
SuperNIC: An FPGA-Based, Cloud-Oriented SmartNIC
Will Lin∗

University of California, San Diego
San Diego, California, USA

w5lin@ucsd.edu

Yizhou Shan∗
University of California, San Diego

San Diego, California, USA
ys@ucsd.edu

Ryan Kosta
University of California, San Diego

San Diego, California, USA
rkosta@ucsd.edu

Arvind Krishnamurthy
University of Washington
Seattle, Washington, USA
arvind@cs.washington.edu

Yiying Zhang
University of California, San Diego

San Diego, California, USA
yiying@ucsd.edu

ABSTRACT
With CPU scaling slowing down in today’s data centers, more
functionalities are being offloaded from the CPU to auxiliary de-
vices. One such device is the SmartNIC, which is being increasingly
adopted in data centers. In today’s cloud environment, VMs on
the same server can each have their own network computation
(or network tasks) or workflows of network tasks to offload to a
SmartNIC. These network tasks can be dynamically added/removed
as VMs come and go and can be shared across VMs. Such dynamism
demands that a SmartNIC not only schedules and processes packets
but also manages and executes offloaded network tasks for different
users. Although software solutions like an OS exist for managing
software-based network tasks, such software-based SmartNICs can-
not keep up with the quickly increasing data-center network speed.

This paper proposes a new SmartNIC platform called SuperNIC
that allows multiple tenants to efficiently and safely offload FPGA-
based network computation DAGs. For efficiency and scalability,
our core idea is to group network tasks into virtual chains that
are dynamically mapped to different forms of physical chains de-
pending on load and FPGA space availability. We further propose
techniques to automatically scale network task chains with different
types of parallelism. Moreover, we propose a fair sharing mecha-
nism that considers both fair space sharing and fair time sharing
of different types of hardware resources. Our FPGA prototype of
SuperNIC achieves high bandwidth and low latency performance
whilst efficiently utilizing and fairly sharing resources.

CCS CONCEPTS
• Networks → Network adapters.

KEYWORDS
SmartNIC, multi-tenancy, network programmability

ACM Reference Format:
Will Lin, Yizhou Shan, Ryan Kosta, Arvind Krishnamurthy, and Yiying
Zhang. 2024. SuperNIC: An FPGA-Based, Cloud-Oriented SmartNIC. In

∗Both authors contributed equally to this research.

This work is licensed under a Creative Commons Attribution
International 4.0 License.

FPGA ’24, March 3–5, 2024, Monterey, CA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0418-5/24/03
https://doi.org/10.1145/3626202.3637564

Proceedings of the 2024 ACM/SIGDA International Symposium on Field Pro-
grammable Gate Arrays (FPGA ’24), March 3–5, 2024, Monterey, CA, USA.
ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3626202.3637564

1 INTRODUCTION
Data-center networking is seeing three trends recently. First, with
the slowdown of Moore’s Law and Denard’s Scaling [16], more net-
work functionalities are offloaded from the CPU to network devices
like RDMA NICs. Computation offloading cannot only benefit from
data centers’ network infrastructure functionalities but also cloud
users’ network computing needs. Second, in addition to fixed-logic
network functionalities, there is an increasing need for offloading
application-specific, customized functionalities [12, 27, 37, 42], es-
pecially for cloud users. Third, network speed in the data center is
increasing fast. Today, 40Gbps and 100Gbps are the norm, with
200Gbps [43] available and 400Gbps [44] on the horizon.

These trends call for a hardware-based programmable SmartNIC
that can adapt to data-center workloads and cloud environments.
Among the potential candidates for future SmartNICs, FPGA stands
out due to its programmability at hardware speed and wide adop-
tion in data centers and clouds [6, 7, 18, 50]. However, despite the
extensive use of FPGA in data centers and its availability as a service
in public clouds, there are no existing solutions that offer network
programmability in a cloud setting.

Enabling network programmability on an FPGA-based Smart-
NIC in a cloud setting carries several implications. First, network
tasks are triggered by packets in a flow in a streaming manner,
making existing FPGA solutions targeting generic computation
unusable, as such computation is triggered by one input from a
tenant’s application and returns one result after the computation.
Secondly, in a cloud environment where multiple tenants share a
server, it is essential to efficiently and fairly share an FPGA-based
SmartNIC across tenants. Existing multi-tenancy solutions that
work on software-based or ASIC-based SmartNICs cannot be di-
rectly applied to FPGA-based SmartNICs as they do not work with
reconfigurable hardware resources. Finally, a cloud setting causes
significant dynamism due to large variations in network traffic (i.e.,
flow size and arrival rate) and frequent tenant entry and exit [9, 48].
A SmartNIC capable of quickly adapting to load changes and fre-
quently switching offloaded network tasks is essential in such an
environment.

 

130

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3626202.3637564
https://doi.org/10.1145/3626202.3637564
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3626202.3637564&domain=pdf&date_stamp=2024-04-02


FPGA ’24, March 3–5, 2024, Monterey, CA, USA Will Lin, Yizhou Shan, Ryan Kosta, Arvind Krishnamurthy, and Yiying Zhang

In this paper, we present sNIC (SuperNIC), an FPGA-based Smart-
NIC that offers network programmability in a dynamic, multi-
tenant environment. sNIC comprises an FPGA for executing user-
offloaded network computation, an ASIC for fixed systems logic that
receives, schedules, and sends packets, and software cores for exe-
cuting control-plane tasks, such as policy enforcement. We support
offloading classical network functionalities (e.g., transport layer,
firewall, encryption) as well as application-specific computation
(e.g., key-value store operations [27, 37], real-time analytics [27],
and serverless/microservice functions [12, 42]). Unlike generic ac-
celerator computation that is traditionally deployed on FPGA, a
user’s network computation usually consists of a series of smaller
tasks (e.g., firewall, encryption). Many such network tasks are com-
mon across tenants and could be supplied by a cloud provider or
a third party. Based on these observations, we design sNIC’s user
interface to be a DAG (Directed Acyclic Graph) of network tasks
(i.e., NTs) that a user deploys to sNIC before sending network flows
designated to the DAG. NTs can be thought of as microservices in
software, but they are FPGA netlists instead.

In the design of sNIC, we tackled a crucial research question:how
to launch and execute offloaded NTs on FPGA in a dynamic,
multi-tenancy environment?

Our approach to this question revolves around a novel abstrac-
tionwe introduce: virtual network-task chain, orNT chain for brevity.
A virtual NT chain is a portion of a user-defined NT DAG that com-
prises sequential NTs. Depending on the network load and FPGA
space availability, one virtual chain can be mapped to multiple in-
stances of physical chains that run in parallel, a partial physical
chain whose bandwidth is shared with other tenants, or several
smaller physical chains, each of which is a part of other tenants’
longer chains, as shown in Figure 1.

To implement NT chains, we first need a board architecture that
can efficiently handle the NT computation needs of a considerable
number of tenants. Prior works [39] connect each network com-
putation unit (NT in our abstraction) to a crossbar, which cannot
scale well. To reduce the number of ports required from the cross-
bar and achieve a more scalable board architecture, we propose
to connect the crossbar to a fixed and relatively small number of
FPGA regions, each hosting one physical NT chain. At the other
end of the crossbar sits sNIC’s packet scheduler, which receives
incoming packets and dispatches them to designated regions. We
design the packet scheduling mechanism to minimize latency over-
head for packets passing through the scheduler and to enhance the
scheduler’s scalability.

With this board architecture, a naive implementation of a virtual
NT chain would involve mapping it identically to a physical chain
in one region. However, doing so could result in wasted region
space for smaller virtual NT chains or cause failure to execute
larger ones. For better FPGA resource utilization, we propose a
feature of skipping NTs in a chain based on packet types, by adding
a wrapper to each NT. NT skipping enables us to connect multiple
small virtual NT chains into a single long physical chain to fill
a region: when a flow only accesses a part of the long physical
chain, it can skip the remaining NTs. We can also split a virtual
chain into multiple smaller physical chains, each fitting into one
region. Furthermore, we can allow a tenant to partially share an
NT chain that another tenant uses (e.g., 𝐴 → 𝐶 in 𝐴 → 𝐵 → 𝐶) by

skipping NTs (e.g., 𝐵). Together, these techniques enable the use
of larger regions and fewer regions that the crossbar connects to
while maximizing FPGA space usage across tenants.

To deliver performance under dynamic load, we exploit two types
of NT-chain parallelism. The first type explores the parallelism
within an NT DAG by executing multiple virtual NT chains as
parallel physical chains so as to shorten the total execution time of
an NT DAG. The second type increases the overall packet execution
throughput by creating multiple parallel physical instances of an
entire NT DAG or a smaller virtual chain inside the DAG. We
determine the amount of parallelism (i.e., scaling) for an NT DAG
based on network traffic load, resource availability, and proper
share of the resource that a user gets.

Finally, to maximize the usage of an sNIC, we support multiple
types of resource sharing, including the space sharing of FPGA chip,
bandwidth sharing of an NT chain, and time sharing of an FPGA area
by context switching between multiple NT chains. To minimize
the performance overhead of context switches, we propose several
techniques to hide the overhead of FPGA partial reconfiguration.
Additionally, when performing the above types of sharing, sNIC
needs to ensure fairness across tenants. Traditional fairness solu-
tions only consider space- or time-sharing. We propose a policy
to jointly consider fair space and time sharing in an adaptive and
fine-grained manner.

