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Abstract

As Internet-scale distributed services become an in-
creasingly common fixture of our everyday computing
landscape, application-specific storage that is geograph-
ically distributed and embedded at strategic locations
inside the wide-area network is already a fact of life
today. The way such services are launched today typi-
cally requires the service providers to reach agreements
with data centers to acquire the needed space and stor-
age and then to “hardwire” the acquired storage with
application-specific logic. This is a time-consuming and
costly process that only the largest service providers can
afford to undertake and only occasionally. This state of
art imposes a significant barrier to entry to smaller ser-
vice providers and hinders short-term experimentations.

We propose a network-embedded programmable
storage model that, in spirit, is analogous to that of
active networks: each packet carries a customized code
fragment that is executed at each network-embedded
storage element to store, retrieve, manipulate, and/or
transmit persistent data. The goal is to allow embed-
ded storage consumers to more quickly deploy and cus-
tomize new and flexible services. We shall refer to such
a system as a PROGNOS (PROGrammable Network
Of Storage). As all the computation and storage can be
moved into the network, the only functionalities that are
left at the edge are “reservoirs” of application-specific
intelligence that is ready to be injected into the network
core.

We discuss the requirements of operating systems
support for a PROGNOS and describe a prototype im-
plementation. We explore two extensive applications
built on top of a PROGNOS. One is an incremental file
transfer system tailor-made for low-bandwidth condi-
tions. The other is a “meta distributed file system”, a
file system that can assume very different personalities
in different topological and/or workload environments.
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1 Introduction

As Internet-scale distributed services become an in-
creasingly common fixture of our everyday comput-
ing landscape, application-specific storage that is ge-
ographically distributed and embedded at strategic lo-
cations inside the wide-area network is already a fact
of life today. Examples include content-distribution
networks [21], cooperative web caches [10, 42], active
web caches [17], peer-to-peer object storage and re-
trieval systems [13, 14, 23, 30], web crawlers and search
engines [9], and email services [31]. The way such
services are launched today typically requires the ser-
vice providers to reach agreements with data centers
to acquire the needed space and storage, and then
to “hardwire” the acquired storage with application-
specific logic. This is a time-consuming and costly pro-
cess that only the largest service providers can afford
to undertake and only occasionally. This state of art
imposes a significant barrier to entry to smaller service
providers and hinders short-term experimentations.

In contrast, users gain access to the network re-
sources in a fundamentally different way today—a user
can easily pay a small fee to access a small slice of the
aggregate network resources: she does not “own” any
connectivity “real estate” inside the network and does
not have to hardwire any embedded resources with her
application-specific logic. Indeed, the emerging field of
active networking pushes this degree of freedom even
further [35, 40]. Ideally, a user who desires to experi-
ment with new services should be able to access embed-
ded storage as easily as she would access networks.

If we agree that it is desirable to have storage em-
bedded in the network fabric and to allow easy access
to this resource so that innovators can quickly launch,
experiment with, and tear down new services, the ex-
act mechanism by which users access this storage still
needs to be determined and it may be more complex
than throwing a bunch of disks into the network and
telling users to go at it.

One possibility is to define a fixed set of operations
(such as caching) that can be used by any applications
to manipulate the network-embedded storage. The ab-
straction level of such operations would be analogous
to that of IP forwarding: the same low-level behavior is
hardwired into all network-embedded elements; and it
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is up to the applications running at the edge of the net-
work to manufacture packets that carry a small amount
of application-specific (or packet-specific) state to take
advantage of the fixed and simple services hard-coded
inside the network.

This approach would benefit a certain class of ap-
plications and we do not discount its usefulness for
such applications. The obvious disadvantage of this ap-
proach is its lack of flexibility. Due to the extremely
diverse needs of the embedded storage consumers, it ap-
pears difficult, if not impossible, to arrive at an embed-
ded storage specification that caters well to all present
and future application needs.

This concern leads us to a more radical alternative,
one that is not unlike active networks in spirit, but
has its own implications and challenges. Under the
so-called “capsule” approach, each packet may carry
a customized code fragment that is executed at each
network-embedded storage element to store, retrieve,
manipulate, and/or transmit persistent data. By de-
coupling application-specific intelligence from the net-
work and its embedded storage infrastructure, we hope
that this approach will enable embedded storage con-
sumers to more quickly deploy innovative new services
than is possible under a vendor-driven standardization
process that dictates the exact functionalities of the
embedded storage elements. We shall refer to such
a system as a PROGNOS (PROGrammable Network
Of Storage), each embedded storage element as a pro-
grammable STONE (STOrage Network Element), and
the embedded operating system as an SOS (STONE
Operating System). To summarize, the three key ele-
ments of a PROGNOS are: presence of embedded stor-
age, its network-awareness, and its programmability.

As the key enabling technologies of a PROGNOS
are maturing, some of the most important remaining
issues concern the design of the interfaces visible to an
embedded-storage programmer. We do not, however,
pretend to know today what these interfaces should
be. We believe that the evolution of the design and
implementation of a PROGNOS over time needs to
be application-driven. We have developed a prototype
PROGNOS and two extensive PROGNOS-based appli-
cations that can intelligently exploit embedded storage
that is both network-aware and programmable. One of
them is a peer-to-peer incremental file transfer system
tailor-made for low-bandwidth conditions. The other
is a “meta distributed file system”, a file system that
can assume very different personalities in different topo-
logical and/or workload environments as we customize
its participating STONES to exhibit different behav-
iors. One of the common themes demonstrated in these
applications is that a PROGNOS is not only useful for
deploying different applications, it also enables sophisti-
cated customization inside the network within the same
application—indeed, such customization would be dif-

ficult, if not impossible, to emulate at the edge of the
network.

The remainder of this paper is organized as follows.
Section 2 further motivates the need for embedded stor-
age as we explore the relationship between PROGNOS
and active networks. Section 3 answers a number of
questions concerning the “network-awareness” and pro-
grammability properties of a PROGNOS. Section 4 dis-
cusses the requirements of operating systems support
for a PROGNOS in general and describes our proto-
type implementation in particular. Section 5 describes
the two PROGNOS-based applications. Section 6 de-
scribes some of the related work. Section 7 concludes.

2 The Role of Embedded Storage

It has been said that “the network is the computer.”
We believe, however, that the network cannot be the
computer without having storage in it.

The original proponents of active networks envi-
sioned an acceleration of the pace of innovation as new
network services that are divorced from the underly-
ing hardware are loaded into the infrastructure on de-
mand. This approach has spawned a fertile ground for
much creative research over the years. The reality to-
day, however, is that relatively few new services have
truly benefited from this approach.

