
Abstract
Main memory accesses continue to be a significant
bottleneck for applications whose working sets do not fit
in second-level caches. With the trend of greater
associativity in second-level caches, implementing
effective replacement algorithms might become more
important than reducing conflict misses. After showing
that an opportunity exists to close part of the gap between
the OPT and the LRU algorithms, we present a
replacement algorithm based on the detection of temporal
locality in lines residing in the L2 cache. Rather than
always replacing the LRU line, the victim is chosen by
considering both its priority in the LRU stack and whether
it exhibits temporal locality or not. 

We consider two strategies which use this replacement
algorithm: a profile-based scheme where temporal
locality is detected by processing a trace from a training
set of the application and an on-line scheme where
temporal locality is detected with the assist of a small
locality table. Both schemes improve on the second-level
cache miss rate over a pure LRU algorithm, by as much as
12% in the profiling case and 20% in the dynamic case. 

1 Introduction

Until recently, caches were automatically managed by the
hardware. With the growing gap between processor speed
and memory latency, techniques to hide or tolerate
memory latency have been developed. Some of them are
purely hardware-based, such as lock-up free caches, and
are quite successful for hiding the latency between the on-
chip cache (L1) and a closely integrated second-level
cache (L2). Others are software-oriented, such as code and
data reorganization to increase cache efficiency, and
require the cache to be exposed to the user. Finally, some
latency hiding techniques can use both hardware and
software support: this is the case for prefetching. 

Most research to date has concentrated on the L1-L2
interface. Techniques for reducing the cost of accessing

main memory, i.e., the L2 to main memory interface, have
received much less attention. While this may be of lesser
importance for applications that fit in relatively small L2
caches, such as those similar to SPEC95int or desktop
applications [Lee 98], it is an important issue for
commercial and database applications [Perl & Sites 96,
Barroso et al. 98]. In their study of the performance of the
Pentium Pro, Bhandarkar and Ding specifically point out
that “during L2 misses, the CPU can run out of other
machine resources causing back pressure on earlier pipe
stages” [Bhandarkar & Ding 97]. 

A simplistic but telling way of illustrating the
importance of L2 misses is as follows. Assume a
processor and associated L1 cache with an IPC (number of
instructions executed per cycle) of 4 (CPI=0.25) when
there are no L2 cache misses. This goal could be
reasonably achieved by an 8-way out-of-order processor,
32 KB L1 I-cache and 32 KB lock-up free L1 D-cache
with a L1-L2 latency of 6 cycles. Assume now that we
have a L2 global cache miss rate of one miss every 100
instructions (0.01 MPI). Then, if the memory latency is
100 cycles, the IPC decreases to 0.8. If we were able to
reduce the L2 miss rate by 10% (0.009 vs. 0.010 MPI), the
IPC would increase from 0.8 to 0.87, a 9% increase. As
the relative memory latency continues to increase,
improvements to L2 cache performance result in
corresponding improvements in overall system
performance. Thus, spending some effort in reducing the
L2 miss rate is clearly important considering the current
trends. 

In this paper, we propose a L2 replacement policy that
increases the L2’s effectiveness. The basic philosophy is
to modify the standard LRU (least recently used)
replacement algorithm so that lines that exhibit temporal
locality, i.e., that have a high probability of being reused in
the near future, are not replaced as readily as those that do
not appear to exhibit temporal locality. We demonstrate
two techniques which classify instructions’ temporal
locality and use this replacement policy. The first one
statically classifies instructions exhibiting temporal
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locality by using profiling. The second strategy uses
dynamic detection of temporal locality via hardware assist
structures at run-time. 

The rest of this paper is as follows. In the remainder of
this section we further motivate our study by showing that
a margin of improvement exists between the current least
recently used (LRU) based replacement algorithms and
the optimal replacement algorithm. We also review
previous work in the area of optimal algorithms and
profiling studies. Section 2 describes the new replacement
algorithm and the two techniques to classify temporal
locality. Section 3 presents trace driven simulation results
showing the improvements in L2 cache miss rates that can
be achieved by using these two strategies. Section 4
summarizes and suggests areas of further study. 

