%) 7.9 ± 0.2 (34%)
Inter, Host 26.8 ± 0.1 11.3 ± 0.2
Inter, Overlay 14.0 ± 0.4 (48%) 20.9 ± 0.3 (85%)

Table 2: Throughput and latency of a single TCP connection
on a container overlay network, compared with that using
host mode. Intra is a connection on the same physical ma-
chine; Inter is a connection between two different physical
machines over a 40 Gbps link. The numbers followed by ±
show the standard deviations. The numbers in parentheses
show the relative slowdown compared with using host mode.

2.2.2 Quantifying Overhead

We give a detailed breakdown of the overhead in one popu-
lar container overlay network implementation, Weave [52].
Our testbed consists of two machines with Intel Xeon E5-
2680 (12 physical cores, 2.5 GHz). The machines use hyper-
threading and therefore each has 24 virtual cores. Each ma-
chine runs Linux version 4.4 and has a 40 Gbps Intel XL710
NIC. The two machines are directly connected via a 40 Gbps
link. The physical NIC is configured to use Receive Side
Scaling (RSS). In all of our experiments, we do not change
the configuration of the physical NICs.

We create an overlay network with Weave’s fast data-
plane mode (similar to the architecture in Figure 2). We
use iperf3 [19] to create a single TCP connection and study
TCP throughput atop the container overlay network. We use
NPtcp [39] to measure packet-level latency. For compari-
son, we also perform the same test using host mode container
networking. In all of our experiments, we keep the CPU in
maximum clock frequency (using Intel P-State driver [47]).

The overhead of the container overlay network is signif-
icant. We compare TCP flow throughput and packet-level
latency under four different settings. Table 2 shows aver-
age TCP flow throughput with maximum ethernet frame size
over a 10-second interval and the round trip latency for 32-
byte TCP packets for 10 tests. For two containers on the
same host, TCP throughput reduces by 23% and latency in-
creases by 34%. For containers across physical machines,
TCP throughput reduces by almost half (48%) and latency
increases by 85%. Intra-host container overlay network has
lower overheads because packet encapsulation is not needed.

To understand the source of the main bottleneck, we mea-
sure CPU utilization with a standard Linux kernel CPU pro-
filing tool, mpstat. We specifically inspect the overlay net-
work across two different physical machines. We set the
speed of the TCP connection to 10 Gbps and then use mpstat
to identify where CPU cycles are spent for 10 tests where
each test lasts 10 seconds. Figure 3 shows the overall CPU
utilization and the breakdown. Compared with using a direct
host connection, in the default mode (Random IRQ load bal-

Host Random RPS RFS
0.0

0.2

0.4

0.6

0.8

V
ir

tu
al

C
or

es

usr

sys

soft

Figure 3: CPU utilization under different overlay network
setups measured by number of virtual cores used for a sin-
gle 10 Gbps TCP connection. The CPU cycles are spent: in
user-level application (usr), inside kernel but excluding in-
terrupt handling (sys), and serving software interrupts (soft).
Error bars denote standard deviations.

ancing), the overlay network increases CPU utilization (rel-
atively) by 93%. RPS (receive packet steering) and RFS (re-
ceive flow steering) are two optimizations we have done to
Weave. (See §2.3.)

The main CPU overhead of the overlay network comes
from serving software interrupts; in the default overlay set-
ting, it corresponds to 0.56 virtual cores. The reason why
the extra CPU utilization is in the software interrupt han-
dling category is that packet transformation and the traversal
of the extra network stack is not directly associated with a
system call. These tasks are offloaded to per-core dedicated
softirq thread. For comparison, using the host mode, only
0.21 virtual cores are spent on serving software interrupts.
This difference in CPU utilization captures the extra CPU
cycles wasted on traversing the network stack one extra time
and packet transformation. Note here we do not separate the
CPU utilization due to the virtual switch and due to the extra
network stack traversal. Our solution, Slim, removes both
these two components from the container overlay network
data-plane at the same time, so understanding how much
CPU utilization these two components consume combined
is sufficient.

In §2.3, we show that existing techniques (e.g., packet
steering) can address some of the performance issues of a
container overlay network. However, significant overhead
still remains.

2.3 Fine-Tuning Data-plane
There are several known techniques to reduce the data-plane
overhead. Packet steering creates multiple queues, each per
CPU core, for a network interface and uses consistent hash-
ing to map packets to different queues. In this way, pack-
ets in the same network connection are processed only on a
single core. Different cores therefore do not have to access
the same queue, removing the overhead due to multi-core



Setup Throughput (Gbps) RTT (µs)

Random LB 14.0 ± 0.4 (48%) 20.9 ± 0.3 (85%)
RPS 24.1 ± 0.8 (10%) 20.8 ± 0.1 (84%)
RFS 24.5 ± 0.3 (9%) 21.2 ± 0.2 (88%)

Host 26.8 ± 0.1 11.3 ± 0.2

Table 3: TCP throughput and latency (round-trip time for
32-byte TCP packets) for different packet steering mecha-
nisms atop a container overlay network across two physical
hosts. The numbers followed by ± show the standard devi-
ations. The numbers in parentheses show the relative slow-
down compared with using the host mode.

synchronization (e.g., cache-line conflicts, locking). Table 3
shows the changes to throughput and latency on a container
overlay network using packet steering.

Packet steering improves TCP throughput to within 91%
of using a host TCP connection, but it does not reduce
packet-level latency. We experimented with two packet
steering options, Receive Packet Steering (RPS) and Receive
Flow Steering (RFS), for internal virtual network interfaces
in the overlay network. RPS2 ensures that packets in the
same flow always hit the same core. RFS, an enhancement
of RPS, ensures that software interrupt processing occurs on
the same core as the application.

Although packet steering can imporve throughput, it has a
more modest impact on CPU utilizaion than throughput and
almost no change to latency. Packets still have to go through
the same packet transformations and traverse the network
stack twice. Our design, Slim, focuses directly on remov-
ing this per-packet processing overhead in container overlay
networks.

3 Overview
Slim provides a low-overhead container overlay network in
which packets in the overlay network traverse the network
stack exactly once. Like other container overlay network
implementations [52, 8, 15], Slim creates a virtual network
with a configuration completely decoupled from the host net-
work’s. Containers have no visibility of host network inter-
faces, and they communicate only using virtual network in-
terfaces that the OS kernel creates.

We require Slim to be (1) readily deployable, supporting
unmodified application binaries; (2) flexible, supporting var-
ious network policies, such as access control, rate limiting,
and quality of service (QoS), at both per-connection and per-
container levels; and (3) secure, the container cannot learn
information about the physical hosts, create connections di-
rectly on host network, or increase its traffic priority.

Figure 4 shows Slim’s architecture. It has three main com-
ponents: (1) a user-space shim layer, SlimSocket, that is dy-

2RSS requires hardware NIC support. RPS is a software implementation
of RSS that can be used on virtual network interfaces inside the OS kernel.

KernelCgroup

Namespace

Application

Virtual Network Interface 
IP = 10.0.0.1 

vSwitch 

Host Network Interface 
IP = 1.2.3.4 

SlimSocket Sl
im

R
ou

te
r

SlimKernModule 

Data Plane Control Plane

Figure 4: Architecture of Slim.

namically linked with application binaries; (2) a user-space
router, SlimRouter, running in the host namespace; and (3) a
small optional kernel module, SlimKernModule, which aug-
ments the OS kernel with advanced Slim features (e.g., dy-
namically changing access control rules, enforcing security).