There are many possible explanations for this phe-
nomenon. Most researchers of the active networking
efforts to date have consciously avoided tackling per-
sistent storage inside the network—the various existing
systems tend to only rely on a small in-memory “soft
store”. Indeed, the original active networking proposal
only envisioned a persistent store that is to be used for
purposes such as accounting/auditing logs [35]. As a
result of excluding sophisticated persistent data man-
agement, the functions of the capsules tend to be lim-
ited to those that resemble IP forwarding (albeit more
intelligent forwarding), all the active components inside
the network remain simply as means of getting from one
place to another, and consequently, there is not a great
deal that one could accomplish inside the network. We
believe that this restriction, while extremely valuable in
isolating important research issues and simplifying en-
gineering of existing systems, is one of the main factors
that have limited the power of active capsules thus far.

In a PROGNOS, we seek to remove this restric-
tion. While it is still possible to keep persistent data
at the edge of the network and to only use the network-
embedded nodes, or the STONEs, as transient caches, it
is also possible to rely on the STONEs exclusively as an
application’s only persistent store and to have no other
form of persistent store at the edge of the network at all.
As all the computation and storage can be moved into
the network, the only functionalities that are left at the
edge are “reservoirs” of application-specific intelligence
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that is ready to be injected into the network core. The
network truly becomes the computer. We believe that
the PROGNOS approach can vastly multiply the utility
and power of the active capsules.

One analogy that we have found useful is to view
the STONEs in a PROGNOS as generic “stem cells”
that are not pre-hardwired with any special function-
alities. When a stem cell receives a signal from the
outside world, it transforms itself into a tailor-made
building block of a specific organism. The separation of
the responsibilities of stem cells from those of outside
stimuli is analogous to the decoupling of the embedded
storage infrastructure from application-specific intelli-
gence. The stem cells no longer simply make up blood
vessels that carry bits from one part of the organism
to another, as is still largely the case in today’s active
networks—instead, the stem cells are the organism.

The PROGNOS approach may also foster the devel-
opment of several industry sectors, each of them spe-
cializing and excelling in a more focused role. The
first sector would include the equivalent of a Cisco and
its mission would be the mass production of STONEs,
devices that, to the first degree of approximation, are
routers with disks. It is also responsible for loading the
STONEs with a basic SOS. The second sector would in-
clude the equivalent of an ISP and its mission is to mon-
itor the demand for embedded storage and to properly
provision its network by purchasing enough STONEs
to embed at strategic locations to meet customer de-
mands. The third sector would include the equivalent of
a Hotmail whose task should be mainly the development
of innovative software that fills a particular user need.
It pays its ISP-equivalent for the right of consuming
a slice of the aggregate PROGNOS resources and the
Hotmail capsules would subsequently enlist and coor-
dinate a number of STONEs to implement the desired
service. Such a triangular relationship already exists
today for network resources (the Cisco-ISP-Hotmail re-
lationship being an example) and the clean division of
responsibilities has led to great advances in each of the
three sectors. The PROGNOS approach seeks to extend
this relationship to the embedded storage resources and
we believe that a comparable division of responsibilities
may lead to even greater blossom of advances in three
parallel sectors.

3 Questions on Network-Awareness and
Programmability

What makes the storage on a STONE different from
that on a computer at the edge is that it is both
network-aware and programmable. In this section,
we explain these properties by answering several basic
questions.

•What does it mean for a STONE to be “inside”
the network?

��

�

6
� � �

6
� ��

6
� � �

6
� � �

6
� ��

6
�

6
�

6
�

6
�

6
� ��

6
� � �

6
� ��

6
� ��

& & & &

6
� � �

6
�

6
�

6
�

6
�

6
�

6
�

& & & & & &

Clients

STONEs

(a) (b) (c)

&

& &

Figure 1: Example topologies connecting client machines with
their STONEs that collectively implement a network service.

Being embedded inside the network means that the
customized code running on a STONE has access to
topology information and other network conditions and
the code could exploit such information. Each STONE
does not necessarily need to have accurate global in-
formation: local information might suffice. Without
specifically naming the application involved, we illus-
trate this network-awareness with several examples of
Figure 1.

In Figure 1(a), clients on each of the two subnets
can read data served by STONEs on either subnet. If,
for example, the clients of the right subnet repeatedly
read data from STONEs of the left subnet, they might
increase the load on the left subnet or its STONEs. As
the “bridge STONE” Sb detects this access pattern, due
to its awareness of the topology, Sb can take several pos-
sible actions to reduce the load on the left subnet: (1)
Sb could cache data from the left subnet in its own per-
sistent store. (2) If Sb itself becomes a bottleneck, as
reply data flows from the left subnet to a client in the
right subnet, Sb could forward a copy of the data to
a STONE in the right subnet and this STONE would
absorb future reads of the same data. (3) If the de-
sired data in the left subnet is a large file, Sb could
stripe its blocks across multiple STONEs in the right
subnet. (4) Sb could passively monitor the amount of
traffic destined to any STONE and adjust its decision
accordingly.

In Figure 1(b), the STONEs in the middle layer (Ss)
form a “switching fabric”—they accept requests from
clients and perform functions such as load-balancing
and striping as they forward requests to the next tier
STONEs. The advantage of this architecture is that it
minimizes client complexity. The role played by an Ss
is analogous to that played by a µproxy, an NFS inter-
position agent [4]. Such interposition agents are just an
example of the kind of functionalities that the PROG-
NOS approach enables inside the network. (Unlike a
µproxy, the switching fabric is fully programmable, can
have its own storage, and is not limited to the NFS
protocol.)

In Figure 1(c), we replace a number of wide-area
routers with their STONE counterparts. To see the
role played by network-awareness, consider an example
where S4, on its clients’ behalf, reads data stored at S1.
As data flows back on the path S1 → S0 → S2 → S4,
S0 does not need to cache the data, S2 may cache the
data in the hope that S3 may demand it later, and S4
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may cache the data in the hope that its own clients may
demand it again. Once S3 does read the cached data at
S2 and caches it itself, S2 may choose to discard it.

In each of these three topology examples, the func-
tion executed by a STONE is intimately associated with
its network-awareness. We do not claim that any one of
the example application-specific functions executed on
a STONE in itself is novel. Indeed, the very fact that
such functions have emerged and the extreme diversity
of them make the flexibility offered by a PROGNOS
attractive.

• Is a PROGNOS only useful in the wide-area?

