
Xenic: SmartNIC-Accelerated Distributed Transactions
Henry N. Schuh

Univ. of Washington

Weihao Liang

Univ. of Washington

Ming Liu

Univ. of Wisconsin, Madison

Jacob Nelson

Microsoft Research

Arvind Krishnamurthy

Univ. of Washington

Abstract

High-performance distributed transactions require effi-

cient remote operations on database memory and protocol

metadata. The high communication cost of this workload

calls for hardware acceleration. Recent research has applied

RDMA to this end, leveraging the network controller to ma-

nipulate host memory without consuming CPU cycles on the

target server. However, the basic read/write RDMA primi-

tives demand trade-offs in data structure and protocol design,

limiting their benefits. SmartNICs are a flexible alternative

for fast distributed transactions, adding programmable com-

pute cores and on-board memory to the network interface.

Applying measured performance characteristics, we design

Xenic, a SmartNIC-optimized transaction processing sys-

tem. Xenic applies an asynchronous, aggregated execution

model to maximize network and core efficiency. Xenic’s co-

designed data store achieves low-overhead remote object

accesses. Additionally, Xenic uses flexible, point-to-point

communication patterns between SmartNICs to minimize

transaction commit latency. We compare Xenic against prior

RDMA- and RPC-based transaction systems with the TPC-

C, Retwis, and Smallbank benchmarks. Our results for the

three benchmarks show 2.42×, 2.07×, and 2.21× throughput

improvement, 59%, 42%, and 22% latency reduction, while

saving 2.3, 8.1, and 10.1 threads per server.

CCS Concepts

• Information systems → Distributed database trans-
actions; Parallel and distributed DBMSs.

Keywords

Distributed Transactions, SmartNIC, RDMA

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

SOSP ’21, October 26–29, 2021, Virtual Event, Germany
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8709-5/21/10. . . $15.00

https://doi.org/10.1145/3477132.3483555

ACM Reference Format:
Henry N. Schuh, Weihao Liang, Ming Liu, Jacob Nelson, and Arvind

Krishnamurthy. 2021. Xenic: SmartNIC-Accelerated Distributed

Transactions. InACM SIGOPS 28th Symposium on Operating Systems
Principles (SOSP ’21), October 26–29, 2021, Virtual Event, Germany.
ACM, New York, NY, USA, 16 pages. https://doi.org/10.1145/347713

2.3483555

1 Introduction

Distributed transactions, though a valuable programming

model, are a challenging workload in the datacenter envi-

ronment. Providing replication and serializability requires

coordination between multiple shards of data with multiple

replicas of each shard. Together, these guarantees incur a

high communication cost, making the practicality of the dis-

tributed transaction model contingent on the performance

of datacenter networks [9, 15, 45].

Recent developments in hardware and software acceler-

ation have increased the performance of distributed trans-

action systems. Kernel-bypass networking reduces both the

latency of network transfers and the end-host processing

overhead. RDMA further cuts server processing costs by of-

floading simple memory operations from the server CPU to

the NIC itself. One-sided RDMA enables reads, writes, and

atomic operations on a remote server’s memory, without in-

volving the remote server’s CPU and with lower latency than

operations that traverse the host networking stack. By ex-

pressing the transaction commit and replication protocol in

terms of one-sided RDMA operations, the server-side compu-

tation involved in performing transactions can be eliminated,

avoiding software network stack overheads [8, 9, 45].

A critical limitation of current RDMA NICs, however, is

their small set of memory access primitives: read, write, fetch-

and-add, and compare-and-swap. Applying these RDMA

primitives to a distributed system typically requires signifi-

cant design trade-offs in terms of data structures and protocol

logic. For instance, a remote hash lookup using one-sided

RDMA reads necessitates multiple network roundtrips for a

hash miss; this can be mitigated by reading multiple buckets

at once, but we then waste bandwidth to improve latency [8].

Likewise, one-sided RDMA supports only a request/response

message pattern, limiting options for protocol communica-

tion. Often, these compromises negate the benefits of hard-

ware offloading. In the context of distributed transactions,

1

https://doi.org/10.1145/3477132.3483555
https://doi.org/10.1145/3477132.3483555
https://doi.org/10.1145/3477132.3483555

using RPCs for some [44] or all [15] remote operations can

lead to higher performance than fully applying one-sided

RDMA. Ultimately, the limited applicability of one-sided

RDMA limits the potential for performance benefit.

SmartNICs provide a path forward. These devices inte-

grate compute cores and memory into the network interface,

plus accelerators for common packet-processing functions.

In particular, on-path ("bump in the wire") SmartNICs offer

flexible compute cores on the packet data path, suggesting

a new approach to hardware-accelerated distributed trans-

actions. The SmartNIC’s cores enable remote data structure

accesses without network or RPC overhead. The on-board

DRAM allows for maintenance of metadata state on the NIC

itself, eliminating unnecessary PCIe memory accesses. When

PCIe DMAs are required, the NIC can batch these operations

to reduce overhead. Finally, the NIC can handle arbitrary pro-

tocol logic, at both the source and remote target of a request,

implementing flexible, multi-hop, network communication.

Given these potential benefits, we conduct a performance

characterization of SmartNIC packet processing, to iden-

tify the challenges and opportunities of using SmartNICs to

accelerate distributed systems protocols. We find that the

SmartNIC’s software-based packet processing comes at a

performance cost relative to hardware-supported RDMA. A

SmartNIC solution would therefore only be effective if the

NIC programmability can be used to significantly optimize

communications over the wire and PCIe. Further, the NIC’s

limited resources pose a challenge. The NIC cores have low

computational power relative to host cores, and the on-board

memory is small. Careful placement of state and logic is crit-

ical to benefit from the NIC’s limited resources. Operations

must be interleaved and aggregated to effectively utilize NIC

compute, PCIe, and network bandwidth.

Armed with these insights, we design Xenic, a SmartNIC-

accelerated transaction processing system. Xenic adapts the

protocol of prior designs to benefit from a stateful, asyn-

chronous SmartNIC execution model. First, Xenic employs

a co-designed data store that resides in host and SmartNIC

DRAM, conforms to the SmartNIC’s restrictions, and pro-

vides fast access to host-based data via indexing hints on the

SmartNIC. Second, Xenic maintains temporary synchroniza-

tion state on the SmartNIC to optimize concurrency control

mechanisms. Third, Xenic takes advantage of the SmartNIC’s

flexible communication primitives and a function shipping

interface [7, 9] to implement multi-hop (i.e., non-request-

response) distributed concurrency control optimizations that

lead to lower latencies and higher throughputs. Finally, Xenic

achieves communication efficiency by asynchronously ag-

gregating work at all inputs and outputs of the SmartNIC.

The batched, asynchronous execution model enables high

utilization of network bandwidth and the PCIe DMA engine.

We implement Xenic using Marvell LiquidIO SmartNICs

[25] and compare it towell-optimized RDMA- and RPC-based

designs using Mellanox CX5 RDMA NICs [29]. Our evalu-

ation focuses on the TPC-C, Retwis, and Smallbank trans-

action benchmarks. On a 100Gbps network, Xenic demon-

strates a 2.42×, 2.07×, and 2.21× peak throughput increase

relative to the best-performing RDMA and RPC alternatives,

for the three respective benchmarks, with 59%, 42%, and 22%

improvements in median latency, while saving 2.3, 8.1, and

10.1 threads per server.

2 Background & Related Work

2.1 RDMA NICs

Modern datacenter NICs commonly implement a hardware-

accelerated remote memory interface known as RDMA. To

use RDMA, an application registers regions of host DRAM

with the local NIC to enable remote access. There are two

categories of RDMA operations:

One-sided RDMA operations are simple memory manipu-

lations that are handled fully by the RDMA NIC. The target

server’s NIC parses the request, issues a PCIe DMA to read or

write the host memory region, and sends a response over the

network. One-sided verbs utilize connection-based transport.

Three one-sided RDMA verbs are supported by mainstream

RDMA NICs: (a) READ a remote memory address, copying

the requested data over the network, (b) WRITE data from

a local buffer to a remote address, returning a completion

ack, and (c) ATOMIC compare-and-swap or fetch-and-add a

remote buffer, returning the result.

Two-sided RDMA provides an efficient send/receive inter-

face for message passing. Two-sided operations involve the

host CPU on both sending and receiving ends. On the receiv-

ing end, the host CPU must poll for received messages, han-

dle the buffer contents, and release the buffers to receive later

messages. Two-sided RDMA offers a lightweight message-

passing abstraction to support an RPC-based system but does

not provide the CPU-bypass properties of one-sided RDMA.

2.2 Distributed Transactions

We target serializable distributed transactions over a repli-

cated key-value store. The keyspace is partitioned, with desig-

nated primary and backup replicas for each partition. Recent

work in this space assume persistent memory or battery-

backed DRAM for fault tolerance and a separate service off

the critical path to handle reconfiguration [9, 15, 44].

2.2.1 Commit Protocol Recent research systems share a

similar commit protocol design, extending optimistic concur-

rency control (OCC) [43] with primary-backup replication

for availability [6, 9, 15, 44]. Each transaction consists of a

set of keys to read and a set of key-value pairs to write. The

coordinator issues a series of operations for each transaction:

2

(1) In the Execute phase, the coordinator reads all read-set

objects from the objects’ primary replicas. Writes are

buffered locally at the coordinator, and the coordinator

contacts the primary for each write-set key to lock the

object. If a lock is already held, the transaction aborts.

(2) In the Validate phase, the coordinator again reads each

read-set value from its primary. If any value has changed

after being read in the execution phase (determined using

version counters), or its lock is held, the transaction aborts.

Otherwise, the transaction will commit.

(3) In the Log phase, the transaction record is written to a log

on each write-set backup replica. The write-set updates

are applied to the backup shards in the background.

(4) In the Commit phase, the coordinator applies the new

write-set values to the primary replicas, increments the

objects’ version counters, and unlocks the objects.

2.2.2 RDMA-assistedDistributedTransactions Recent

systems use RDMA to accelerate the commit protocol, both

by using one-sided verbs to reduce host involvement and

two-sided verbs to implement low-latency RPCs.

FaRM [9]: FaRM’s design prioritizes the use of one-sided

RDMA. In particular, FaRM applies a Hopscotch hash data

structure, enabling remote key lookups with a single one-

sided READ. The Hopscotch structure incurs a high band-

width overhead, as a neighborhood of multiple objects must

be read for a single lookup. Further, key insertion also re-

quires displacement of existing objects, which cannot be

done efficiently using one-sided RDMA primitives. Thus,

FaRM can fully offload execution and validation phase reads

using one-sided RDMA, but it consumes remote CPU cycles

for all other operations. To acquire write locks, to log trans-

action records, and to commit write objects, FaRM applies

an RPC protocol based on one-sided WRITEs to pairwise

message logs on each server. The servers poll logs and handle

requests, sending back responses using the same mechanism.