Slim virtualizes the network by manipulating connection-
level metadata. SlimSocket exposes the POSIX socket inter-
face to application binaries to intercept invocations of socket-
related system calls. When SlimSocket detects an applica-
tion is trying to set up a connection, it sends a request to
SlimRouter. After SlimRouter sets up the network connec-
tion, it passes access to the connection as a file descriptor
to the process inside the container. The application inside
the container then uses the host namespace file descriptor to
send/receive packets directly to/from the host network. Be-
cause SlimSocket has the exact same interface as the POSIX
socket, and Slim dynamically links SlimSocket into the ap-
plication, the application binary need not be modified.

In Slim, packets go directly to the host network, circum-
venting the virtual network interface and the virtual switch;
hence, a separate mechanism is needed to support various
flexible control-plane policies (e.g., access control) and data-
plane policies (e.g., rate limiting, QoS). Control-plane poli-
cies isolate different components of containerized applica-
tions. Data-plane policies limit a container’s network re-
source usage and allow prioritization of network traffic. In
many current overlay network implementations, both types
of policies are actually enforced inside the data-plane. For
example, a typical network firewall inspects every packet to
determine if it is blocked by an access control list.

SlimRouter stores control-plane policies and enforces
them at connection setup time. This approach obviates the
need to inspect every packet in the connection. Before
creating a connection, SlimRouter checks whether the ac-
cess control list permits the connection. When the policy
changes, SlimRouter scans all existing connections and re-
moves the file descriptors for any connection that violates
the updated access control policy through SlimKernModule.
Slim leverages existing kernel functionalities to enforce data-
plane policies.

Sending a host namespace file descriptor directly to a ma-



licious container raises security concerns. For example, if
a malicious container circumvents SlimSocket and invokes
the getpeername call directly on the host namespace file de-
scriptor, it would be able to learn the IP addresses of the host
machines. A container could also call connect with a host
network IP address to create a connection directly on the host
network, circumventing the overlay network. Finally, a con-
tainer could call setsockopt to increase its traffic priority.

To enforce the same security model as in today’s con-
tainer overlay network, Slim offers a secure mode. When
secure mode is on, Slim leverages a kernel module, SlimK-
ernModule, to restrict the power of host namespace file de-
scriptors inside containers. SlimKernModule implements a
lightweight capability system for file descriptors. SlimKern-
Module has three roles: (1) track file descriptors as they
propagate inside the container, (2) revoke file descriptors
upon request from SlimRouter, and (3) prohibit a list of un-
safe system calls using these file descriptors (e.g., getpeer-
name, connect, setsockopt). SlimSocket emulates these sys-
tem calls for non-malicious applications.

4 Slim
We first describe how to implement network virtualization
without needing packet transformations in the data-plane
while maintaining compatibility with current containerized
applications. We then describe how to support flexible net-
work polices and enforce security for malicious containers.

Slim does not change how virtual to physical IP mappings
are stored. They can still be either stored in external storage
or obtained through gossiping. As with today’s container
overlay network, Slim relies on a consistent and current view
of containers’ locations in the host network.

4.1 Connection-based Network Virtualization
Slim provides a connection-based network virtualization for
containers. When a container is initiated on the host, Slim
dispatches an instance of SlimRouter in the host namespace.
Slim links a user-level shim layer, SlimSocket, to the con-
tainer. When the process inside the container creates a con-
nection, instead of making standard socket calls, SlimSocket
sends a request to SlimRouter with the destination IP address
and port number. SlimRouter creates a connection on behalf
of the container and returns a host namespace file descriptor
back to the container. We first present an example that shows
how Slim supports traditional blocking I/O. We then describe
how to additionally make Slim support non-blocking I/O.

Support for blocking I/O. Figure 5 shows how a TCP
connection is created between a web client and a web server
on Slim. Consider the web server side. The container first
creates a socket object with the socket function call. This call
is intercepted by SlimSocket and forwarded to SlimRouter,
which creates a socket object in the host network. When the
container calls bind on the socket with virtual network inter-
face IP address 10.0.0.1 and port 80, SlimRouter also calls

bind on the host network interface IP address 1.2.3.5 and
with some unused port 1234. The port translation is needed
because a host can run multiple web servers binding on port
80, but the host network interface only has a single port 80.
SlimRouter updates the port mapping. The web server then
uses accept to wait for an incoming TCP connection. This
function call is also forwarded to SlimRouter, which waits
on the host socket.

We move next to the web client side. The client per-
forms similar steps to create the socket object. When the
client side connects the overlay socket to the server side at
IP address 10.0.0.1 port 80, SlimRouter looks up the virtual
IP address 10.0.0.1 and finds its corresponding host IP ad-
dress 1.2.3.5. SlimRouter then contacts the SlimRouter for
the destination container on 1.2.3.5 to locate the correspond-
ing host port, 1234. SlimRouter sets up a direct connection
to port 1234 on 1.2.3.5. After the TCP handshake is com-
plete, accept/connect returns a file descriptor in which socket
send/recv is enabled. SlimRouter passes the file descriptor
back to the container, and SlimSocket replaces the overlay
connection file descriptor with the host namespace file de-
scriptor using system call dup2. From this point on, the ap-
plication directly uses the host namespace file descriptor to
send or receive packets.

To ensure compatibility with current containerized appli-
cations, SlimSocket exposes the same POSIX socket inter-
face. Besides forwarding most socket-related system calls
(e.g., socket, bind, accept, connect) to SlimRouter, Slim-
Socket also carefully maintains the expected POSIX socket
semantics. For example, when a containerized application
calls getpeername to get an IP address on the other side of the
connection, SlimSocket returns the overlay IP address rather
than the host IP address, even when the file descriptor for the
overlay connection has already been replaced with the host
namespace file descriptor.

Support for non-blocking I/O. Most of today’s applica-
tions [32, 36] use a non-blocking I/O API (e.g., select, epoll)
to achieve high I/O performance. Slim must also intercept
these calls because they interact with the socket interface.
For example, epoll creates a meta file descriptor that denotes
a set of file descriptors. An application uses epoll wait to
wait any event in the set, eliminating the need to create a
separate thread to wait on an event in each file descriptor.
On connection setup, we must change the corresponding file
descriptor inside the epoll’s file descriptor set. SlimSocket
keeps track of the mapping between the epoll file descriptor
and epoll’s set of file descriptors by intercepting epoll ctl.
For an accept or connect on a file descriptor that is inside
an epoll file descriptor set, SlimSocket removes the original
overlay network file descriptor from the epoll file descriptor
set and adds host namespace file descriptor into the set.

