
SRIFTY: SWIFT AND THRIFTY DISTRIBUTED NEURAL NETWORK TRAINING
ON THE CLOUD

Liang Luo 1 2 Peter West 1 Pratyush Patel 1 Arvind Krishnamurthy 1 Luis Ceze 1 3

ABSTRACT
Finding the best VM configuration is key to achieve lower cost and higher throughput, two primary concerns in
cloud-based distributed neural network (NN) training today. Optimal VM selection that meets user constraints
requires efficiently navigating a large search space while controlling for the performance variance associated with
sharing cloud instances and networks.

In this work, we characterize this variance in the context of distributed NN training and present results of a
comprehensive throughput and cost-efficiency study we conducted across a wide array of instances to prune for
the optimal VM search space. Using insights from these studies, we built Srifty, a system that combines runtime
profiling with learned performance models to accurately predict training performance and find the best VM choice
that satisfies user constraints, potentially leveraging both heterogeneous setups and spot instances. We integrated
Srifty with PyTorch and evaluated it on Amazon EC2. We conducted a large-scale generalization study of Srifty
across more than 2K training setups on EC2. Our results show that Srifty achieves an iteration latency prediction
error of 8%, and its VM instance recommendations offer significant throughput gain and cost reduction while
satisfying user constraints compared to existing solutions in complex, real-world scenarios.

1 INTRODUCTION

To date, most efforts in datacenter and cloud environments
focus on improving NN training throughput (Luo et al.,
2020; Narayanan et al., 2020b; Thorpe et al., 2021; Mudi-
gere et al., 2021). However, with the cost of cloud-based
NN training soaring to millions of dollars (Beat, 2020), cost
has become another critical concern (MLPerf, 2020).

Finding optimal VM instances is key to high-throughput,
low-cost training. However, given a training job, a time, and
a cost constraint, which VM configurations finish the job
fastest? Which achieve the lowest cost?

Answering such questions requires accurate estimations of
training performance for potentially unseen NN models in a
plethora of cloud-provided configurations. Prior work has
proposed model- (Justus et al., 2018; Qi et al., 2016; Peng
et al., 2018; Zheng et al., 2019) and profile-based (Alipour-
fard et al., 2017; Yi et al., 2020; Zhu et al., 2020; Bilal et al.,
2020) techniques for performance prediction, but they fall
short of tackling the problems arising from modern cloud:
performance variations introduced by multi-tenancy and
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the dynamic nature of the network make prediction diffi-
cult, especially in the synchronous data parallel training
paradigm; the constant billing of VMs and expensive GPU
instances limit profiling and exploration; heterogeneous con-
figurations and spot instances might be needed to optimally
achieve user objectives; and volatility and interference on
cloud resources may require users to continuously revise
selected configurations to meet their goals.

In this work, we present Srifty, a system that finds the best
VM instances to train an NN model in the cloud given user
objectives and constraints. Srifty combines model- and
profile-based approaches using learned models, lightweight
instrumentation, simulation, and hybrid constraint solving to
tackle the challenges. It carefully characterizes the temporal
and spatial variance induced by the cloud on the compute
and communication performance of the distributed training
workload; it then uses these empirical measurements to learn
performance models that explicitly capture the variance and
simulations to accurately predict training iteration latency.
Srifty leverages insights from a comprehensive throughput
and cost-efficiency study we conducted to trim a large search
space that involves heterogeneous and spot VMs before
converting the constraints and goals into a formulation that
can be solved. Finally, Srifty continually monitors training
progress to recommend new VM configurations if large
interference or service interrupts violate user constraints.

This paper makes the following contributions:
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• We show why existing solutions fall short of robustly find-
ing the optimal VM configuration given an NN training
task by explicitly quantifying the compute and communi-
cation performance variance in the public cloud (§2).

• We present a comprehensive throughput and cost-
efficiency study (§3) of training representative NNs on
different VM families, sizes, and generations in the cloud
to obtain insights needed to prune the search space.

• We designed and implemented Srifty, a system that uses
profiling, learned performance models, simulation, and
constraint solving to search for the best VM configuration.
Our approach accounts for performance variance, identi-
fies heterogeneous configurations, and takes advantage of
spot instances, if necessary, to continually optimize for
cost or throughput while meeting user constraints (§4).

• We integrated Srifty with PyTorch and conducted a large-
scale generalization study of Srifty across more than 2K
training setups on EC2. In this study, Srifty achieves
a prediction error of 8% and finds choices that delivers
significantly better throughput and lower cost in real-
world training scenarios compared to existing solutions
while satisfying user constraints(§5).

2 CHALLENGES IN CLOUD-BASED
DISTRIBUTED TRAINING

In this work, we focus on synchronous data parallelism
using collective allreduce (Rabenseifner, 2004) due to its
better reproducibility, convergence and performance (Mudi-
gere et al., 2021; Narayanan et al., 2021; Rajbhandari et al.,
2019; Lepikhin et al., 2020; Kumar et al., 2021). We now
describe the unique challenges faced in enabling efficient
cloud-based distributed NN training.

2.1 Large VM Selection Search Space

The cloud creates a large configuration space for distributed
training of neural networks. For example, given a global
batch size as an input, a user can choose any number of VM
instances to distribute the global batch without affecting
accuracy; when we factor in user constraints, the decision
space further includes heterogeneous and spot VM instances
(Mahgoub et al., 2020) in case no single instance type satis-
fies both time and cost constraints.

2.2 High Variance in the Cloud Environment

Clouds make it hard to predict iteration latency since shared
hardware is not interference-free (Fu et al., 2021), and we
can empirically observe significant spatial (across VMs) and
temporal variation in iteration time for the same workload.

Communication Variance. Prior work has observed that
the communication performance of VMs varies greatly in
the datacenter environment due to oversubscription (Bilal

Figure 1. Allreduce latency varies dramatically across both time
(up to 2x) and different VM allocations (up to 1.8x).