1.1 Motivation

A current trend in the design of second-level caches is an
increase in capacity and associativity. With non-blocking
loads and high miss latencies, L2 cache lookup is not as
time critical, thus, enabling larger cache associativity.
With L2 caches becoming 4-way or 8-way set associative
(and maybe even more associative in the future), strategies
that emphasize the reuse of lines already present in the
cache might be more important than those that target
conflict misses. With associative caches and more
corresponding victim choices, it might be time to revisit
the conventional wisdom that cache replacement
algorithms are not much of a performance factor.  

The most popular replacement algorithm is LRU and it
generally performs well. LRU and approximations to it are
practical for reasonable set sizes [Smith 82]. However,

some recent studies [Sugumar & Abraham 93] have
shown that in the case of larger associativities there is
noticeable room for improvement between LRU and
optimality as in the off-line MIN [Belady 66] or the
equivalent OPT algorithms [Mattson et al. 70]. Increasing
the number of lines per set can increase the probability
that the LRU line is not the optimal victim.

To illustrate this latter point, we plot in Figure 1 (a) the
L2 data cache miss rates for the tpcc application (see
Section 3 for the description of our benchmarks) with the
OPT and LRU replacement algorithms. All data reported
in this paper assumes the references have been filtered by
a L1 data cache. We consider a fixed number of sets (2K)
with increasing set size. We vary the associativity from
direct mapped to 16-way set associative. Figure 1 (b)
shows the percentage of fewer misses incurred when OPT
is used. For example, with a line size of 32 B and a set-
associativity of 4, a 256 KB cache (2K * 4 * 32 = 256K)
has a miss rate of approximately 56% under LRU and 46%
under OPT (Figure 1a) resulting in 18% fewer misses with
OPT (Figure 1b). Looking at Figure 1 (b), we see that for
this application the potential margin of improvement over
LRU is in the range of 11 to 23%. The margin tends to
increase with increased associativity and lower absolute
number of misses. 

LRU approximates OPT closely at low associativity
because there are few victims to choose from. With more
flexibility in victim choices permitted by larger set sizes,
LRU does not take advantage of the flexibility to select
better victims. To further illustrate this behavior, we
compared two random replacement policies to LRU. The
first random policy, random, chooses its victim randomly
from all lines in the set. The second random policy,
random_lh, chooses its victim randomly from the lower
LRU half of the set. For example, with an 8-way set

Figure 1. Comparison of LRU and OPT replacement
policies. Graph (a) shows the L2 data miss rates (L2
misses/L2 references) for both LRU and OPT replacement
policies with various cache sizes and a mapping of 2 K
sets. Graph (b) shows the percentage fewer misses that
OPT exhibited than LRU. Each curve in both graphs has
constant cache line size with increasing number of lines
per set. The trace has been previously filtered with a 16
KB, 4-way set associative L1 cache with 32 byte lines. 
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Figure 2. Comparing LRU and random replacement
policies. This graph shows the performance of two
random policies, random and random_lh, compared to
LRU. Each bar represents the number of L2 misses
normalized to LRU. Above 100% means the policy had
more misses than LRU. The L2 cache is 256 KB, 8-way set
associative with 32 byte lines. 
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associative cache, random_lh chooses its victim
randomly from the four least recently used lines. As
shown in Figure 2, LRU performs better than the pure
random policy. With some of the applications though,
random_lh actually does better than LRU. This implies
that below some LRU depth, the LRU depth is not a good
predictor of the likelihood that a cache line will be reused. 

Clearly, opportunity to improve over LRU exists. Our
goal is to enhance LRU to approximate OPT more closely
by modifying the choice of the victim line based on static
or dynamic detection of temporal locality. 