We prototype the sNIC dataplane with FPGA using a 100Gbps
HTG-9200 board [1]. We simulate fairness (scaling) policies in soft-
ware. We build or port twelve NTs in three types to run on sNIC: a
reliable transport, traditional network functions like firewall and
encryption, and application-specific tasks such as key-value data
replication and caching. We evaluate sNIC with micro- and macro-
benchmarks and compare sNIC with PANIC [39], a multi-tenant
SmartNIC that supports ASIC-based and CPU-based offloads. Our
results show that sNIC delivers 100Gbps throughput with only 196
ns scheduling overhead. Our real NT-DAG experiments reveal that
our NT-chain-based scheduling system can largely reduce the cross-
bar size while reducing NT-DAG latency by up to 40% compared to
PANIC. Furthermore, sNIC improves performance per FPGA area
by up to 2.81x, and sNIC achieves up to 3.83x aggregated utilization
than prior works while guaranteeing fairness.

2 MOTIVATION AND RELATEDWORKS
This section presents related works and motivates sNIC. Table 1
summarizes how sNIC compares to existing systems.

2.1 Network Task Offloading in Data Centers
While the CPU’s frequency scaling is slowing down, network speed
is increasing much faster. Today, most data centers are running at
40Gbps or 100Gbps [21, 38]. Soon, 200Gbps [43] and 400Gbps [44]
networks will arrive. As a result, the CPU consumption of software
network stacks becomes increasingly prohibitive. Network stacks
tend to consume 30-40% of CPU cycles [8]. As such, more network
functionalities are being offloaded from the CPU to various net-
working devices. For example, RDMA NICs execute a transport
layer in hardware and allow the full bypass of the CPU. Apart
from network stacks, today’s datacenter users also have the need
to perform other higher-level network tasks. The first type of tasks

 

131



SuperNIC: An FPGA-Based, Cloud-Oriented SmartNIC FPGA ’24, March 3–5, 2024, Monterey, CA, USA

NT1

NT3

NT2
NT4

NT1 NT2

NT3 NT4

NT1

NT3

NT2

NT4

NT1 NT2

NT3 NT4

NT1 NT2

NT3 NT4

NT1 NT2

NT3 NT4

NTX NTY

NTK NTL

single instance partial share two instances chain combinationUser NT DAG
Figure 1: Different Ways of Mapping a DAG to Physical Chains. Each blue box is a region. Dash arrows represent NT skipping.

Multi-Tenancy Programmable Hardware
Acceleration

Network-
Oriented

DAG-
Support Fairness

ARM-based [3] Y Y N Y N Y
ASIC-based [39] Y N Y Y P1 P2

pipeline-based [57] Y P3 Y Y P1 N
FPGA-based [18] N Y Y Y N N

non-NIC FPGA [31] Y Y Y N N N
SuperNIC Y Y Y Y Y Y

Table 1: SmartNIC Comparison. P1: only support sequential chains, not generic DAG. P3: only primitive Weighted-Fair-Quequing support. P3: restricted to
the pipeline capability.

is traditional network problems like packet scheduling [53], con-
gestion control [51], and load balancing [45]. The second broad
type is applications-specific computation such as accelerating con-
sensus [36], storage [24, 25], databases [32, 35, 61], and machine
learning [49]. In a cloud environment, a physical machine can host
hundreds or even thousands of (lightweight) VMs or containers,
each of which could have its own network offloading need. As the
cloud keeps adoptingmore lightweight virtualization environments,
we expect this need to grow even more in the future. These appli-
cation trends call for SmartNICs that can support multi-tenancy
and user-defined computation offloading, while the network-speed
trend calls for hardware acceleration of the offloaded computation.
Together, they justify the need for a device like sNIC.

2.2 Existing SmartNIC Solutions
SmartNICs are NICs that can perform certain computations. De-
pending on the hardware providing the computation power, Smart-
NICs can be categorized into four types.

The first type is ARM-based SmartNICs that run a Linux-like
operating system to host user software programs on the ARM pro-
cessor [3, 34]. Software is flexible but cannot sustain the high pro-
cessing speed needs with today’s 100Gbps or higher line rate [15].

The second type is ASIC-based SmartNICs, which include spe-
cialized network-function accelerators such as AES, compression,
regular expression matching, and flow steering/filtering, which
users can choose for processing their packets. Although ASICs
often offer excellent performance, they only offer fixed sets of
functionalities and cannot meet the needs of users who desire to
offload customized functionalities. Moreover, ASIC makes it hard
and expensive to iterate over versions and updates of deployed net-
work functionalities. Because of the ASIC limitation, many recent
SmartNICs combine general-purpose processors with ASIC accel-
erators [2, 3, 46]. For example, NVIDIA BlueField SmartNICs [3]

use general-purpose cores and several fixed-logic network func-
tion accelerators together with an RDMA NIC to support network
processing offloading. Although when only using the fixed-logic
accelerators, BlueField can achieve high throughput, when software
offloading is added, the performance drops dramatically [40].

The third type is network-specific pipeline-based SmartNICs that
allow users to program on a fixed packet-processing pipeline. For
example, Menshen [57] allows for multi-tenant programmability
on a pipeline consisting of reconfigurable match-and-action tables.
The main limitation with this type of SmartNIC is its restricted
programmability, e.g., limited types of actions, a limited number
of stages to finish processing a packet, etc. sNIC provides generic
hardware programmability by being FPGA-native.

The last type is FPGA-based SmartNICs. Unlike software-based
or ASIC-based SmartNICs, FPGA-based ones fall at a middle point
between software’s ease of programming but limited processing
speeds and ASIC’s full hardware speed but inflexible fixed-logic
functions. FPGA is able to provide orders of magnitude speed im-
provements compared to software-based solutions while maintain-
ing flexibility at the cost of being harder to program. Because of this
benefit and with FPGA development tool chains becoming mature,
FPGA-based SmartNICs have been deployed at scale inside Mi-
crosoft [18]. However, Microsoft’s FPGA-based SmartNICs are for
internal infrastructure usages, so they do not have multi-tenancy
or cloud support.

Among all prior SmartNIC solutions, PANIC [39] is the most
relevant to sNIC. PANIC is a SmartNIC platform that schedules
and executes chains of network functionalities for multiple tenants.
There are four main differences between PANIC and sNIC. First,
PANIC’s design is for fixed-logic network function accelerators and
CPU-based compute units. In contrast, sNIC is designed for FPGA-
based SmartNICs and solves unique challenges related to FPGA
reconfiguration and space sharing.Second, PANIC does not adapt
to dynamic traffic or allow for NT changes. It focuses on scheduling

 

132



FPGA ’24, March 3–5, 2024, Monterey, CA, USA Will Lin, Yizhou Shan, Ryan Kosta, Arvind Krishnamurthy, and Yiying Zhang

packets to static ASIC/software NTs. sNIC adapts to both traffic
and NT changes. Third, PANIC does not have sNIC’s virtual NT
chain abstraction and connects all network function units directly
to a crossbar, thereby incurring space and/or performance over-
head and scalability limitations. Finally, unlike sNIC, PANIC only
has primitive fairness support (e.g., Weighted Fair Queuing), not
handling fair spatial and temporal allocation of different resources.

2.3 Generic Multi-Tenant FPGA Solutions
With the increasing popularity of FPGA, solutions have been pro-
posed to provide virtualized, isolated environments for multiple
tenants to perform generic computation acceleration (i.e., not net-
work targeted). The first sharing mechanism is time multiplexing,
where an entire FPGA chip is dedicated to one tenant for a time
period before it is reconfigured to serve the next tenant. Today’s
cloud FPGA services like AWS F1 [50], Alibaba Cloud [7], and Ten-
cent Cloud [55] all take this approach. The main issue with this
mechanism is that most tenants only use a small part of an FPGA,
and the remaining FPGA resource is wasted.

The second type is space sharing, where different tenants’ ap-
plications run on different parts of an FPGA chip. Most space-
sharing FPGA solutions partition the physical FPGA into fixed-
sized regions, each of which is assigned exclusively to an applica-
tion [10, 11, 17, 29, 31, 58]. Another approach is exemplified by the
high-throughtput mode of AmorphOS [28], which packs multiple
FPGA applications together at compilation time that are then sched-
uled onto dynamically-sized regions. Yet another approach taken by
ViTAL [59] is to compile and decompose an FPGA application into
a set of fixed-size chunks, each of which can be mapped freely onto
any of the homogenized, fixed-size slices of ViTAL in an FPGA.

Although these prior works proposed various solutions to time-
and space-share an FPGA, they are not targeting network usages
and are largely orthogonal to sNIC. sNIC is a multi-tenant SmartNIC
that customizes the FPGA for executing network task DAGs. In
addition to space-sharing and time-sharing with context switching,
sNIC also allows multiple tenants to safely share the same NT’s
bandwidth. We further propose different types of NT parallelism
and autoscaling techniques and a new fairness algorithm targeting
fair-sharing of NTs in an FPGA-based SmartNIC.

3 USAGE AND BOARD OVERVIEW
Before delving into the detailed design of sNIC, this section first
gives an overview of sNIC, how to use it, its high-level architecture,
and the path taken by a packet through sNIC.

3.1 Using SuperNIC
To use sNIC, users need to deploy NTs as netlists, either by acquir-
ing them from a cloud provider or third party or by writing and
generating NTs netlists themselves. We assume all cloud-provider-
offered NTs can be shared across users, with sNIC’s guaranteed
performance and memory isolation. Users can also specify other
NTs that they are willing to share. We expect users who share NTs
to not trust each other but trust the cloud provider and sNIC.