Service discovery. Our example in Figure 5 assumes that
the SlimRouter on the client side knows the server side has
bound to physical IP 1.2.3.4 and port 1234. To automatically



Container

sock = socket() 

bind(sock, 
10.0.0.1, 80) 

con = accept(
sock, addr) 

send(con, buf)

recv(con, buf)

SlimRouter

h_s = socket() 

bind(h_s, 1.2.3.4, 1234) 

h_c = accept(h_s, addr) 
h_c

SlimRouter

h_c = socket() 

connect(h_c, 
1.2.3.4, 1234) 

Container

con = socket() 

connect(con, 
10.0.0.1, 80) 

recv(con, buf)

send(con, buf)Host Network 
Interface

IP = 1.2.3.4

Slim
Socket

Slim
Socket

dup2(h_c, con)

h_s
h_s

listen(sock) 

dup2(h_c, con)

listen(h_s)
h_s

h_c

h_c

(a) Web Server (b) Web Client

Host Network 
Interface

IP = 1.2.3.5

host connection established

Figure 5: TCP connection setup between a web client and a web server atop Slim.

discover the server’s physical IP address and port, we could
store a mapping from virtual IP/port to physical IP/port on
every node in the virtual network. Unfortunately, this map-
ping has to change whenever a new connection is listened.

Instead, Slim uses a distributed mechanism for service dis-
covery. Slim keeps a standard container overlay network
running in the background. When the client calls connect, it
actually creates an overlay network connection on the stan-
dard container overlay network. When the server receives
an incoming connection on the standard overlay network,
SlimSocket queries SlimRouter for the physical IP address
and port and sends them to the client side inside the over-
lay connection. In secure mode (§4.3), the result queried
from SlimRouter is encrypted. SlimSocket on the client side
sends the physical IP address and port (encrypted if in se-
cure mode) to its SlimRouter and the SlimRouter establishes
the host connection. This means connection setup time is
longer in Slim than that on container overlay networks based
on packet transformation. (See §6.1.)

4.2 Supporting Flexible Network Policies
This section describes Slim’s support for both control- and
data-plane policies.

Control-plane policies. Slim supports standard ac-
cess control over overlay packet header fields, such as the
source/destination IP addresses and ports. Access control
can also filter specific types of traffic (e.g., SSH, FTP) or
traffic from specific IP prefixes.

In the normal case where policies are static, Slim enforces
access control at connection creation. SlimRouter maintains
a copy of current access control policies from the container
orchestrator or network operator. When a connection is cre-
ated by accept or connect, SlimRouter checks whether the
created connection violates any existing access control pol-
icy. If so, SlimRouter rejects the connection by returning -1
to connect or by ignoring the connection in accept.

Access control policies can change dynamically, and any

connection in violation of the updated access control policy
must be aborted. SlimRouter keeps per-connection state, in-
cluding source and destination IP addresses, ports, and the
corresponding host namespace file descriptors. When access
control policies change, SlimRouter iterates through all cur-
rent connections to find connections that are forbidden in the
updated policies. SlimRouter aborts those connections by
removing the corresponding file descriptors from the con-
tainer. Removing a file descriptor from a running process is
not an existing feature in commodity operating systems such
as Linux. We build this functionality in SlimKernModule.
(See §4.3 for more details.)

Data-plane policies. Slim supports two types of data-
plane policies: rate limiting and quality of service (QoS).
Rate limiting limits the amount of resources that a container
can use. QoS ensures that the performance of certain appli-
cations is favored over other applications.

Slim reuses an OS kernel’s existing features to support
data-plane policies. A modern OS kernel has support for rate
limiting and QoS for a single connection or a set of connec-
tions. Slim simply sets up the correct identifier to let the OS
kernel recognize the container that generates the traffic.

In Slim, rate limits are enforced both at the per-connection
and per-container level. Per-connection rate limits are set in a
similar way as in today’s overlay network using Linux’s traf-
fic control program, tc. For per-container rate limits, Slim
first configures the net cls cgroups to include the SlimRouter
process. The net cls cgroup tags traffic from the container or
the corresponding SlimRouter with a unique identifier. Slim-
Router then sets the rate limit for traffic with this identifier
using tc on the host network interface. In this way, the net-
work usage by SlimRouter is also restricted by the rate limit.
Correct accounting of network usage is the fundamental rea-
son why each container requires a separate SlimRouter.

Quality of service (QoS) also uses tc. SlimRouter uses
socket options to set up the type of service (ToS) field (via



setsockopt). In this way, switches/routers on the physical
network are notified of the priority of the container’s traffic.

Compatibility with existing IT tools. In general, IT
tools3 need to be modified to interact with SlimRouter in or-
der to function with Slim. IT tools usually use some user-
kernel interface (e.g., iptables) to inject firewall and rate lim-
its rules. When working with Slim, they should instead inject
these rules to SlimRouter. Because Slim is fundamentally a
connection-based virtualization approach, a limitation of our
approach is that it cannot support packet-based network pol-
icy (e.g., drop an overlay packet if the hash of the packet
matches a signature). (See §7.) If packet-based policies are
needed, the standard Linux overlay should be used instead.

If static connection-based access control is the only net-
work policy needed, then existing IT tools need not be modi-
fied. If an IT tool blocks a connection on a standard container
overlay network, it also blocks the metadata for service dis-
covery for that connection on Slim, thus it blocks the host
connection from being created on Slim.

4.3 Addressing Security Concerns
Slim includes an optional kernel module, SlimKernModule,
to ensure that Slim maintains the same security model as to-
day’s container overlay networks. The issue concerns po-
tentially malicious containers that want to circumvent Slim-
Socket. Slim exposes host namespace file descriptors to con-
tainers and therefore needs an extra mechanism inside the
OS kernel to track and manage access.

SlimKernModule implements a lightweight and general
capability system based on file descriptors. SlimKernMod-
ule tracks tagged file descriptors in a similar way as taint-
tracking tools [12] and filters unsafe system calls on these
file descriptors. We envision this kernel module could also
be used by other systems to track and control file descriptors.
For example, a file server might want to revoke access from
a suspicious process if it triggers an alert. Slim cannot use
existing kernel features like seccomp [50] because seccomp
cannot track tagged file descriptors.

SlimKernModule monitors how host namespace file de-
scriptors propagate inside containers. It lets SlimRouter or
other privileged processes tag a file descriptor. It then inter-
poses on system calls that may copy or remove tagged file
descriptors, such as dup, fork and close—to track their prop-
agation. If the container passes the file descriptor to other
processes inside the container, the tag is also copied.

Tagged file descriptors have limited powers within a con-
tainer. SlimKernModule disallows invocation of certain un-
safe system calls using these file descriptors. For example,
in the case of Slim, a tagged file descriptor cannot be used
with the following system calls: connect, bind, getsockname,
getpeername, setsockopt, etc. This prevents containers from

3We only consider IT tools that run on the host to manage containers but
not those run inside containers. IT tools usually require root privilege to the
kernel (e.g., iptables) and are thus disabled inside containers.

learning their host IP addresses or increasing their traffic pri-
ority. It also prevents containers from directly creating a host
network connection. For a non-malicious container, Slim-
Socket and SlimRouter emulate the functionalities of these
forbidden system calls.

SlimKernModule revokes tagged file descriptors upon re-
quest. To do so, it needs a process identifier (pid) and a file
descriptor index. SlimRouter uses this functionality to imple-
ment dynamic access control. When the access control list
changes for existing connections, SlimRouter removes the
file descriptors through SlimKernModule. SlimKernModule
revokes all the copies of the file descriptors.