1.2 Related work

Optimal replacement algorithms date back to the
introduction of paging systems. Belady’s MIN algorithm
[Belady 66] is an off-line algorithm that gives the
minimum number of page faults for a given program.
Until recently, efficient implementations of MIN required
two passes over the input string. A good example is the
OPT algorithm [Mattson 70] which, like LRU, has the
“stack” property. By using limited look-ahead windows
and correcting the contents of the stack when necessary, a
“one-pass” algorithm can be devised for fully-associative
and set-associative caches [Sugumar & Abraham 93].
Sugumar and Abraham also show that there is a gap
between the cache hit rates under OPT and LRU and that
the miss rates for the former can be lower by as much as
32% for 2-way set-associative caches and 70% for fully-
associative caches. LRU works well in general but besides
the fact that there is a gap between LRU and OPT there
also exist situations where LRU is not the algorithm of
choice [Smith & Goodman 85]. 

OPT has the great advantage of relying on the
knowledge of future references while LRU is restricted to
the recent past reference history. Profiling can be used to
approximate this future knowledge. There are many
examples of effective use of profiling to make static
changes to a program in order to optimize a program’s
reference behavior. Profiling with MIN analysis has been
used to annotate instructions for prefetching [Abraham et
al. 93]. Other techniques restructure the layout of
references, both data [Lebeck & Wood 94, Calder et al.
98] and instructions [Pettis & Hansen 90, Hashemi et al.
97]. However, the majority of the restructuring techniques
have the goal of eliminating conflict misses in direct-
mapped caches while our interest is in caches with larger
set-associativity.

Variations on LRU [Smith 82] have been extensively
studied and recently there has been renewed interest in
bypassing, a mechanism which loads directly data in
registers (or an assist buffer) without modifying the
contents of the primary cache. Several techniques for

bypassing, based on the reuse of cache lines and
associated hardware assists, have been proposed. Lines
with low probability of reuse are subject to bypassing,
thus increasing the cache residency of those lines with
higher temporal locality. The method for classifying data
reuse can be based upon instruction or data address. CNA
is an instruction-based reuse classification scheme which
can be used with [Rivers et al. 98] or without an assist
cache [Tyson et al. 95]. Data address classification
strategies such as MAT [Johnson & Hwu 97] or NTS
[Rivers et al. 98] can also be effective. Here also, most of
these strategies were targeted at first-level caches or
removing conflict misses in caches with limited
associativity. With increased cache associativity, conflict
misses are less significant and, thus, bypassing becomes
less effective. Also, statically segregating the cache can
lead to less efficient use of the cache area when compared
to a single cache structure. 

2 Enabling better victimization

In the previous section we showed that there is a
noticeable opportunity to improve over LRU. The
replacement algorithm that we propose is based upon LRU
and enables more intelligent victim selection by deviating
from the strict LRU victimization policy. We partition the
cache lines into two categories: those that we expect to
have sustained temporal locality and those which we
expect won’ t. When it is time to victimize a line, the
replacement algorithm, called Reference Locality
Replacement (RLR) algorithm, will attempt to keep lines
with sustained temporal locality in the cache, even if one
of them happens to be the LRU line. We begin by
describing the hardware mechanism and replacement
policy required to implement RLR. Afterwards, we
describe two techniques to classify temporal locality as
needed to utilize the RLR replacement policy.  

