Time-Space Tradeoffs for Bounded-Length collisions in Merkle-Damgård hashing

Ashrujit Ghoshal
University of Washington

Ilan Komargodski
Hebrew University and NTT Research

CRYPTO 2022
Iterative hashing

Hash functions need to handle variable input lengths
- password hashing
- hash and sign
- commitments

Cannot design a different hash for every length

Construct a VIL hash function from an underlying FIL primitive

e.g., Merkle Damgård hashing \([\text{Mer89, Dam89}], \text{sponge [BDPV07]}\)
Merkle-Damgård

Given a random salt a, hard to find $M \neq M'$ such that $\text{MD}_h(a, M) = \text{MD}_h(a, M')$.

Used in MD5, SHA-1, SHA-2
Complexity of finding collisions

• Model h as a random oracle

• Using $T \approx \sqrt{N}$ queries, can find collisions
 • This is necessary

• What about adversaries with large preprocessing?
 • birthday-style attack no longer optimal
 • Scenario studied by [Hellman80, Fiat-Naor99, Unruh07,...]
Auxiliary-input random oracle model (AI-ROM) [Unruh07]

\[(A_1, A_2) \]

\[\begin{align*} A \quad &\quad \Downarrow \quad A_1 \quad \Downarrow h \quad \rightarrow \quad A_2 \quad \Downarrow M, M' \quad \rightarrow \quad h \\ &\quad \Downarrow S \text{ bits} \quad \Downarrow T \text{ queries} \quad \Downarrow \end{align*} \]

“pre-processing” phase \hspace{1cm} “online” phase

\[A \text{ wins if } M' \neq M, \text{MD}_h(a, M) = \text{MD}_h(a, M') \]

\[\text{Adv}_N(S,T) = \max_{(S,T) \text{ adv}_A} \text{Pr}[A \text{ wins}] \]
Prior work

Theorem. [CDGS18] \(\text{Adv}_N(S, T) = \Theta \left(\frac{ST^2}{N} \right) \)

An observation: the attack finds collisions of length \(\Omega(T) \)!

Say, \(T \approx 2^{60} \Rightarrow \) petabytes sized collision!

Shorter collisions are provably harder to find

Theorem. [ACDW20] \(\text{Adv}_{N,2}(S, T) \leq O \left(\frac{ST}{N} + \frac{T^2}{N} \right) \)
Theorem (STB attack). [ACDW20] \(\text{Adv}_{N,B}(S,T) \geq \tilde{\Omega}\left(\frac{STB}{N} + \frac{T^2}{N}\right) \)

The STB conjecture [ACDW20]

“the optimal attack for finding \(B \)-block collisions has advantage at most \(\tilde{O}\left(\frac{STB}{N} + \frac{T^2}{N}\right)\)”

Was unresolved for \(3 \leq B \ll T \)
This work:

Proof of the STB conjecture for

- $B = O(1)$
- $S^4B^2 \in \tilde{O}(T)$

Recently improved by Akshima, Guo, Liu [AGL22]
Main theorem

Theorem. [this work]

\[
\text{Adv}_{N,B}(S,T) \leq O\left(\frac{STB^2 \log S}{N} + \frac{T^2}{N}\right)
\]

For constant \(B\),

\[
\text{Adv}_{N,B}(S,T) \leq \tilde{\Omega}\left(\frac{ST}{N} + \frac{T^2}{N}\right)
\]

Proof via multi-instance framework [IK10, CGLQ20, ACDW20]
Multi-instance framework \([\text{CGLQ20, ACDW20}]\)

\[a_1, a_2, ..., a_u \leftarrow [N]\]

\[\begin{align*}
(0^s, a_1) & \quad \rightarrow \quad A_2 \quad \downarrow T \text{ queries} \quad \rightarrow \quad (M_1, M'_1) \\
(0^s, a_2) & \quad \rightarrow \quad A_2 \quad \downarrow T \text{ queries} \quad \rightarrow \quad (M_2, M'_2) \\
(0^s, a_u) & \quad \rightarrow \quad A_2 \quad \downarrow T \text{ queries} \quad \rightarrow \quad (M_u, M'_u)
\end{align*}\]

\(A_2\) wins if \(\forall i \in [u]\)

1. \(M_i \neq M'_i\)
2. \(\text{MD}_h(a_i, M_i) = \text{MD}_h(a_i, M'_i)\)
3. \(|M_i|, |M'_i| \leq B\)
Multi-instance lemma. Let \(u = S + \log N \). Define \(\varepsilon := \max_{A_2} \Pr[A_2 \text{ wins}] \). Then

\[
\text{Adv}_{N,B}(S,T) \leq \frac{1}{\varepsilon u}
\]

Will prove:

\[
\varepsilon \leq \left(O \left(\frac{uT B^2 (\log u)^B}{N} + \frac{T^2}{N} \right) \right)^u
\]

For constant \(B \), \(u = S + \log N \)

\[
\varepsilon \leq \left(\tilde{O} \left(\frac{ST}{N} + \frac{T^2}{N} \right) \right)^u
\]

From multi-instance lemma, it follows

\[
\text{Adv}_{N,B}(S,T) \leq \tilde{O} \left(\frac{ST}{N} + \frac{T^2}{N} \right)
\]
Upper bounding multi-instance advantage

Technique: compression argument

Lemma [GT00, DTT10]. Let $\varepsilon := \Pr_{x,r}[\text{Dec(Enc}(x, r), r) = x]$. Then

$$\log|Y| \geq \log|X| - \log \frac{1}{\varepsilon}$$
$a_1, a_2, \ldots, a_u \leftarrow [N]$

A_2 (0^s, a_1) \quad h \quad T \text{ queries} \quad (M_1, M_1')$

A_2 (0^s, a_2) \quad h \quad T \text{ queries} \quad (M_2, M_2')$

A_2 (0^s, a_u) \quad h \quad T \text{ queries} \quad (M_u, M_u')$

Our strategy: Encode $h, \{a_1, a_2, \ldots, a_u\}$ using A_2 that always wins.