Secure versus Non-secure mode. Whether to use Slim
in secure mode (with SlimKernModule) or not depends on
the use case. When containers and the physical infrastruc-
ture are under the same entity’s control, such as for a cloud
provider’s own use [28], non-secure mode is sufficient. Non-
secure mode is easier to deploy because it does not need ker-
nel modification. When containers are potentially malicious
to the physical infrastructure or containers of other entities,
secure mode is required. Secure mode has slightly (∼25%)
longer connection setup time, making the overall connection
setup time 106% longer than that of a traditional container
overlay network. (See §6.1.)

5 Implementation
Our implementation of Slim is based on Linux and Docker.
Our prototype includes all features described in §4. Slim-
Socket, SlimRouter, and SlimKernModule are implemented
in 1184 lines of C, 1196 lines of C++ (excluding standard
libraries), and 1438 lines of C, respectively.

Our prototype relies on a standard overlay network,
Weave [52], for service discovery and packets that require
data-plane handling (e.g., ICMP, UDP).

SlimSocket uses LD PRELOAD to dynamically link to the
application binary. Communication between SlimSocket and
SlimRouter is via a Unix Domain Socket. In non-secure
mode, file descriptors are passed between SlimRouter and
SlimSocket by sendmsg. For secure mode, file descriptors are
passed with SlimKernModule’s cross-process file descriptor
duplication method.

SlimRouter allows an network operator to express the ac-
cess control as a list of entries based on source/destination
IP address prefixes and ports in a JSON file. SlimRouter
has a command-line interface for network operators to is-
sue changes in the access control list via reloading the JSON
file. Slim rejects any connection matched in the list. Slim-
Router uses htb qdisc to implement rate limits and prio qdisc
for QoS with tc.

SlimRouter and SlimKernModule communicate via a
dummy file in procfs [46] created by SlimKernModule.
SlimKernModule treats writes to this file as requests. Ac-
cessing the dummy file requires host root privilege.



SlimKernModule interposes on system calls by replacing
function pointers in the system call table. SlimKernModule
stores tagged file descriptors in a hash table and a list of
unsafe system calls. SlimKernModule rejects unsafe system
calls on tagged file descriptors.

SlimKernModule also interposes on system calls such
as dup, dup2 and close to ensure that file descriptor tags
are appropriately propagated. For process fork (e.g., fork,
vfork, clone in Linux kernel), SlimKernModule uses the
sched process fork as a callback function. Slim does not
change the behavior of process forking. A forked process
still has SlimSocket dynamically linked.

6 Evaluation
We first microbenchmark Slim’s performance and CPU uti-
lization in both secure and non-secure mode and then with
four popular containerized applications: an in-memory key-
value store, Memcached [32]; a web server, Nginx [36]; a
database, PostgreSQL [45]; and a stream processing frame-
work, Apache Kafka [1, 26]. Finally, we show performance
results for container migration. Our testbed setup is the same
as that for our measurement study (§2.2). In all the experi-
ments, we compare Slim with Weave [52] with its fast data-
plane enabled and with RFS enabled by default. We use
Docker [6] to create containers.

6.1 Microbenchmarks
Similar to the performance tests in §2.2, we use iperf3 [19]
and NPtcp [39] to measure performance of a TCP flow. We
use mpstat to measure CPU utilization.

A single TCP flow running on our 40 Gbps testbed reaches
26.8 Gbps with 11.4 µs latency in both secure and non-secure
modes. Slim’s throughput is the same as the throughput on
the host network and is 9% faster than Weave with RFS.
Slim’s latency is also the same as using the host network,
and it is 86% faster than Weave with RFS.

Using Slim, the creation of a TCP connection takes longer
because of the need to invoke the user-space router. On our
testbed, in a container with Weave, creating a TCP connec-
tion takes 270 µs. With the non-secure mode of Slim, it takes
444 µs. With the secure mode, it takes 556 µs. As a ref-
erence, creation of a TCP connection on the host network
takes 58 µs. This means that Slim is not always better, e.g.,
if an application has many short-lived TCP connections. We
did not observe this effect in the four applications studied
because they support persistent connections [35, 37], a com-
mon design paradigm.

For long-lived connections, Slim reduces CPU utilization.
We measure the CPU utilization using mpstat for Slim in se-
cure mode and Weave with RFS when varying TCP through-
put from 0 to 25 Gbps. RFS cannot reach 25 Gbps, so we
omit that data point. Figure 6a shows the total CPU utiliza-
tion in terms of number of virtual cores consumed. Com-
pared to RFS, CPU overhead declines by 22-41% for Slim;

0 5 10 15 20 25
TCP Throughput (Gbps)

0.0

0.5

1.0

1.5

2.0

V
ir

tu
al

C
or

es

RFS

SLIM

Host

(a) Total CPU Utilization

RFS SLIM Host
0.0

0.5

1.0

1.5

2.0

V
ir

tu
al

C
or

es

usr

sys

soft

(b) Breakdown

Figure 6: CPU utilization and breakdown for a TCP connec-
tion. In Figure 6a, the Slim and the host lines overlap. In
Figure 6b, the usr bar is at the bottom and negligible. Error
bars denote standard deviations.

0 10 20 30 40 50 60
Time (second)

0

10

20

30

40

T
hr

ou
gh

pu
t

(G
bp

s)

15 Gbps

10 Gbps

5 Gbps

access
revoked

container1 container2

Figure 7: A bar graph of the combined throughput of two
Slim containers, with rate limit and access control policy up-
dates to one of the containers.

Slim’s CPU costs are the same as using the host network di-
rectly. To determine the source of this reduction, we break
down different components using mpstat when TCP through-
put is 22.5 Gbps. Figure 6b shows the result. As expected,
the largest reduction in CPU costs comes from serving soft-
ware interrupts. These decline 49%: Using Slim, a packet
no longer needs data-plane transformations and traverses the
host OS kernel’s network stack only once.

Network policies. Slim supports access control, rate lim-
iting and QoS policies, including when applied to existing
connections. We examine a set of example scenarios when
rate limits and access control are used. We run two paral-
lel containers, each with a TCP connection. The other end
of those connections is a container on a different machine.
We use iperf to report average throughput per half second.
Figure 7 shows the result.

Without network policy, each container gets around 18-
18.5 Gbps. We first set a rate limit of 15 Gbps on one con-
tainer. The container’s throughput immediately drops to
around 14 Gbps, and the other container’s throughput in-
creases. A slight mismatch occurs between the rate limit we
set and our observed throughput, which we suspect is due
to tc being imperfect. We subsequently set the rate limit to
10 Gbps and 5 Gbps. As expected, the container’s throughput
declines to 10 and 5 Gbps, respectively, while the other con-



Rand RPS RFS SLIM Host
0

100

200

300

400

T
hr

ou
gh

pu
t

(K
)

(a) Throughput

Rand RPS RFS SLIM Host
0.0

0.2

0.4

0.6

0.8

1.0

1.2

L
at

en
cy

(m
s)

(b) Latency

Figure 8: Throughput and latency of Memcached with Weave
(in various configurations) and with Slim. Error bars in
Figure 8a shows the standard deviation of completed Mem-
cached operations per-second.

tainer’s throughput increases. Finally, Slim stops rate lim-
iting and sets an ACL to bar the container from communi-
cating with the destination. The affected connection is de-
stroyed, and the connection from the other container speeds
up to standard connection speed.

6.2 Applications
We evaluate Slim with four real world applications: Mem-
cached, Nginx, PostgreSQL, and Apache Kafka. From this
point on, our evaluation uses Slim running in secure mode.