Figure 3. Temporal bit addition to the cache. To
implement the RLR policy, we add a temporal bit which
indicates that the cache line exhibits temporal locality and
should not be victimized if possible. The LRU stack field
prioritizes the lines based upon recency of last reference.
For the shown cache set with set-associativity of 4, on a
miss to line E, the RLR victim is C, while the LRU victim is
D. 

tag temporal bit LRU stack

A 0 MRU

B 1

C 0

D 1 LRU



2.1 Line victimization 

In order to enable making a replacement decision different
from LRU, the RLR cache line replacement policy adds a
temporal bit to the cache line metadata (see Figure 3). This
temporal bit is a hint that the cache line exhibits temporal
locality and should be kept in the cache, even if it is the
LRU element. We call cache lines with the temporal bit set
temporal lines. Those lines that do not have this bit set,
nontemporal lines, are the preferred victims and should be
chosen for replacement over the temporal lines. When a
replacement is necessary, RLR hardware victimizes the
LRU nontemporal line. The most recently used (MRU)
line is never chosen as the victim. In the cases where all
non-MRU lines in the set have the same temporal bit
value, RLR behaves like LRU and chooses the same
victim as LRU.

The simple RLR strategy is designed to keep temporal
designated cache lines resident. This is the desired effect
when temporal lines are rereferenced. However, if the
temporal line is no longer referenced (i.e., it is a dead line)
and not enough temporal references are made to other data
that map to the set, the unreferenced temporal line will
remain in the set which reduces the set’s effective size. To
address this concern, we modified RLR to limit an
unreferenced temporal line’s life in the set. 

The victim selection policy remains the same as before.
Except for the MRU line, we victimize non-temporal lines
over temporal lines. However, when a victim is selected
that is not the LRU line, the LRU stack is reordered and
the LRU line, which is necessarily a temporal line, has its

temporal bit cleared. The LRU stack reordering is as
follows. The original MRU line is unaffected and its state
remains the same. Temporal lines are moved to the top of
the LRU stack and non-temporal lines to the bottom.

We expect that the addition of the temporal bit will not
have a large impact on the cache’s implementation. First,
the bit’ s representation overhead is small. Second,
although RLR does make the replacement algorithm more
complex, this replacement is at the L2 level where there is
ample time to choose a victim and update the set’s priority
stack while the missing line is being fetched from
memory. 

2.2 Identifying temporal lines

Temporal lines are classified by two different strategies:
the first is a profile-based approach that statically
classifies instructions, while the second is a strictly
hardware online approach that dynamically detects
instruction temporality. 

2.2.1 Profile Reference Locality
Profile Reference Locality (PRL) assumes the

existence of temporal load instructions. These load
instructions are similar to normal load instructions, but, in
addition, they set the temporal bit for the line containing
the referenced data, both on cache line allocation and hits
during L2 accesses. These cache management instructions
are similar to other proposed instructions that have the
same user visible semantics as normal instructions but
inform the memory hierarchy to behave differently [Tyson

Figure 4. Classifying temporal loads.This figure illustrates how PRL uses the OPT algorithm to classify instructions as
exhibiting temporal locality. The state of the OPT stack is shown after the current reference is processed. The time of next
reference (TNR) is the address’ priority and is used during stack updates. If the referenced address is found within a
specified window, in this case depth 2 through 6, the address exhibited temporal locality and the previous referencing
instruction is counted as having made a temporal reference. In this example, the temporal reference counters associated
with PCs z and y, at times 1 and 2, respectively, are incremented because the second references to A and B were later
found, at times 8 and 9, within the temporal stack window. 
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et al. 95, Intel 99]. Normal non-temporal memory
instructions that access L2 (on a L1 cache miss) clear the
temporal bit.

We now describe the profiling phase where PRL
determines which loads to statically convert to temporal
loads. Profiling is performed on an address trace, and
since we are profiling for L2 use, the address trace is first
filtered by a L1 cache. We then process the trace by
simulating the OPT algorithm’s replacement stack
[Mattson et al. 70] for each cache set. The OPT
algorithm’s stack prioritizes the recent references based
upon the time they are next referenced with the references
closest to the top of the stack being the ones that will be
rereferenced the soonest. Hence, data at the top of the
stack are data we would prefer to keep in the cache. We
define data, at the cache line granularity, as exhibiting
temporal locality if it is rereferenced within a window at
the top of the stack. The previous load that referenced the
temporal line is classified as a temporal reference and is a
candidate temporal load (see Figure 4 for an example).
The depth of the window in the OPT stack that we use is
dependent upon the targeted cache’s set size. For example,
to target an 8-way associative cache, a window of stack
depth 2 through 6 (MRU has depth 1) is used. We do not
include the MRU element in our locality window as
references to the MRU are cache hits after the line is
allocated in the cache and do not incur a replacement
decision. 