Figure 2. Histogram of compute latency across different VMs (left)
and different iterations (right), showing up to a 1.1x variance.

et al., 2012), multi-tiered topology (Liu et al., 2017), shar-
ing (Luo et al., 2020), fairness mechanisms (Amazon, b),
and bursting (Amazon, a). To quantify this variance, we re-
quested 10 allocations of 32 g3.4xlarge instances on EC2, 5
without (left) and 5 with (right) placement groups (Amazon,
c), as shown on Figure 1; each line represents an allocation.
For each allocation, we ran 100 allreduce jobs with NCCL
on 1KB (top) and 256MB (bottom) buffers. We find that the
mean performance varies up to 1.8x and 1.5x on large and
small buffers, respectively.

Compute Variance. Compute variance has compounding
effects: a delay in compute time delays communication
and iteration latency, which are determined by the slowest
GPU. To characterize spatial variance, we ran independent
ResNet18 training tasks on 760 g4dn.2xl instances on EC2
with a batch size of 64. We plotted the 100-iteration average
latency of each VM in Figure 2 (left). For temporal variance,
we show per-iteration latency across 2500 iterations of a
single instance in Figure 2 (right). Both histograms resemble
normal distributions, with a variance of up to 1.1x.

2.3 Ineffectiveness of Existing Approaches

Existing work on selecting appropriate cloud configura-
tions fall into two categories: model (Justus et al., 2018;
Qi et al., 2016; Peng et al., 2018; Zheng et al., 2019; Cai



Srifty: Swift and Thrifty Distributed Training on the Cloud

et al., 2017; Pei et al., 2019; Mahgoub et al., 2020) or profile
based (Bilal et al., 2020; Yi et al., 2020; Alipourfard et al.,
2017; Zhu et al., 2020; Yadwadkar et al., 2017; Misra et al.,
2021). Most work focuses on making only homogeneous
VM choices while optimizing for a single objective.

Model-based solutions create performance models for var-
ious stages of the distributed training process. They often
ignore large cloud-induced variance (e.g., (Qi et al., 2016;
Zheng et al., 2019)) and overlapping between communica-
tion and computation (Justus et al., 2018; Peng et al., 2019;
Jayarajan et al., 2019; Hashemi et al., 2018).

Profile-based solutions directly measures specific configu-
rations in the entire search space. To help guide the probes
and improve reusability across workloads, D-optimal de-
sign, decision forests (Mahgoub et al., 2020), Bayesian
Optimization (BO) (Alipourfard et al., 2017), and work-
load fingerprinting (Yadwadkar et al., 2017) are proposed.
Unfortunately, these techniques do not fully address the
drawbacks of profile-based solutions because they (1) still
incur a high cost due to the need to probe large amounts of
expensive VMs, and (2) suffer from unstable measurements
due to cloud variance, which mandates repeated probes.

Case Study. Even in a homogeneous VM setup, existing ap-
proaches are nonoptimal in the cloud environment. To show
this, we implemented a model-based prototype, called APM,
that combines the compute latency model in Nexus (Shen
et al., 2019), the communication latency model in Day-
dream (Zhu et al., 2020), and the iteration model in Cyn-
thia (Zheng et al., 2019). We also built a profile-based pro-
totype based on BO (used by Cherrypick (Alipourfard et al.,
2017) and HeterBO). We predicted training throughput of
ResNet18 on 60 g4dn.2xl VMs in us-east-1 region of EC2
with a global batch size of 480, equally distributed to each
instance. This training job had 18 possible configurations.
We plotted the range of observed and predicted throughput
of a given approach versus number of GPUs for each con-
figuration across 7 VM allocations.1 Figure 3 shows the
results. Neither APM nor the BO-based solution finds the
optimal VM configuration for this workload. APM ignores
performance degradation due to the increase in scale and
hence exaggerates performance, and its choice is inferior
to the optimal by up to 1.1x and 3.2x throughput and cost,
respectively. BO’s prediction accuracy is negatively affected
by both the allocation variance (up to 1.3x) and the number
of probes, and its choice is up to 1.2x and 1.7x inferior to
the optimal choice throughput- and cost-wise. Further, this
non-concave throughput curve causes specific prior-based
BOs (e.g., HeterBO) to prematurely stop exploring.

1The BO-based model is limited to probe 4 times within the first
allocation. If BO proposes an invalid VM count, the throughput of
the closest observation is used.

p3.2xl p3.8xl g3.4xl g4dn.4xl c5.4xl c5.18xl
Device V100 4V100 M60 T4 36 cores 72 cores
Gbps. 10* 10 10* 25* 10* 25

Table 1. VM specifications used in the study (* indicates up to).

3 TRIMMING THE VM SEARCH SPACE

Srifty aims to find the optimal VM configuration in a large
search space involving heterogeneous VM types, local batch
sizes, and billing types, which necessitates trimming the
search space. We do so by conducting a comprehensive
performance and cost-efficiency (throughput-per-hour price)
characterization on EC2 using PyTorch.

We benchmarked four models – ResNet50, Vgg19,
SqueezeNet and AlexNet – for their unique characteristics
in terms of compute and communication intensity. We used
on-demand price to compute cost-efficiency and report the
harmonic mean of cost-efficiency value across them. We ex-
perimented on 6 representative VM types, shown on Table 1,
each with up to 32 instances. We summarize our findings in
the following takeaways, which we then used extensively in
the design of Srifty (described in the next section).

Takeaway 1: Prefer GPU over CPU Instances. With cur-
rent pricing, CPUs are still inferior to GPUs in terms of
cost-efficiency: Figure 4 (top and mid) shows that even
the least cost-efficient GPU instances outperform the most
cost-efficient CPU instances.