The PROGNOS approach is applicable to both LAN
and WAN environments. Previous cluster-based sys-
tems, such as several cluster file systems [6, 24, 36],
assume an environment in which all nodes are of the
same distance from each other. As soon as the sys-
tem scales beyond a single subnet, a PROGNOS might
become useful. Note that a PROGNOS does not neces-
sarily need to involve a massive number of hosts across
the Internet: a small number of sites connected to a
small number of strategically located STONEs can ben-
efit from a PROGNOS just as well.

• Can the functions executed on STONEs be mi-
grated to the edge of the networks?

We define edge machines to be those that lack ac-
curate topology and network condition information. In
this context, users tend not to have a great deal of in-
fluence over where edge machines are placed. To un-
derstand the limitation of relying on edge machines,
consider the topology shown in Figure 1(c). Suppose
we would like to provide site-redundancy so each new
data write is sent to two STONEs that are distributed
at two sites. In a PROGNOS, a STONE (such as S1)
that receives new data from its clients can be easily
programmed to send a replica to a STONE at a neigh-
boring site (such as S0). To move this functionality to
the edge of the network, a client may be forced to send
two separate copies into the network: one to S1, and
one to S0, resulting in obvious inefficiency.

• What is a PROGNOS physically made of?

As long as the STONEs have access to network in-
formation, the making of the STONEs and the links
among them can be quite flexible. One possibility is to
construct a PROGNOS on top of an overlay network [5].
The overlay links used should approximate the under-
lying physical topology and the STONEs can simply be
general-purpose computers (but loaded with a special
SOS). The other potentially more efficient possibility is
to co-locate a STONE with a router and the links among
the STONEs will be largely physical. An extreme form
of this co-location is to couple a router and a STONE
in the same physical packaging.

4 Operating System Support

The two key interfaces are: a local per-node SOS
interface, and a global network-wide PROGNOS in-
terface. The SOS manages per-STONE resources and
allows application code fragments on the STONEs
to communicate with their counterparts on other
STONEs. The PROGNOS interface allows an edge ma-
chine to interact with the PROGNOS network.

In this section, we first discuss how some of the exist-
ing technologies can work together to provide resource
management and security in a PROGNOS: this part
of the discussion is largely a survey that is not imple-
mented in our prototype. We then describe some of
the functionalities supported by our prototype SOS and
PROGNOS. Few of the components discussed in this
section, with the exception of the PHARO location ser-
vice and the distributed lock manager built on top, are
novel. Our aims are: (1) to make a case for the feasibil-
ity of the PROGNOS approach; (2) to provide a starting
point for the discussion of the operating system inter-
faces; and (3) to provide a simple vehicle with which
we can build several PROGNOS-based applications to
demonstrate the potential power of embedded storage
that is both network-aware and programmable. We do
not pretend to know what the operating system inter-
faces should be today—we anticipate these interfaces to
evolve in an application-driven process, and hopefully,
in a research “marketplace”.

4.1 Resource Management and Security

The three key players in resource management are:
the SOS, an application-specific service running on a
PROGNOS, and a user of the service. In general, the
user trusts the service, which in turn trusts the SOS.
The SOS must protect different services from each other
on a STONE; the distributed participants implementing
the same service on multiple STONEs must be able to
authenticate each other; and the service implements its
own application-specific protection to protect its users
from each other. We discuss each of these issues in turn.

One simple way of insulating the multiple services
that run on a STONE simultaneously from each other is
to employ one process per service per allocated STONE.
Such a daemon is present as long as the service is up.
Exceptional packets of each service are dispatched to its
corresponding daemon and the code fragments are exe-
cuted within the corresponding address space. Our cur-
rent SOS disallows services to communicate with each
other on a STONE. A STONE persistent storage par-
tition is allocated exclusively to the service at service
launch time. All other resources on a node must be
accounted for as well. Resource accounting abstrac-
tions that are more precise than the process model, such
as “resource containers” [7], may be needed. More ef-
ficient alternatives than the process model also exist.
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These include software-based fault isolation [39] and
safe language-based extensions [8]. More portable op-
tions such as Java byte code (potentially complemented
by Just-In-Time compiling technologies) may be nec-
essary due to the lack of a uniform hardware STONE
platform.

All the participants that collaborate in a PROG-
NOS to implement a particular service must be able
to authenticate each other. These participants may in-
clude code fragments running on STONEs allocated to
this service and the processes on the edge machines be-
longing to the service provider. Existing cryptographic
techniques for authentication, secure booting, and se-
cure links can be used for this purpose [41, 18]. Exist-
ing network-wide resource arbitration mechanisms [11,
12, 34, 43] can be used to account for resources on a
PROGNOS-scale.

The codes that implement different services can
choose their own means of authenticating their users.
Application-specific access control and resource man-
agement is entirely left to individual services.

In practical terms, we understand that many may
point at the absence of a single truly secure operat-
ing system today and be skeptical about the prospect
of service providers vesting enough trust in a PROG-
NOS infrastructure. We believe that there are at least
three reasons to be more optimistic. First, while pro-
grammable, the amount of functionality supported by
an SOS is likely to be far more restrictive than that of a
general operating system. We therefore conjecture that
it is likely easier to engineer a secure SOS.

Second, the way that we envision a PROGNOS to be
used by storage consumers is likely to rely more heavily
on an access-controlled system than the current free-
for-all Internet model. These storage consumers are
distinct from a more general public who are the service
consumers. Abusive behaviors might be more tractable
when identities of the storage consumers are tracked.
Such an access control system, however, need not im-
pact the generality or flexibility of a PROGNOS.

Third, there are more restrictive deployment models
of a PROGNOS that may further reduce its security
risks. One example is a small-scale deployment that
is managed by a single administrative domain where
accesses to the network resources can be more strictly
controlled and monitored. Another possibility is the
use of a separate dedicated PROGNOS backbone net-
work that is not available for public consumption. This
backbone in effect becomes a “backplane” connecting
a set of “core” STONEs. The general public, or the
service users, connect to the core via a distinct pub-
lic network using a distinct service consumer interface.
Of course, the service implementors are still responsible
for “correctly” implementing their services and policing
their service users; but at least the service users are pre-
vented from committing mischief directly on the back-

plane. This is in spirit similar to how several cluster
file systems can turn themselves into scalable legacy file
servers [6, 24, 36]: a set of core cluster machines are con-
nected by a secure private network that shoulders the
intra-cluster protocol traffic while legacy clients connect
to the core using a legacy protocol (such as NFS) on a
different public network.