6.2.1 Memcached
We measure the performance of Memcached [32] on Slim.
We create one container on each of the two physical ma-
chines; one runs the Memcached (v1.5.6) server, and the
other container runs a standard Memcached benchmark tool,
memtier benchmark [33] developed by redislab [49]. The
benchmark tool spawns 4 threads. Each thread creates 50
TCP connections to the Memcached server and reports the
average number of responses per second, the average latency
to respond to a memcache command, and the distribution of
response latency (SET:GET ratio = 1:10).

Slim improves Memcached throughput (relative to
Weave). Figure 8a shows the number of total Memcached
operations per-second completed on Slim and Weave with
different configurations. Receive Flow Steering (RFS) is
our best-tuned configuration, yet Slim still outperforms it by
71%. With the default overlay network setting (random IRQ
load balancing), Slim outperforms Weave by 79%. Slim’s
throughput is within 3% of host mode.

Slim also reduces Memcached latency. Figure 8b shows
the average latency to complete a memcache operation. The
average latency reduces by 42% using Slim compared to
RFS. The latency of the default setting (random IRQ load
balancing), RPS, and RFS are not significantly different
(within 5%). Slim’s latency is exactly the same as host mode.

Slim also reduces Memcached tail latency. Figure 9 shows
the CDF of latency for SET and GET operations. The default
configuration (i.e., IRQ load balancing) has the worst tail la-
tency behavior. Synchronization overhead depends on tem-
poral kernel state and thus makes latency less predictable.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Latency (ms)

0

20

40

60

80

100

C
D

F
(p

er
ce

nt
ag

e) Rand

RPS

RFS

SLIM

Host

(a) GET

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Latency (ms)

0

20

40

60

80

100

C
D

F
(p

er
ce

nt
ag

e) Rand

RPS

RFS

SLIM

Host

(b) SET

Figure 9: Distribution of latency for Memcached SET and
GET operations, illustrating tail latency effects. The Slim
and Host lines overlap.

RFS SLIM Host
0

1

2

3

4

5

6

V
ir

tu
al

C
or

es

363M
reqs/s

351M
reqs/s

205M
reqs/s

usr

sys

soft

(a) Client

RFS SLIM Host
0

1

2

3

4

5

V
ir

tu
al

C
or

es 363M
reqs/s

351M
reqs/s

205M
reqs/s

usr

sys

soft

(b) Server

Figure 10: CPU utilization of Memcached client and server.
Error bars denote standard deviations.

RPS and RFS partially remove the synchronization over-
head, improving predictability. Compared to the best config-
uration, RFS, Slim reduces the 99.9% tail latency by 41%.

Slim reduces the CPU utilization per operation. We mea-
sure average CPU utilization on both the client and the Mem-
cached server when memtier benchmark is running. Fig-
ure 10 shows the result. The total CPU utilization is sim-
ilar on the client side, while the utilization is 25% lower
with Slim on the server compared to RFS. Remember that
Slim performs 71% more operations/second. As expected,
the amount of CPU utilization in serving software interrupts
declines in Slim. We also compare CPU utilization when the
throughput is constrained to be identical. Slim reduces CPU
utilization by 41% on the Memcached client and 56% on the
Memcached server, relative to Weave.

6.2.2 Nginx
We run one Nginx (v1.10.3) server in one container and a
standard web server benchmarking tool, wrk2 [53], in an-
other container. Both containers are on two different phys-
ical machines. The tool, wrk2, spawns 2 threads to create
a total of 100 connections to the Nginx server to request an
HTML file. This tool lets us set throughput (requests/sec),
and it outputs latency. We set up two HTML files (1KB,
1MB) on the Nginx server.

Nginx server’s CPU utilization is significantly reduced
with Slim. We use mpstat to break down the CPU utilization
of the Nginx server for scenarios when RFS, Slim, and host



RFS SLIM Host
0

1

2

3

4

5

6

V
ir

tu
al

C
or

es

usr

sys

soft

(a) 1KB, 60K reqs/s

RFS SLIM Host
0

1

2

3

V
ir

tu
al

C
or

es

usr

sys

soft

(b) 1MB, 3K reqs/s

Figure 11: CPU utilization breakdown of Nginx. Error bars
denote standard deviations.

RFS SLIM Host
0.0

0.5

1.0

1.5

2.0

2.5

L
at

en
cy

(m
s)

(a) 1KB, 60K reqs/s

RFS SLIM Host
0

10

20

30

L
at

en
cy

(m
s)

(b) 1MB, 3K reqs/s

Figure 12: Latency of Nginx server. Error bars denote stan-
dard deviations.

can serve the throughput. Figure 11 shows the CPU utiliza-
tion breakdown when the file size is 1KB and the through-
put is 60K reqs/second, and also when the file size is 1MB
and the throughput is 3K reqs/second. (We choose 60K
reqs/second and 3K reqs/second because they are close to
the limit of what RFS can handle.). For the 1 KB file, the
CPU utilization reduction is 24% compared with RFS. For
the 1 MB file, the CPU utilization reduction is 22% com-
pared with RFS. Note that much of the CPU utilization re-
duction comes from reduced CPU cycles spent in serving
software interrupts in the kernel. The CPU utilization still
has a 5%-6% gap between Slim and host. We expect this
gap is from the longer connection setup time in Slim. Un-
like our Memcached benchmark, where connections are pre-
established, we observe that wrk2 creates TCP connections
on the fly to send HTTP requests.

While Slim improves the CPU utilization, the improve-
ments to latency are lost in the noise of the natural variance
in latency for Nginx. The benchmark tool, wrk2, reports
the average and the standard deviation of Nginx’s latency.
Figure 12 shows the result. The standard deviation is much
larger than the difference of the average latencies.

6.2.3 PostgreSQL
We deploy a relational database, PostgreSQL [45] (version
9.5), in a container and then use its default benchmark tool,
pgbench [43], to benchmark its performance in another con-
tainer. The tool, pgbench, implements the standard TPC-B
benchmark. It creates a database with 1 million banking ac-
counts and executes transactions with 4 threads and a total of

RFS SLIM Host
0.0

0.1

0.2

0.3

0.4

V
ir

tu
al

C
or

es

usr

sys

soft

(a) PostgreSQL

RFS SLIM Host
0.0

0.5

1.0

1.5

V
ir

tu
al

C
or

es

usr

sys

soft

(b) Kafka

Figure 13: CPU utilization of PostgreSQL and Kafka. Error
bars denote standard deviations.

RFS SLIM Host
0

50

100

150

L
at

en
cy

(m
s)

(a) PostgreSQL

RFS SLIM Host
0.0

0.5

1.0

1.5

L
at

en
cy

(m
s)

(b) Kafka

Figure 14: Latency of PostgreSQL and Kafka. Error bars
denote standard deviations.

100 connections.
Slim reduces the CPU utilization of PostgreSQL server.

We set up pgbench to generate 300 transactions per second.
(We choose 300 transactions per second because it is close to
what RFS can handle.) Figure 13a shows the CPU utiliza-
tion breakdown of the PostgreSQL server. Compared with
RFS, Slim reduces the CPU utilization by 22% and the CPU
utilization is exactly the same as using host mode network-
ing. Note here, the reduction in CPU utilization is much less
than in Memcached and Nginx. The reason is that the Post-
greSQL server spends a larger fraction of its CPU cycles in
user space, processing SQL queries. Thus, the fraction of
CPU cycles consumed by the overlay network is less.