Takeaway 2: Prefer larger GPU instances and smaller
CPU instances. VMs are priced proportional to their com-
pute capacity. Ideal vertical scaling thus implies that cost-
efficiency is constant within the same VM family. In reality,
c5 (CPU instance) throughput scales poorly with added
CPU cores (Vilasboas et al., 2019), and larger p3 (GPU) in-
stances scale near-linearly with added GPUs and additional
bandwidth provisioned for larger instances. Thus, we prefer
larger GPU, but not CPU, instances.

Takeaway 3: VM generation is not a pruning factor. The
most recent generations of VMs are not always the optimal
choice: g3, p3, and g4dn instances have increasingly more
modern GPUs, but none is strictly more powerful and cost-
efficient than others (Figure 4).

Takeaway 4: Avoid small local (per-device) batch sizes.
NN training is latency bound and transitions to a throughput-
bound process as batch size increases (Figure 5). Finding
the transition boundary lets us prune the search space to
avoid too small of a per-device batch size.

Takeaway 5: World size (number of GPUs) is critical.
Figure 6 plots the performance for different world sizes
given a global batch size of 256. World size has significant
implications for both NN training throughput (12x) and cost
(6x). Therefore, the optimal world size must be searched in
conjunction with the per-device batch size to arrive at the
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Figure 3. Prediction of APM (left), BO (mid), and TACO (right) on the training performance of ResNet18 on up to 60 nodes on EC2
instances. Neither APM nor BO finds the best configuration robustly, while TACO achieves high accuracy in the presence of variance.

Figure 4. Harmonic mean of the cost-efficiency across 4 different
models with varying setups.

Figure 5. Resnet18 throughput vs batch size (Tesla T4 GPU).

cost-efficiency sweet spot.

4 DESIGN AND IMPLEMENTATION

To effectively determine the optimal VM configuration
given a set of user goals and constraints, we require our
system to (1) explicitly model cloud variances and pro-
vide accurate and robust performance estimations, (2) accu-
rately model modern framework optimizations, such as over-
lapped communication and computation, (3) support reason-
ing of heterogeneous VM configurations, (4) handle user
objective and constraints efficiently, (5) minimize optimiza-
tion/exploration overheads, and (6) continually optimize

Figure 6. No single ’magic’ per-device batch size achieves the best
throughput or the lowest cost for all models.

VM configuration during interference and spot instance pre-
emption. These requirements set Srifty apart from existing
systems (Table 2). This section details how Srifty combines
model- and profile-based approaches, using learned models,
lightweight instrumentation, simulation, and constraint solv-
ing to meet the requirements. Srifty takes as input an NN
model, a target global batch size, a user VM quota, and time
and cost constraints, and it outputs the chosen VM types,
their quantities, and the local batch size assigned to them.

4.1 Compute Latency and Gradient Exchange
Timestamp Modeling

Given a model and a batch size, Srifty needs to learn a la-
tency vs batch-size model and capture the gradient exchange
timestamps on the backward pass when allreduce operations
are issued to properly model overlapping.

Latency Model. Traditionally, training latency is obtained
with learned performance models (Qi et al., 2016), with the
drawback of requiring NN topology and accurate modeling
of peak GPU performance (Zhu et al., 2018) or with tracing
(Gujarati et al., 2020). Srifty draws on prior work, which
observes that the relationship between runtime latency t(B),
given a batch size B, follows a linear model: t(B) = αB +
β (where α and β are parameters) (Crankshaw et al., 2017;
Shen et al., 2019). Since models exhibit different slopes
at different batches sizes (Figure 5), Srifty uses a piece-
wise linear model. It binary searches the maximum batch



Srifty: Swift and Thrifty Distributed Training on the Cloud

Variance modeling Heterogeneous VMs User objective and constraints Search cost Continual optimization
Paleo (Qi et al., 2016) 7 7 Time Low 7

Cherrypick (Alipourfard et al., 2017) 3 7 Time Higher 7
Cynthia (Zheng et al., 2019) 7 CPU instances only Time and Cost Low 7

OptimusCloud (Mahgoub et al., 2020) 7 3 Cost-efficiency Budget 3
HeterBO (Yi et al., 2020) 7 7 Time or Cost High 7

Srifty 3 3 Time and Cost Low 3

Table 2. Srifty is designed to continually find the best VM configuration that satisfies user constraints at low cost in the presence of cloud
variance, leveraging heterogeneous VM cluster and spot instances.

size Bmax that can fit on a device and then tries to capture
latency at various batch sizes, finding the batch size that
transitions from latency to throughput-bound training.

Gradient Exchange Timestamps. Modern frameworks
overlap parameter exchange and backward pass. Capturing
the overlapping behavior requires exact timestamps of when
a layer’s backward pass completes. Srifty uses lightweight
instrumentation through hooks (Pytorch, 2020; Tensorflow,
2020; sks) to record the timestamp at which each layer fin-
ishes back-propagation (i.e., starts allreduce). Timespans
are normalized over the total backward pass time to allow
extrapolation to different batch sizes. With this instrumenta-
tion, Srifty can also accommodate model optimizations that
change the order of allreduces (Hashemi et al., 2020). This
process, done once per model and occurring in parallel on
all available GPU types, is practical since only a few GPU
models reside in public clouds.

Srifty explicitly tracks latency deviation during this instru-
mentation stage for later use in the simulator to construct a
probabilistic latency model.

4.2 A Learned AllReduce Performance Model

Since users have no visibility or control over the placement
of VMs, and local observations suffer from variance and
may not represent the whole distribution, it is difficult to de-
rive a mathematical model for communication performance2.
We thus opt to learn an end-to-end allreduce model.

Model Output. Since we cannot directly predict allreduce
latency t (given a gradient size of s and world size n) be-
cause we need to properly model concurrent communication,
Srifty needs to predict allreduce bandwidth.