After deploying NTs, a user can specify one or more user-written
or compiler-generated [33, 54] DAGs of the deployed NTs. Differ-
ent from traditional NT execution flows that execute NTs only in

sequence, we allow multiple NTs to execute in parallel. The sNIC
stores user-specified DAGs in its memory and assigns a unique
ID (UID) to each NT in a dag. At run time, each packet carries a
UID, which sNIC uses to direct the packet to the appropriate FPGA
region.

Finally, in addition to NT DAGs, users also supply their desired
ingress bandwidth for each NT DAG. In a cloud setting, this de-
sired ingress bandwidth could be viewed in the same way as how
clouds today ask users to specify the size of a VM. Our fairness
algorithm will guarantee that all users get at least their desired
ingress bandwidth (§ 4.5).

3.2 Board Architecture and Packet Flow
Figure 2 illustrates the high-level architecture of the sNIC board.
sNIC’s data plane handles all packet processing. It consists of recon-
figurable hardware (FPGA) for running NTs (blue parts in Figure 2)
and a small amount of non-reconfigurable hardware (ASIC) for
non-NT systems stacks, including ingress and egress network stack
and parser/de-parser, a central packet scheduler, a virtual memory
system to be used by NTs, and a global packet store. sNIC’s con-
trol plane is responsible dynamically configuring NTs and sNIC
itself, as well as performing PR. It runs as software on a small set of
general-purpose cores (SoftCores for short) (e.g., a small ARM-based
SoC).

When a packet arrives at an RX port, it goes through a standard
physical and reliable link layer. Currently, we utilize a user-provided
packet descriptor for each packet describing which NTs each packet
should run. The parser creates a packet descriptor for each packet
and attaches it to its header. The descriptor contains fields for
storing metadata, such as an NT DAG UID.

Data-plane packet payloads are sent to the packet store. Their
headers go to the central packet scheduler. The scheduler deter-
mines when and which NT(s) will serve a packet and sends the
packet accordingly. After an NT chain finishes, if there are more
NTs to be executed, the packet is sent back to the scheduler to begin
another round of scheduling. When all NTs are done, the packet is
sent to the TX port.

4 SUPERNIC DESIGN
A key and unique challenge in designing sNICs is space- and
performance-efficient execution of hardware-based NTs in a multi-
tenant environment. Moreover, we target a dynamic environment
where not only the load of an application but also the applications
themselves could change from time to time. Thus, unlike traditional
SmartNICs that focus on packet processing and packet scheduling,
sNIC also needs to schedule NTs efficiently. We design sNIC to
simultaneously achieve several critical goals:

• (G1) a system stack (non-NT parts) that can process packets
at line rate.

• (G2) high-throughput, low-latency NT DAG execution.
• (G3) quick adaptation to workload changes.
• (G4) efficient usage of on-board hardware resources.
• (G5) safe and fair sharing of all on-board resources.

This section first discusses how sNIC organizes, deploys,
launches, auto-scales, and parallelizes NTs. We then discuss how

 

133



SuperNIC: An FPGA-Based, Cloud-Oriented SmartNIC FPGA ’24, March 3–5, 2024, Monterey, CA, USA

Parser
+

MAT
+

RL

Region 1

On-board 
Memory

Packet Store

NF2 State

PHY+
MAC

Region 2

NTNT

NT 

Virtual Memory

NF3 State NF1 State NF2 State

C
en

tr
al

 P
ac

ke
t S

ch
ed

ul
er

 

SoftCores
SoftCores

NF1 PT NF2 PT NF3 PT

Region N

NT

NF1 State

PHY
+

MAC

unused
valid

User-Defined NT 
Region

NT NT

Figure 2: sNIC On-Board Design. RL: Rate Limiter. PT: Page Table. Orange
lines: control message path. Red lines: packets with no NT processing.

Sync 
Buffer

Credit 
Store

if NT 
parallel

return 
credits

choose 
NT region

acquire 
credits

if need 
to wait

if need 
more NT

YES

NO

Ready

Packet Store
If need 
payload

Central
Scheduler

NOYES
Tx

FIFO

NT 1
wrapper

NT 3

FIFO

NT 4

NT 2

sk
ip

FIFO

NT 1

NT 3

NT 2

NT 4

sk
ip

sk
ip

sk
ip

Figure 3: sNIC Packet Scheduler and NT Region Design.
Double arrows, single arrows, and thick arrows represent packet head-
ers, credits, and packet payload.

sNIC schedules packets, ensures fairness, and enables NTs to access
memory via a virtual memory system.

4.1 NT Chain and NT Region
As data-center applications’ scale increases fast but a single ma-
chine’s computing resources increase slowly, it is inevitable that
more data will cross the network and more computation will be
offloaded to network devices. Unlike general-purpose computation,
the types of network computation (i.e., NTs) are usually common
across users, and each network task is smaller or can be decom-
posed into smaller parts in a microservice manner. Thus, we expect
increasing needs to deploy NT DAGs, many of which have common
parts.

Based on the above observation, we propose a basic manage-
ment and deployment unit of a virtual NT chain — a sequential
list of NTs that are part of a user-defined NT DAG, as shown in
Figure 2. We explore different ways these chains can be designed
to optimize throughput, latency, and space. Currently, we let users
provide physical NT chains. A compiler could potentially automate
the mapping from user DAGs to physical chains, and we leave its
development to future work.

Each physical chain is placed in one FPGA NT region, which can
be independently re-programmed via FPGA partial reconfiguration
(PR) [41]. We connect the central scheduler and all the NT regions
to the two sides of a crossbar. By chaining NTs and by allowing the
sharing of a full or a partial physical chain, we can largely reduce
the number of ports of the crossbar, compared to prior work that
connects each NT to a crossbar [39]. This helps reduce the hardware
complexity and area cost of sNIC (G4).
NT skipping. To further improve the FPGA space utilization (G4),
our idea is to allow the skipping of arbitrary NT(s) in a physical
chain (Figure 3). To achieve skipping, we add wrapper logic around
each NT in a DAG, which determines whether a packet is sent to
the NT or is skipped to the wrapper of the next NT. The wrapper
makes this decision based on a packet header field inserted by the
scheduler based on user-specified NT DAGs.

NT skipping enables two designs in sNIC, both for better resource
utilization. The first design is to share a partial physical chain
among tenants who may have different parts of a deployed NT
chain overlapping with their NT DAGs. For example, in Figure 4,
when deploying DAG-b, sNIC can directly use NT2 and NT4 in
deployed chains of DAG-a by skipping NT1 and NT3 in these chains.
The second design is to combine multiple virtual NT chains into
a longer physical chain in a region. As a region size can be larger
than any user NT chain, being able to form physical chains that
are longer than any virtual chain can best use all the space in a
region. For example, in Figure 3, user-A’s chain-A (NT1−→NT3) is
concatenated with user-B’s chain-B (NT2−→NT4) in a region, user-
A’s packets skip chain-B, and user-B’s packets skip chain-A.
NT region size. Since the FPGA areas for PR need to be pre-
determined before launching the FPGA, the region size also needs
to be pre-configured. As we support provider/third-party supplied
NTs whose sizes are known to the provider (i.e., known NTs) and
user-defined NTs whose sizes are unknown, we also support two
types of regions. We use a fixed but configurable size for known-
NT regions and dedicate most crossbar ports to them. We use the
remaining ports and remaining FPGA space for user-defined NT
regions. The size of the known-NT regions should be able to at
least fit the largest known NT and can be larger based on the FPGA
size. We currently use a fixed size for all known NT regions. Prior
FPGA works have proposed splitting FPGA into different sizes [28].
We leave the adoption of such techniques to future work.

4.2 NT Pipelining and Parallelism
When executing an NT DAG, we exploit various forms of pipelin-
ing and parallelism, as illustrated in Figure 4. First, we pipeline a
physical chain of NTs by dividing it into individual NT stages and
sending a new packet to a given stage after it is done executing, as
in S1 of Figure 4. In S1, the two DAGs share a single chain (flattened
DAG-a), and to execute DAG-b, NT1 and NT3 are skipped. Second,
we execute parallel paths in a DAG as separate physical chains that
can run in parallel to reduce the total time needed to process a

 

134



FPGA ’24, March 3–5, 2024, Monterey, CA, USA Will Lin, Yizhou Shan, Ryan Kosta, Arvind Krishnamurthy, and Yiying Zhang

NT1

NT3

NT2
NT4

NT1 NT2 NT3 NT4

NT1

NT3

NT2

NT4

NT1 NT2

NT1 NT2

User Specified DAGs

S1: Single chain shared 
by two DAGs

S2: DAG 
Parallelism

S3: 
DAG 

Parallelism + 
Instance 

Parallelism

NT1 NT2 NT4NT3

NT1 NT2 NT4NT3

NT1 NT2 NT4NT3

NT4NT2

T0 T1 T2 T3 T4 T5
Pa1

Pa2

Pa3

Pb1

S1

NT1 NT2

NT3

NT1 NT2

NT4

NT3 NT4

NT1 NT2

NT3 NT4

NT2 NT4

T0 T1 T2 T3 T4

Pa1

Pa2

Pa3

Pa1’

Pa2’

Pa3’

Pb1

S2

NT1 NT2

NT3

NT1 NT2

NT1 NT2

NT3

NT4

NT4

NT4NT3

NT4NT2

T0 T1 T2 T3

S3

NT3 NT4

NT4

NT2 NT4

NT4NT2

Pa1

Pa2

Pa3

Pa1’

Pa2’

Pa3’

Pb1

Pb2

DAGa:

DAGb:

NT4NT2Pb3

go back to 
scheduler

one 
region

Figure 4: sNIC NT Pipeline. Two deployed DAGs, a and b. S1, S2, and
S3 are three ways of executing them. 𝑃𝑎𝑖 /𝑃𝑏𝑖 refer to the 𝑖th packet targeting
the first/second DAG, 𝑃 ′

𝑖
refers to a forked packet.𝑇𝑖 refers to a time unit in

the timeline.

packet (which we refer to as DAG parallelism). We provide a light-
weight splitter NT which sends the same packet to different NTs in
parralel by duplicating the packet. For example, to reduce the exe-
cution time of DAG-a, we can run NT1−→NT2 and NT3 in parallel,
as in S2, which reduces DAG-a’s execution time from four units
to three units. Note that after executing NT3, the packet goes to a
synchronization NT, which waits for the completion of NT1−→NT2
before executing NT4 (§4.4). Finally, we create multiple physical
instances of the same virtual NT chain to further increase packet-
processing throughput (which we refer to as instance parallelism).
The scheduler sends different packets in a round-robin way to the
parallel instances of an NT DAG (§4.4). For example, we create two
instances of NT1−→NT2 and two instances of NT4 in S3 to improve
S2’s overall throughput.