FaSST [15]: Instead of pursuing the CPU and latency savings

of one-sided RDMA, FaSST implements a lightweight two-

sided RPC protocol for all remote operations. With an RPC

model, no specialized data structure is required since lookups

and insertions occur locally at the RPC handler. This avoids

the read amplification and insertion complexity of FaRM’s

hash structure. FaSST also consolidates multiple operations

into a single RPC: one RPC can lock a write-set object and

retrieve a read-set value, providing performance benefits at

the cost of host core usage.

DrTM+R [6]: DrTM+R aims to handle all remote operations

with one-sided RDMA. This is accomplished with separate

locking schemes for local and distributed transactions: re-

mote locking uses one-sided ATOMIC operations, and lo-

cal locking uses hardware transactional memory (HTM).

DrTM+R addresses the incompatibility of RDMA ATOM-

ICs with host CPU atomic instructions by applying an HTM

procedure for each local key operation, and instead of op-

timistically reading and performing a validation check, the

coordinator locks all keys in a transaction.

DrTM+H [44]: DrTM+H uses both one-sided RDMA and

two-sided RPCs, performing a phase-by-phase selection of

one-sided versus two-sided options tomaximize performance.

Like FaRM, DrTM+H uses one-sided RDMA to read remote

records during the execution/validation phases and to write

backup log entries. Writes, during the execution and commit

phases, are done via RPCs. The RPC protocol makes use of

two-sided RDMA, like FaSST, instead of FaRM’s one-sided

RDMA message logs. DrTM+H stores objects in a standard

open hash table and achieves one-sided lookups in a single

roundtrip by storing at each coordinator the remote memory

address of each key, incurring a memory cost. Ultimately,

DrTM+H exploits the CPU savings of one-sided RDMA to a

limited extent while using two-sided RPCs for all other work.

This selective use of one-sided RDMA shows a performance

benefit relative to the purely two-sided alternative.

2.3 SmartNIC-based Systems

Emerging programmable NICs, or SmartNICs, represent

another promising approach to reducing host processing

overheads. By offloading computations onto a NIC-sidemulti-

core processor [4, 25, 28, 33, 34] or an FPGA [1, 10, 11, 30, 46],

we can not only save server CPU cores but also achieve lower

request latency and higher overall energy efficiency.

A SmartNIC has become a cost-effective computing unit

for stateful packet processing, as the programmable com-

ponents require only a modest amount of chip logic. For

example, the Pensando Elba chip devotes less than 30% of

its die for sixteen 2.8GHz ARM cores and the accompany-

ing memory controller [26, 35], with the majority of the

chip logic consumed by flow processing engines (e.g., Broad-

com’s TruFlow [3], Mellanox’s ASAP2 [27], and Pensando’s

P4 [35]). Moreover, the enclosed processors and ASIC-based

accelerators consume much less power than a Xeon-based

solution when performing line-rate traffic processing (e.g.,

the Pensando NIC consumes less than 25W [26]).

Thus, there is a growing body of research on SmartNICs,

with a significant focus on the offloading of network func-

tions [2, 11, 12, 14, 17, 19, 20, 32, 37, 39, 40]. There is also

work on generic frameworks for offloading [16, 21, 23, 36]

and individual case studies focused on accelerating specific

applications (e.g., key-value storage offloads [18, 22]). Our

work is along these lines and examines the utility of Smart-

NICs in accelerating distributed transactions, an application

that has traditionally been optimized using RDMA. Crucially,

unlike prior efforts that focus on network functions or com-

plete offloads of applications, we pursue a design where the

3

On-path

Ethernet

RX/TX

NIC

cores

Host

cores

PCIe DMA

Off-path

Ethernet

RX/TX Internal

switch

Host

cores

RDMA

NIC
cores

Figure 1: On-path (a) and off-path (b) SmartNIC architectures, show-
ing packet data paths and the SmartNIC’s host memory interface.

NIC and the host are closely coupled, with shared data struc-

tures and a fine-grained division of application logic.

3 SmartNIC Performance Analysis

We perform an experimental characterization to identify

the opportunities and challenges of using SmartNICs. We fo-

cus on SmartNICs that enclose a system-on-chip (SoC) multi-

core processor. These SmartNICs offer the potential for hard-

ware acceleration while, unlike RDMA, delivering a flexible,

programmable interface. We first compare two SmartNIC ar-

chitectures: on-path SmartNICs and off-path SmartNICs [21].
Second, we provide a performance evaluation of the 2x50GbE

Marvell LiquidIO 3 CN3380 SmartNIC. The LiquidIO has 24

ARMv8 cores running at 2.2GHz, 16GB of on-board DDR4

DRAM, and an 8-lane PCI 3.0 interface. We compare the

LiquidIO to the 100GbE Mellanox CX5 (MCX516A-CCAT)

RDMA NIC. We detail our server specifications in §5.

3.1 On-Path and Off-Path SmartNICs

On-path SmartNICs (Figure 1a) implement a software

packet pipeline, using the SoC to handle all inbound and

outbound traffic between the Ethernet port and PCIe host.

The SoC exposes low-level hardware interfaces for packet

manipulation. These include Ethernet RX/TX queues, packet

buffer management, packet scheduling and ordering mod-

ules, and PCIe DMA engines. Functionality is offloaded to

the SmartNIC by adding logic to the packet pipeline in the

SmartNIC’s firmware; the SoC can modify traffic, or generate

traffic, to the host and the wire. Additionally, the SoC can ma-

nipulate host memory by issuing PCIe DMA requests. This

architecture requires all traffic to be handled by SoC cores.

As a result, offloaded application work and basic packet-

processing tasks both contend for the limited SoC resources.

The Marvell LiquidIO [24, 25] and the Netronome Agilio [33]

are two commercially available on-path SmartNICs.

Off-path SmartNICs (Figure 1b) expose the SoC as a

second network endpoint, with an internal packet switch

between the host interface, SoC interface, and the wire. The

SoC typically runs Linux with a full networking stack such

as DPDK. Functionality is offloaded to the SoC by directing

traffic to the SoC instead of the host, typically via a secondary

Ethernet address. Current off-path devices lack a low-level

interface for host memory manipulation. Instead, the SoC

issues network requests to the host (e.g., RDMA operations

or RPCs); the SmartNIC internally forwards traffic between

0 5 10 15 20
(a) LiquidIO RTT [us]

NIC RPC

Read

Write

Host RPC

12.6

14.0

13.3

18.4

7.3

8.8

8.0

13.1

0 5 10 15 20
(b) CX5 RTT [us]

0

6.3

4.2

11.2

N/A

From NIC
From Host

Figure 2: Roundtrip latency for LiquidIO SmartNIC remote opera-
tions originating from the host and from the NIC (a), and for CX5
RDMA (b). 256B data buffer used for all measurements.

the two endpoints. The off-path design allows traffic to be se-

lectively directed to the SoC; however, the full network stack

on the SoC adds overhead to offloaded packet processing.

Communication between the SoC and host is expensive, due

to the network communication involved. To demonstrate

this, we measure roundtrip latency for operations between a

remote endpoint, the host, and the NIC SoC using the Mel-

lanox Bluefield 1M322A [28]. While RDMA writes to host

memory from a remote server have a median latency of 3.5us,

we measure 4.5us to SoC memory from a remote server, and

5.1us to host memory from the local SoC. The Broadcom

Stingray PS225 [4] showed similar overhead: 7.6us to write

host memory from a remote server, but 8.5us from the local

SoC. This inflated SoC-to-host latency suggests that opera-

tions accessing host DRAM cannot be offloaded to the SoC

without a prohibitive latency cost.

3.2 NIC and Host Access Latency

In Figure 2, we present a roundtrip latency comparison of

remote operations for the LiquidIO and CX5 NICs. For the

LiquidIO, we measure operations initiated on the source host

server, via DPDK, and operations initiated on the source

NIC cores. For both sources, we measure the end-to-end

latency of operations executed on the remote NIC, such

as a NOP (NIC RPC case), DMA reads and writes to host

memory (Read/Write cases), as well as two-sided operations

handled by DPDK on the target-side server (Host RPC). For

RDMA, we perform comparable experiments with the CX5

NIC, demonstrating READ and WRITE verbs, as well as two-

sided RPCs using SEND/RECV verbs with the RPC frame-

work from DrTM+H [44]. All cases use a 256B data payload;

latency is similar for smaller sizes.

Our measurements show a latency penalty for the Smart-

NIC’s software packet pipeline. RDMA operations, which

leverage specialized hardware, demonstrate lower latency

than the equivalent operations implemented in target-side

LiquidIO and initiated from the host CPU. While the Smart-

NIC’s software overhead poses a challenge, the ability to

reduce costly PCIe operations presents an opportunity for

performance improvement. Both devices show a significant

cost for PCIe operations, with two-sided host RPCs incur-

ring the highest latency. For the LiquidIO, operations local

4

16 32 64 128 256
(a) NIC DRAM Write [B]

0.0

0.5

1.0

1.5

2.0

2.5

Th
ro

ug
hp

ut
 [o

ps
/s]

 ×
10

8

16 32 64 128 256
(b) Host DRAM Write [B]

0

2

4

6

8

Th
ro

ug
hp

ut
 [o

ps
/s]

 ×
10

7

LIO Batched
LIO Single
CX5 RDMA

Figure 3: Remote memory write throughput, targeting SmartNIC
DRAM (a) and host DRAM (b), with and without batching enabled.
CX5 RDMAWRITE throughput is also shown for comparison.

to the NIC cores (e.g., NIC RPC with NIC source) outperform

all operations involving PCIe accesses. Operations initiated

from the NIC, avoiding the latency cost of a host-side DPDK

roundtrip, outperform two-sided RDMA RPCs. These obser-

vations suggest the LiquidIO has the potential for latency

improvement over two-sided RDMA without sacrificing the

software flexibility of RPCs.

3.3 NIC and Host RPC Throughput

To compare packet-handling throughput between NIC

and host cores, we implement a minimal echo RPC handler

in a host DPDK application and in the LiquidIO firmware.

For this experiment, RPC requests and responses consist of

80B UDP packets. We send requests from 5 remote servers

to the target server and measure total response throughput.

First, we deploy the host RPC handler on the target server,

using 16 threads with dedicated RX/TX queues (enough to

reach maximum throughput) and a packet burst size of 64.