Similar to Nginx, the latency of PostgreSQL naturally has
a high variance because of the involvement of disk opera-
tions, and it is difficult to conclude any latency benefit of
Slim. The benchmark tool, pgbench, reports the average and
the standard deviation of PostgreSQL’s latency. Figure 14a
shows the results. The standard deviation is much larger than
the difference of the mean latencies.

6.2.4 Apache Kafka
We now evaluate a popular data streaming framework,
Apache Kafka [1, 26]. It is used to build real-time data
processing applications. We run Kafka (version 2.0.0) in-
side one container, and Kafka’s default benchmarking tool,
kafka-producer-perf-test, in another container on a different
physical machine.

Slim reduces the CPU utilization of both the Kafka server
and the Kafka client. We use kafka-producer-perf-test to set



Weave Slim

Stop running container 0.75 ± 0.02 0.75 ± 0.02
Extract fs into image 0.43 ± 0.01 0.43 ± 0.01
Transfer container image 0.44 ± 0.01 0.44 ± 0.01
Restore fs 0.82 ± 0.09 1.20 ± 0.10
Start SlimRouter - 0.003 ± 0.001
Start container 0.90 ± 0.09 0.94 ± 0.17

Total 3.34 ± 0.12 s 3.76 ± 0.20 s

Table 4: Time to migrate a Memcached container. The num-
bers followed by ± show the standard deviations.

throughput to be 500K messages per second. (We choose
500K messages per second because it is close to what RFS
can handle.) Each message is 100 bytes and the batch size
is 8192. The tool spawns 10 threads that generate messages
in parallel. Figure 13b shows the breakdown of CPU utiliza-
tion. The total CPU utilization of the Kafka server reduces
by 10% with Slim. The CPU utilization reduction is even
smaller than PostgreSQL because Kafka spends more time
in user space processing.

Slim reduces message latencies in Kafka. The benchmark
tool, kafka-producer-perf-test, reports the latency of Kafka.
Figure 14b shows the results. Kafka’s latency reduces by
0.28 ms (28%), compared with RFS. There is still a 0.09 ms
latency gap between using Slim and the host mode.

6.3 Container Migration
Slim supports container migration. On our testbed, we mi-
grate a Memcached container from one physical server to
another physical server on the 40 Gbps network. We test mi-
gration 20 times with/without Slim. The container’s IP ad-
dress is kept the same across the migration. Likewise, we do
not change the host network’s routing table. The container
image extracted from the file system is 58 Mbytes.

Using Slim marginally slows down container migration.
Table 4 is the breakdown of the average container migration
time on Weave and on Slim. In total, Slim slows down con-
tainer migration from 3.34 s to 3.76 s. Slim does not change
most of the migration process. The extra overhead is intro-
duced mainly in restoring the file system. With Slim, a con-
tainer has an additional disk volume containing SlimSocket
and also a dummy file to support communication over UNIX
domain socket between SlimSocket and SlimRouter. We sus-
pect that the additional disk volume slows down the file sys-
tem restoration process. Further, starting a container with
Slim adds a small amount of additional overhead.

7 Discussion
Connection Setup Time. One drawback of Slim is that con-
nection setup time is significantly longer (§6.1). This can
penalize applications with many short connections. Slim al-
lows indiviual applications in a container to opt out by de-
taching SlimSocket. In the future, we want the choice of opt-

ing out to be at a per-connection level. We can either (1)
allow developers to specify which connection to opt out, or
(2) automatically opt out based on predicted flow sizes [10].

Container Live Migration. Although Slim does support
quiescent container migration, it does not currently support
container live migration. All the TCP connections are dis-
connected during the migration process, and memory states
are not migrated. However, in live migration, live applica-
tion state has to be fully restored, including state such as
application threads waiting on events inside the OS kernel.
Docker is currently experimenting with live checkpointing
and restoration with criu [4], but it is focused on the simpler
case of a single host [7]. Provided a practical live container
migration system could be built, Slim would make that more
difficult because: (1) the state of the container now includes
host namespace file descriptors and (2) data-plane policies
(e.g., rate limits) are enforced on host connection identifiers
(i.e., five tuples) that would need to be properly translated
when migrated.

UDP. The focus of this paper has been on improving
the container communication performance of connection-
oriented protocols, such as TCP, by moving operations from
the data-plane to connection setup. This poses a challenge
for connectionless protocols such as UDP. Slim potentially
could support UDP using similar mechanisms as for TCP,
by intercepting socket, bind, connect, sendto, and recvfrom.
However, we chose not to do this in our prototype because
of two reasons. First, we do not have a good mechanism to
support flexible network policy for UDP. In UDP, a file de-
scriptor does not describe a single network pair, but rather
an open port to which every node in the virtual network can
send packets. Second, the most common use case for UDP
in data centers is to avoid the overhead of connection setup;
since Slim makes connection setup more expensive, it would
subvert some of those benefits. Instead, to work with unmod-
ified applications that may use a mixture of TCP and UDP
packets, our prototype simply directs UDP traffic to Weave.

Packet-based Network Policy. A limitation of Slim is
that it supports connection-based network policy and not
packet-based network policy. For example, a virtual network
can be set up to prevent access to a backend database, except
from certain containers; Slim supports this kind of access
control. Packet-based filters allow the system drop packets if
the hash of the overlay packet matches a signature. On Slim,
the virtual overlay packet is never constructed and so check-
ing against a signature would be prohibitively expensive. If
packet-based network policy is needed, a standard overlay
network should be used instead.

LD PRELOAD. Our prototype uses LD PRELOAD to
dynamically link SlimSocket into unmodified application bi-
naries. Some systems assume statically linked application
binaries (e.g., applications written in Go). These can benefit
from Slim by patching the application binaries to use Slim-
Socket instead of POSIX sockets; we do not implement this



support in our prototype.
Error Code. Our current prototype implementation is not

transparent in one significant way. When an access control
list changes, requiring Slim to revoke a file descriptor, the
application receives a different error code when it used that
file descriptor, relative to Weave. In Slim, a send on a re-
voked file descriptor returns a bad file descriptor error code,
while in Weave the packet would be silently discarded. We
believe it is possible to address this but it was not needed for
our benchmark applications.

SmartNICs. A recent research trend has been to explore
moving common case network data-plane operations to hard-
ware. Catapult [48], for example, moves packet encapsu-
lation required for virtual machine emulation to hardware.
Catapult runs as a bump on the wire, however, so in order
to offload overlay network processing, Linux would need to
be modified to accept virtual network packets on its physical
network interface. SR-IOV is commodity hardware, but it
suffers from the same problem as macvlan mode. (See §2.1.)
FlexNIC [22] has proposed a flexible model that can incorpo-
rate application, guest OS, and virtual machine packet man-
agement, but to date it is only experimental hardware. While
new hardware support is likely to become increasingly avail-
able, what we have shown is that such hardware support is
not necessary for efficient virtual overlay networks for con-
tainers; the container OS has all the information it needs to
perform virtualization at connection setup.