4.2 Prototype PROGNOS Functionalities

Our prototype SOS is simply a Linux user-level pro-
cess. (A stripped-down Linux kernel version that offers
a subset of the existing system call interface is being
planned for the near future.) One of the chief aims of
this exercise is to have a vehicle with which we can ex-
periment with several PROGNOS-based applications to
demonstrate the utility of the PROGNOS approach. To
this end, we have not started with a potentially more
efficient kernel-based implementation, nor have we pro-
vided any of the security mechanisms discussed in the
previous subsection in this initial prototype.

4.2.1 Code Injection

While our discussion so far might have implied a more
radical approach of carrying a code fragment per packet,
with the applications that we experiment with, we
are satisfied with a more “discrete” approach—the
application-specific code fragments are injected into the
PROGNOS at service launch time. (Updating code
fragments requires re-starting the service.) Subsequent
packets are dispatched to the appropriate code frag-
ments based on the application type and packet type.

The injected code is a dynamically-linked library
(DLL) in native binary format. Once received by the
SOS in a message, the DLL is incorporated into the run-
ning SOS process via the Linux dynamic linking loader
interface. In a more realistic scenario, the honoring of
the injection request would be subject to authorization,
and the execution of the injected code would be sub-
ject to security enforcement mechanisms described in
the last section.

While the SOS interface is responsible for honoring
per-STONE code injection requests, the PROGNOS in-
terface is responsible for distributing code fragments to
the set of authorized STONEs specified by the service
launch request. In our applications, the code fragments
injected into individual STONEs might be different be-
cause these fragments may be tailor-made for STONEs
at different locations in the network.

4.2.2 Persistent Storage

Each application is allocated a partition at service
launch time. Due to the diverse needs of embedded
storage consumers, however, we have found it difficult
to settle on a single SOS storage interface. Instead, we
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offer several alternatives and the storage user is free to
choose one or even switch among them. The three al-
ternatives are: (1) A raw disk partition interface that
is essentially the Linux /dev/raw/ interface. (2) A
logical disk interface that is similar to several existing
ones [15, 32]. A user of this interface can read and write
blocks that are keyed by their 64-bit logical addresses.
This interface is useful for those who desire a block-level
interface but do not care to explicitly manage their own
storage layout. Our implementation is log-structured.
(3) A subset of the Linux local file system interface.

While the SOS grants access to per-STONE storage,
some may find it desirable to have a network-wide stor-
age interface. We view the PROGNOS-scale storage
services more as applications. We will describe a “dis-
tributed virtual disk” and a distributed file system in
later sections. Some of these storage services may be-
come useful for enough other services that they in effect
become part of the PROGNOS interface.

4.2.3 Connectivity

The application code on a STONE communicates with
its counterparts on other STONEs, which include both
directly connected neighboring STONEs and remote
STONEs. A link between two STONEs can be either
a virtual overlay link or a physical link. In either case,
code running on a sending STONE can explicitly name
the receiving STONE so that there is no unnecessary in-
terception or interpretation of the transient packets on
intermediate STONEs. In other words, on a STONE
that happens to lie in between a pair of communicating
parties, the transient packet is not visible to the SOS
process: the communication channels are end-to-end.
The current SOS implementation enforces no resource
arbitration mechanisms such as proportional bandwidth
sharing [43], which we plan to add. The SOS also
needs to be able to provide local connectivity informa-
tion in the form of, for example, the set of neighboring
STONEs. The PROGNOS assembles this information
into global topology information, which in turn impacts
the application-specific intelligence being injected into
individual STONEs.

4.2.4 Location Service

One main challenge is an efficient location service for
locating a large amount of persistent data in a PROG-
NOS. Given an object ID, we need to locate a replica
for a read request; and we may need to locate all obso-
lete replicas (if any) to invalidate or update them for a
write request.

The most recent efforts in building location services
for the wide area have produced distributed hash table-
based systems such as Chord [33] and Pastry [29]. At
least two characteristics of these systems make them

unsuitable for the PROGNOS environment. First, in
exchange for compact routing table representations on
each node, these systems dictate the placement of ob-
jects in such a way that the higher-level systems lose
the flexibility of making their own placement decisions.
In general, these systems require O(logN) hops for lo-
cating an object in an N -node system. A PROGNOS
application, in its quest of maximally exploiting the net-
work information and reducing network messages, must
be able to control the data placement with pinpoint ac-
curacy.

Second, because these peer-to-peer data location sys-
tems were initially motivated by a “Napster-like” read-
only environment, it is not clear how the distributed
hash table-based approaches can efficiently support
read-write use cases. While a read-only use case re-
quires the system to locate a replica, a read-write use
case requires the system to locate all replicas. If the sys-
tem allows only a fixed number of replicas residing at lo-
cations determined by the hashes, locating the copies for
invalidation upon writes is easy but read performance
may suffer due to lack of caching. On the other hand, if
the system allows caching and, therefore, an arbitrary
number of replicas, the locations of the replicas are no
longer determined by hashes and are therefore difficult
to determine.

We have designed a new data location algorithm
called PHARO, for Per-Hop Anchor-based ROuting.
Unfortunately, we do not have the space to detail the
workings of PHARO. Here, we highlight several key fea-
tures. (1) The routing state for any piece of data is not
widely dispersed; yet it is possible to route from any
node in the system toward a replica efficiently. This
controlled narrow distribution makes the updating of
the routing state easy. (2) The algorithm maximally
exploits locality in the presence of object reads, writes,
and movements. For example, many existing location
systems require a designated “manager” to be informed
of any object movement; this requirement can be costly
if the manager is far away. Under PHARO, only a small
number of nearby routing entries may need to be up-
dated. (3) PHARO allows the higher-level systems to
retain the freedom of data placement decisions. (4)
PHARO is self-synchronizing in that it preserves the
integrity and consistency of its data structures during
concurrent read and write operations without resort-
ing to an external lock manager. (5) PHARO is self-
recovering in that the loss of in-memory routing state
on a participating PHARO node only degrades rout-
ing performance without negatively affecting correct-
ness and the lost routing state is gradually rebuilt over
time as more routing operations are performed. De-
spite its advantages, we view PHARO only as one of
the possible location services.
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4.2.5 Lock Service

Another generic service that is likely to be useful
for more than one PROGNOS-based applications is
a distributed lock manager (DLM). For example, the
PROGNOS-based distributed file system, which we de-
scribe in a later section, uses the DLM to synchro-
nize its access to distributed storage. The DLM pro-
vides multiple-reader/single-writer locks to its clients.
Locks are sticky so a client retains the lock until some
other client requests a conflicting one. Interestingly,
the mechanism for caching and invalidating lock state
on distributed nodes is a special case of caching and in-
validating generic objects inside the PROGNOS. Since
caching and invalidation are handled by PHARO, the
DLM simply becomes an application of PHARO.