Second, we repeat the experiment with the same configu-

ration but instead deploying the RPC handler on 16 NIC

threads. In both cases, further increasing the thread count

did not increase throughput. We measure an average host

RPC throughput of 23.0Mops/s, and an average NIC RPC

throughput of 71.8Mops/s. This suggests that the NIC cores,

though wimpier in computational performance (see §3.6),

demonstrate higher packet-handling efficiency than the host-

side alternative. Handling RPCs on the NIC cores, therefore,

creates the potential for throughput improvement, in addi-

tion to latency reduction, relative to host RPCs.

3.4 Batching Optimizations

Using read and write microbenchmarks, we consider the

potential of aggregation and batching at all stages of the

packet pipeline. We apply a software batching layer at the

NIC’s PCIe TX/RX queues, Ethernet packet output, and DMA

engine. We measure throughput for remote DMA writes to

host memory and remote writes to the LiquidIO’s on-board

memory, with and without batching. To compare against the

CX5, we measure RDMAWRITE throughput, applying door-

bell batching [31] of up to 64 requests (more batching did not

increase throughput). Figure 3 shows throughput for remote

memory writes at a range of 16-256B buffer sizes, with and

16 32 64 128 256
(a) Buffer Size [B]

0.0

0.2

0.4

0.6

0.8

1.0

Th
ro

ug
hp

ut
 [o

ps
/s]

 ×
10

8

16 32 64 128 256
(b) Buffer Size [B]

0.0

0.5

1.0

1.5

2.0

La
te

nc
y

[u
s] R ×1

R ×15
W ×1
W ×15

Figure 4: DMA engine throughput (a), and latency (b), with individ-
ual requests andwith full 15-element vectors. For latency, solid bars
denote submission time and hatched bars denote completion time.

without batching. Reads demonstrate similar performance.

We find that batching enables efficient bandwidth utiliza-

tion for small remote memory operations. With batching

disabled, throughput is consistent across the range of buffer

sizes, 9.0-10.4Mops/s for both NIC and host memory targets.

Batching network and PCIe transfers results in a throughput

increase of up to 22.2× for NIC memory writes and 7.0× for

host memory writes. For operations on remote NIC memory,

throughput scales to the usable network bandwidth for all

write sizes. For operations on host memory, throughput is

limited by the DMA engine for requests smaller than 64B;

larger requests saturate the usable network bandwidth. For

CX5 RDMA, we observe 13.5-15.0Mops/s across the range

of buffer sizes, lower than the respective batched LiquidIO

operations. 16-256B RDMA writes do not saturate network

bandwidth, even with extensive doorbell batching. This indi-

cates that application-level doorbell batching is insufficient

to achieve high throughput with small RDMA operations.

3.5 DMA Performance

To understand the performance characteristics of the Liq-

uidIO’s DMA hardware, we measure DMA throughput (Fig-

ure 4a) and latency (Figure 4b) for singular and vectored

host memory accesses at a range of sizes. The DMA engine

provides 8 hardware request queues; we initiate DMAs on 8

NIC cores, with each core assigned a dedicated queue. The

DMA engine supports vectors of up to 15 reads or writes;

we measure with individual requests and full vectors.

Our throughput measurements indicate that using vec-

tored submission to batch DMAs improves throughput for

the range of request sizes, up to the hardware maximum of

8.7Mops/s. Full vectors do not increase submission or com-

pletion latency relative to single-buffer requests. Instead,

vectored operations may amortize the request submission

time, up to 190ns, across up to 15 memory operations. Finally,

we observe that the significant DMA completion latency, typ-

ically up to 1295ns for reads and 570ns for writes, must be

hidden to efficiently utilize the NIC cores.

3.6 SmartNIC Core Performance

We compare performance of the LiquidIO ARM and host-

side Intel Xeon Gold 5218 CPU cores, using the Coremark

5

Benchmark Cores ARM Xeon ×
Coremark multi 4530 14771 3.3

DPDK hash_perf multi 349.8s 108.1s 3.2

DPDK readwrite_lf_perf multi 179.6s 52.5s 3.4

Coremark single 14294 29193 2.0

DPDK memcpy_perf single 325.8s 174.4s 2.0

DPDK rand_perf single 7.5s 2.9s 2.6

DPDK hash_perf single 186.5s 84.0s 2.2

Table 1: Benchmark results for the NIC ARM and host Xeon cores,
with relative the per-thread performance for the Xeon versus ARM.

benchmark and relevant performance tests in DPDK’s test

suite. We measure single-threaded performance and per-

thread performance for workloads utilizing all cores. Ta-

ble 1 shows the results. For the LiquidIO’s 2.2GHz 24-thread

ARM CPU, we measure a Coremark throughput score of

108724, or 4530 per thread. The host-side 2.3GHz, 32-thread

Xeon’s score is 472691, with per-thread throughput 3.26×
higher than that of the LiquidIO. While the Xeon’s through-

put scales with its 32 threads, the LiquidIO’s per-thread Core-

mark throughput is substantially lower with all cores active.

Running Coremark on one thread of each CPU, we observe

higher relative throughput on the ARM, with a smaller 2.04×
difference. The DPDK tests, demonstrating hash table, ran-

dom number, and memcpy workloads, show a similar single-

threaded (1.99× to 2.60×) andmulti-threaded (3.24× to 3.42×)
performance difference.

3.7 Opportunities

Our measurements suggest that the SmartNIC’s software-

based packet processing comes at a latency cost relative to

RDMA. Despite this, we identify three opportunities for per-

formance improvement. First is using the SmartNIC cores

for stateful remote operations, without host RPC overhead

or one-sided RDMA limitations. NIC cores can handle pro-

tocol logic with the flexibility of an RPC design. NIC cores

are also a valuable target for function shipping; logic can

be pushed to NIC cores to eliminate PCIe roundtrips, ex-

ploit low-latency NIC-to-NIC communication (§3.2), and ef-

ficient packet-handling (§3.3). Second is using the SmartNIC

memory to serve remote operations without PCIe overhead.

With co-designed data structures spread across the host and

NIC, we can use NIC memory to avoid PCIe latency. We can

use PCIe DMAs to access host memory with lower latency

than RPCs (§3.2), and high throughput potential relative to

one-sided RDMA (§3.4). Third is leveraging the SmartNIC’s

efficient hardware interfaces, which show high throughput

with software-defined asynchronous (§3.5), batched (§3.4)

operations.

4 Design

Xenic provides a distributed, replicated database in server

DRAM with a transactional interface. Each node acts as a

NIC DRAM

Host DRAM

… …

… dh di dj …dgDdf Ddk

Key Lock Seq Value

DM
A

di + 1

segment
Key Disp Seq Value

index 
ent

Figure 5: Overview of the Xenic data store, showing data and meta-
data placement. Overflow is omitted for simplicity.

transaction coordinator, a primary replica of one database

shard, and a backup replica for 𝑓 other shards, if we use a

replication factor of 𝑓 +1. A coordinator application, running

on each node, initiates transactions. The commit protocol

utilizes the coordinator’s local ("coordinator-side") SmartNIC,

and the ("server-side") SmartNICs at remote primary and

backup nodes. Xenic is designed to benefit from SmartNICs

in the following ways:

• Stateful offloads: Xenic implements its transaction commit

protocol as a set of stateful operations on the coordinator-

and server-side SmartNICs. By storing temporary transac-

tion state, e.g., locks, in SmartNIC memory, Xenic avoids

PCIe roundtrips and host RPCs on the critical path.

• Co-designed data store: Xenic’s data structures are spread
across the host and SmartNIC memory. All key-value ob-

jects are stored in server DRAM, supporting local mem-

ory access at the server. For remote access, Xenic utilizes

server-side SmartNIC memory to avoid PCIe reads for hot

objects. By storing lightweight location metadata on the

distribution of objects in host memory, Xenic canminimize

the latency and size of DMAs for cold objects.

• Distributed multi-hop OCC protocol: Like prior systems [8,

9], Xenic uses function shipping [7]. But, Xenic can target

SmartNICs and employ non-request-response protocols,

unlike RDMA-based systems. This not only reduces PCIe

operations but also enables flexible OCC communication

protocols that reduce network communication.

• Runtime support for asynchronous and batched commu-
nication: Xenic performs all work asynchronously and

aggregates operations at all inputs and outputs. By im-

plementing an asynchronous, batched operation model,

Xenic efficiently utilizes the limited SmartNIC cores. By

batching work across PCIe DMAs, packet IO, and Ethernet

transmissions, Xenic achieves high bandwidth utilization.

4.1 Co-designed Data Store

Xenic’s data store is a co-designed hash structure resid-

ing in host and SmartNIC DRAM. All key-value objects are

6

stored in host memory. The following factors drive this de-

sign choice. First, the host application may retrieve objects

via local memory access, not requiring communication with

the SmartNIC. Second, the host memory size is typically

much larger than that of the SmartNIC memory. Finally, the

host’s memory can be battery-backed to provide durabil-

ity (as is the case in FaRM [9]). We optimize the host-side

structure for efficient lookups and reads from the SmartNIC,

via PCIe DMA. Local transactions’ lookups, insertions, and

writes are performed on the host via local memory access.

The SmartNIC hash structure serves as a caching index

of the host data store. It maintains fine-grained distribution

metadata for regions of the host hash structure, enabling low-

cost lookups via PCIe DMA. Given the latency of PCIe, we

target lookups with a common-case single DMA read and low

bandwidth overhead. In addition to storing lookup metadata,

the SmartNIC structure maintains transaction metadata for

key-value objects accessed by ongoing transactions.

This design leads to three possible cases for lookups: first,

the host can perform lookups in its local memory; second,

the SmartNIC can serve remote lookups of hot objects via its

cache; third, upon a cache miss, the SmartNIC can retrieve

objects in host memory via a low-overhead DMA read.

4.1.1 Data Structures The Xenic data store applies three

structures. The host-side hash table (see §4.1.2) contains all

key-value objects. The NIC hash table (see §4.1.3) caches hot

objects and stores metadata. It is not a complete index of

the host hash structure but instead a cache with location

hints to facilitate efficient DMA lookups on the host-side

hash table. The NIC table also stores transaction commit

metadata, e.g., lock state, for ongoing transactions. Placing

this metadata in NIC memory brings it closer, in terms of

latency, to inbound remote accesses, while the on-path NIC

architecture keeps it on the data path of outbound local

requests. Figure 5 shows the layout of the host and SmartNIC

hash structures. Finally, a host memory log (see §4.2) stores

recently committed transactions. TheNIC efficiently appends

transactions’ write sets to the log, and the host applies the

updates to the host-side structure off the critical path.