Instead of predicting algorithm bandwidth (balgo = s
t ),

we opted to predict a different label, the bus bandwidth
bbus = 2s(n−1)

nt (Zhu et al., 2020). Bus bandwidth is the
average bandwidth as if physically measured from a net-
work interface during an allreduce operation. Compared to
algorithm bandwidth, bus bandwidth incorporates n and s,
two of the most important features, and reduces aliasing of
different setups into the same label. For example, allreduce
operations on different s may take the same time to finish,
resulting in the same algorithm bandwidth, but they may

2Bandwidth rated by cloud providers has a 4000%+ MAPE
(mean absolute percentage error).

have different bbus. Reducing alias in the dataset helps our
model better capture the importance of each feature.

Dataset. Srifty performs a grid probe of allreduce band-
width by sweeping buffer size from 4B to 512MB and world
size from 2 to 64 on g3, g4dn, and p3 instance families of
different sizes on EC2. This approach also captures link dif-
ferences (e.g., allreduce via NVLink is captured with a small
world size). We included the following handpicked features
in our dataset: location (cloud, region, and availability zone),
GPU and CPU, rated network throughput by the provider,
buffer size, world size, and the number of asynchronous
transfers; the dataset contains 40K entries, covering both
EC2’s us-west-2 and us-east-1 regions. We repeated experi-
ments with different VM allocations to capture the variance
distribution induced by physical placement and dynamic
interference. Our focus on synchronous training prevents
the need to measure bandwidth of mixed instance types
because the slowest instance’s bandwidth determines the
global achieved bandwidth; hence, we need only measure
individual instance types.

Training. We trained regression models for allreduce per-
formance using XGBoost (Chen et al., 2015). We found that
the models predicted negative bandwidth for small buffers
when trained on the entire dataset, causing a large test error.
We mitigated this by training two models for the dataset,
one for s ≤MTU and one for s ≥MTU , where MTU is
the maximum number of bytes a single network packet can
carry (9K bytes on EC2 (Amazon, 2020)). We performed
model selection based on an autotuner and mean absolute
percentage error (MAPE), sweeping various hyperparame-
ters, such as objectives including pseudo huber loss (Huber,
1992), which helps identify outliers. Many frameworks dy-
namically switch among allreduce implementations based
on transfer characteristics, and our grid probe captures this.

Variance Comprehension. Consider a series of observa-
tions on the same configuration (X) that have different bus
bandwidths (Yis) due to variance. When fit with a loss ob-
jective, the learner would explicitly return predictions that
robustly minimize overall loss across all observations.

Model Updating. Given network upgrades that affect per-
formance, the Srifty allreduce model must be updated. This
involves simply capturing new probes, decaying the weights
of stale samples, and retraining.
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4.3 Iteration Simulator

The simulator predicts the mean iteration latency for a given
NN model M : titer = SIM(M, counts, batches, iters)
by combining the compute and allreduce performance mod-
els. An iteration with batch size B takes titer = tfw(B) +
max(tbw(B), tpe) to finish, where tfw and tbw are the la-
tencies for the forward and backward passes, respectively,
and tpe is the duration of parameter exchange.

We first describe how Srifty estimates tfw and tbw in the
presence of cloud variance and heterogeneous VMs. In
synchronous training, tfw is bounded by the slowest VM,
which is determined probabilistically: for each chosen VM,
Srifty samples iter values from a normal distribution (§2.2)
fitted with a mean equal to the raw prediction (§4.1) and a
scale set to the standard deviation observed during profiling.
The highest sampled latency value for each iteration across
all VMs becomes the predicted latency for that iteration.
The mean compute latency is then determined by averaging
the predicted latency across all iterations.

Next, we used the allreduce bandwidth model to derive
tpe with a simulator. The simulator begins at the start of
the backward pass (timestamp 0). It tracks an event queue
ordered by timestamp: for each NN layer, the simulator en-
queues the allreduce transfer start time as an event (start,
timestamp), where timestamp is collected through the
backward pass instrumentation. The simulator dequeues
events from the queue continuously in timestamp order
and calculates timespan, the duration between the current
timestamp and that of the previous event. When a start
event is dequeued, the allreduce operation at that layer be-
gins, and a concurrency counter c is incremented. To es-
timate the transfer bandwidth (btra), the simulator queries
the allreduce bandwidth model for the bus bandwidth bbus
given the layer size s. We then add the returned bbus to an
aggregate bandwidth counter bagg , which represents the to-
tal concurrent bandwidth sum for all allreduces. Since each
VM instance has a limited total bus bandwidth bcap, the
simulator allocates total bandwidth to each transfer fairly:
btra = bbus if bagg < bcap, else btra = min(bbus,

bcap

c ).

Using btra, the simulator computes and queues a finish
timestamp for each layer. Whenever any event is pro-
cessed, it updates the estimated finish time using the current
timespan. If the resulting event causes any transfer band-
width to change, all active operations’ estimated finish times
are recomputed, and new events are queued. The simulation
finishes when no further event is in the queue, and the end
timestamp is assigned tpe.

4.4 Srifty Optimizer

Given a model M , global batch size Bglobal, number of
iterations N , VM instances 0...I (spot or on-demand), their

user quotas CAPS[] and prices P [], together with probed
minimum batch size thresholds (Takeaway 4, §3), and
GPU memory capacity memcap, subject to a time con-
straint Tlim and monetary budget $lim, the Srifty optimizer
searches for configurations that minimize:

A cost or time objective

Ntiter
∑

i in I (counts[i]P [i]) or Ntiter,

subject to the following constraints:

1. Per-VM batch constraints:∑
i in I batches[i]counts[i] = Bglobal

∀i in Ithresholds[i] ≤ batches[i] ≤ memcap[i]

2. VM count constraints:

∀i in Icounts[i] ≤ CAPS[i]

3. Time or cost constraints:

Ntiter ≤ Tlim or/and Ntiter
∑

i in I (counts[i]P [i]) ≤ $lim

The output counts[i] then stores the number type i-th VM in
the solution, and batches[i] stores the batch size allocated
to each VM of type i. titer in the simulator response.

Directly encoding SIM into SMT logic would take too long
to solve since each exploration results in a simulator invo-
cation. To practically solve this constrained optimization
problem, Srifty uses a hybrid strategy that prunes the search
space before performing an exhaustive search and relies on
SMT with approximated constraints if needed.