8 Related Work
Network namespace. Mapping resources from a host into
a container is not a new idea. In Plan9 [44], resources,
such as directories in the file system or process identifiers,
are directly mapped between namespaces. Our work revis-
its Plan9’s idea in the networking context, but with perfor-
mance as a goal, rather than portability. Today’s Linux net-
work namespace works at a per-device level, and so is not
strong enough for supporting connection-based network vir-
tualization. Slim uses the Linux networking namespace to
isolate the container from using the host network interface.

Host support for efficient virtual networking. Host sup-
port for efficient virtual networking is an old topic, mostly
in the context of VMs. Menon et al. co-design the driver
of the virtual network interface and the hypervisor for ef-
ficient virtual network interface emulation [34]. Socket-
outsourcing [11], VMCI socket [51], and Slipstream [5] im-
prove intra-host networking. FreeFlow [23] redirects RDMA
library calls to create a fast container RDMA network. To
the best of our knowledge, Slim is first work that provides
network virtualization at TCP connection setup time for un-
modified containerized applications.

Redirecting system calls. Redirecting system calls is
a useful technique for many purposes, such as taint track-
ing [12], building user-level file systems [16] and performing
other advanced OS kernel features (e.g., sandboxing [24],

record and replay [17], and intrusion detection [25]). In a
networking context, mTCP [21] redirects socket calls to con-
struct a user-level networking stack. NetKernel [38] redirects
socket calls to decouple networking stack from virtual ma-
chine images.

Separation of control- and data-plane. The perfor-
mance gain of Slim comes from moving network virtualiza-
tion logic from the data- to the control-plane. Separation of
the control- and the data-plane is a well-known technique to
improve system performance in building fast data-plane op-
erating systems [41, 2] and routing in flexible networks [31].

9 Conclusion
Containers have become the de facto method for host-
ing distributed applications. The key component for pro-
viding portability, the container overlay network, imposes
significant overhead in terms of throughput, latency, and
CPU utilizations, because it adds a layer to the data-plane.
We propose Slim, a low-overhead container overlay net-
work that implements network virtualization by manipulat-
ing connection-level metadata. Slim transparently supports
unmodified, potentially malicious, applications. Slim im-
proves throughput of an in-memory key-value store by 71%
and reduces latency by 42%. Slim reduces CPU utilization
of the in-memory key-value store by 56%, a web server by
22%-24%, a database server by 22%, and a stream process-
ing framework by 10%. Slim’s source code is publicly avail-
able at https://github.com/danyangz/slim.

Acknowledgments
We thank Antoine Kaufmann, Jialin Li, Ming Liu, Jitu Pad-
hye, and Xi Wang for their feedback on earlier versions of
the paper. We thank our shepherd Jon Howell and the anony-
mous reviewers for their helpful feedback on the paper. This
work was partially supported by the National Science Foun-
dation (CNS-1518702 and CNS-1616774) and by gifts from
Google, Facebook, and Huawei.

References
[1] Apache Kafka. https://kafka.apache.org/.

[2] BELAY, A., PREKAS, G., KLIMOVIC, A., GROSSMAN, S.,
KOZYRAKIS, C., AND BUGNION, E. IX: A Protected Dataplane
Operating System for High Throughput and Low Latency. In OSDI
(2014).

[3] Calico. https://www.projectcalico.org/.

[4] CRIU. https://criu.org/Main_Page.

[5] DIETZ, W., CRANMER, J., DAUTENHAHN, N., AND ADVE, V. Slip-
stream: Automatic Interprocess Communication Optimization. In
USENIX ATC (2015).

[6] Docker. http://www.docker.com.

[7] Docker Checkpoint and Restore. https://github.com/docker/

cli/blob/master/experimental/checkpoint-restore.md.

[8] Docker container networking. https://docs.docker.com/

engine/userguide/networking/.

[9] Docker Swarm. https://docs.docker.com/engine/swarm/.

https://github.com/danyangz/slim
https://kafka.apache.org/
https://www.projectcalico.org/
https://criu.org/Main_Page
http://www.docker.com
https://github.com/docker/cli/blob/master/experimental/checkpoint-restore.md
https://github.com/docker/cli/blob/master/experimental/checkpoint-restore.md
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/userguide/networking/
https://docs.docker.com/engine/swarm/


[10] DUKIC, V., JYOTHI, S. A., KARLAS, B., OWAIDA, M., ZHANG,
C., AND SINGLA, A. Is advance knowledge of flow sizes a plausible
assumption? In NSDI (2019).

[11] EIRAKU, H., SHINJO, Y., PU, C., KOH, Y., AND KATO, K. Fast
Networking with Socket-outsourcing in Hosted Virtual Machine En-
vironments. In ACM Symposium on Applied Computing (2009).

[12] ENCK, W., GILBERT, P., CHUN, B.-G., COX, L. P., JUNG, J., MC-
DANIEL, P., AND SHETH, A. N. TaintDroid: An Information-flow
Tracking System for Realtime Privacy Monitoring on Smartphones.
In OSDI (2010).

[13] etcd: A distributed, reliable key-value store for the most critical data
of a distributed system. https://coreos.com/etcd/.

[14] FIRESTONE, D., PUTNAM, A., ANGEPAT, H., CHIOU, D.,
CAULFIELD, A., CHUNG, E., HUMPHREY, M., OVTCHAROV, K.,
PADHYE, J., BURGER, D., MALTZ, D., GREENBERG, A., MUND-
KUR, S., DABAGH, A., ANDREWARTHA, M., BHANU, V., CHAN-
DRAPPA, H. K., CHATURMOHTA, S., LAVIER, J., LAM, N., LIU,
F., POPURI, G., RAINDEL, S., SAPRE, T., SHAW, M., SILVA, G.,
SIVAKUMAR, M., SRIVASTAVA, N., VERMA, A., ZUHAIR, Q.,
BANSAL, D., VAID, K., AND MALTZ, D. A. Azure Accelerated
Networking: SmartNICs in the Public Cloud. In NSDI (2018).

[15] Flannel. https://github.com/coreos/flannel.

[16] Filesystem in userspace. https://github.com/libfuse/

libfuse.

[17] GUO, Z., WANG, X., TANG, J., LIU, X., XU, Z., WU, M.,
KAASHOEK, M. F., AND ZHANG, Z. R2: An Application-level Ker-
nel for Record and Replay. In OSDI (2008).

[18] HINDMAN, B., KONWINSKI, A., ZAHARIA, M., GHODSI, A.,
JOSEPH, A. D., KATZ, R., SHENKER, S., AND STOICA, I. Mesos:
A Platform for Fine-grained Resource Sharing in the Data Center. In
NSDI (2011).

[19] iperf. https://iperf.fr/.

[20] iptables. https://linux.die.net/man/8/iptables.

[21] JEONG, E. Y., WOO, S., JAMSHED, M., JEONG, H., IHM, S., HAN,
D., AND PARK, K. mTCP: A Highly Scalable User-level TCP Stack
for Multicore Systems. In NSDI (2014).

[22] KAUFMANN, A., PETER, S., SHARMA, N. K., ANDERSON, T., AND
KRISHNAMURTHY, A. High Performance Packet Processing with
FlexNIC. In ASPLOS (2016).

[23] KIM, D., YU, T., LIU, H. H., ZHU, Y., PADHYE, J., RAINDEL,
S., GUO, C., SEKAR, V., AND SESHAN, S. FreeFlow: Software-
based Virtual RDMA Networking for Containerized Clouds. In NSDI
(2019).