4.1.2 Robinhood Hash Table Xenic’s host-side hash

structure is a closed hash table adopting the Robinhood hash

table design [5], with several modifications to achieve effi-

cient operations in the SmartNIC context. The Robinhood

design is a form of closed hash table applying linear probing,

which aims to reduce the cost of lookup probing by displac-

ing existing objects as new ones are inserted. The insertion

procedure attempts to even out the displacement of objects
in the table: the distance of each object from its initial hash

position. Objects with a comparatively low displacement are

moved further as later insertions take place. To accomplish

this, the insertion probing function checks the displacement

of each element it reaches in the table. If the existing ele-

ment’s displacement is less than the current displacement

of the element to be inserted, it swaps the existing element

with the one to be inserted; thus, it steals the "displacement

wealth" from well-placed elements and hands it out to other

elements. Probing continues until reaching an empty slot,

where the element to be inserted is placed.

This swapping procedure results in low probing distance

variance throughout the hash table, even at high occupancy.

While the insertion cost is higher than simply probing for

an empty slot, the uniformity of probing distance improves

lookup efficiency. This is important for lookups in the context

of high-latency, throughput-limited memory access, i.e., PCIe

DMA. Unlike other swapping designs, such as Cuckoo hash-

ing, the Robinhood design prioritizes locality of objects map-

ping to the same hash position. As a result, typical lookups

read a single, contiguous region of memory, instead of multi-

ple disjoint buckets. This is crucial in the context of remote

memory access, where the initiation cost of reading disjoint

addresses is higher than that of a single buffer.

Xenic imposes a global limit on maximum displacement,
𝐷𝑚 . Xenic divides the table memory into fixed-size segments,
and for each segment, a linked overflow bucket may be al-

located if necessary. If displacement reaches 𝐷𝑚 during in-

sertion, the object to be inserted is instead appended to the

overflow bucket corresponding to its initial hash position.

This allows Xenic to limit the cost of insertion and dele-

tion.While prior Robinhood implementations typically apply

tombstones to ensure an erased entry does not prematurely

end probing, Xenic uses a simpler approach. Xenic simply

swaps an overflow element over the deleted element, if one

exists. If no overflow element exists, Xenic performs a back-

ward shift; size is limited by 𝐷𝑚 .

DMA-Consistent Swapping WhenRobinhood insertion

swaps a table element, the existing element is replaced with

the object to be inserted and buffered until the next swap

occurs. A concurrent DMA read could therefore miss the

existing element. To address this, Xenic builds a copy list

and performs swaps starting from the last (free) element.

This ensures an existing object is never removed from the

table. Xenic must also guarantee consistent DMA reads for

objects spanning multiple host cache lines. In this case, Xenic

surrounds swaps with transactional memory instructions

(XBEGIN, XEND), causing the swap to abort and retry if there is
a concurrent DMA. Because the NIC caches objects returned

in a DMA read, the host retries an aborted swap without

continued contention. Xenic stores large objects above 256B

outside the host hash table, to avoid swapping large object

payloads and reduce DMA lookup cost. Instead, the hash

table contains pointers, which the NIC can use to retrieve

the value via a single-object DMA read.

7

Data Structure Objects Read Roundtrips

Xenic Robinhood, 𝐷𝑚 = 8 3.43 1.07

Xenic Robinhood, 𝐷𝑚 = 16 4.13 1.04

Xenic Robinhood, 𝐷𝑚 = 32 4.84 1.02

Xenic Robinhood, no limit 6.39 1

FaRM Hopscotch, 𝐻 = 8 [8] > 8 1.04

DrTM+H Chained, 𝐵 = 4 4.65 1.16

DrTM+H Chained, 𝐵 = 8 8.81 1.10

DrTM+H Chained, 𝐵 = 16 16.96 1.06

Table 2: Average number of objects read and number of roundtrips
per lookup, at 90% occupancy.

4.1.3 SmartNICCaching Index Xenic uses NICmemory

to maintain lookup metadata for the host-side hash table, as

well as transaction metadata for objects actively involved in

transactions. For each segment of the host-side table, Xenic

allocates a NIC index entry. An index entry contains a cache

of objects that map to the corresponding host-side segment,

transactionmetadata (lock, version number) for those objects,

and a known displacement value, 𝑑𝑖 , for objects mapping to

the corresponding host-side segment. Xenic implements a

fixed-size set of cache positions for each index entry, with

chained overflow pages allocated as necessary.

The NIC index also enables efficient host memory lookups

when a cache miss occurs. Each NIC index entry maintains

the highest known displacement 𝑑𝑖 of objects mapping to the

entry’s host-side segment as well as an overflow address if

objects in the segment have reached the displacement limit.

Lookups require reading a region of the table in host memory,

from the key’s initial hash position to its actual displacement.

While this actual displacement value is unknown until reach-

ing the key, 𝑑𝑖 serves as an effective location hint for locating

a key with a single DMA read.

The NIC’s 𝑑𝑖 values may be invalidated by concurrent

insertions performed in host memory: inserting one object

may move another object beyond the corresponding 𝑑𝑖 main-

tained at the NIC. To address this, the NIC reads 𝑑𝑖 + 𝑘 addi-

tional elements beyond its known displacement, up to the

limit 𝐷𝑚 . While insertions will invalidate 𝑑𝑖 values some-

what regularly (e.g., 6% of insertions at 90% occupancy), 𝑑𝑖
is rarely increased by more than one (e.g., only 0.2% of in-

sertions at 90% occupancy); therefore, we set 𝑘 = 1 based on

experimentation. If the NIC does not read the item within

𝑑𝑖 + 𝑘 entries, the NIC performs a second, adjacent DMA

read up to the limit, 𝐷𝑚 . If 𝑑𝑖 is already equal to 𝐷𝑚 , the NIC

instead reads the segment’s overflow page.

Insertions, deletions, and cache eviction make use of the

transaction protocol and its metadata to ensure consistency

between the SmartNIC index and the host structure (§4.2).

4.1.4 Lookup Efficiency We compare the efficiency of

lookup operations to the hash designs of FaRM [8] and

DrTM+H [44]. The three designs share similar priorities; each

is optimized for remote hash lookups via remote memory ac-

cess. All three designs perform updates using local memory

operations at the target, and their insertion procedures prior-

itize placing objects mapping to the same hash value within

a small, contiguous area of memory. This enables common-

case remote lookups with one remote memory read, at the

cost of reading multiple objects per lookup. FaRM applies

a Hopscotch hash table; like Robinhood, the Hopscotch ta-

ble is a variant of linear probing. This design ensures that

any element must be located within a fixed neighborhood

size 𝐻 , with 𝐻 = 8 in FaRM’s published results. A remote

lookup first reads the neighborhood of𝐻 elements, and if the

object is not found, issues a second read of the correspond-

ing overflow bucket, resulting in an additional roundtrip.

DrTM+H applies a simpler hash design, with a closed array

of 𝐵-element fixed-size buckets, and additional linked buck-

ets allocated as necessary. A remote lookup traverses bucket

links until finding the object.

Wemeasure remote lookup performance at 90% table occu-

pancy, comparing to FaRM’s published results at the same oc-

cupancy. Table 2 shows the mean number of objects read, and

mean roundtrips, per lookup for 8 million uniform-random

keys. FaRM’s design reads 𝐻 = 8 objects per lookup in the

common case, with a second roundtrip necessary for 4% of

keys; average overflow read size is not published. DrTM+H

reads at least 𝐵 keys for each lookup, and due to its chained

placement policy, often incurs multiple roundtrips traverse

the chain. Xenic dynamically bounds the size of lookup reads

based on hints stored in the NIC index. At high occupancy,

and with a similar 4% overflow utilization to FaRM, Xenic’s

average read size is 48% lower than that of FaRM. If we dis-

able overflow buckets and do not limit displacement, Xenic

still achieves 20% fewer object reads per lookup than FaRM,

while also eliminating the overflow roundtrip.

FaRM and DrTM+H both perform remote hash lookups

across the network via RDMA. Xenic instead performs re-

mote lookups at the target-side NIC. RDMA lookups impose

an end-to-end bandwidth cost, and a full network roundtrip

penalty if multiple reads are needed. Xenic’s lookups, in con-

trast, consume only PCIe bandwidth, and incur only PCIe

access latency. Likewise, Xenic’s remote lookups are always

performed at the target NIC, rather than at any remote client.

This creates the opportunity for the NIC to cache objects and

metadata for the host-side structure. While DrTM+H also

applies index caching, it must store remote object addresses

for each remote primary at each coordinator. DrTM+H’s ap-

proach is limited in scalability, given its memory overhead,

and lacks an efficient mechanism for cache invalidation.

4.2 Transaction Protocol

We first describe Xenic’s distributed transaction commit

procedure, thenwe detail special transaction cases andXenic’s

8

NIC

Host

Primary Data Store
App

Coordinator

Coord

Backup 1

Backup 2

RH Worker

Log

Server

Eth RX/TX Eth RX/TX

CoordCoordinator ServerServer

PC
Ie

 R
X/

TX

DM
A

W

B

A

C D

iii

E

iv

… …

… …D

DM
A

R

i

ii

Figure 6: Xenic design overview, showing one server. Solid lines in-
dicate local memory access; dashed lines indicate PCIe transfers.

respective optimizations. Xenic applies function shipping to

offload execution logic from the host server to the coordinator-

side SmartNIC (§4.2.2). Further, Xenic extends OCC with dis-

tributed, multi-hop protocol variants to increase communica-

tion efficiency based on a transaction’s access pattern (§4.2.3).

While Xenic targets distributed transactionworkloads, where

common-case transactions involve remote data shards, we

ensure the SmartNIC optimizations do not add communica-

tion complexity to purely local transactions. §4.2.4 outlines

Xenic’s fast path for local transactions.

Figure 6 shows the components of each Xenic node. The

coordinator application, running on each host, initiates all

transactions and handles commits and aborts. We summarize

the execution of a distributed, read-write transaction:

(1) A host coordinator thread A initiates the transaction,

determining the initial read-set and write-set objects. The

coordinator may either generate the transaction or poll a

request queue from an external application thread B . It

assigns a transaction ID (node index and sequence num-

ber), then sends the transaction state, including its read-

set and write-set objects, to its local SmartNIC.

(2) A coordinator-side SmartNIC thread C then issues re-

mote Execute requests to each primary involved, speci-

fying the shard’s read-set and write-set keys. The request

is received by a server-side SmartNIC thread D , which

performs a lookup for each read- and write-set key in its

local-memory index i . If any key exists and is locked,

the NIC returns an abort response. Otherwise, the NIC
allocates an index entry, if necessary, and acquires a lock

for each write-set key. The NIC then retrieves values and

version numbers of the read-set keys. As described in §4.1,

cached values are retrieved from SmartNIC memory i ,

and cache-miss reads retrieve the value from host mem-

ory ii via PCIe DMA. Finally, the coordinator sends a

response containing the read-set values and versions.