Hybrid Solving Strategy. Srifty begins by pruning the
search space using the insights from §3: (1) global batch
size (and hence local batch size) is usually a power of
2 on GPUs (StackOverflow; Intel) to fully utilize GPUs;
(2) local batch size should be large enough to saturate the
compute capacity; and (3) all instances of the same type
should have the same batch size for maximum through-
put. 3 These let Srifty reason about instance types rather
than individual instances, reducing the problem complexity
to O((logBglobal)

I
∏

i in I CAPS[i]). Then, if the reduced
problem size is feasible (empirically, < 10k invocations to
the SIM routine), Srifty performs an exhaustive search.

Though an exhaustive search is feasible for most practi-
cal problems, if the search space is still too large, Srifty
switches to an approximation scheme to lower the problem
into an ILP encoding. Since the iteration latency is bound
by the slowest instance, the optimal solution is likely to
assign batch sizes to different instances so that compute
latencies across all selected instances are approximately

3Otherwise, equally distribute the batch to each instance of that
type, and the new throughput is no worse.
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the same. Thus, we can sweep the batch size that is the
slowest across all GPU types, called a Banchor, and use it
as the target iteration latency. With Banchor set, Srifty can
compute batches[] for all instances efficiently using a bi-
nary search. Srifty then queries the solver for an optimal
solution to a revised optimization problem, with a proxy
goal of minimizing

∑
i in I counts[i] subject to the same

constraints. For each Banchor, Srifty queries the simulator
for Ntiter. It finally outputs the best throughput or lowest
cost configurations across all Banchors per user goals.

4.5 Srifty Runtime

Srifty supports the use of heterogeneous VMs without af-
fecting model quality, monitors training progress, and reacts
to potential service interruptions to enable continual VM
configuration optimization.

Model Quality. Consider the gradient term gi,j produced
by the jth sample on instance type i in a synchronous data
parallelism setting; the sum of loss term

∑
li,j is constant

regardless of how the global batch size is distributed. How-
ever, special care is needed when computing an average
gradient with heterogeneous local batch sizes because frame-
works such as Pytorch assume that the local batch size on
each device is identical and compute the average gradient
as simply

∑
li,j∑

counts (pyt). Thus, using heterogeneous batch
sizes causes samples from instances with smaller batch sizes
to receive a disproportionally larger weight and hence may
have implications on convergence. Srifty uses a technique
similar to (Ding et al., 2020; Chen et al., 2020; Yang et al.,
2018) by reweighting sample gradients produced by each in-
stance with type i with the coefficient batches[i]

Bglobal
, so that each

sample contributes to the averaged gradient term equally.
Thus, from the optimizer’s perspective, all GPUs receive a
local batch size that equals the average batch size; therefore,
Srifty has no impact on quality.

Continual Optimization. When unexpected variance or
VM preemption occurs, the initial VM configuration may
not be optimal (Mahgoub et al., 2020). Thus, Srifty must
continually optimize VM configurations by taking into ac-
count current progress against the original constraints. The
Srifty runtime tracks the current elapsed time t, cost c, and
iterations n finished. If current progress falls behind its
original schedule, Srifty reruns the optimizer with updated
constraints (N-=n, $lim-=c, Tlim-=t) and the original ob-
jectives. However, blindly switching to a new configura-
tion may not be efficient if the variance is transient since
overheads result from stopping and resuming the current
task. Srifty thus maintains a windowed throughput and its
standard deviation for the previous K (a tunable parameter
empirically set to 5) minutes, computes the 95% confidence
bound of throughput, and uses this optimistic throughput to
evaluate constraint satisfiability. Srifty recommends switch-

Network (Abbr) p3.8xl g3.8xl g4dn.2xl/8xl
AlexNet (Krizhevsky et al., 2017) (ALN) 8192 2048 2048
ResNet18&50 (He et al., 2016) (RN18) 2048&512 512&64 512&64/128

Vgg16&19 (Simonyan & Zisserman, 2015) 512 64 128
ResNext50 32x4d (Xie et al., 2016) (RNX) 512 64 64

SqueezeNet 1 1 (Iandola et al., 2017) (SQN) 2048 512 512
ShuffleNet v2 x2 0 (Zhang et al., 2018) (SFN) 1024 256 256

Inception v3 (Szegedy et al., 2015) (INC) 512 128 128
BERT-Base-Cased (Devlin et al., 2018) 256 64 64

Xlm-Clm-Ende-1024 (Lample & Conneau, 2019) 512 64 128
DLRM (Naumov et al., 2019) 512K - 128K

Hourly rate $3.68 $0.69 $0.72

Table 3. Supported instance prices and max batch sizes.

ing to new VM configurations only when it is highly certain
that the current configuration will lead to a violation.

The same procedure occurs during VM preemptions. Srifty
uses preemption as a signal of depletion of that instance
type and does not choose that instance again. When a
new VM configuration is proposed, Srifty relies on cloud-
specific mechanisms (e.g., persistent disk (Amazon, 2017))
an9d framework-level elasticity functions (Pytorch; Or et al.,
2020b) to checkpoint training progress. The overheads of
switching to a new configuration (e.g., launching new VMs)
are set as parameters to the optimization process.

5 EVALUATION

Our evaluation goals are to: (1) quantify the benefits of
Srifty’s VM proposal and Srifty overhead, (2) establish
Srifty’s generalizability, and (3) demonstrate the effective-
ness of Srifty’s continual optimization.

5.1 Evaluation Setup and Baselines

We evaluated Srifty with PyTorch 1.5 and NCCL 2.4.8 using
CUDA 10.1 and CuDNN 7 on Linux kernel 5.3.

We ran experiments on EC2. Our study can prune most of
the thousands of potential instances in §3 for our workloads.
We selected g3, g4dn, and p3 families of VMs. Note that
Srifty must still deal with a large search space even after
pruning due to heterogeneity and variable local batch sizes.