For each load, we record the number of references and
the number of temporal references. At the end of profiling
each application, a list of static loads having above a
specified percentage of dynamic temporal references is
generated. We will refer to this percentage as the temporal
reference threshold (TRT). The loads that belong to the list
of those above the TRT are converted to temporal loads.
Note that a high TRT may result in too few loads being
classified as temporal loads. Likewise, a low TRT can
result in too many of the static loads being classified as
temporal loads. At either extreme of the spectrum of TRT
values, too many or too few references classified as
temporal loads will cause PRL to make the same decisions
as LRU. 

2.2.2 Online Reference Locality 
The PRL algorithm consists of two phases: statically
classifying the temporal instructions via profiling and
setting the temporal bit values in the cache at run-time.
Online Reference Locality (ORL) follows the same
philosophy, but now the two phases are necessarily closely
interleaved. Profiling is approximated by keeping a table,
created and updated at run-time, of whether an instruction
(static PC) exhibits temporal locality or not. An entry in
this table, called the locality table, consists of a single bit

representing a locality boolean value. Allocation and
updates of entries are performed according to the
instruction’s reference locality which is based upon the
LRU stack depth of the instruction’s previous reference. In
our implementation, we consider that any hit to a non-
MRU line indicates the presence of sustained temporal
locality. As in the PRL case, the temporal instruction is the
one that previously referenced the line with a PC of value
prev_PC. The setting of temporal bits in the cache is
performed as in PRL, except that temporality is
determined by a table look-up in the locality table rather
than via temporal or non-temporal instructions. 

In order to implement ORL, not only do we need the
locality table but also the PC of the instruction that
previously referenced the line in the cache (prev_PC)
must be recorded with the tag, a field that we call PCtag,
for that line in the cache. The PCtag value will be used to
update values in the locality table. On a L2 access, the
current PC (curr_PC) must be sent along with the
requested data address. The locality table is similar to a
branch history table and the implementation should be
similar.

We now describe what happens on a L2 reference from
an instruction at curr_PC:

•The reference is to the MRU line. No change in
either the cache or the locality table states.

•The reference is a hit to a non-MRU line. The
locality bit of the prev_PC (found in the PCtag
field of the cache) entry in the locality table is set
to true. The cache line becomes MRU and its
temporal bit is set to the value of the locality bit in
the curr_PC entry of the locality table. The PCtag
field for the cache line is set to curr_PC.

•The reference is a miss. The victim is chosen as in
Section 2.1. The missing line is brought in, becomes
MRU, and its temporal bit is set to the value of the
locality bit in the curr_PC entry of the locality
table. The PCtag field for that line is set to
curr_PC. The locality table entry with the
victim’s PCtag is reset to false.

3 Experiments

3.1 Methodology 

To test the effectiveness of our approach, we used trace-
driven simulations of applications that exercise second-
level caches. The traces were filtered by a L1 cache as
mentioned earlier. The benchmarks are briefly described
in Table 1. Table 2 shows the trace execution
characteristics and miss rates for a 256 KB, 8-way set
associative L2 cache for various lines sizes with standard



LRU replacement. Traces were obtained with two
different methods. The SPEC95 traces contain user
references and were generated through the SimpleScalar
toolset [Burger & Austin 97] with a simple in-order
processor model. The traces for these applications were
generated by 200 million instructions from the middle of
program execution. The tpcc and specweb traces were
obtained with a hardware trace gatherer and contain both
user and system references. Those traces were obtained
from systems running the Microsoft NT 4.0 operating
system. We used only the data references in our studies
and treated all data accesses as reads.