We dynamically calculate recommendations for the target
amount of parallelism for a given physical chain. Based on request
load to an NT DAG and the fair share we assign to the user (§4.5),
our policies make recommendations of which DAGs (or subsets of
DAGs) to scale up or down. The number here is not necessarily
an integer and can be less than one, as an NT can be shared by
multiple users (e.g., NT2 and NT4 in Figure 4) and multiple chains
can be placed in one region.

4.3 NT Deployment
Users provide NTs to the sNIC platform ahead of time as FPGA
netlists and specify their desired DAGs (virtual chains) of these
NTs. If the DAG contains a user-defined NT, we place it in the
user-defined-NT region. The user provides FPGA bitstreams for

various configurations of their physical chains. Each NT utilizes a
small sNIC wrapper (Figure 3) for monitoring the runtime load of
the NT (§4.5), ensuring signal integrity during PR, and providing
a set of virtual interfaces for NTs to access other board resources
like on-board memory. In the above process, if we find a generated
bitstream for a virtual chain that leaves a region largely unused
(e.g., smaller than half of the region), we recommend consolidating
virtual NT chains, creating new bitstreams and deploying them
to the sNIC. We store pre-generated bitstreams in the sNIC’s on-
board memory; each bitstream is small, normally less than 5MB.We
expect a compiler like ViTAL[59] to assist with bitstream generation
and leave this exploration to future work.

4.4 Packet Scheduling Mechanism
We now discuss the design of sNIC’s packet scheduling mechanism.
Figure 3 illustrates the overall flow of sNIC’s packet scheduling
and execution. Based on the NT-chain architecture, we propose
a scheduling mechanism that reduces scheduling overhead and
increases the scalability of the scheduler (G1, G2). Our idea is to
reserve credits for an entire NT chain in a region and then execute
the chain as a whole without involving the scheduler in the middle.

Executing chains in their entirety improves both the packet’s
processing latency and the central scheduler’s scalability (G5). If
the physical NT chain has available credits when a packet is about
to be scheduled, the scheduler reserves a credit for the NT chain.

To utilize multiple instances of a virtual NT chain (§4.2), our
scheduler pipelines different packets to the instances in a round-
robin fashion. To achieve DAG parallelism, a lightweight splitter
NT makes copies of the packet and sends them to these regions
concurrently. Handling this with an NT allows us to potentially
pack multiple copies of a given NT or NT chain into a single region.
We can even parallelize only a specific bottleneck NT in the middle
of a given NT chain. To obey the order of NTs that users specify,
we maintain a synchronization buffer to store packet headers after
they return from an NT chain’s execution and before they can go
to the next stage of NTs (Figure 3).

4.5 Fairness Policy
As we target a multi-tenant environment, sNIC needs to fairly
allocate its resources to different users (G5). Traditional network
devices provide fairness by the fair share of the link bandwidth [14,
22, 47, 52], essentially time-sharing network hardware resources.
Traditional fairness solutions that target server environments fairly
allocate different portions (i.e., space shares) of each type of resource
among multiple jobs, but they do not time-share or incorporate the
networking nature when sharing. Different from prior sharing and
fairness solutions, we integrate both space and time sharing on an
sNIC for more efficient consolidation, via a two-step approach for
achieving fairness.

In the first step, we provide fair space-sharing by determining
how many instances of an NT chain (i.e., number of regions) to
launch and how much onboard memory to assign to each user. We
represent the demanded FPGA size to be the FPGA area multiplied
by the ratio of user-required bandwidth to the NT’s maximum
bandwidth. For example, if a user requires 10Gbps and uses an

 

135



SuperNIC: An FPGA-Based, Cloud-Oriented SmartNIC FPGA ’24, March 3–5, 2024, Monterey, CA, USA

NT1

NT3

NT2
NT4 NT2 NT4

NT1

NT2

NT3

NT4

NT1

NT2

NT3

NT4

NT1

NT2

NT3

NT4

NT2

NT4

E1: both users’ demands are met
U1’s demand: <5, 8, 4, 2>

U2’s demand: <0, 1, 0, 1.5>

user1: user2: generated 
bitstreams: NT1 NT2 NT3 NT4

E2: NT2 over-loaded when U2 increases
U1’s demand: <5, 8, 4, 2>

U2’s demand: <0, 5, 0, 7.5>

E17: after NT2 has overloaded for 10 
epochs, use 5 epochs to start the 

NT2->NT4 chain in region 3

NT1

NT2

NT3

NT4

E3: use DRF to re-allocate bandwidth
U1’s allocated: <3.75, 6, 3, 1.5>

U2’s allocated: <0, 4, 0, 6>

NT2 NT4

Figure 5: An Example of NT chaining and scheduling. Top: user1 and user2’s NT DAGs and sNIC’s generated bitstreams for them. Bottom: timeline
of NT bandwidth allocation change. Dark grey and light grey represent user1 and user2’s load. The launched chains are NT1−→NT2, NT3−→NT4, and NT2−→NT4
with the first two chain’s NT2 and NT4 being shared by both users. The maximum throughput of each NT is 10 Gbps. U1’s requested ingress bandwidth is 8 Gbps,
and U2’s requested ingress bandwidth is 14 Gbps.

NT DAG that occupies 4 units of FPGA area and supports a maxi-
mum of 40Gbps, we will calculate the user’s demand for FPGA as
1 unit (4 ∗ 10/40). Afterward, we leverage DRF [20]’s approach by
finding each user’s dominant type of resources (the most demand-
ing type) and allocating resources proportionally so that all users
get equalized dominant shares. This allocation algorithm provides
recommendations for FPGA area and on-board memory space.

After the first step, the space allocation is fixed, and we can
treat each NT DAG as a fixed-size resource type. We then perform
time sharing on these fixed resources. Specifically, our fairness
considers the load that is needed by each user at every type of
resource. These loads are the user-intended loads, not loads that
are actually handled. The fairness system fairly assigns a virtual
start and a virtual finish time [19] to each packet, allowing users
to time-share each NT region, the ingress bandwidth, the egress
bandwidth, and the packet store buffer, all based on the monitored
intended load.

To enforce the above fairness assignment, the algorithm pro-
vides per user’s ingress bandwidth allocations, instead of limiting
a user’s bandwidth at each NT and every type of resource. Our
observation is that since each NT’s throughput for an application,
its packet buffer space consumption, and egress bandwidth are all
proportional to its ingress bandwidth, we could effectively control
these allocations through the ingress bandwidth allocation. Doing
so avoids the potential complexity of enforcing limits at every type
of resource. Moreover, imposing limits early on at the ingress ports
could reduce the load going to the central scheduler and the amount
of payload going to the packet store.

5 EVALUATION RESULTS
Implementation. Although our design includes ASIC, FPGA, and
SoftCore on the sNIC board, for ease of implementation, we build
everything on FPGA. We implement most of sNIC’s data path in
SpinalHDL [4] and sNIC’s control path in C.Most data pathmodules
run at 250 MHz. In total, sNIC consists of 23.8k SLOC. Figure 6
shows the FPGA resource consumption of different modules in
sNIC and our implemented NTs. The core sNIC modules consume
less than 5% resources of the FPGA chip, leaving most of it for NTs.
We implement and test our fairness/autoscaling algorithm (§4.5)
only in software. We leave integrating fairness/autoscaling with
the rest of the sNIC system for future work.

We project sNIC’s latency in a potential ASIC implementation
in a similar way as previous work [60]. We collect the latency
breakdown of time spent in third-party IPs and cycles spent in
sNIC components. We then scale the frequency of sNIC component
to 2 GHz while maintaining the amount of time spent in third-
party IPs. This estimate is conservative as most of the latency is
introduced in the third-party MAC and PHY modules. Real ASIC
implementations of these IPs would lower overall latency further.
Environment and baseline. We build sNIC on an HiTech Global
HTG-9200 board [1], which has 100Gbps ports, 10GB on-board
memory, and a Xilinx VU9P chip with 2,586K LUTs and 43MB
BRAM. We perform cycle-accurate simulations with Verilator [5]
for most experiments, aside from Figures 19 and 20 which are
performed on real end-to-end deployments. For the end-to-end
deployment, we use a cluster with a 100Gbps Ethernet switch, an
HTG-9200 board, two Dell PowerEdge R740 servers each equipped
with a Xeon Gold 5128 CPU and an NVidia 100Gbps ConnectX-4
NIC, and a Xilinx 10Gbps ZCU106 board running as the Clio [23]
disaggregated memory device.