We report the average latency of at least 20 iterations and ig-
nore the once-per-DNN profiling time. We use spot instance
prices at the time of writing. We include DNNs from vision
(synthetic ImageNet dataset), NLP (Huggingface transform-
ers with the built-in dataset), and recommendation models
(Facebook DLRM modified to use data parallelism with
Criteo TB Click Logs) to evaluate Srifty (Table 3). We use
mean absolute percentage error (MAPE) to evaluate Srifty’s
one-shot prediction accuracy. Since Srifty has no impact
on model quality (§4.5), we use throughput as the speedup
metric. We compare Srifty with various baselines by re-
placing its learned models with the baselines’, keeping the
optimizer intact for fairness.

Paleo (Qi et al., 2016), an analytical model-based predictor.
We use default settings and added device specifications for
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relevant GPUs from (tes). Paleo does not model NCCL
performance but instead estimates for individual allreduce
implementations; we thus report the average.

APM, a model-based solution defined in §3 that combines
the linear compute latency model used in Nexus, the allre-
duce latency model used in Daydream and by Nvidia (ncc),
and the iteration model used in Cynthia. We introduce APM
as a strong baseline because it shares the Srifty optimizer
and hence can reason about heterogeneity efficiently.

Oracle BO, an oracle Bayesian Optimizer baseline (used by
Cherrypick and HeterBO). We allow exploring of one-third
of the possible configurations. This baseline represents the
best that any BO-based approach can do since it explores
directly on the ground truth; therefore, it is not affected by
cloud variance.

Greedy, two widely used greedy heuristics: (1) the full-
batch-size, cheapest GPU first (CGF) policy, which uses
the largest batch size on all chosen GPUs (Table 3) and
prefers cheaper GPUs, and (2) the magic-batch-size (Stack-
Exchange, b; Face; StackExchange, a), fastest GPU first
(FGF) policy, which uses a fixed device batch size of 64 and
favors faster GPUs. In case of insufficient GPUs, FGF fully
packs all GPUs with the largest feasible batch size.

5.2 End-to-end Benefits of Srifty: Case Studies

We highlight the benefits of Srifty through case studies,
where we evaluate (1) the actual throughput/cost of con-
figurations proposed by Srifty and baselines on EC2, and
(2) Srifty’s overhead. To assess Srifty’s scalability, we use
typical global batch sizes from a few hundreds to thousands
as well as a user quota of tens of instances per VM type. We
use the format <num><instance>@batch to represent the
use of <num> quantities of instance type instance, each
with a batch size of batch.

Goal 1: Maximizing throughput, homogeneous VMs

User quota: 64 g4dn.8xl instances.

Case 1. Minimize ResNet50 training time. Batch size:
128. Explanation: Srifty returns in 1.1s. Srifty assessed all

ResNet50 Srifty O-BO/Paleo APM FGF CGF
Config 16g4dn@8 8g4dn@16 32g4dn@4 2g4dn@64 1g4dn@128

Actual lat. 0.13s/iter 0.17s/iter 0.17s/iter 0.58s/iter 1.1s/iter

possible configurations and learns that ResNet50 is compute
intensive. Srifty decides to parallelize training on 16 VM
instances for optimal throughput.

User quota: 64 g3.8xl instances.

Case 2. Minimize training time for Vgg16. Batch size: 512.

Explanation: Srifty returns in 0.8s. Although Srifty learns
that Vgg16 is both compute and communication intensive,

Vgg16 Srifty Paleo/APM/FGF/CGF/O-BO
Config 32g3@16 8g3@64

Actual lat. 1.03s/iter 1.11s/iter

it identifies the sweet spot of 32 VMs for a 7% additional
throughput gain, disagreeing with all baselines.

Case 3. Minimize AlexNet training time. Batch size: 1K.

AlexNet Srifty/Paleo/APM O-BO/FGF CGF
Config 2g3@512 16g3@64 1g3@1024

Actual lat. 0.415s/iter 0.425s/iter 0.535s/iter

Explanation: Srifty returns in 0.9s. It learns that the through-
put vs world size curve is concave. Srifty avoids evaluating
configurations with per-device batch sizes smaller than 64
since they do not fully utilize GPU capacity.

The following sections address heterogeneous choice of
VMs, which is not supported by Paleo and O-BO. We
dropped Paleo and limited O-BO’s search within homo-
geneous setups by repeating the search process for each VM
type and equally splitting the exploration quota.

Goal 2: Minimizing cost, heterogeneous choices

User quota: 32 instances each of g4dn.8xl and g3.8xl.

Case 4. Minimize DLRM cost. Batch size: 1K.

DLRM Srifty/APM/CGF FGF O-BO Paleo
Config 1g4dn@1024 16g4dn@64 4gdn@64 -

Actual cost. 0.0024¢/iter 0.601¢/iter 0.130¢/iter -

Explanation: Srifty returns in 4.3s. It learns that DLRM
running under data parallelism is communication heavy
because the embedding tables must be synchronized. Srifty
agrees with APM and CGF that the best strategy is to pack
all batches on the fewest GPUs possible.

Case 5. Minimize XLM and BERT training cost. Batch size:
512 and 1K.

XLM Srifty APM/CGF FGF/O-BO Paleo
Config 4g4dn@128 8g3@64 8g4dn@64 -

Actual cost. 0.174¢/iter 0.223¢/iter 0.197¢/iter -

BERT Srifty/O-BO/CGF/APM FGF Paleo
Config 16g3dn@64 16g4@64 -

Actual cost. 0.343¢/iter 0.416¢/iter -

Explanation: Srifty returns in 2.4s (XLM) and 6.5s (BERT).
On XLM, Srifty learns that using more GPUs with a smaller
batch size for a higher degree of parallelism cannot outweigh
the overhead of communication, and its choice results in up
to a 1.26x better cost. On BERT, all solutions except FGF
converge on fully packing 16 g3 instances to save cost.