5 Applications

The two applications that we now describe share
these common themes: (1) they benefit from embedded-
storage; (2) they benefit from topology and other net-
work information; and (3) they benefit from the flexi-
bility afforded by a programmable infrastructure. Our
goal is to demonstrate that a PROGNOS enables both
the quick deployment of new services and sophisticated
customization of any single service. We believe that
the principles that we demonstrate with the two exam-
ple applications are generally applicable to virtually all
applications that use distributed storage.

5.1 Peer-to-Peer Incremental File Transfer

The “backbone” connecting the STONEs inside a
PROGNOS need not necessarily be a high-performance
one. In fact, the presence of weak links and variable con-
nectivity quality might make a PROGNOS more com-
pelling. In this section, we explore an application that
exploits embedded programmable storage to overcome
such weaknesses.

5.1.1 rsync

The inspiration for this application originates in the
rsync program [37]: it seeks to efficiently synchronize
file contents across the network for incrementally chang-
ing data. The intuition behind the algorithm is that one
should only transmit the differences between an older
version and the fresh version. The challenge is to de-
tect and compute the differences when the two files in
question are not co-located on the same machine. Sup-
pose node X has an older version of the data and it
demands a fresh copy from node Y . Under the rsync
algorithm, X communicates to Y the checksum values
for every block in its version of the file. Upon receiving
these checksums, Y performs a “sliding window” calcu-
lation to identify which portions of the latest version are
carried over from the older version. It then sends X the

contents of the new version as a sequence of literal bytes
(for contents that have changed) and block identifiers
(for contents that have not changed). A client/server
file system for low-bandwidth networks [25] has subse-
quently used a similar approach.

We have developed a system that we call “Peer-to-
Peer PROGNOS-based rsync”, or P3rsync. We shall ex-
amine three aspects of P3rsync below. First, a PROG-
NOS enables the rapid deployment of rsync-like innova-
tions, even in cases where one does not have full coop-
eration of edge machines. Second, while vanilla rsync
is end-to-end, P3rsync is peer-to-peer: peer STONEs
in the PROGNOS infrastructure core collaborate using
pair-wise rsync exchanges to further improve end-to-end
performance. Third, while vanilla rsync executes a fixed
algorithm, P3rsync adapts to its environment conditions
by exploiting the network-awareness of STONEs.

5.1.2 Interaction with Legacy Protocols

Let us consider the following scenario. Suppose a newer
file needs to be transferred from cs.berkeley.edu
to cs.princeton.edu but cs.berkeley.edu lacks the
intelligence to participate in a pair-wise rsync ex-
change. To circumvent this handicap, a user can lo-
cate two STONEs in the PROGNOS core, such as
berkeley.prognos.com and princeton.prognos.com,
and injects into these two STONEs intelligence
that performs the following steps for each file
transfer: (1) copy the file from cs.berkeley.edu
to berkeley.prognos.com using a legacy protocol;
(2) rsync the file between berkeley.prognos.com
and princeton.prognos.com across a potentially
weak wide-area link; and (3) copy the file from
princeton.prognos.com to cs.princeton.edu using
a legacy protocol. This is an example of an end-to-
end legacy protocol that can benefit from sophisticated
intelligence inside the infrastructure. In addition to
serving as scratch space, persistent storage on the two
STONEs can be used for caching and/or push. Among
the persistent storage interface alternatives, P3rsync
chooses the Linux file system.

5.1.3 Peer-to-Peer Interaction

In the above example, the long-distance rsync between
berkeley.prognos.com and princeton.prognos.com
could be further improved if we were to enlist more in-
termediate STONEs to decompose a long-distance rsync
into a sequence of short-distance hop-by-hop rsyncs. In
a long-distance rsync, although an intermediate STONE
may lie on the communication path, it cannot always
use the data that passes through it to update a copy
stored in its own local persistent store. This is because
the data in transit is the difference with respect to the
requesting node’s version and is not always meaning-
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ful with respect to the version stored at an interme-
diate node. Consequently, the intermediate STONEs
may continue to have stale copies and are incapable of
servicing future rsync requests routed towards them by
themselves. This is unfortunate because if intermediate
STONEs were capable of updating their local versions,
a version stored by an intermediate STONE is likely to
be more similar to the latest version. A long-distance
update does not attempt to take advantage of this po-
tential proximity but instead ends up conveying poten-
tially large updates over the entire path.

We now describe the P3rsync protocol. (Due to time
constraints, P3rsync is not yet running on top of the
PHARO location service so we have made some simpli-
fying assumptions; these assumptions, however, do not
impact the main principles that we seek to demonstrate
with this application.) We assume a single producer of
the desired file. (More complex sharing semantics are
supported by the second application, the distributed
file system.) A file requester first obtains the latest
time stamp of the desired file from the producer. The
PROGNOS does not participate in this exchange and
the working of P3rsync is independent of the mecha-
nism used for locating the producer. The file requester
then presents the name and time stamp of the desired
file to a nearby STONE that participates in P3rsync. If
the fresh file is present on the STONE, the request is
satisfied there. If not, the request is forwarded to the
next STONE towards the producer. While a request
is outstanding, additional requests for the same file on
a STONE are queued until the outstanding request is
satisfied. The request forwarding process repeats un-
til the request reaches a machine with a fresh copy, at
which point the fresh version is propagated back to the
requester by having each intermediate STONE rsync
with its upstream STONE. Intermediate STONEs are
thus updated and could service future requests. Fur-
thermore, if an intermediate STONE has a copy that
enjoys substantial similarities with the latest version,
it can be updated with relatively low communication
costs.

What this peer-to-peer protocol demonstrates fore-
most is that simple caching in intermediate STONEs is
not sufficient—instead, the programmability of PROG-
NOS enables the STONEs to participate in a sophisti-
cated protocol.

5.1.4 Adapting to Changing Environments

Rsync employs a relatively computationally expensive
checksum and compression algorithm. The use of this
algorithm may in fact be counterproductive in cases of
abundant link bandwidth, drastic file content changes,
or high CPU load on participating nodes. In order for
the infrastructure to intelligently adapt to these envi-
ronmental factors, the network-awareness and the pro-

grammability of a PROGNOS becomes indispensable.
The heuristics that we have introduced to illus-

trate the utility of dynamic adaptation is the following.
When an upstream node X starts to send fresh data
to a downstream node Y , the two nodes begin with
the checksum-based rsync algorithm. Node X monitors
two quantities dynamically: (1) the ratio (r) between
the number of bytes that has been actually transferred
and the size of the portion of the content that has been
synchronized, and (2) the physical bandwidth achieved
(B). If r exceeds a threshold, which in turn is a pre-
determined function of B (implemented as an empiri-
cal table lookup), then the communicating pair would
abandon the checksum-based rsync algorithm and re-
vert to simply transmitting the literal bytes of the fresh
file. More sophisticated heuristics that take latency, loss
rates, and the existence of different routes into consider-
ation are also possible. Note that all these adaptive op-
timizations need to be performed on a hop-by-hop basis
within the network—they are difficult, if not impossi-
ble, to replicate at the edge. An additional optimiza-
tion that we have introduced is computing offline and
storing the per-block checksums along with a file in the
STONE (or the requester) persistent store. This pre-
computation of checksums reduces some of the rsync
overhead.