(3) After receiving successful Execute responses from all

primaries, the coordinator SmartNIC updates its transac-

tion state with the returned read-set values and sends the

transaction state via PCIe to the host. The host coordi-

nator performs an application-level function to generate

write-set values given the read-set values and sends these

writes to its NIC. For a multi-shot transaction, the coor-

dinator may issue subsequent execute requests to read

and/or lock additional keys until execution is finished.

(4) The coordinator-side SmartNIC issues a Validate request

to the primary of each read-set key, except for those

locked for writing. The request includes the version num-

ber for each key obtained by Execute. The primary NIC

retrieves the current version for each key in its index i ,

and returns commit if the version numbers match and no

keys are locked. Otherwise, the NIC returns abort, which
is propagated to the application and other primaries.

(5) After receiving successful Validate responses, the trans-

action completes if it is read-only. For read-write trans-

actions, the coordinator replicates the write set to each

shard’s backup replicas using a Log request with the

shard’s key-values and version numbers. The NIC for

each backup handles the Log request by appending it to

a hugepage of host memory reserved for logging iii via

DMA write. The NIC responds after the DMA completes.

(6) After receiving all Log responses, the coordinator-side

NIC reports a Committed outcome to the host, and issues

a Commit request to each primary, with write-set key-

values and version numbers. The primary NIC appends

the Commit request to the host-memory log iii . Then,

it applies the new values to cached entries in the index

and updates the write version numbers. Once the DMA

has completed, the NIC releases the write-set locks and

sends an ack response. The write-set objects are pinned

in the NIC’s index cache and cannot yet be evicted. This

ensures NIC lookups will not read a stale object before

the host applies the Commit writes to its hash structure.

(7) The host-side Robinhood worker threads E poll the log

for entries written by the NIC. The host threads asyn-

chronously handle requests by applying Log write sets

to the backup shards iv in host memory and Commit

write sets to the primary shard ii . The host application

appends a log ack to traffic between the host and the NIC,

allowing the NIC to relcaim log space and unpin cache

entries for committed writes.

4.2.1 Fault Tolerance Xenic applies the reconfiguration

and recovery design of FaRM without additional require-

ments. To do so, we ensure that (a) lock state is maintained

in only one location (SmartNIC memory) and rebuilt upon

recovery, (b) Xenic’s host-side hash table maintains the same

set of objects as that of a static hash table, and (c) operations

are executed in the same sequence across the coordinator, pri-

maries, and backups as in FaRM’s protocol, with log records

9

written to host memory before a Log operation or Commit

operation returns an acknowledgement.

Given these similarities, FaRM’s recovery protocol applies

to Xenic as follows. Xenic uses a typical Zookeeper-based

cluster manager to determine membership. Each node holds

a lease with the cluster manager, and lease expiration trig-

gers reconfiguration. Only primaries maintain lock state,

so when a primary fails, a backup is promoted to become

the new primary, and the lock state is reconstructed. While

other shards may proceed, each node of the recovering shard

scans its log for transactions which have not yet been ac-

knowledged as committed to the primary. These recovering

transactions’ write-set keys are communicated to the new

primary, which acquires locks on each object. Once all locks

are set, the shard can serve new transactions. Meanwhile, the

replicas communicate to ensure each recovering transaction

is either aborted or fully applied to all replicas, before its

associated locks are finally released.

4.2.2 SmartNIC Function Shipping Offloading execu-

tion logic from the host to the coordinator-side NIC provides

an opportunity for latency reduction, eliminating all but

one coordinator PCIe roundtrip. We apply function ship-

ping [7–9]; while FaRM used it between hosts, we use it to

move execution from the host to the NIC. Xenic implements

function shipping by adding an optional, application-defined

data field to each transaction state entry maintained on the

NIC. This data consists of the application’s external state, if
any, required for a transaction’s execution. Second, Xenic

provides an abstract interface for execution logic. This in-

terface exposes the transaction’s read and write sets and

the external state associated with the transaction. When

a transaction request is initially sent from the host to its

coordinator-side NIC, any external state data is attached to

the request and buffered at the NIC. When the transaction’s

Execute responses are received by the coordinator-side NIC,

the execution logic is invoked, transforming the transaction’s

read and write sets based on the current objects and external

state. If execution adds keys to the transaction, coordinator

issues Execute requests for the new keys, collects responses,

and repeats the execution function. Otherwise, the coordina-

tor proceeds to commit the transaction. Offloading execution

requires performing execution logic on the NIC and sending

associated application state to the NIC, potentially incurring

additional NIC CPU load and PCIe bandwidth utilization.

Offloading execution is feasible only when the object manip-

ulation is not computationally-intensive and the application

state is small, i.e., when it does not introduce the NIC cores

or PCIe bandwidth as a performance bottleneck.

4.2.3 Multi-HopOCCCommunication Xenic addition-

ally applies function shipping to reduce commit protocol

P2

1 execute 2 execute

5 commit

6 commit
3 log
4 log

4 commit

2 log
3 log

1 execute

P1

B11 B12 B21 B22

P1

B11 B12 B21 B22

P2
5 commit

Figure 7: Commit messages for a transaction writing to local and
remote shards, with execution (a) performed at the coordinator P1,
and (b) shipped to remote P2 to minimize communication.

network communication. By leveraging point-to-point oper-

ations between NICs, in addition to the standard coordinator-

server pattern, Xenic can reduce commit messages and mes-

sage delays based on a transaction’s access pattern. When

the coordinator-side NIC receives a transaction request, it

determines the optimal execution node based on any remote

accesses in the read and write sets. If commit communica-

tion can be simplified by performing execution at a remote

primary NIC, Xenic applies function shipping to invoke exe-

cution remotely and uses multi-hop requests to reduce com-

munication. For instance, transactions writing to the local

shard and one remote shard are executed at the remote pri-

mary NIC. Figure 7 shows communication with coordinator

execution and only request-response operations (a), and the

optimized communication pattern enabled by shipping exe-

cution to the remote primary NIC (b). In the optimized case,

the P2 NIC performs execution, then issues Log requests to

the backup NICs, and the backups send Log responses to

the coordinator-side P1 NIC. By shipping execution to the

remote primary NIC, Xenic eliminates a network message

delay from the commit protocol. Xenic handles remote exe-

cution with the same function shipping mechanism as in the

coordinator offload optimization. We limit remote execution

to transactions involving a single execution round, where all

keys are specified in the initial request. We implement multi-

hop commit operations for all single-shard transactions and

transactions involving the local shard and one remote shard.

4.2.4 Local Transactions Local write transactions exe-

cute optimistically on the host, accessing objects in host-side

hash structure. After execution, the host sends the transac-

tion state to its coordinator-side SmartNIC, for replication.

Before issuing Log requests, the coordinator-side NIC ac-

quires write-set locks in its index and aborts if any lock is

already held. Otherwise, the NIC proceeds with the com-

mit protocol. This adds no network or PCIe overhead for

committed transactions. Local read transactions require no

PCIe communication, performing reads and Validate logic

locally at the host-side hash table.

4.3 SmartNIC Operations Framework

We apply our performance analysis to design an efficient

framework for Xenic’s SmartNIC commit operations. First,

10

our results show that PCIe DMAs have significant submis-

sion and completion latency (§3.5). To achieve high core

utilization, NIC cores must perform work while awaiting

DMA completion. Second, we find substantial throughput

opportunities in batching DMA submissions (§3.5). Submit-

ting full vectors to the DMA engine amortizes submission

cost, without adding completion latency, and increases max-

imum throughput. Combining batched DMA submission

with batched Ethernet transmission (§3.4) results in high

network utilization, with potential for improved through-

put over one-sided RDMA. Individual commit operations,

however, typically do not fill a 15-buffer DMA vector or an

Ethernet MTU, and do not have work to performwhile await-

ing DMA completion. For this reason, we must interleave

commit operations and aggregate work at the point of DMA

submissions, NIC-to-NIC, and NIC-to-host communications.

4.3.1 AsynchronousOperations Xenic implements con-

tinuation-passing, asynchronous operations to interleave

work, and to minimize blocking for DMA completions. Each

NIC core maintains two vectors for pending read and write

DMAs, respectively. Transaction operations insert entries

(NIC/host addresses, size) into the read and write vectors,

along with a callback function to be executed upon DMA

completion. This callback may produce a network output,

e.g., a Log acknowledgement, or further manipulate NIC

state, e.g., unlocking objects after Commit writes are trans-

ferred to host memory. When a NIC core is idle, or when the

DMA vector fills, it is submitted to the core’s assigned DMA

engine. The DMA engine writes a completion status byte

once it has performed the DMA. Each core tracks in-flight

DMAs using a core-local ring buffer, mapping completion

byte addresses to the associated batch of callback work.

4.3.2 Opportunistic Batching Xenic runs a burst-oriented

polling loop on each NIC core, applying the NIC’s hardware

flow engine to route flows to cores. Each loop iteration han-

dles a burst of Ethernet traffic and a burst of DMA comple-

tions, accumulating DMA requests and their callbacks in the

pending read/write vectors. After handling the burst, the

NIC submits any DMA requests and collects all outbound

NIC-to-host and NIC-to-NIC packet transmissions. Using

a gather-list for each destination, the NIC core generates a

UDP header and performs an aggregated Ethernet or PCIe

packet transmission. This allows Xenic to efficiently combine

as many outputs as possible into each packet.

Xenic’s batching approach allows the SmartNIC to ag-

gregate communication whenever there is sufficient traffic

between two nodes. PCIe communications are batched sepa-

rately, and do not always achieve full batches; for instance, a

read-heavy workload largely served by the SmartNIC cache

results in few PCIe accesses. However, this scenario does not

result in lower performance, because cache hits to SmartNIC

memory are lower-cost than DMA lookups.

4.3.3 Limited SmartNIC Resources The SmartNIC’s

compute and memory capacities are small relative to the

host server. Xenic is designed with this in mind, allowing

workloads to appropriately utilize the SmartNIC. First, Xenic

selectively applies function shipping to execute transactions

on NIC cores. This is applied on a per-transaction basis,

via a user annotation. Doing so allows the NIC to execute

latency-critical transactions, reducing PCIe crossings, while

the host executes compute-heavy or predominantly local

transactions. Second, Xenic uses SmartNIC memory to cache

objects, adapting to available capacity. When caching is in-

effective, due to the access pattern or cache eviction policy,

the need for DMA lookups increases. These misses incur

PCIe bandwidth overhead (§4.1.2), potentially becoming a

bottleneck. Decreasing probing distance sufficiently, by ex-

panding the host-side hash memory, reduces PCIe overhead

and allows lookups to reach network throughput.