Compression lemma \Rightarrow upper bound $\Pr[A_2 \text{ wins}]$

Simplifying assumption: Only queries of the form $h(a_i,\ast)$ when A_2 run on a_i
Encoding

\((0^s, a_1)\)

\[A_2 \xrightarrow{(x_k, y_k)} z_k \]

\[z_j = z_k \]

\[a_1 \ldots a_u \]

\[z_1 \ldots z_k \ldots j \ldots z_T \ldots \]

Unqueried entries of \(h\)

\[(j, k) \ldots (p, q) \]

\[(0^s, a_u) \]

\[A_2 \xleftarrow{} \]

\[h \]
Decoding

Using the compression lemma,

\[\varepsilon \leq \left(\frac{1}{N} \right) \]

Collision for every salt

\[\Rightarrow \text{Savings} = u \left(\log N - 2 \log T \right) \]

Unqueried entries of \(h \)

\[(0^s, a_1) \]

\[A_2 \]

\[\frac{(x_j, y_j)}{z_j z_k} \]

\[h \]

\[(0^s, a_u) \]

\[A_2 \]

\[\frac{}{h} \]

However, cannot assume only queries of the form \(h(a_i, *) \) are made when \(A_2 \) run on \(a_i \)

\[(j, k) \]

\[(p, q) \]
Query graph

Graph grows across all of A_2’s runs

Note: A_2 may repeat queries across different runs

Assume wlog A_2 makes all h queries needed to compute collision

How do B-block collisions look like?
Collision structure

The mouse structure

- Tail
- Body
- Tip

- a

- $\leq B$

- No lower body
- Self loop body
- No tail

Isolate one mouse structure per salt
Types of queries

- **New** queries: queries made for the first time
 - wlog no queries repeated in single A_2 run
 - query not made in any previous A_2 run ⇒ **new** query

- Repeated queries
 - **repeated-mouse** queries: query present in some earlier mouse structure
 - **repeated-non-mouse** queries: other queries

Assume: Before running A_2 on $a_i, h(a_i,*)$ not queried
⇒ every mouse structure has a new query
Classifying mouse structures

1) Colliding new queries

2) Self loop body

3) New query touching repeated-mouse query
Classifying mouse structures (2)

4. At least one repeated-mouse query

5. No repeated-mouse query
Goal: for every mouse structure save at least

\[\delta = \min\left\{ \log \frac{N}{T^2}, \log \frac{N}{uTB^2 (\log u)^B} \right\} \text{ bits} \]

Total savings \(\geq u \cdot \delta \) bits

Using the compression lemma,

\[\varepsilon \leq \max \left\{ \frac{T^2}{N}, \frac{4uTB^2 (3 \log u)^B}{N} \right\} \leq \left(O \left(\frac{uTB^2 (\log u)^B}{N} + \frac{T^2}{N} \right) \right)^u \]
Recall assumption: Before running A_2 on a_i, $h(a_i, \ast)$ not queried

Why is it reasonable?

Because otherwise save on a_i

That suffices!

Savings = $\log N - \log uT \geq \delta$

omit a_i

add query index of $h(a_i, \ast)$
Easy case examples

Colliding new queries

Say q_2 after q_1

Savings:
$$\log N - 2\log T \geq \delta$$

“local” indices of q_1, q_2

New query touching repeated-mouse query

Savings:
$$\log N - \log T - \log uB \geq \delta$$

answer of q_2

index of q_4

index of q_3
Hard case example

At least one repeated-mouse query

Strategy:
Omit answer of q_2,
Remember:
- index of q_1
- index of q_2
- path back from q_1 to q_2

No large multi-collision if:
$\leq \log u$ incoming edges for all nodes

no large multi-collision \Rightarrow path encoding needs at most
$\log B + B \log(\log u)$

of edges on path which edge to take on path back
Strategy:
Omit answer of q_2,
Remember:
• index of q_1
• index of q_2
• path back from q_1 to q_2

$$\text{Savings} \geq \log N - (\log uB + \log T + \log(\log u)^B + \log B) \geq \delta$$

But, what if there are large multi-collisions?

Key idea: Save from the large multi-collision!
Saving from multi-collisions

Strategy:
Remember answer of first of m queries, indices of rest

m- multi-collision

Savings:

$$(m - 1) \log N - \log \binom{uT}{m}$$

When $m \geq \log u$,

$$(m - 1) \log N - \log \binom{uT}{m} \geq \log N - 2 \log T \geq \delta$$
Conclusion

• STB conjecture true for all constant B, when $S^4 B^2 \in \tilde{O}(T)$

• Follow up works
 • STB conjecture proven for $ST^2 \leq N$ [AGL22]
 • similar question studied for sponge [FGK22]

Open problem:
Prove the STB conjecture or give better attacks for $ST^2 > N$

Paper: https://eprint.iacr.org/2022/309