5.1.5 Experimental Results

Figure 2 shows the topology of the network on which we
conduct the P3rsync experiments. Table 1 gives some
of the experimental platform characteristics. Nodes CB ,
CP , and CW are considered “edge” machines. The re-
maining machines make up a PROGNOS core. All the
links are dedicated (separate) 100 Mbps physical links.
CB serves as the producer of the data. CP and CW are
requesters.

In the following experiments, we synchronize Linux
kernel tar files. When we refer to file versions V0, V1,
and V2 below, they correspond to “linux.2.0.20.tar”,
“linux.2.0.28.tar”, and “linux.2.0.29.tar” respectively.
Each of these files is about 24.5 MB in size. We show re-
sults of three sets of experiments, each of which demon-
strates one of the aspects detailed in Sections 5.1.2, 5.1.3
and 5.1.4.

The first set of experiments demonstrate the ability
of a PROGNOS to overcome a legacy protocol. The re-
sults are summarized in the first row of Table 2. In this
set, initially, CP has version V0, CB has V1, and no other
machine has any version of the file. There is a weak link
of 2.5 Mbps between S1 and S2; all remaining links are
100 Mbps. (The effect of the weak link is achieved by
using the --bwlimit option of the rsync command.)
Now, CP desires to upgrade its file to V1 and it has sev-
eral options. It could use an existing legacy protocol to
copy V1 end-to-end from CB to CP ; there is no store-
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Processor Dual Intel Pentium III, 933 MHz
OS Linux 2.4.10
Memory 1GB PC133 ECC SDRAM
Disk model Maxtor 96147U8
Capacity 61,471 MB
RPM 5400
Average seek 9 ms
Transfer rate 40.8 MB/s (data sheet)
Bandwidth 26.5 MB/s (measured)
Ethernet Adaptor Realtek PCI 10/100 Mbps
Network Hub Linksys Fast Ethernet 10/100 Mbps

Table 1: Platform characteristics.
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Figure 2: The topology of the P3rsync testbed.

and-forward delay at any intermediate hop. Or it could
leverage the PROGNOS core so that V1 is first copied
from CB to S1, then it is rsync’ed from S1 to S5, and fi-
nally, it is copied from S5 to CP . Note that in this and
all subsequent P3rsync experiments, data is always first
written entirely to the disks at intermediate STONEs
(such as S1 and S5) before it is forwarded onto the next
hop. (Of course, this is not necessary and a pipelined
version could have worked much better.) Despite the
store-and-forward delay of the latter P3rsync approach,
however, it is almost 5× better than the former due to
the bandwidth saving on the weak link.

The second set of experiments demonstrate the use-
fulness of exploiting intermediate STONEs by inject-
ing them with a customized protocol. The results are
summarized in the second row of Table 2. In this set,
initially, CW has version V0, CB has V2, and S3 has
V1 (as a result of satisfying a previous request by some
other requester, for example). The link condition is the
same as that of the previous set of experiments. Now
CW desires to upgrade its file to V2 and it has three
options. The first two options are similar to the two ex-
periments that we have performed earlier: end-to-end
copy from CB to CW , or using an end-to-end rsync in
the PROGNOS core from S1 to S7. Because the content
difference between V1 and V2 is small, the performance
of these two experiments is similar to that seen in the
first set. Option three, however, leverages the V1 copy

Reque- Versions e-to-e e-to-e p-to-p
ster copy (s) rsync (s) rsync (s)
CP V0 → V1 97.3 21.0 —
CW V0 → V2 97.8 21.5 9.6

Table 2: P3rsync performance.

stored at S3, as P3rsync performs peer-to-peer rsync
within the PROGNOS core. Only a small amount of
data is exchanged across the weak link S1 → S2 and
the resulting performance is much better than that of
the first two options.

The third set of experiments demonstrate the im-
portance of adapting to environmental conditions. The
performance of pair-wise exchange is shown in Figure 3
under different link bandwidth conditions. In these
experiments, we attempt to upgrade the Linux ker-
nel tar file from version 2.0.20 to version 2.0.x, which
constitutes the x-axis labels in the Figure. We exam-
ine four different algorithms injected into two neigh-
boring STONEs. “Rsync” refers to the vanilla rsync
algorithm. “Copy” refers to transferring the literal
bytes. “Rsync-precomp” improves vanilla rsync by pre-
computing and storing the per-block checksums. “Hy-
brid” adds the adaptive algorithm explained in Sec-
tion 5.1.4 to “Rsync-precomp”. As expected, rsync
performs well when the available bandwidth is scarce
or when the file difference is small compared to the file
size, and its performance can degrade significantly oth-
erwise. Pre-computing checksums improves rsync by
nearly a constant amount but does not address the se-
vere degradation that rsync can experience. The adap-
tive algorithm, though not always perfect, performs the
best overall.

In summary, the P3rsync experiments demonstrate
the following PROGNOS principles: (1) a PROGNOS
infrastructure eases the deployment of new protocols,
especially in the absence of edge host support; (2) pro-
grammability is not always sufficient by itself without
access to embedded storage; (3) embedded storage is
not always useful by itself without general programma-
bility; and (4) it is important to exploit network-
awareness of the infrastructure in adapting to environ-
mental changes. We believe that these principles are
generally applicable to other PROGNOS applications
as well.

5.2 A Meta Distributed File System

We now briefly describe a file system that we
call “Peer-to-Peer PROGNOS-based File System”, or
P3FS.

5.2.1 A Framework for Customizable Parts

Today, we build peer-to-peer cluster file systems [6, 24,
36] that are very different from peer-to-peer wide area
storage systems [13, 14, 23, 30]. Life would be simpler
if we only had to build two stereotypical file systems:
one for LAN and one for WAN. The reality, however,
is more complicated than just two mythical “represen-
tative” extremes: we are facing an increasingly diverse
continuum. Each of the topologies shown in Figure 1
of Section 3, for example, has a good reason to exist,
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Figure 3: Performance of pair-wise exchange. (a) The link bandwidth is 25 Mbps. (b) The link bandwidth is 100 Mbps.

and each topology demands potentially very different
distribution strategies.