4.3.4 Other SmartNIC Platforms Xenic relies on Smart-

NIC hardware characteristics to reduce latency. First, han-

dling a remote request on the SmartNIC must be lower-

latency than doing so with a host RPC. Some off-path Smart-

NICs demonstrated higher latency when directing traffic

to the SmartNIC cores, versus sending requests directly to

the host with an RDMA NIC (§3.1). Second, the SmartNIC

must have an efficient mechanism for host memory access.

SmartNICs that rely on an RDMA interface between the NIC

cores and host memory showed prohibitively high latency,

precluding Xenic’s latency reduction goal. If the SmartNIC

hardware does not show latency reduction potential, using

SmartNICs may not be justifiable over a host-only design. In

contrast, with a platform meeting these requirements, Xenic

can improve both latency and throughput.

5 Evaluation

We implement Xenic using LiquidIO 3 SmartNICs. We ex-

tend the generic NIC firmware to add transaction-processing

logic, written in C using DPDK and the LiquidIO hardware

interfaces. The host-side coordinator also uses DPDK. Our

testbed consists of 6 servers, each with Intel Xeon Gold 5218

CPUs (16 cores, 32 hyperthreads, 2.3GHz) and 96GB DDR4

DRAM. Each server contains a 2x50GbE Marvell LiquidIO 3

(CN3380), with 24 2.2GHz ARM cores, 16GB DDR4 DRAM,

and a PCIe 3.0 x8 interface. We utilize both links of the NIC

for a per-server total network bandwidth of 100Gbps. Each

server also contains a 100GbE Mellanox CX5 (MCX516A-

CCAT) NIC with a PCIe 3.0 x16 interface for comparison.

5.1 Comparisons
We evaluate Xenic with case studies of the TPC-C [42],

Retwis [38, 41, 47], and Smallbank [13] benchmarks. We

11

use each benchmark to compare performance against recent

work in hardware-accelerated distributed transactions, mea-

suring per-server average throughput and median latency.

We focus on versions of DrTM+H [44] for this comparison,

a well-optimized research system applying a hybrid of one-

sided RDMA and two-sided RPCs to maximize performance.

In addition to its hybrid design, DrTM+H provides additional

versions representing alternate decisions in the RDMA de-

sign space. We compare the following configurations:

• DrTM+H is the best-case combination of one-sided and

two-sided operations for each protocol phase. One-sided

operations are typically used for execution reads, valida-

tion, and logging. DrTM+H avoids remote data structure

traversals by caching addresses for remote objects.

• DrTM+H with no remote caching (NC) matches DrTM+H

but disables the coordinator’s remote address cache. This

configuration demonstrates the impact of RDMA hash

traversal for Execute reads.

• FaSST involves two-sided RPC operations exclusively, em-

ulating the design by Kalia et al. [15]. This version per-

forms remote data structure lookups via host RPC, and

where possible, consolidatesmultiple operations (e.g., read-

ing and locking) into individual RPCs.

• DrTM+R. This configuration emulates DrTM+R’s use of

one-sided RDMA, retaining DrTM+H’s OCC protocol [44].

Of the open-source related work, only DrTM+H imple-

ments the TPC-C benchmark. However, DrTM+H’s support

is limited to a simplified version of the TPC-C workload,

consisting of new order transactions instead of the typical

mix of five types, and using a customized access pattern. We

evaluate Xenic using this workload for comparison with the

DrTM+H configurations (§5.2). Xenic supports the full TPC-

C workload, which we evaluate separately (§5.3). DrTM+H

provides a Smallbank implementation; we migrate their code

to Xenic and implement Retwis on both systems. For the

three benchmarks, we discuss host and NIC resource utiliza-

tion (§5.6). Finally, we evaluate key aspects of Xenic’s design

and their contributions to throughput and latency (§5.7).

5.2 Case Study: TPC-C New Order

The TPC-C benchmark simulates a warehouse order pro-

cessing system, with nine tables and a range of object sizes

up to 660B. We first evaluate performance of TPC-C’s new
order transaction, the predominant transaction of the five

types in the TPC-C specification. Because DrTM+H only

supports the new order transaction, not the full workload, we
use this benchmark to compare performance with DrTM+H,

and evaluate the full workload mix in §5.3. Each new order
selects 5-15 items, updates stock counts, and writes order

line-item records. The coordinator picks items from parti-

tions chosen uniformly at random; this matches the DrTM+H

authors’ evaluation, creating a strenuous remote access pat-

tern. Three of the tables are accessed by transactions across

the cluster, while the others are B+ trees local to their re-

spective coordinators; all tables are replicated. We deploy

TPC-C on the 6-server testbed with a replication factor of 3

(2 backups for each primary) at the scale of 72 warehouses

per server. Figure 8a shows the results.

Xenic achieves an average peak throughput of 1.19M txn/s

per server, a 2.42× improvement over DrTM+H, the best al-

ternative. While both systems saturate network bandwidth,

DrTM+H requires multiple network operations for each TPC-

C stock object, to retrieve the value, then lock and validate.

Xenic can lock and read a remote object in one remote oper-

ation, reducing bandwidth consumption and latency. Xenic

effectively aggregates work at the SmartNIC, further allow-

ing throughput to scale. Xenic’s throughput is 3.81× greater

than DrTM+H with coordinator-side caching disabled, show-

ing the overhead of DrTM+H’s remote lookups. Although

RPCs avoid these one-sided RDMA inefficiencies, handling

all operations with host RPCs limits FaSST’s throughput to

232k txn/s, even when utilizing all host threads.

At low load, Xenic’s median latency is 59% below that of

DrTM+H, the lowest-latency alternative. While DrTM+H

applies one-sided RDMA for reads, this requires separate

remote operations to read, lock, and validate a remote object,

limiting latency savings. Xenic can perform these functions

with a single remote request, while reducing latency relative

to a host RPC. The latency penalty of FaSST’s RPC approach

is high for this benchmark, since FaSST handles RPCs on the

same threads performing compute-intensive B+ tree opera-

tions. At 95% of peak throughput, FaSST shows high latency:

2.2× that of DrTM+H and 4.0× that of Xenic.

5.3 Case Study: TPC-C

The full TPC-C workload consists of five transaction types,

including new order. We deploy the full workload mix at the

same scale as §5.2, configured to match the standard bench-

mark specification. Like prior implementations [45], we chop

the long-running local transaction logic into multiple data-

base transactions. Xenic ships execution of the new order and
payment transactions to the NIC; other transactions execute

on the host. Per the specification, we measure throughput

as the rate of new order transactions per second within the

full workload mix; this is approximately 45% of the overall

transaction throughput. Figure 8b shows the result.

Xenic achieves peak throughput of 541k new orders per

second per server, saturating the network. With new order
transactions comprising 45% of the workload, the other trans-

actions consume bandwidth and limit throughput to approx-

imately half that of the new order workload in §5.2. In the

standard TPC-C configuration, only ~10% of new order and
15% of payment transactions access a remote warehouse’s

12

0.0 0.5 1.0 1.5

Throughput per Server [txn/s] ×106

0

100

200

300

M
ed

ia
n

La
te

nc
y

[u
s]

(a) TPC-C New Order

0 2 4 6

Throughput per Server [txn/s] ×105

0

30

60

90

120

M
ed

ia
n

La
te

nc
y

[u
s]

(b) TPC-C

0 2 4 6

Throughput per Server [txn/s] ×106

0

50

100

150

200

M
ed

ia
n

La
te

nc
y

[u
s]

(c) Retwis

0.0 0.5 1.0 1.5

Throughput per Server [txn/s] ×107

0

50

100

150

M
ed

ia
n

La
te

nc
y

[u
s]

(d) Smallbank

Xenic
DrTM+H
DrTM+H NC
FaSST
DrTM+R

Figure 8: Throughput per server and median latency for (a) TPC-C New Order, (b) TPC-C, (c) Retwis, and (d) Smallbank benchmarks.

objects; this results in a median latency of 25𝜇s at low load,

below that of the modified new order workload.
Of the related work, DrTM+R and FaRM implement the

full TPC-C workload. While neither system is open-source,

DrTM+R’s authors provide a throughput evaluation at the

same scale as our testbed: 6 serverswith 3-way replication [6].

With a 56Gbps network, DrTM+R’s evaluation reports 150k

new orders per second per server, fully utilizing the net-

work bandwidth (a higher per-server throughput than FaRM).

Because DrTM+R’s throughput is limited by network band-

width, we deploy Xenic with a similar network configuration

to compare throughput with this published result. For Xenic,

we use one 50Gbps link per server, instead of two, and run

TPC-C at a scale of 384 warehouses to match DrTM+R. In

this experiment, Xenic achieves a peak throughput of 322k

new orders per second per server, 2.1× higher than DrTM+R.

This is a smaller increase than Xenic’s 2.7× improvement for

the modified new order workload. The full TPC-C workload

involves a higher frequency of local transactions which only

utilize the network for replication (Log operations). Xenic

does not improve efficiency for these transactions relative

to DrTM+R.

5.4 Case Study: Retwis

We evaluate the Retwis benchmark [38, 47], representing

a Twitter-like application. The benchmark includes a mix of

transaction types, with 50% read-only transactions and 1-10

keys per transaction. Unlike TPC-C, minimal coordinator-

side computation is involved in performing transactions.

Relative to Smallbank, objects are moderately larger (64B

versus 4B values), accessed with a Zipf distribution, 𝛼 =

0.5, with a higher proportion of read-only transactions. We

deploy Retwis with a replication factor of 3 and 1 million

keys per server. Figure 8c shows the results.

Xenic shows a 2.07× peak throughput increase relative

to DrTM+H and 42% lower median latency at low load. As

with TPC-C, both systems fully utilize network bandwidth,

while Xenic achieves higher efficiency. DrTM+H’s hybrid

design improves the performance of Retwis’ read-only trans-

actions, but its use of one-sided RDMA multiplies the num-

ber of requests for read-write transactions. This imposes

a throughput and latency cost; we evaluate this impact on

Retwis throughput in §5.7. Given the minimal computation

involved in the benchmark, FaSST nears the peak throughput

of DrTM+H without fully utilizing the host CPU. However,

its RPC design results in consistently higher latency, with a

minimum median latency 2.12× higher than that of Xenic.

5.5 Case Study: Smallbank

The Smallbank benchmark represents simple transactions

on a database of account balances, with small 12B objects.

15% of transactions are read-only, and the remainder involve

additions and subtractions of balances, with up to 3 keys per

transaction. 90% of transactions access 4% of keys, resulting

in relatively low contention. We deploy Smallbank at a com-

parable scale to our related work: 2.4M accounts per server,

with a replication factor of 3. Figure 8d shows the results.