[24] KIM, T., AND ZELDOVICH, N. Practical and effective sandboxing
for non-root users. In USENIX ATC (2013).

[25] KING, S. T., AND CHEN, P. M. Backtracking Intrusions. In SOSP
(2003).

[26] KREPS, J., NARKHEDE, N., AND RAO, J. Kafka: a Distributed Mes-
saging System for Log Processing. In NetDB (2016).

[27] Kubernetes: Cluster Networking. https://kubernetes.io/docs/
concepts/cluster-administration/networking/.

[28] LIU, H. H., ZHU, Y., PADHYE, J., CAO, J., TALLAPRAGADA, S.,
LOPES, N. P., RYBALCHENKO, A., LU, G., AND YUAN, L. Crys-
talNet: Faithfully Emulating Large Production Networks. In SOSP
(2017).

[29] Networking using a macvlan network. https://docs.docker.

com/network/network-tutorial-macvlan/.

[30] MANCO, F., LUPU, C., SCHMIDT, F., MENDES, J., KUENZER, S.,
SATI, S., YASUKATA, K., RAICIU, C., AND HUICI, F. My VM is
Lighter (and Safer) Than Your Container. In SOSP (2017).

[31] MCKEOWN, N., ANDERSON, T., BALAKRISHNAN, H., PARULKAR,
G., PETERSON, L., REXFORD, J., SHENKER, S., AND TURNER, J.
OpenFlow: Enabling Innovation in Campus Networks. SIGCOMM
CCR (2008).

[32] Memcached. https://memcached.org/.

[33] memtier benchmark. https://github.com/RedisLabs/

memtier_benchmark.

[34] MENON, A., COX, A. L., AND ZWAENEPOEL, W. Optimizing Net-
work Virtualization in Xen. In USENIX ATC (2006).

[35] MOGUL, J. C. The Case for Persistent-connection HTTP. In SIG-
COMM (1995).

[36] Nginx. https://nginx.org/.

[37] NISHTALA, R., FUGAL, H., GRIMM, S., KWIATKOWSKI, M., LEE,
H., LI, H. C., MCELROY, R., PALECZNY, M., PEEK, D., SAAB,
P., STAFFORD, D., TUNG, T., AND VENKATARAMANI, V. Scaling
Memcache at Facebook. In NSDI (2013).

[38] NIU, Z., XU, H., HAN, D., CHENG, P., XIONG, Y., CHEN, G., AND
WINSTEIN, K. Network stack as a service in the cloud. In HotNets
(2017).

[39] netpipe(1) - Linux man page. https://linux.die.net/man/1/

netpipe.

[40] Scaling in the Linux Networking Stack. https://www.kernel.

org/doc/Documentation/networking/scaling.txt.

[41] PETER, S., LI, J., ZHANG, I., PORTS, D. R. K., WOOS, D., KR-
ISHNAMURTHY, A., ANDERSON, T., AND ROSCOE, T. Arrakis: The
Operating System is the Control Plane. In OSDI (2014).

[42] PFAFF, B., PETTIT, J., KOPONEN, T., JACKSON, E., ZHOU, A.,
RAJAHALME, J., GROSS, J., WANG, A., STRINGER, J., SHELAR,
P., AMIDON, K., AND CASADO, M. The Design and Implementation
of Open vSwitch. In NSDI (2015).

[43] pgbench. https://www.postgresql.org/docs/9.5/static/

pgbench.html.

[44] PIKE, R., PRESOTTO, D., THOMPSON, K., TRICKEY, H., AND
WINTERBOTTOM, P. The Use of Name Spaces in Plan 9. SIGOPS
OSR (1993).

[45] PostgreSQL. https://www.postgresql.org/.

[46] proc - process information pseudo-filesystem. http://man7.org/

linux/man-pages/man5/proc.5.html.

[47] Intel P-State driver. https://www.kernel.org/doc/

Documentation/cpu-freq/intel-pstate.txt.

[48] PUTNAM, A., CAULFIELD, A. M., CHUNG, E. S., CHIOU, D.,
CONSTANTINIDES, K., DEMME, J., ESMAEILZADEH, H., FOWERS,
J., GOPAL, G. P., GRAY, J., HASELMAN, M., HAUCK, S., HEIL, S.,
HORMATI, A., KIM, J.-Y., LANKA, S., LARUS, J., PETERSON, E.,
POPE, S., SMITH, A., THONG, J., XIAO, P. Y., AND BURGER, D.
A Reconfigurable Fabric for Accelerating Large-scale Datacenter Ser-
vices. In ISCA (2014).

[49] redislab. https://redislabs.com/.

[50] SECure COMPuting with filters. https://www.kernel.org/doc/
Documentation/prctl/seccomp_filter.txt.

[51] VMCI Socket Performance. https://www.vmware.com/

techpapers/2009/vmci-socket-performance-10075.html.

[52] Weave. https://www.weave.works/.

[53] wrk2. https://github.com/giltene/wrk2.

https://coreos.com/etcd/
https://github.com/coreos/flannel
https://github.com/libfuse/libfuse
https://github.com/libfuse/libfuse
https://iperf.fr/
https://linux.die.net/man/8/iptables
https://kubernetes.io/docs/concepts/cluster-administration/networking/
https://kubernetes.io/docs/concepts/cluster-administration/networking/
https://docs.docker.com/network/network-tutorial-macvlan/
https://docs.docker.com/network/network-tutorial-macvlan/
https://memcached.org/
https://github.com/RedisLabs/memtier_benchmark
https://github.com/RedisLabs/memtier_benchmark
https://nginx.org/
https://linux.die.net/man/1/netpipe
https://linux.die.net/man/1/netpipe
https://www.kernel.org/doc/Documentation/networking/scaling.txt
https://www.kernel.org/doc/Documentation/networking/scaling.txt
https://www.postgresql.org/docs/9.5/static/pgbench.html
https://www.postgresql.org/docs/9.5/static/pgbench.html
https://www.postgresql.org/
http://man7.org/linux/man-pages/man5/proc.5.html
http://man7.org/linux/man-pages/man5/proc.5.html
https://www.kernel.org/doc/Documentation/cpu-freq/intel-pstate.txt
https://www.kernel.org/doc/Documentation/cpu-freq/intel-pstate.txt
https://redislabs.com/
https://www.kernel.org/doc/Documentation/prctl/seccomp_filter.txt
https://www.kernel.org/doc/Documentation/prctl/seccomp_filter.txt
https://www.vmware.com/techpapers/2009/vmci-socket-performance-10075.html
https://www.vmware.com/techpapers/2009/vmci-socket-performance-10075.html
https://www.weave.works/
https://github.com/giltene/wrk2

	Introduction
	Background
	Container Overlay Network
	Overhead in Container Overlay Networks
	Journey of an Overlay Network Packet
	Quantifying Overhead

	Fine-Tuning Data-plane

	Overview
	Slim
	Connection-based Network Virtualization
	Supporting Flexible Network Policies
	Addressing Security Concerns

	Implementation
	Evaluation
	Microbenchmarks
	Applications
	Memcached
	Nginx
	PostgreSQL
	Apache Kafka

	Container Migration

	Discussion
	Related Work
	Conclusion