A P3FS is a “meta file system” in the sense that
its component STONEs can be customized to allow
the resulting system to exhibit different personalities
in different environments. It has two parts: (1) a fixed
framework that is common across all its incarnations,
and (2) a collection of injectable components that run
on participating STONEs and may be tailor-made for
different workloads, and network topologies and char-
acteristics. Simple injectable P3FS parts may even be
compiled from high-level specifications of the workload
and the physical environment.

5.2.2 Architecture and Component Details

Unlike several existing wide-area peer-to-peer storage
systems that support only immutable objects and loose
coherence semantics [13, 14, 30], P3FS is a read/write
file system with strong coherence semantics: when file
system update operations are involved, users on dif-
ferent client machines see their file system operations
strictly serialized. (Of course, we are not advocating
that this is the coherence semantics that one should
implement—it just happens to be one of the desirable
semantics that makes collaboration easy: if Bob writes
a file and phones Alice to read it remotely, it would be
desirable for Alice to see the version promised by Bob.)

Figure 4 shows the P3FS components in greater de-
tail. The fixed part of P3FS is similar to that of the
Petal/Frangipani systems [24, 36] and is hardly novel.
For each file system call, a P3FS client kernel mod-
ule translates it into a sequence of a lock acquisition,
block reads and/or block writes, and a lock release.
This sequence is forwarded to a P3FS client user mod-
ule via the Linux NBD pseudo disk driver. The read
and write locks provide serialization at the granularity
of a user-defined “volume” and they are managed by
the Distributed Lock Manager (DLM) described in Sec-
tion 4.2.5. If a client fails without holding a write lock,
no recovery action is required. If a client fails while
holding the write lock of a volume, a recovering client
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P3FS Client Kernel 

NBD

P3FS Client User

K
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ne
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P3FS Client
Distributed

Lock
Manager

(DLM)

PROGNOS PHARO

Figure 4: Components of P3FS.

inherits the write lock and runs fsck on the failed vol-
ume. These components of P3FS are fixed.

The more interesting part of P3FS lies within the
Distributed Virtual Disk (DVD). Externally, the inter-
face to the DVD is very much like existing distributed
virtual disks such as Petal [24]. The difference is that,
internally, while all Petal servers are identical, the DVD
consists of a number of peer STONEs, each of which can
run a specialized piece of code to perform functions such
as those described in Section 3. These decisions can be
made on a hop-by-hop basis based on network topol-
ogy and condition information typically unavailable at
the edge. The code running on a STONE uses the
(log-structured) logical disk interface exported by the
SOS. Another novel aspect of the DVD is its use of the
PHARO location service (introduced in Section 4.2.4)
to publicize and to locate blocks. PHARO allows the
DVD to retain complete control over data placement
decisions. PHARO carefully limits the extent to which
route update and lookup messages must travel within
the PROGNOS network while still guaranteeing a con-
sistent external view of the DVD.

A prototype P3FS has been implemented, along with
a few of its incarnations that are customized to work
for some different topologies. Existing applications on
multiple Linux client machines are able to transparently
read/write-share P3FS volumes.
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5.2.3 Experimental Results

Figure 5 shows the topology of the network on which
we conduct the P3FS experiments: two switches (R1

and R2) are connected via a bridge STONE (Sb) and
each switch is connected to a number of more STONEs
and clients. The platform characteristics are the same
as those given in Table 1.

We run three experiments. Each experiment runs
on a newly initialized P3FS so there is no interaction
among the different experiments. Each experiment con-
sists of eight phases. Each phase directly exercises the
disks on the STONEs and benefits from no caching at
any node. The only difference among the three exper-
iments is that the STONEs (Sb in particular) are in-
jected with different intelligence. Table 3 reports the
bandwidth obtained by a client that directly exercises
the DVD interface during each phase for each experi-
ment. Table 4 reports the bandwidth obtained at the
file system interface. We now describe the details of
the different phases and the different intelligence that
is injected into the STONEs.

In phase 1, C1 creates a 100MB file, which is stored
on the nearest STONE S1. In phase 2, C1 reads the file
back. The behavior of these phases are identical for the
three experiments. The bandwidth of these phases are
limited by the link speed (and software overhead). In
phase 3, C2 reads the file written by C1 in phase 1.

In each of the three experiments, the STONEs are
programmed to respond differently. In the case that we
call “Forward”, the bridge STONE Sb is programmed
to always forward a request from the right switch into
the left switch to satisfy C2’s request directly from S1’s
disk. The bandwidth experienced by C2 is similar to
that experienced by C1.

In the case that we call “Cache”, Sb is programmed
to cache a copy of the data in its local persistent store
whenever a client connected to one switch demands
data from a STONE connected to a different switch.
The bandwidth experienced by C2 during phase 3 is a
little worse due to this extra activity. Note that the
PHARO routing state must be updated to reflect the
newly cached copies and this activity also contributes

to the extra overhead.
In the case that we call “Distribute”, in addition

to sending the requested data back to C2, Sb is pro-
grammed to forward an additional replica in a round-
robin fashion to all the STONEs connected to the right
switch: Sb, S2, S3, and S4. The PHARO routing state
again needs to be updated to reflect this distribution.
All this extra forwarding degrades the bandwidth expe-
rienced by C2 significantly during phase 3.

In phase 4, C2 reads the same file again. In the
“Forward” experiment, the request is still satisfied by
S1 and the bandwidth observed by C2 remains the same.
In the “Cache” case, C2 is able to read the cached copy
at Sb. In the “Distribute” case, C2 reads data from Sb,
S2, S3, and S4 in a striped fashion. In all these cases,
C2 is bandwidth is again limited by the link speed. In
phase 5, C3 reads the same file. Its bandwidth is similar
to that experienced by C2.

In phase 6, C1 and C2 read the same file simultane-
ously. In the “Forward” case, the two clients are forced
to share a single link to S1. In the other two exper-
iments, C1 is able to monopolize the bandwidth from
S1 while C2 has its request satisfied by STONE(s) con-
nected to the other switch, so C1 and C2 both achieve
near wire speed.

In phase 7, C2 and C3 read the same file simulta-
neously. In the “Forward” and “Cache” cases, the two
clients are forced to share the link to Sb. In the case
of “Distribute”, the two clients share the striped band-
width to all the STONEs connected to the right switch.
Their bandwidth is limited by the internal contention
within the switch.