We observe a peak throughput of 12.0M txn/s per server

with Xenic, 2.21× the maximum throughput of DrTM+H.

Both systems saturate network bandwidth at peak through-

put. Xenic delivers throughput improvement through proto-

col and communication efficiency. Smallbank’s workload of

12B key-value objects presents a significant opportunity for

batching. Given the small object sizes, minimizing the meta-

data overhead of each remote request is especially critical for

bandwidth efficiency. The software flexibility of Xenic’s com-

mit operations enables higher bandwidth utilization, and its

aggregation of remote requests enables aggressive batching.

However, Smallbank’s small remote operations also demon-

strate the best-case latency potential of one-sided RDMA,

and DrTM+H performs optimal one-sided READs due to

its pointer cache. Xenic shows 21.5% lower minimum me-

dian latency than DrTM+H, achieving competitive perfor-

mance by eliminating PCIe accesses, utilizing NIC memory

for transaction metadata, and caching hot objects. As in the

other benchmarks, Xenic’s commit protocol requires fewer

remote operations per key than that of DrTM+H. For most

Smallbank transactions, Xenic reduces communication via

function shipping; we evaluate this optimization in §5.7.

5.6 SmartNIC Resource Utilization

To study utilization, we measure the minimum number

of cores to run each benchmark at peak throughput, with

Xenic, DrTM+H and FaSST. We run each benchmark and de-

crease thread count until throughput drops below 95% of its

maximum. For Xenic, we repeat this analysis with NIC cores.

13

Benchmark Xenic Norm. (Host, NIC) DrTM+H FaSST

TPC-C NO 21.7 (18, 12) 24 32

Retwis 9.9 (5, 16) 18 24

Smallbank 9.9 (5, 16) 20 28

Table 3: Normalized thread count, for Xenic, DrTM+H, and FaSST.
NIC thread count is scaled by NIC/host Coremark score ratio.

(a) Retwis
0

3

6

Tp
ut

 [t
xn

/s]
 ×

10
6

1.11× 1.00×

1.47×

1.98×
2.30× DrTM+H

Xenic baseline
+ Smart remote ops
+ Eth aggregation
+ Async DMA

(b) Smallbank
0

20

40

La
te

nc
y

[u
s]

0.73×

1.00×

0.80×
0.68×

0.58×

DrTM+H
Xenic baseline
+ Smart remote ops
+ NIC execution
+ OCC optimization

Figure 9: Retwis per-server throughput (a) and Smallbank median
latency (b), sequentially enabling key aspects of Xenic’s design.

Table 3 shows the result. We find that Xenic requires few

host threads for Retwis and Smallbank: 2 application threads

to initiate transactions and handle completions, and 3 worker

threads to apply writes to the primary and backup tables.

TPC-C, however, requires 18 host threads due to its compute-

intensive local B+ tree manipulations, which are performed

on both host application threads and worker threads (to ap-

ply updates to each backup). Smallbank and Retwis offload

all execution to the NIC, resulting in higher NIC utilization;

TPC-C instead shows higher host utilization.

To compare cumulative utilization across host and NIC

processors, we use the Coremark benchmark to normalize

computation power. We use the ratio of the NIC’s per-thread

Coremark score to that of the host: 0.31×. This clearly is an

approximation as the relative power is workload-dependent

(§3.6). With this approximation, we report that relative to

DrTM+H, Xenic saves 2.3 threads for TPC-C, 8.1 threads for

Retwis, and 10.1 threads for Smallbank. In all cases, Xenic

achieves higher throughput and core savings relative to

FaSST and DrTM+H. Xenic’s lower utilization suggests that

exploiting wimpy NIC cores, close to the NIC’s hardware

interfaces, enables higher overall computation efficiency.

5.7 Impact of Optimizations

To evaluate how Xenic’s design features contribute to

improvements in throughput and latency, we begin with a

baseline design, and sequentially enable features. The Xenic

baseline resembles DrTM+H, implementing the same set of

remote operations. We impose the same restrictions that

arise from DrTM+H’s use of one-sided RDMA; in particular,

we use separate requests to read, lock, and validate objects.

In Figure 9a, we enable a series of throughput-oriented op-

timizations and measure their impact on Retwis’ throughput

relative to the baseline and to DrTM+H. Despite their similar

protocol, the Xenic baseline shows 10% lower throughput

than DrTM+H. The NIC cores are saturated, with the NIC’s

software packet processing limiting throughput. Adding

Xenic’s optimized remote commit operations reduces the

number of remote requests; this increases throughput by

1.47×. Adding aggregated Ethernet transmissions facilitates

higher bandwidth utilization, for an overall 1.98× increase.

Finally, we enable asynchronous NIC execution, batching

DMAs across multiple operations, to amortize overhead and

minimize blocking time. This results in a cumulative 2.30×
peak throughput increase, 2.07× relative to DrTM+H.

Next, we evaluate latency-oriented optimizations and their

impact on Smallbank’s median latency. Figure 9b shows these

measurements. Relative to DrTM+H, the Xenic baseline la-

tency is 1.37× higher. As in §3.2, the LiquidIO demonstrates

consistently higher latency than the CX5 for comparable

remote memory accesses, explaining this latency difference.

Enabling Xenic’s optimized commit operations, reducing

the number of requests involved per transaction, improves

latency by 20%. By shipping execution to the coordinator

SmartNIC, Xenic eliminates intermediate coordinator-side

PCIe traversals during each transaction, further reducing

latency, 32% below the baseline. Smallbank’s workload of 1-2

shard transactions presents the opportunity to further reduce

latency, by shipping execution remote SmartNICs and apply-

ing optimized communication patterns. This achieves a 42%

latency reduction over the baseline, 22% below DrTM+H.

6 Conclusion

We argue that SmartNICs offer an opportunity for high

performance, hardware-accelerated distributed transactions,

without the trade-offs that define RDMA systems. Using

measured performance characteristics to inform our design,

we build Xenic, a transaction processing system leveraging

on-path SmartNICs. Xenic employs a co-designed data store

spread across the NIC and the host, an asynchronous and

batched execution model, and flexible communications to

improve efficiency. With three benchmarks comprising a

range of workloads, we compare Xenic against RDMA-based

systems. Our results show that despite software overheads

relative to RDMA, Xenic effectively applies the SmartNIC to

increase throughput and reduce latency.

References

[1] AlphaData. ADM-PCIE-9V3 -High-PerformanceNetworkAccelerator,

Sept. 2021. https://www.alpha-data.com/dcp/products.php?product=a

dm-pcie-9v3.

[2] M. T. Arashloo, A. Lavrov, M. Ghobadi, J. Rexford, D. Walker, and

D. Wentzlaff. Enabling programmable transport protocols in high-

speed nics. In 17th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 20), pages 93–109, Santa Clara, CA, Feb.

2020. USENIX Association.

14

https://www.alpha-data.com/dcp/products.php?product=adm-pcie-9v3
https://www.alpha-data.com/dcp/products.php?product=adm-pcie-9v3

[3] Broadcom. The TruFlow Flow processing engine. https://www.broadc

om.com/applications/data-center/cloud-scale-networking, 2021.

[4] Broadcom Inc. Stingray SmartNIC Adapters and IC, Sept. 2021. https:

//www.broadcom.com/products/ethernet-connectivity/network-

adapters/smartnic.

[5] P. Celis, P. Larson, and J. I. Munro. Robin hood hashing (preliminary

report). In 26th Annual Symposium on Foundations of Computer Sci-
ence, Portland, Oregon, USA, 21-23 October 1985, pages 281–288. IEEE
Computer Society, 1985.

[6] Y. Chen, X. Wei, J. Shi, R. Chen, and H. Chen. Fast and general dis-

tributed transactions using rdma and htm. In Proceedings of the Eleventh
European Conference on Computer Systems, EuroSys ’16, New York, NY,

USA, 2016. Association for Computing Machinery.

[7] D. W. Cornell, D. M. Dias, and P. S. Yu. On multisystem coupling

through function request shipping. IEEE Transactions on Software
Engineering, SE-12(10):1006–1017, 1986.

[8] A. Dragojevic, D. Narayanan, M. Castro, and O. Hodson. Farm: Fast

remote memory. In 11th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 2014). USENIX – Advanced Computing

Systems Association, April 2014.

[9] A. Dragojević, D. Narayanan, E. B. Nightingale, M. Renzelmann,

A. Shamis, A. Badam, and M. Castro. No compromises: Distributed

transactions with consistency, availability, and performance. In Pro-
ceedings of the 25th Symposium on Operating Systems Principles, SOSP
’15, page 54–70, New York, NY, USA, 2015. Association for Computing

Machinery.

[10] Exablaze. ExaNIC V5P High Density Network Application Card, Sept.

2021. https://exablaze.com/exanic-v5p.

[11] D. Firestone, A. Putnam, S. Mundkur, D. Chiou, A. Dabagh, M. An-

drewartha, H. Angepat, V. Bhanu, A. Caulfield, E. Chung, H. K. Chan-

drappa, S. Chaturmohta, M. Humphrey, J. Lavier, N. Lam, F. Liu,

K. Ovtcharov, J. Padhye, G. Popuri, S. Raindel, T. Sapre, M. Shaw,

G. Silva, M. Sivakumar, N. Srivastava, A. Verma, Q. Zuhair, D. Bansal,

D. Burger, K. Vaid, D. A. Maltz, and A. Greenberg. Azure accelerated

networking: Smartnics in the public cloud. In 15th USENIX Symposium
on Networked Systems Design and Implementation, 2018.

[12] S. Grant, A. Yelam, M. Bland, and A. C. Snoeren. Smartnic performance

isolation with fairnic: Programmable networking for the cloud. In

Proceedings of the Annual Conference of the ACM Special Interest Group
on Data Communication on the Applications, Technologies, Architectures,
and Protocols for Computer Communication, 2020.

[13] H-Store Project. SmallBank Benchmark - H-Store, Sept. 2021. https:

//hstore.cs.brown.edu/documentation/deployment/benchmarks/smal

lbank/.

[14] S. Ibanez, M. Shahbaz, and N. McKeown. The case for a network fast

path to the cpu. In Proceedings of the 18th ACM Workshop on Hot
Topics in Networks, HotNets ’19, page 52–59, New York, NY, USA, 2019.

Association for Computing Machinery.

[15] A. Kalia, M. Kaminsky, and D. G. Andersen. Fasst: Fast, scalable and

simple distributed transactions with two-sided (RDMA) datagram

rpcs. In 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16), pages 185–201, Savannah, GA, Nov. 2016.
USENIX Association.