Goal 3: Minimizing time, heterogeneous choices with
constraints

User quota: 4 p3.8xl, 8 g3.8xl and g4dn.8xl instances.

Case 6: Train Inception for 500 iterations with a global
batch size of 2.1K in 5 minutes and $1.3. Minimize time.



Srifty: Swift and Thrifty Distributed Training on the Cloud

Inception V3 Srifty APM FGF CGF Paleo/O-BO
4p3@512+ 4p3@512+ 4p3@512+ 1p3@512+

Config 4g4dn@32 84dn@16 1g4dn@128 8g3@128+ -
8g4dn@128

Actual time 259s 260s 787s 787s -
Actual cost $1.26 $1.47 $6.74 $3.26 -

Case 7: Finetune ShuffleNet for 1k iterations with a global
batch size of 6K in 6 minutes and $2.5. Minimize time.

ShuffleNet Srifty APM FGF CGF Paleo/O-BO
4p3@1024+ 4p3@1024+ 2p3@1024+

Config UNSAT 8g3@128 + 8g4dn@256 8g3@256+ -
8g4dn@128 8g4dn@256

Actual time N/A 381s 759s 761s -
Actual cost N/A $2.74 $4.31 $3.93 -

Explanation: Srifty returns in 1.3s and 0.9s, respectively.
It is forced to make a heterogeneous choice for Inception
training because no homogeneous choice can fit the global
batch size. Srifty makes per-device assignments that roughly
balance the computation latency across different instances
with local batch size, resulting in lower cost. In the case
of ShuffleNet, Srifty believes the given constraints are too
tight and hence it did not provide any solution. In both
cases, other solutions, including the strong APM baseline,
produced configurations that violated user constraints.

In summary, we showed that Srifty’s VM configurations in
complex scenarios with a wide range of models outperform
baselines in terms of throughput and/or cost.

5.3 Srifty Generalizability: Accuracy of Prediction

We performed an ablation study of prediction accuracy for
the learned compute and communication models and the
simulator. We compared Srifty to the strong APM baseline.

Compute-latency Prediction Accuracy. We trained on
different GPUs and swept batch sizes from 1 to maximum
in a geometric sequence with powers of 2; we then measured
the iteration latency as ground truth. We limited Srifty to
probe at 4 different batch sizes, regardless of model, and
then we compared the predicted latency versus the ground
truth. The results are summarized in Table 4. Overall,
Srifty’s compute-latency model achieves a MAPE of 6.4%,
5.9%, 4.5% compared to APM’s 12.5%, 9.4% and 8.5%
when predicting forward, backward, and the entire iteration
latency, respectively.

Allreduce Bandwidth Model Accuracy. Our model
achieves a MAPE of 11.7% on large transfers (buffer size
larger than an MTU) and 23.9% on small transfers (buffer
size no larger than an MTU) in test. The error originates be-
cause each configuration (feature) is probed multiple times
by reallocating VMs in our dataset, giving different observa-
tions (labels) each time. Thus, no model achieves a perfect
error rate. Our analysis shows a lower bound on error rate
of 9.6% and 8.2% for small and large transfers, respectively.
Our model’s accuracy is close to the best achievable for
large transfers; we are less concerned about the higher error

RNX SQN SFN RN18 vgg19 RN50 INC ALN BERT XLM DLRM
APM 3.1% 19% 19% 11% 5.2% 7.3% 9.4% 4.1% 3.9% 6.1% 1.1%
Srifty 2.3% 5.2% 8.0% 3.1% 3.6% 3.0% 5.4% 4.0% 12% 4.8% 1.2%

Tesla M60 Tesla T4 Tesla V100
APM 6.5% 7.8 % 12%
TCO 3.2% 4.4% 6.2%

Table 4. Comparison of compute latency models’ MAPE aggre-
gated by NN model and by GPU.

DNN RNX SQN SFN RN18 vgg19 RN50 INC ALN BERT XLM DLRM
APM 18% 16% 18% 23% 25% 19% 15% 27% 24% 33% 59%
Srifty 8.4% 9.9% 6.5% 6.5% 9.8% 7.5% 8.1% 12% 6.8% 8.2% 3.9%

VM type g3.8xl p3.8xl g4dn.8xl g4dn.4xl* g4dn.2xl*
APM 20% 21% 32% 21% 23%
Srifty 7.3% 8.9% 8.1% 8.9% 9.9%

VM count 2 4 8 16 32 64
APM 18% 20% 21% 24% 29% 33%
Srifty 8.2% 7.0% 7.1% 8.0% 9.5% 12%

Table 5. MAPE of end-to-end predictions aggregated by NN, in-
stance type and VM count. *: This instance has a variable band-
width.

Figure 7. CDF of underestimation error for Srifty and APM.

rate on small transfers because they translate to only tens of
milliseconds of transfer time.

End-to-end Accuracy. We predicted end-to-end training
iteration latency for a large number of real job configurations
on EC2; each configuration had different models, batch
sizes, or world sizes and was launched on different instance
types, regions, availability zones and placement groups,
with a total of 2K experiments.4 We then let Srifty predict
the latency of each experiment. To report Srifty’s MAPE
comprehensively and succinctly, we summarize in Table 5
Srifty’s high accuracy and ability to generalize across 3
dimensions: model, world size, and instance types. Overall,
Srifty achieves a MAPE of 8.3% versus the 24% of APM.
This confirms the crucial role that gradient time-stamping,
the learned performance model, and the simulator play in
delivering an accurate prediction. As result, when applying
Srifty to the same training task in §2.3, it achieves a much
lower prediction error, as shown in Figure 3 (right).

4Due to resource constraints, not all configurations were run on
all instance types, regions, availability zones and placement groups
since we aimed to cover more configurations. In particular, we
evaluated vision models across all selected instances, NLP models
on the g3 and g4dn instances, and DLRM on the g4dn instances.
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Figure 8. Timeline of Srifty reacting to a service interrupt.