For most experiments, we use PANIC as a baseline. As PANIC’s
open-source code is specific to their FPGA setup and cannot run
on our FPGA board, we re-implemented PANIC’s core scheduling
mechanism on our FPGA platform. It uses the same other on-board
components like MAC and PHY as sNIC.

5.1 Overall Performance
We first evaluate the throughput an sNIC board can achieve with
a dummy NT, i.e., testing the performance of all non-NT parts of
sNIC, including the central scheduler. We change the number of
initial credits our scheduler sets and packet size to evaluate their
effect on throughput, as shown in Figure 7.

With more initial credits, sNIC more packets can be enqueued
at the NTs, thus reaching full bandwidth with smaller packet sizes.
Similar to PANIC [39], we find that having more initial credits
achieves higher throughput, and 8 credits are enough for 100Gbps
network.

Next, we evaluate the latency overhead an sNIC FPGA board
adds. It takes 1.3𝜇𝑠 for a packet to traverse the entire sNIC data
path, from the ingress port to the egress port. Most of the latency is
introduced by the third-party PHY and MAC modules, which could
potentially be improved with ASIC implementation. The sNIC core
only takes 196 ns (or 25 ns with ASIC projection). Our scheduler

 

136



FPGA ’24, March 3–5, 2024, Monterey, CA, USA Will Lin, Yizhou Shan, Ryan Kosta, Arvind Krishnamurthy, and Yiying Zhang

Module LUT BRAM
(KB)

sNIC Core 51.5K 102
Packet Store 10.8K 198
PHY+MAC 8.5K 8
DDR4Controller 18.5K 6
Go-back-N/LB 4900/4533 0
FW/NAT 468/864 0
KV Rep/Cache 458/2452 96/48
dfadd/AES 4266/535 70/0

Figure 6: FPGA Utilization.

Packet Size (B)
64 128 256 512 1024T

h
r
o
u
g
h
p
u
t
 
(
G
b
p
s
)

0

25

50

75

100

125

8 credit

4 credit

2 credit

1 credit

Figure 7: Throughput with dif-
ferent credits.

Number of NTs
2 3 4 5 6 7

L
a
t
e
n
c
y
 
(
u
s
)

0

0.5

1

1.5
PANIC−Emu

Half−Chain

Single−Chain

Figure 8: Dummy NT Chain
Latency.

s1 s2 s30

20

40

60

Th
ro

ug
hp

ut
 (G

bp
s)

DAGa
DAGb

Figure 9: NT DAG Throughput.
S1: sequential. S2: DAG parallel. S3:
DAG+instance parallel (Fig. 4)

NAT

FW AES

LB FW AES

FW KV-Cache FW LB

FW KV-Cache FW LB AES

NAT FW KV-Cache FW LB
AES

AES

A:

B:

C:

D:

D-paral:

NT1

NT3

NT2
NT4

NT2 NT4

DAG-a:

DAG-b:

Dummy DAGs

Figure 10: NT DAGs Implemented. LB: Load Balancer; FW: Firewall.

achieves a small, fixed delay of 16 cycles, or 64 ns with the FPGA
frequency (8 ns with ASIC projection). To put things into perspec-
tive, a commodity switch’s latency is ∼0.8 to 1𝜇𝑠 . These results
demonstrate that with higher frequency, future ASIC implementa-
tion could reach even higher throughput.

5.2 NT and NT DAG Implementation
We implemented three types of NTs and several realistic NT DAGs.
Transport and traditional NTs. To demonstrate sNIC’s ability of
supporting transport offloading, we implemented a simple reliable
transport using the go-back-N protocol on top of a lossless network.
When the receiver receives an out-of-order packet, it simply dis-
cards it and sends a NACK to the sender. When the sender sees a
NACK, it will retransmit all packets that were sent after the last
acknowledged packet. We then implement a set of NTs that repre-
sent what cloud users use in a Virtual Private Cloud (VPC) setting.
VPC allows users to have an isolated network environment. We im-
plemented four NTs on sNIC for VPC: network address translation
(NAT), firewall, AES encrypt, and load balancer.
Application-specific NTs. To demonstrate how users can offload
application-specific tasks to sNIC, we build an NT for key-value
stores. The NT performs key-value pair caching, where the NT
maintains recently written/read key-value pairs in a small buffer. If
there is a cache hit, the NT directly returns the value to the client.
NT DAGs and NT sharing. We deploy several NT DAGs as il-
lustrated in Figure 10, which are adapted from a prior network-
function-chaining work [30]. We further deploy several NT sharing
and skipping cases. Here, we assume a scenario where DAG-D al-
ready runs on an sNIC, and one of the DAGs, A, B, and C, is then

triggered. Because DAG-A/B/C’s NTs all exist in the DAG-D, we
can leverage partial NT-chain sharing to execute them without
launching new DAGs. For example, to execute DAG-A, sNIC skips
NAT in DAG-D, execute FW, skips the next three NTs, and finally
executes AES.

As before sNIC, there was no support for DAGs, the above NT
DAGs that we acquire from the real world are simple chains of NTs.
To explore more complex DAGs, we also evaluated two DAGs with
dummy NTs, following the example in Figure 4.

5.3 Deep Dive into sNIC Designs
Wenowperform a set of experiments to understand the implications
of sNIC’s various designs. For these experiments, we generate traffic
load using the Facebook distribution [48], which captures various
traffic in the Facebook datacenter.
NT chaining. To evaluate the effect of sNIC’s NT-chaining tech-
nique and compare it with PANIC, we use an artificial sequence of
dummy NTs with length from 2 to 7 (as prior work found real NT
chains are usually less than 7 NTs [54]). We also evaluate a case
where sNIC splits the chain into two sub-chains. Figure 8 shows the
total latency of running the NT sequence with these schemes. sNIC
outperforms PANIC because it only goes through the scheduler
once (for Single-Chain) or twice (for Half-Chain) for the entire
chain, whilst Panic may go through the scheduler after every single
NT.
DAG parallelism and instance parallelism. We evaluate the
different parallelism mechanisms introduced in §4.2 by measur-
ing the throughput and latency of the three schemes (S1, S2, S3)
in Figure 4 for the two DAGs: DAGa and DAGb. Here, we treat all
NTs as dummy ones that simply spins for 10 or 50 cycles for each
packet; we set each NT’s max processing bandwidth to 64Gbps.
Figure 9 plots the throughput of packets going to the two DAGs
under the three schemes. For this experiment, we disable the credit
system to focus the evaluation on NTs. As can be seen, S3 improves
the throughput of DAGa as we launch two instances of NT1, NT2,
and NT4. The throughput is less than doubles of S1/S2’s because
the two instances of NT2 and NT4 are shared by DAGb.

Figure 11 plots the average execution time of the two DAGs
under the three schemes and two different NT processing latencies.
Adding DAG parallelism (S2) largely reduces the total execution
time for DAGa when each NT runs for 50 cycles. However, when
each NT runs for 10 cycles, S2 has no execution-time improvement.
This is because S2 requires a packet to go back to the scheduler after
processing NT3, which adds 16 cycles and is relatively large for

 

137



SuperNIC: An FPGA-Based, Cloud-Oriented SmartNIC FPGA ’24, March 3–5, 2024, Monterey, CA, USA

s1 s2 s30

200

400

600

800

La
te

nc
y 

(n
s)

DAGa-NT50
DAGb-NT50

DAGa-NT10
DAGb-NT10

Figure 11: NT DAG Latency. S1-
S3 same as Fig.10. NT50 and NT10 rep-
resent 50- and 10-cycle NTs.

A B C D D-paral0

200

400

600

La
te

nc
y 

(n
s)

sNIC-ASIC
sNIC-FPGA
PANIC-Emu

Figure 12: Real NT DAG La-
tency. sNIC-ASIC shows projected
ASIC performance.

A B C D D-paral0

20

40

60

80

100

Th
ro

ug
hp

ut
 (G

bp
s)

sNIC-FPGA
PANIC-Emu

Figure 13: Real NT DAG
Throughput.

4 8 15 30 60 100
Load Demand (Gbps)

0

50

100

150

Th
ro

ug
hp

ut
 p

er
 A

re
a

 (G
bp

s/
ar

ea
)

A
A-shared
C
C-shared

Figure 14: NT sharing A and
C (foreground) sharing chain D (back-
ground).

short-running NTs. This indicates that when NTs are short running,
it is more beneficial to chain them in a single region.
Real NT DAGs. We now present real NT DAG evaluation results
(DAGs in Figure 10). Figures 12 and 13 plot the latency and through-
put of running these DAGs on sNIC and on our emulated PANIC via
cycle accurate simulation. Similar to the artificial workload, real NT
DAGs also benefit from sNICin latency while maintaining through-
put, especially when the DAG is long. PANIC sends packets out as
soon as the first NT is available. Thus, packets in PANIC can go
back to the scheduler after each NT in a chain when the next NT is
unavailable. sNIC avoids this overhead by always trying to reserve
credits from the entire chain. As our scheduler can handle full line
rate for every region, PANIC has no effect on the throughput. We
expect similar performance from the ASIC implementation.

sNIC’s throughput is similar to PANIC. For both settings, we
disable their credit systems to only evaluate NT throughput.