[16] A. Kaufmann, S. Peter, N. K. Sharma, T. Anderson, and A. Krishna-

murthy. High performance packet processing with flexnic. In Pro-
ceedings of the Twenty-First International Conference on Architectural
Support for Programming Languages and Operating Systems, 2016.

[17] Y. Le, H. Chang, S. Mukherjee, L. Wang, A. Akella, M. Swift, and

T. Lakshman. Uno: uniflying host and smart nic offload for flexible

packet processing. In Proceedings of the 2017 Symposium on Cloud
Computing, pages 506–519, 09 2017.

[18] B. Li, Z. Ruan, W. Xiao, Y. Lu, Y. Xiong, A. Putnam, E. Chen, and

L. Zhang. Kv-direct: High-performance in-memory key-value store

with programmable nic. In Proceedings of the 26th Symposium on
Operating Systems Principles, 2017.

[19] B. Li, K. Tan, L. L. Luo, Y. Peng, R. Luo, N. Xu, Y. Xiong, P. Cheng,

and E. Chen. Clicknp: Highly flexible and high performance network

processing with reconfigurable hardware. In Proceedings of the 2016
ACM SIGCOMM Conference, 2016.

[20] J. Lin, K. Patel, B. E. Stephens, A. Sivaraman, and A. Akella. PANIC: A

high-performance programmable NIC for multi-tenant networks. In

14th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 20), 2020.

[21] M. Liu, T. Cui, H. Schuh, A. Krishnamurthy, S. Peter, and K. Gupta.

Offloading distributed applications onto smartnics using ipipe. In

Proceedings of the ACM Special Interest Group on Data Communication,
2019.

[22] M. Liu, L. Luo, J. Nelson, L. Ceze, A. Krishnamurthy, and K. Atreya.

Incbricks: Toward in-network computation with an in-network cache.

In Proceedings of the Twenty-Second International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
2017.

[23] M. Liu, S. Peter, A. Krishnamurthy, and P. M. Phothilimthana. E3:

Energy-efficient microservices on smartnic-accelerated servers. In

2019 USENIX Annual Technical Conference (USENIX ATC 19), pages
363–378, Renton, WA, July 2019. USENIX Association.

[24] Marvell Technology Group Ltd. LiquidIO III Solutions Brief, Sept. 2021.

https://www.marvell.com/content/dam/marvell/en/public-collateral

/embedded-processors/marvell-liquidio-III-solutions-brief.pdf.

[25] Marvell Technology Group Ltd. Multi-Core Processors - LiquidIO

Smart NICs | Network adapter, Sept. 2021. https://www.marvell.com/

products/infrastructure-processors/multi-core-processors/liquidio-

smart-nics.html.

[26] F. Matus. Pensando: Distributed services architecture. In 2020 IEEE
Hot Chips 32 Symposium (HCS), pages 1–17. IEEE Computer Society,

2020.

[27] Mellanox. Accelerated Switch and Packet Processing. http://www.me

llanox.com/page/asap2?mtag=asap2, 2021.

[28] Mellanox. BlueField SmartNIC Ethernet, Sept. 2021. https://www.mell

anox.com/products/BlueField-SmartNIC-Ethernet.

[29] Mellanox. ConnectX-5 EN Single/Dual-Port Adapter, Sept. 2021. https:

//www.mellanox.com/products/ethernet-adapters/connectx-5-en.

[30] Mellanox. Mellanox Innova SmartNIC. http://www.mellanox.com/p

age/products_dyn?product_family=275&mtag=bluefield_smart_nic,

2021.

[31] Mellanox. OFED Documentation Rev 7.4.1.0.0.1, Sept. 2021. https:

//docs.mellanox.com/display/MLNXOFEDv471001.

[32] W. M. Mellette, R. Das, Y. Guo, R. McGuinness, A. C. Snoeren, and

G. Porter. Expanding across time to deliver bandwidth efficiency and

low latency. In 17th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 20), pages 1–18, Santa Clara, CA, Feb. 2020.
USENIX Association.

[33] Netronome. Agilio LX SmartNICs, Sept. 2021. https://www.netronom

e.com/products/agilio-cx/.

[34] Pensando. Pensando DSC-100 Distributed Services Card, Sept. 2021.

https://pensando.io/documents/pensando-dsc-100-distributed-

services-card/.

[35] Pensando floor plan. https://www.servethehome.com/pensando-

distributed-services-architecture-smartnic/, 2021.

[36] P. M. Phothilimthana, M. Liu, A. Kaufmann, S. Peter, R. Bodik, and

T. Anderson. Floem: A programming system for nic-accelerated net-

work applications. In 13th USENIX Symposium on Operating Systems
Design and Implementation, 2018.

15

https://www.broadcom.com/applications/data-center/cloud-scale-networking
https://www.broadcom.com/applications/data-center/cloud-scale-networking
https://www.broadcom.com/products/ethernet-connectivity/network-adapters/smartnic
https://www.broadcom.com/products/ethernet-connectivity/network-adapters/smartnic
https://www.broadcom.com/products/ethernet-connectivity/network-adapters/smartnic
https://exablaze.com/exanic-v5p
https://hstore.cs.brown.edu/documentation/deployment/benchmarks/smallbank/
https://hstore.cs.brown.edu/documentation/deployment/benchmarks/smallbank/
https://hstore.cs.brown.edu/documentation/deployment/benchmarks/smallbank/
https://www.marvell.com/content/dam/marvell/en/public-collateral/embedded-processors/marvell-liquidio-III-solutions-brief.pdf
https://www.marvell.com/content/dam/marvell/en/public-collateral/embedded-processors/marvell-liquidio-III-solutions-brief.pdf
https://www.marvell.com/products/infrastructure-processors/multi-core-processors/liquidio-smart-nics.html
https://www.marvell.com/products/infrastructure-processors/multi-core-processors/liquidio-smart-nics.html
https://www.marvell.com/products/infrastructure-processors/multi-core-processors/liquidio-smart-nics.html
http://www.mellanox.com/page/asap2?mtag=asap2
http://www.mellanox.com/page/asap2?mtag=asap2
https://www.mellanox.com/products/BlueField-SmartNIC-Ethernet
https://www.mellanox.com/products/BlueField-SmartNIC-Ethernet
https://www.mellanox.com/products/ethernet-adapters/connectx-5-en
https://www.mellanox.com/products/ethernet-adapters/connectx-5-en
http://www.mellanox.com/page/products_dyn?product_family=275&mtag=bluefield_smart_nic
http://www.mellanox.com/page/products_dyn?product_family=275&mtag=bluefield_smart_nic
https://docs.mellanox.com/display/MLNXOFEDv471001
https://docs.mellanox.com/display/MLNXOFEDv471001
https://www.netronome.com/products/agilio-cx/
https://www.netronome.com/products/agilio-cx/
https://pensando.io/documents/pensando-dsc-100-distributed-services-card/
https://pensando.io/documents/pensando-dsc-100-distributed-services-card/
https://www.servethehome.com/pensando-distributed-services-architecture-smartnic/
https://www.servethehome.com/pensando-distributed-services-architecture-smartnic/

[37] S. Radhakrishnan, Y. Geng, V. Jeyakumar, A. Kabbani, G. Porter, and

A. Vahdat. SENIC: Scalable NIC for end-host rate limiting. In 11th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 14), pages 475–488, Seattle, WA, Apr. 2014. USENIX Association.

[38] Redis. Retwis - Example Twitter clone based on the Redis Key-Value

DB, Sept. 2021. http://retwis.redis.io.

[39] B. Stephens, A. Akella, and M. Swift. Loom: Flexible and efficient NIC

packet scheduling. In 16th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 19), pages 33–46, Boston, MA, Feb.

2019. USENIX Association.

[40] B. Stephens, A. Akella, and M. M. Swift. Your programmable nic should

be a programmable switch. In Proceedings of the 17th ACM Workshop
on Hot Topics in Networks, HotNets ’18, page 36–42, New York, NY,

USA, 2018. Association for Computing Machinery.

[41] A. Szekeres, M. Whittaker, J. Li, N. K. Sharma, A. Krishnamurthy,

D. R. K. Ports, and I. Zhang. Meerkat: Multicore-scalable replicated

transactions following the zero-coordination principle. In Proceedings
of the Fifteenth European Conference on Computer Systems, EuroSys ’20,
New York, NY, USA, 2020. Association for Computing Machinery.

[42] Transaction Processing Performance Council. TPC Benchmark C

Standard Specification, Revision 5.11, Sept. 2021. http://www.tpc.org/

tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf.

[43] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden. Speedy transac-

tions in multicore in-memory databases. In Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Principles, SOSP ’13,

page 18–32, New York, NY, USA, 2013. Association for Computing

Machinery.

[44] X. Wei, Z. Dong, R. Chen, and H. Chen. Deconstructing rdma-enabled

distributed transactions: Hybrid is better! In 13th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 18), pages
233–251, Carlsbad, CA, Oct. 2018. USENIX Association.

[45] X. Wei, J. Shi, Y. Chen, R. Chen, and H. Chen. Fast in-memory trans-

action processing using rdma and htm. In Proceedings of the 25th
Symposium on Operating Systems Principles, SOSP ’15, page 87–104,

New York, NY, USA, 2015. Association for Computing Machinery.

[46] Xilinx. Alveo Adaptable Accelerator Cards for Data Center Workloads,

Sept. 2021. https://www.xilinx.com/products/boards-and-kits/alveo.h

tml.

[47] I. Zhang, N. K. Sharma, A. Szekeres, A. Krishnamurthy, and D. R. K.

Ports. Building consistent transactions with inconsistent replication.

ACM Trans. Comput. Syst., 35(4), Dec. 2018.

16

http://retwis.redis.io
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf
https://www.xilinx.com/products/boards-and-kits/alveo.html
https://www.xilinx.com/products/boards-and-kits/alveo.html

	Abstract
	1 Introduction
	2 Background & Related Work
	2.1 RDMA NICs
	2.2 Distributed Transactions
	2.3 SmartNIC-based Systems

	3 SmartNIC Performance Analysis
	3.1 On-Path and Off-Path SmartNICs
	3.2 NIC and Host Access Latency
	3.3 NIC and Host RPC Throughput
	3.4 Batching Optimizations
	3.5 DMA Performance
	3.6 SmartNIC Core Performance
	3.7 Opportunities

	4 Design
	4.1 Co-designed Data Store
	4.2 Transaction Protocol
	4.3 SmartNIC Operations Framework

	5 Evaluation
	5.1 Comparisons
	5.2 Case Study: TPC-C New Order
	5.3 Case Study: TPC-C
	5.4 Case Study: Retwis
	5.5 Case Study: Smallbank
	5.6 SmartNIC Resource Utilization
	5.7 Impact of Optimizations

	6 Conclusion
	References