Though Srifty performs well overall, underestimation error
is more serious than overestimation error since the former
can violate user constraints. We now quantify underesti-
mation error in Figure 7. In 48% of the cases Srifty does
not underestimate; in 90% of the cases when it does, its
MAPE is no more than 21%. APM, on the other hand, un-
derestimates 93% of the time, with a 58% underestimation
MAPE. Further analysis shows that most error comes from:
(1) allocation variance: we observed up to a 1.15x variance
across different allocations; thus, Srifty cannot achieve a
good MAPE on these setups because it is making a one-shot
prediction, highlighting the necessity of variance modeling;
(2) using a small batch size since it is latency or bandwidth
sensitive and more subject to intra-VM and network noise;
and (3) using a large world size, which is prone to inter-VM
variance and desynchronization.

5.4 Continual Optimization

We now evaluate how Srifty’s runtime continually optimize
VM configuration to satisfy original constraints in the event
of Spot instance preemption. We set some of the hyper-
parameters empirically: we expect EC2’s instance launch
time to be 150s and EBS’s detach time to be 5s. We give
Srifty a 1s solving time and set its instance preference list
to p3.8xl, g3.8xl then g4dn.8xl, with a user quota of 2, 8,
and 8 respectively.

We trained ResNet50 with a batch size of 1K for 400 itera-
tions and a time limit for 500s, with a goal of minimizing
cost. Srifty started training with 2 p3.8xlarge spot instances,
each with a 512 batch size. With this setup, the job was
projected to finish in 152s (at time=302s, with 150s for
launching instances). In fact, the instances finished launch-
ing at 138s. When 200 iterations completed, at time 222s,
we canceled one spot instance to simulate a service interrupt.
Srifty detected the interrupt immediately at 223s and started
working on an alternative configuration while EC2 made the
terminated instance’s volume ready, which took 4s. Srifty
further needed to give EC2 150s to boot up an instance.
Thus, Srifty had to derive a cost-efficient plan that finished
in 123s. It proposed the use of an additional 8 g3.8xl (p3.8xl
was not available) instances, each with a batch size of 64.
The remaining 200 iterations were projected to finish in
101s, at 479s. In fact, the new instances booted in 95s.
At time 419s, training completed. We summarize the key
events in Figure 8: Srifty used current progress to update
constraints to propose a new configuration of instances, sat-
isfying the original job’s constraints.

6 RELATED WORK AND DISCUSSION

Performance Modeling. Paleo and (Pei et al., 2019) use
detailed knowledge of the DNN and peak GPU flops to
estimate compute latency. Neuralpower (Cai et al., 2017)
draws a correlation between parameter count and runtime.
(Justus et al., 2018) trains a neural network to infer runtime.
They all work only on known NNs and ignore cloud variance
(§3). Srifty improves on the model used in (Crankshaw et al.,
2017; Shen et al., 2019; Qiao et al., 2020) to predict compute
latency. For communication latency modelling, Cynthia and
Optimus (Peng et al., 2018) consider only the parameter
server (PS) architecture. Paleo, Optimus and Cynthia rely on
accurate bandwidth estimates. Srifty uses a learned model
that significantly lowers error compared to approaches that
rely on an accurate, static bandwidth reading (e.g., Day-
dream has 34% error rate predicting allreduce performance).
For overlap modelling, Cynthia assumes full overlapping,
underestimating iteration time; Paleo and Optimus ignore
overlap. Pollux (Qiao et al., 2020) learns an overlapping
factor during training. Srifty collects detailed traces of when
layer gradients become available to accurately model over-
lapping. FlexFlow (Jia et al., 2018), (Mirhoseini et al., 2017)
and (Misra et al., 2021) learn performance models on a pre-
defined cluster and do not suggest VM configurations. In
terms of heterogeneity, Pollux does not consider it, which
can fail to find any valid solution. Gavel (Narayanan et al.,
2020b) solves an orthogonal scheduling problem given a
known cluster; it supports heterogeneity temporally: jobs
run on homogeneous hardware at any given time and can be
migrated to different hardware later. Dorylus (Thorpe et al.,
2021) focuses on CPU-based, asynchronous GNN training
on lambda and does not consider heterogeneity.

Cost Awareness in Cloud-based DNN Training. Cynthia
predicts the optimal number of worker and PS nodes to
minimize cost, with a time constraint for CPU instances
only. (Narayanan et al., 2020a) conducted an analytical
study on how to leverage multiple clouds and spot pricing
for cost-reduction. Elastic frameworks (Or et al., 2020a)
can improve cost-efficiency by adjusting training nodes with
trial and error but do not assume optimality or deal with
constraints directly. Proteus (Harlap et al., 2017) exploits
spot instances for PS-based elastic training with a bidding
algorithm to cheaply procure transient instances to lower
cost, but it does not accept user constraints. FC2 (TA, 2019)
shares a goal similar goal to Srifty but uses simple optimiza-
tion heuristics, compromising on the selection objective.
Cherrypick and Vanir (Bilal et al., 2020) combine a series of
heuristics and ML techniques to optimize cloud-based dis-
tributed workloads; HeterBO use a Bayesian Optimization
approach with search space pruning to efficiently explore
instance selection. They all require more extensive explo-
ration and benchmarking than Srifty, leading to potentially
higher exploration costs.
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7 CONCLUSION

Finding the best instances to meet user constraints in cloud-
based distributed NN training is difficult due to the large
search space and challenges from the highly variable cloud
environment. We designed and implemented Srifty, a sys-
tem that draws insight from a comprehensive throughput
and cost-efficiency study we conducted to accurately pre-
dict training iteration time; the study also pinpoints the best
instance configurations to reduce runtime and cost given con-
straints, with a low profiling cost. We showed on unmodified
EC2, with Pytorch, that Srifty achieves a low end-to-end
prediction error and significantly improves throughput and
reduces cost.
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