We also evaluate the impact of instance parallelism with a real
NT DAG (DAG-D). In this DAG, AES is the bottleneck NT, which
has the lowest computation throughput. Thus, by launching two
parallel AES NTs in DAG-D-paral, throughput roughly doubles.
NT sharing. We evaluate the effect of sharing NTs by running
DAG-D in Figure 10 as a background workload, with bandwidth
consumption of 15Gbps. We then add one of the DAG-A/C as the
foreground workload and vary the foreground workload’s traffic
load. We compare the foreground workload’s throughput and FPGA
area consumption when enabling and disabling NT sharing. We
calculate FPGA area consumption by measuring FPGA LUTs and
BRAM each NT consumes, normalized to DAG-D-paral’s usage.
Figure 14 plots the throughput of DAG-A and DAG-C divided by
their area consumption (we disable the credit system for this test).
Overall, sharing improves throughput per area for both DAGs, since
without sharing, we would need to launch each DAG in its own
region. DAG-A’s throughput keeps increasing as its load increases
until 15 Gbps. Afterwards, its throughput saturates at 15 Gbps. This
is because the AES NT can only achieve 30Gbps maximum through-
put, and the background DAG-D consumes 15Gbps. Yet, we still see
a small gain in throughput per area. DAG-C does not utilize AES
and can fully utilize the unused bandwidth of the remaining NTs
in DAG-D. Thus, it can scale to 60Gbps, providing a large benefit
in throughput per area with sharing.
Autoscaling with pre-launch. We consider how well sNIC
adapts to changing traffic with a synthetic workload that starts
with having 1x traffic load (10Gbps), increases to 2x load at time
20ms and to 3x at time 30ms, decreases to 1.5x at time 70ms and

increases back to 3x at time 90ms.We use a dummyNT chain whose
space fits one region. We model this scenario based on our expected
PR time (10ms) and our fairness epoch (20ms). Figure 15 shows
the throughput and the number of regions used in a timeline for
this workload calculated by our model. Before the workload starts,
sNIC has pre-launched two instances of the NT chain (when the
chain is deployed). Thus, no PR is needed in the first 30ms. At time
30ms, the increased load requires 3 regions, and sNIC starts the PR
of a new region. As the PR finishes at around 35ms, the workload’s
throughput increases to 30Gbps. When the load shrinks at 70ms,
sNIC does not explicitly remove the launched-NT-chain, as evicting
deployed chains does not improve the performance of future PRs.
Thus, at time 90ms when the load increases to 3x, no PR is needed.
Fair resource sharing. To evaluate the effectiveness of our fair-
ness policy, we ran a synthetic workload that includes two users in
a multi-resource environment. User 1 runs 4 dummy NTs in a chain,
and user 2 runs 2 dummy NTs in a chain. User 2’s chain is a subset
of user 1’s. Their user-supplied load requirement is the same. Thus,
a good fairness policy should ensure that they each get half of their
dominant resource. We run the two workloads for 100 seconds. At
50 seconds, user 1’s load increases. We evaluate this workload on
three different schemes. Static is the baseline, where each user gets
assigned an equal number of NT regions. The DRF scheme uses
DRF to space share but does not allow the time-sharing of NT DAGs
amongst different users. sNIC is our complete sNIC fairness policy.

Figure 16 shows the resulting dominant share timeline for the
two users. sNIC consistently delivers a fair share for both users even
when one user’s load changes. In contrast, the DRF scheme cannot
adjust to the load change, because it statically decides resource
allocation. Figure 17 shows the aggregated throughput of the two
users. By allowing the time sharing of common NT DAGs, sNIC
allows for underutilized DAGs to process other users’ flows. Thus,
we achieve higher aggregated throughput than DRF. Compared
to Static, DRF can fully use all the regions, resulting in a slightly
higher aggregated throughput Static.
NT region size and utilization. To evaluate the effect of NT re-
gion size, we collect 12 NTs, six from AmorphOS [28] and six
implemented by us. We combine them into physical chains of differ-
ent lengths and deploy them to different areas of our FPGA board.
Figure 18 shows two region sizes, one set to be the same as the
largest NT among the 12, and one twice the size of that NT. For
each region size, we choose the largest NTs and smallest NTs to
form chains of different lengths. For example, for 2x region size,
when chain lengths are 2, the largest two NTs can fill 79% of the

 

138



FPGA ’24, March 3–5, 2024, Monterey, CA, USA Will Lin, Yizhou Shan, Ryan Kosta, Arvind Krishnamurthy, and Yiying Zhang

Figure 15: sNIC Adapting to Load Changes.

Figure 16: Dominant Resource
Share. The Static line overlaps with DRF
for user 2.

Figure 17: Aggregated Throughput

1 2 3 4 5 6 7
Chain Length

0

20

40

60

80

100

Re
gi

on
 U

til
iza

tio
n 

(%
)

1x region, largest NTs
1x region, smallest NTs
2x region, largest NTs
2x region, smallest NTs

Figure 18: Region Size and Uti-
lization.

A B C

L
a
t
e
n
c
y
 
(
u
s
)

0

5

10

15

20

25 Clio

Clio−sNIC

Clio−sNIC−$

Clover

HERD

HERD−BF

Figure 19: YCSB Latency.

A B CT
h
r
o
u
g
h
p
u
t
 
(
G
b
p
s
)

0

5

10

15 Clio

Clio−sNIC

Clio−sNIC−$

Clover

HERD

HERD−BF

Figure 20: YCSB Throughput.

region, while the smallest two NTs fit 10%, implying that longer
chains or combination of chains of smaller NTs are needed to fill
the region.

5.4 End-to-End Application Performance
We now present our end-to-end application performance. For this
experiment, we deployed sNIC with Clio [60], our recently de-
veloped disaggregated memory system. Clio includes a client-side
server that issues remote-memory access requests such as key-value
get and put. It also includes a network-attached hardware-based
memory device that hosts the user data and performs the accesses.
When deploying sNIC, we connect the sNIC board to the Clio mem-
ory board via Ethernet. We then connect the client-side server and
the sNIC board to a 100Gbps Ethernet switch. After the connection,
we offload Clio’s transport (go-back-N) to sNIC. We further deploy
a key-value cache NT in the sNIC.

We run YCSB’s workloads A (50% set, 50% get), B (5% set, 95% get),
and C (100% get) [13] for this experiment. We use 100K key-value
entries and run 100K operations per test, with YCSB’s default key-
value size of 1 KB and Zipf accesses (𝜃 = 0.99). We compare sNIC
to several baselines: the original Clio, a one-sided RDMA-based
key-value store, Clover [56], an RPC-like RDMA-based key-value
store, HERD [26]. We run Clover and HERD with NVidia 100Gbps
ConnectX-4 RDMANIC.We also run HERD on the NVidia 100Gbps
BlueField-Gen1 SmartNIC.

We evaluate the sNIC performance when we only run the Go-
back-N transport NT at it and when we run both the transport
NT and the key-value caching NT. Figures 19 and 20 show the
latency and throughput of sNIC and other baseline systems. sNIC’s
performance is on par with Clio, Clover, and HERD, as it only adds a
small overhead to the baseline Clio.With caching NT, sNIC achieves
the best performance among all systems, esp. on throughput. This

is because all links in our testbed are 100Gbps except for the Clio
board’s 10 Gbps link, which connects to the sNIC board.When there
is a cache hit at the sNIC, we avoid going to the 10Gbps Clio boards.
HERD-BF performs the worst because of the slow link between its
NIC and the ARM processor. Newer generations of BlueField are
more powerful than BlueField-1. Unfortunately, we do not have
access to the newer generations.

6 CONCLUSION
We presented an FPGA-based, cloud-oriented SmartNIC, sNIC, that
allows for user network task offloading in a dynamic, cloud environ-
ment. Our contributions include the proposal of a virtual NT-chain
abstraction, its load- and space-based dynamic mapping to physical
chains, a packet scheduler designed for NT chains, various par-
allelism and autoscaling techniques, and a full set of fair sharing
mechanisms.

ACKNOWLEDGEMENT
We would like to thank the anonymous reviewers for their tremen-
dous feedback and comments, which have substantially improved
the content and presentation of this paper. We also thank members
of WukLab, including Zhiyuan Guo and Yutong Huang for their
feedback to earlier versions of this paper.

This material is based upon work supported by the National
Science Foundation under the grant NSF 2016262, the Superconduc-
tor Research Corporation under the grant 2023-JU-3135, and gifts
from Google, VMware, Meta, and AWS. Any opinions, findings,
and conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the views of
these institutions.

 

139



SuperNIC: An FPGA-Based, Cloud-Oriented SmartNIC FPGA ’24, March 3–5, 2024, Monterey, CA, USA

REFERENCES
[1] [n. d.]. HTG-9200: Xilinx Virtex UltraScale+™ Optical Networking Development

Platform. http://www.hitechglobal.com/Boards/UltraScale+_X9QSFP28.htm.
[2] [n. d.]. LiquidIO II 10/25GbE Adapter family. https://goo.gl/tZPD6c.
[3] [n. d.]. NVIDIA BLUEFIELD DATA PROCESSING UNITS. https://www.nvidia.

com/en-us/networking/products/data-processing-unit/.
[4] [n. d.]. SpinalHDL. https://github.com/SpinalHDL.
[5] [n. d.]. Verilator, the fastest Verilog/SystemVerilog simulator. https://www.

veripool.org/verilator/.
[6] Adrian M. Caulfield et. al. [n. d.]. A Cloud-scale Acceleration Architecture. In The

49th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO
’16).

[7] Alibaba. [n. d.]. Alibaba Cloud FPGA-Accelerated Instances. https://www.aliyun.
com/product/ecs/fpga/.

[8] Mina Tahmasbi Arashloo, Alexey Lavrov, Manya Ghobadi, Jennifer Rexford,
David Walker, and David Wentzlaff. 2020. Enabling Programmable Transport
Protocols in High-Speed NICs. In 17th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 20). USENIX Association, Santa Clara, CA,
93–109. https://www.usenix.org/conference/nsdi20/presentation/arashloo

[9] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny.
2012. Workload Analysis of a Large-scale Key-value Store. In Proceedings of
the 12th ACM SIGMETRICS/PERFORMANCE Joint International Conference on
Measurement and Modeling of Computer Systems (SIGMETRICS ’12). London,
United Kingdom.