In phase 8, all three clients C1, C2, and C3 read the
same file simultaneously. In the case of “Forward”, all
three clients contend for S1’s bandwidth. In the case of
“Cache”, C1 monopolizes the bandwidth from S1, while
C2 and C3 share the bandwidth from Sb. In the case
of “Distribute”, all STONEs are utilized and the clients
achieve the greatest aggregate bandwidth.

We report results for an enhanced version of the
“Modified Andrew Benchmark” [20, 27], which we call
“MMAB”. (We modified the benchmark because the
1990 benchmark does not generate much I/O activity
by today’s standards.) MMAB performs five steps. The
first step creates a directory tree of 3,000 directories, in
which every non-leaf directory has ten subdirectories.
The second step creates one large file of size 50 MB.
The third step creates three small files of size 4 KB
in each of the directories, resulting in a total of 9,000
small files. Step four computes disk usage of the direc-
tory tree by invoking du. The final step reads the files
by performing a wc on each file. We present the results
from running MMAB on our testbed in Table 5. At the
beginning of the experiments, steps one through three
are performed on C1. (The performance of these steps
is shown by the three figures delimited by the two for-
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Phase no. 1 2 3 4 5 6 7 8
Sb C1 Write C1 C2 C2 C3 C1, C2 C2, C3 C1, C2, C3

Function (MB/s) (MB/s) (MB/s) (MB/s) (MB/s) (MB/s) (MB/s) (MB/s)
Forward 10.4 11.1 11.0 11.0 11.0 5.1, 5.1 5.6, 5.7 5.1, 3.5, 3.5
Cache 10.4 11.1 10.6 11.0 11.0 11.1, 11.1 5.6, 5.6 11.1, 5.6, 5.6
Distribute 10.4 11.1 6.2 10.9 11.0 11.1, 10.9 7.5, 7.2 11.1, 6.3, 6.3

Table 3: Client bandwidth when exercising the DVD interface.

Phase no. 1 2 3 4 5 6 7 8
Sb C1 Write C1 C2 C2 C3 C1, C2 C2, C3 C1, C2, C3

Function (MB/s) (MB/s) (MB/s) (MB/s) (MB/s) (MB/s) (MB/s) (MB/s)
Forward 7.6 7.6 8.4 8.4 8.4 4.6, 4.6 5.4, 5.4 3.7, 3.1, 3.1
Cache 7.7 7.7 7.0 8.6 8.7 8.4, 8.6 5.5, 5.5 8.4, 5.5, 5.5
Distribute 7.3 7.3 5.6 8.4 8.4 8.4, 8.4 6.4, 6.5 8.4, 6.5, 6.5

Table 4: Client bandwidth when exercising the file system interface.

ward slashes in each entry for phase 1 in Table 5.) We
then measure the cost of executing steps four and five
at different sets of clients with different injected bridge
STONE functions. (The performance of these two steps
is shown by the two figures delimited by the one forward
slash in each entry from phase 2 to 8 in Table 5.)

The “Cache” and “Distribute” strategies pay the
cost of replication in phase 3 for potential benefits in
later phases. Whether these strategies will pay off,
of course, is highly workload- and topology-dependent.
And other strategies, such as aggressive data pushing,
also exist. The example intelligence that we have de-
scribed in this section shows the extreme diverse and so-
phisticated customization that is enabled by the PROG-
NOS framework.

6 Related Work

Many active network prototypes have been built [2,
16, 26, 40]. PROGNOS shares their goal of decoupling
network services from the underlying hardware and al-
lowing new services to be loaded into the infrastructure
on demand. Most existing active networking efforts to
date, however, have consciously avoided tackling per-
sistent storage inside the network. This decision limits
the typical active net intelligence to those related to
forwarding decisions. By embracing embedded storage,
PROGNOS makes it possible to truly compute inside
the network. The sophistication of the applications en-
abled by PROGNOS is qualitatively different. We view
active networking as an enabling technology for PROG-
NOS.

Active technologies have been successfully applied
to more specific applications such as web caching [10]
and media transcoding [3]. Storage systems have suc-
cessfully exploited a greater level of intelligence in the
context of secure storage [18, 19] and file system in-
terposition agents [4]. We hope to generalize these ap-
proaches for a wider array of applications that can bene-

fit from network-embedded programmable storage. Ac-
tive technologies have also been successfully applied to
high-performance LAN environments in the context of
parallel programming [38] and parallel processing em-
bedded inside “Active Disks” [1, 22, 28]. One important
difference between Active Disks and PROGNOS is that
the intelligence in the former is at the “ends” of the
network while the intelligence in the latter is embed-
ded “inside” the network. PROGNOS focuses on the
exploitation of more general network awareness instead
of just the exploitation of parallelism.

LBFS [25] is a client/server file system that em-
ploys a checksum-based algorithm to reduce network
bandwidth consumption in a way that is analogous to
rsync [37]. By using the PROGNOS infrastructure,
P3rsync seeks to extend this approach for a peer-to-
peer context while exploiting the network awareness of
these peer components.

Existing cluster file systems possess little net-
work awareness [6, 24, 36]. P3FS is similar to
Petal/Frangipani [24, 36] in its break down of the file
system into three components: clients, a distributed
lock manager, and a distributed virtual disk (DVD).
The most novel part of P3FS lies within its DVD—the
P3FS DVD consists of a number of peer STONEs, each
of which can be customized for a specific environment.

7 Conclusion

Active networking started a movement of decoupling
infrastructure from application-specific intelligence to
foster the development and deployment of network ser-
vices. We believe that it is the logical next step to ele-
vate embedded storage to the status of a first class cit-
izen in the drive of active capsule research. This would
be a natural progression since networks and storage are
two complementary technologies: the judicious use of
one can reduce an application’s demand on the other. A
network-embedded programmable storage can not only
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Phase no. 1 2 3 4 5 6 7 8
Sb C1 Write C1 C2 C2 C3 C1, C2 C2, C3 C1, C2, C3

Function (s) (s) (s) (s) (s) (s) (s) (s)
Forward 12/11/33 5/31 8/34 7/34 8/33 9/35, 14/39 11/37, 11/36 16/45, 26/51, 25/50
Cache 11/8/32 5/27 8/34 3/20 3/20 5/27, 3/20 4/26, 4/26 5/28, 4/26, 4/26
Distribute 11/13/33 5/30 33/73 3/21 3/21 5/31, 3/21 4/25, 4/25 5/30, 4/25, 4/25

Table 5: MMAB results.

facilitate the rapid deployment of a larger class of new
applications, it can also enable sophisticated customiza-
tion of existing applications.
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