[10] Stuart Byma, J. Gregory Steffan, Hadi Bannazadeh, Alberto Leon-Garcia, and Paul
Chow. 2014. FPGAs in the Cloud: Booting Virtualized Hardware Accelerators
with OpenStack. In 2014 IEEE 22nd Annual International Symposium on Field-
Programmable Custom Computing Machines. 109–116. https://doi.org/10.1109/
FCCM.2014.42

[11] Fei Chen, Yi Shan, Yu Zhang, Yu Wang, Hubertus Franke, Xiaotao Chang, and
Kun Wang. 2014. Enabling FPGAs in the Cloud. In Proceedings of the 11th ACM
Conference on Computing Frontiers (Cagliari, Italy) (CF ’14). Article 3, 10 pages.
https://doi.org/10.1145/2597917.2597929

[12] Sean Choi, Muhammad Shahbaz, Balaji Prabhakar, and Mendel Rosenblum. 2019.
𝜆-NIC: Interactive Serverless Compute on Programmable SmartNICs. http://
arxiv.org/abs/1909.11958.

[13] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking Cloud Serving Systems with YCSB. In Proceedings of
the 1st ACM Symposium on Cloud Computing (SoCC ’10).

[14] A. Demers, S. Keshav, and S. Shenker. 1989. Analysis and Simulation of a Fair
Queueing Algorithm. In Symposium Proceedings on Communications Architectures
Protocols (Austin, Texas, USA) (SIGCOMM ’89). 1–12. https://doi.org/10.1145/
75246.75248

[15] Noah Diamond, Scott Graham, and Gilbert Clark. 2022. Securing InfiniBand
Networks with the Bluefield-2 Data Processing Unit. In 17th International Con-
ference on Cyber Warfare and Security (ICIWS ’22, Vol. 17). 459–468. https:
//doi.org/10.34190/iccws.17.1.58

[16] Hadi Esmaeilzadeh, Emily Blem, Renée St. Amant, Karthikeyan Sankaralingam,
and Doug Burger. 2011. Dark silicon and the end of multicore scaling. In 2011
38th Annual International Symposium on Computer Architecture (ISCA). 365–376.

[17] Suhaib A Fahmy, Kizheppatt Vipin, and Shanker Shreejith. 2015. Virtualized
FPGA Accelerators for Efficient Cloud Computing. In 2015 IEEE 7th International
Conference on Cloud Computing Technology and Science (CloudCom). 430–435.
https://doi.org/10.1109/CloudCom.2015.60

[18] Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek Chiou, Alireza
Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric
Chung, Harish Kumar Chandrappa, Somesh Chaturmohta, Matt Humphrey, Jack
Lavier, Norman Lam, Fengfen Liu, Kalin Ovtcharov, Jitu Padhye, Gautham Pop-
uri, Shachar Raindel, Tejas Sapre, Mark Shaw, Gabriel Silva, Madhan Sivakumar,
Nisheeth Srivastava, Anshuman Verma, Qasim Zuhair, Deepak Bansal, Doug
Burger, Kushagra Vaid, David A. Maltz, and Albert Greenberg. [n. d.]. Azure Ac-
celerated Networking: SmartNICs in the Public Cloud. In 15th USENIX Symposium
on Networked Systems Design and Implementation (NSDI ’18).

[19] Ali Ghodsi, Vyas Sekar, Matei Zaharia, and Ion Stoica. 2012. Multi-Resource
Fair Queueing for Packet Processing. In Proceedings of the ACM SIGCOMM 2012
Conference on Applications, Technologies, Architectures, and Protocols for Computer
Communication (SIGCOMM ’12). Helsinki, Finland.

[20] Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski, Scott Shenker,
and Ion Stoica. 2011. Dominant Resource Fairness: Fair Allocation of Multiple
Resource Types. In Proceedings of the 8th USENIX Conference on Networked Systems
Design and Implementation (NSDI’11).

[21] Dan Gibson, Hema Hariharan, Eric Lance, Moray McLaren, Behnam Montazeri,
Arjun Singh, Stephen Wang, Hassan M. G. Wassel, Zhehua Wu, Sunghwan Yoo,
Raghuraman Balasubramanian, Prashant Chandra, Michael Cutforth, Peter Cuy,
David Decotigny, Rakesh Gautam, Alex Iriza, Milo M. K. Martin, Rick Roy, Zuowei
Shen, Ming Tan, Ye Tang, Monica Wong-Chan, Joe Zbiciak, and Amin Vahdat.
2022. Aquila: A Unified, Low-Latency Fabric for Datacenter Networks. In 19th

USENIX Symposium on Networked Systems Design and Implementation (NSDI ’22).
Renton, WA.

[22] Pawan Goyal, Harrick M. Vin, and Haichen Chen. 1996. Start-Time Fair Queueing:
A Scheduling Algorithm for Integrated Services Packet Switching Networks. In
Conference Proceedings on Applications, Technologies, Architectures, and Proto-
cols for Computer Communications (Palo Alto, California, USA) (SIGCOMM ’96).
157–168. https://doi.org/10.1145/248156.248171

[23] Zhiyuan Guo, Yizhou Shan, Xuhao Luo, Yutong Huang, and Yiying Zhang. [n. d.].
Clio: A Hardware-Software Co-Designed Disaggregated Memory System. https:
//arxiv.org/abs/2108.03492.

[24] Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster, Jeongkeun Lee, Robert Soulé,
Changhoon Kim, and Ion Stoica. 2018. NetChain: Scale-Free Sub-RTT Coordina-
tion. In 15th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 18).

[25] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee, Nate Foster,
Changhoon Kim, and Ion Stoica. 2017. NetCache: Balancing Key-Value Stores
with Fast In-Network Caching. In Proceedings of the 26th Symposium on Operating
Systems Principles (Shanghai, China) (SOSP ’17). 121–136.

[26] Kalia, Anuj and Kaminsky, Michael and Andersen, David G. [n. d.]. Using RDMA
Efficiently for Key-value Services. In Proceedings of the 2014 ACM Conference on
SIGCOMM (SIGCOMM ’14).

[27] Antoine Kaufmann, SImon Peter, Naveen Kr. Sharma, Thomas Anderson, and
Arvind Krishnamurthy. 2016. High Performance Packet Processing with FlexNIC.
In Proceedings of the Twenty-First International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS ’16).

[28] Ahmed Khawaja, Joshua Landgraf, Rohith Prakash, Michael Wei, Eric Schkufza,
and Christopher J. Rossbach. 2018. Sharing, Protection, and Compatibility for
Reconfigurable Fabric with AmorphOS. In 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18).

[29] Oliver Knodel, Patrick Lehmann, and Rainer G. Spallek. 2016. RC3E: Reconfig-
urable Accelerators in Data Centres and Their Provision by Adapted Service
Models. In 2016 IEEE 9th International Conference on Cloud Computing (CLOUD).
19–26. https://doi.org/10.1109/CLOUD.2016.0013

[30] Nodir Kodirov, Sam Bayless, Fabian Ruffy, Ivan Beschastnikh, Holger H. Hoos,
and Alan J. Hu. 2018. VNF Chain Allocation and Management at Data Center
Scale. In Proceedings of the 2018 Symposium on Architectures for Networking and
Communications Systems (ANCS ’18).

[31] Dario Korolija, Timothy Roscoe, and Gustavo Alonso. 2020. Do OS abstractions
make sense on FPGAs?. In 14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 20).

[32] Alberto Lerner, Rana Hussein, and Philippe Cudré-Mauroux. 2019. The Case for
Network Accelerated Query Processing. In CIDR.

[33] Bojie Li, Kun Tan, Layong (Larry) Luo, Yanqing Peng, Renqian Luo, Ningyi Xu,
Yongqiang Xiong, Peng Cheng, and Enhong Chen. 2016. ClickNP: Highly Flexible
and High Performance Network Processing with Reconfigurable Hardware. In
Proceedings of the 2016 ACM SIGCOMM Conference (SIGCOMM ’16).

[34] Huaicheng Li, Mingzhe Hao, Stanko Novakovic, Vaibhav Gogte, Sriram Govindan,
Dan R. K. Ports, Irene Zhang, Ricardo Bianchini, Haryadi S. Gunawi, and Anirudh
Badam. 2020. LeapIO: Efficient and Portable Virtual NVMe Storage on ARM
SoCs. In Proceedings of the Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems.

[35] Jialin Li, Ellis Michael, and Dan R. K. Ports. 2017. Eris: Coordination-Free Consis-
tent Transactions Using In-Network Concurrency Control (SOSP ’17). Association
for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/3132747.
3132751

[36] Jialin Li, Ellis Michael, Naveen Kr. Sharma, Adriana Szekeres, and Dan R. K. Ports.
2016. Just Say NO to Paxos Overhead: Replacing Consensus with Network Order-
ing. In 12th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 16). USENIX Association, Savannah, GA, 467–483.

[37] Jialin Li, Jacob Nelson, Ellis Michael, Xin Jin, and Dan R. K. Ports. 2020. Pegasus:
Tolerating Skewed Workloads in Distributed Storage with In-Network Coher-
ence Directories. In 14th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 20).

[38] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan Zhuang, Fei Feng, Lingbo Tang,
Zheng Cao, Ming Zhang, Frank Kelly, Mohammad Alizadeh, and Minlan Yu. 2019.
HPCC: High Precision Congestion Control. In Proceedings of the ACM Special
Interest Group on Data Communication.

[39] Jiaxin Lin, Kiran Patel, Brent E. Stephens, Anirudh Sivaraman, and Aditya Akella.
2020. PANIC: AHigh-Performance Programmable NIC forMulti-tenant Networks.
In 14th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 20).

[40] Jianshen Liu, Carlos Maltzahn, Craig D. Ulmer, and Matthew Leon Curry. [n. d.].
Performance Characteristics of the BlueField-2 SmartNIC. https://doi.org/10.
2172/1783736

[41] Ming Liu, Wolfgang Kuehn, Zhonghai Lu, and Axel Jantsch. 2009. Run-time
Partial Reconfiguration speed investigation and architectural design space ex-
ploration. In 2009 International Conference on Field Programmable Logic and
Applications. 498–502. https://doi.org/10.1109/FPL.2009.5272463

 

140

http://www.hitechglobal.com/Boards/UltraScale+_X9QSFP28.htm
https://goo.gl/tZPD6c
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://github.com/SpinalHDL
https://www.veripool.org/verilator/
https://www.veripool.org/verilator/
https://www.aliyun.com/product/ecs/fpga/
https://www.aliyun.com/product/ecs/fpga/
https://www.usenix.org/conference/nsdi20/presentation/arashloo
https://doi.org/10.1109/FCCM.2014.42
https://doi.org/10.1109/FCCM.2014.42
https://doi.org/10.1145/2597917.2597929
http://arxiv.org/abs/1909.11958
http://arxiv.org/abs/1909.11958
https://doi.org/10.1145/75246.75248
https://doi.org/10.1145/75246.75248
https://doi.org/10.34190/iccws.17.1.58
https://doi.org/10.34190/iccws.17.1.58
https://doi.org/10.1109/CloudCom.2015.60
https://doi.org/10.1145/248156.248171
https://arxiv.org/abs/2108.03492
https://arxiv.org/abs/2108.03492
https://doi.org/10.1109/CLOUD.2016.0013
https://doi.org/10.1145/3132747.3132751
https://doi.org/10.1145/3132747.3132751
https://doi.org/10.2172/1783736
https://doi.org/10.2172/1783736
https://doi.org/10.1109/FPL.2009.5272463


FPGA ’24, March 3–5, 2024, Monterey, CA, USA Will Lin, Yizhou Shan, Ryan Kosta, Arvind Krishnamurthy, and Yiying Zhang

[42] Ming Liu, Simon Peter, Arvind Krishnamurthy, and Phitchaya Mangpo
Phothilimthana. 2019. E3: Energy-Efficient Microservices on SmartNIC-
Accelerated Servers. In 2019 USENIX Annual Technical Conference (USENIX ATC
’19). Renton, WA.

[43] Mellanox. [n. d.]. ConnectX-6 EN Single/Dual-Port Adapter ASIC Supporting
200GbE. http://www.mellanox.com/page/products_dyn?product_family=268&
mtag=connectx_6_en_ic.

[44] Mellanox. [n. d.]. ConnectX-7 1,2,4-Port Adapter supporting up to 400Gb/s.
https://nvdam.widen.net/s/srdqzxgdr5/connectx-7-datasheet.

[45] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun Lee, and Minlan Yu. 2017.
SilkRoad: Making Stateful Layer-4 Load Balancing Fast and Cheap Using Switch-
ing ASICs (SIGCOMM ’17). Association for Computing Machinery, New York,
NY, USA.

[46] Netronome. [n. d.]. Agilio SmartNICs. https://www.netronome.com/products/
smartnic/overview/.

[47] A.K. Parekh and R.G. Gallager. 1993. A generalized processor sharing approach
to flow control in integrated services networks: the single-node case. IEEE/ACM
Transactions on Networking 1, 3 (1993), 344–357. https://doi.org/10.1109/90.234856

[48] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C. Snoeren.
2015. Inside the Social Network’s (Datacenter) Network. In Proceedings of the 2015
ACM Conference on Special Interest Group on Data Communication (SIGCOMM
’15).

[49] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob Nelson, Panos Kalnis,
Changhoon Kim, Arvind Krishnamurthy, Masoud Moshref, Dan Ports, and Peter
Richtarik. 2021. Scaling Distributed Machine Learning with In-Network Aggrega-
tion. In 18th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 21). USENIX Association, 785–808. https://www.usenix.org/conference/
nsdi21/presentation/sapio

[50] Amazon Web Services. [n. d.]. Amazon EC2 F1 Instances - Enable faster FPGA
accelerator development and deployment in the cloud. https://aws.amazon.com/
ec2/instance-types/f1/.

[51] Naveen Kr. Sharma, Antoine Kaufmann, Thomas Anderson, Changhoon Kim,
Arvind Krishnamurthy, Jacob Nelson, and Simon Peter. 2017. Evaluating the
Power of Flexible Packet Processing for Network Resource Allocation (NSDI’17).
USENIX Association, USA.

[52] M. Shreedhar and George Varghese. 1995. Efficient Fair Queueing Using Deficit
Round Robin. In Proceedings of the Conference on Applications, Technologies, Archi-
tectures, and Protocols for Computer Communication (Cambridge, Massachusetts,
USA) (SIGCOMM ’95). 231–242. https://doi.org/10.1145/217382.217453

[53] Anirudh Sivaraman, Suvinay Subramanian, Mohammad Alizadeh, Sharad Chole,
Shang-Tse Chuang, Anurag Agrawal, Hari Balakrishnan, Tom Edsall, Sachin
Katti, and Nick McKeown. 2016. Programmable Packet Scheduling at Line Rate.
In Proceedings of the 2016 ACM SIGCOMM Conference (Florianopolis, Brazil)
(SIGCOMM ’16). Association for Computing Machinery, New York, NY, USA.

[54] Chen Sun, Jun Bi, Zhilong Zheng, Heng Yu, and Hongxin Hu. 2017. NFP: Enabling
Network Function Parallelism in NFV (SIGCOMM ’17).

[55] Tencent. [n. d.]. Tencent Cloud FPGA Instances. https://cloud.tencent.com/
product/fpga.

[56] Shin-Yeh Tsai, Yizhou Shan, , and Yiying Zhang. 2020. Disaggregating Persistent
Memory and Controlling Them from Remote: An Exploration of Passive Disag-
gregated Key-Value Stores. In Proceedings of the 2020 USENIX Annual Technical
Conference (ATC ’20). Boston, MA, USA.

[57] TaoWang, Xiangrui Yang, Gianni Antichi, Anirudh Sivaraman, and Aurojit Panda.
2022. Isolation Mechanisms for High-Speed Packet-Processing Pipelines. In 19th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 22).
Renton, WA.

[58] Jagath Weerasinghe, Francois Abel, Christoph Hagleitner, and Andreas Herkers-
dorf. 2015. Enabling FPGAs in Hyperscale Data Centers. In 2015 IEEE 12th Intl
Conf on Ubiquitous Intelligence and Computing and 2015 IEEE 12th Intl Conf on
Autonomic and Trusted Computing and 2015 IEEE 15th Intl Conf on Scalable Com-
puting and Communications and Its Associated Workshops (UIC-ATC-ScalCom).
1078–1086. https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP.2015.199

[59] Yue Zha and Jing Li. 2020. Virtualizing FPGAs in the Cloud. In Proceedings of the
Twenty-Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’20).

[60] Zhiyuan Guo and Yizhou Shan and Xuhao Luo and Yutong Huang and Yiying
Zhang. 2022. Clio: A Hardware-Software Co-Designed Disaggregated Memory
System. In the 27th International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS ’22). Lausanne, Switzerland.

[61] Hang Zhu, Zhihao Bai, Jialin Li, Ellis Michael, Dan R. K. Ports, Ion Stoica, and
Xin Jin. 2019. Harmonia: Near-Linear Scalability for Replicated Storage with
in-Network Conflict Detection. Proc. VLDB Endow. 13, 3 (nov 2019), 376–389.

 

141

http://www.mellanox.com/page/products_dyn?product_family=268&mtag=connectx_6_en_ic
http://www.mellanox.com/page/products_dyn?product_family=268&mtag=connectx_6_en_ic
https://nvdam.widen.net/s/srdqzxgdr5/connectx-7-datasheet
https://www.netronome.com/products/smartnic/overview/
https://www.netronome.com/products/smartnic/overview/
https://doi.org/10.1109/90.234856
https://www.usenix.org/conference/nsdi21/presentation/sapio
https://www.usenix.org/conference/nsdi21/presentation/sapio
https://aws.amazon.com/ec2/instance-types/f1/
https://aws.amazon.com/ec2/instance-types/f1/
https://doi.org/10.1145/217382.217453
https://cloud.tencent.com/product/fpga
https://cloud.tencent.com/product/fpga
https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP.2015.199

	Abstract
	1 Introduction
	2 Motivation and Related Works
	2.1 Network Task Offloading in Data Centers
	2.2 Existing SmartNIC Solutions
	2.3 Generic Multi-Tenant FPGA Solutions

	3 Usage and Board Overview
	3.1 Using SuperNIC
	3.2 Board Architecture and Packet Flow

	4 SuperNIC Design
	4.1 NT Chain and NT Region
	4.2 NT Pipelining and Parallelism
	4.3 NT Deployment
	4.4 Packet Scheduling Mechanism
	4.5 Fairness Policy

	5 Evaluation Results
	5.1 Overall Performance
	5.2 NT and NT DAG Implementation
	5.3 Deep Dive into sNIC Designs
	5.4 End-to-End Application Performance

	6 Conclusion
	References