The PRL algorithm evaluation is performed in two
phases. Phase 1, done once per application, is the profiling
itself performed on a training data set (hydro2d, su2cor,
specweb, and tpcc2 in Table 2). The output of this phase is
a list of static PC’s where temporal loads are generated as
explained in Section 2.2.1. Phase 2 performs a subsequent
trace-driven cache simulation with the test data set traces
using the output of the first phase to drive the PRL

replacement policy. 

3.2 PRL evaluation

The goal of the first PRL experiments, whose results are
presented now, is to select the PRL profiling parameters
that will be used to generate the profiling data (phase 1)
for later PRL cache simulations (phase 2). We present
results where the profiled data was generated with
parameters that matched the target cache. In general, we
would like to select the profiling parameters that offer the
best universal performance and stability. 

3.2.1 PRL parameters
In these experiments, the same application input data

was used during profiling and subsequent PRL
simulations. Our goal is to determine what temporal
reference threshold (TRT) value to use and using the same
data for profiling and PRL simulation should give us a
rough upper bound on the gains possible with PRL. Recall
that the TRT value determines how many and which loads
are statically converted to temporal loads (Section 2.2.1).
Table 3 shows the number of static PCs converted and the
percentage of dynamic temporal loads executed for
different TRT values (percentage dynamic temporal loads
is the ratio of L2 references caused by temporal loads to
total L2 references). For the applications su2cor and
hydro2d, few of the static PCs are responsible for a large
percentage of the dynamic PCs that resulted in L2
accesses. Hydro2d suffers from the additional
circumstance that its L2 references do not exhibit temporal
locality. Hence, for hydro2d we expect PRL to have little
impact.

In Figure 5 we show the resulting performance of PRL
with different TRT values. PRL can noticeably reduce the
number of misses for a range of TRT values, up to 17%
fewer misses than LRU (specweb with 64 byte lines and
TRT=60%). Using a TRT value of 30 to 60% generally
performs the best and improves performance, except in
one instance (su2cor with 128 B lines) where these TRT
values resulted in up to 2% more misses. For hydro2d, as
expected, the TRT value tended to not affect performance.
For the simulations, on the testing data sets, we used the
TRT values shown in Table 4. Although choosing a fixed
TRT value per application may not give us the best
performance for each cache configuration, it eliminates
having separate profiles for each cache configuration.    

3.2.2 PRL with different application data
In this section, we present the results of the PRL on test
data different from the training data sets used for profiling.
The performance of the PRL algorithm is shown in Figure
6. The number of L2 misses normalized to LRU misses is

application description

hydro2d SPEC95; astrophysics; solving hydrodynamical equations

su2cor SPEC95; quantum physics; particle mass computations

specweb SPEC web server benchmark

tpcc TPC C database benchmark

Table 1. Benchmark descriptions. 

application use references (M) L2 data refs (M)
(L1 misses)

L2 misses per instruction

 (x100)

inst data 32 B 64 B 128 B

hydro2d train 200.00 96.96 6.77 3.00 1.50 0.75

hydro2d-t test 200.00 96.96 6.77 3.00 1.50 0.75

su2cor train 200.00 95.89 3.96 1.24 0.62 0.31

su2cor-t test 200.00 102.65 4.53 1.34 0.68 0.35

specweb train 69.14 43.93 2.93 1.61 1.67 2.03

specweb2 test 30.00 19.04 2.67 2.67 2.81 2.83

specweb3 test 30.00 19.12 2.72 2.74 2.89 2.84

specweb4 test 30.00 19.01 2.61 2.70 2.77 2.67

tpcc2 train 148.80 83.28 2.44 0.91 0.59 0.42

tpcc3a test 49.58 17.60 0.50 0.92 0.58 0.39

tpcc3c test 102.69 63.24 2.23 0.89 0.63 0.47

tpcc4a test 170.70 92.08 2.66 0.95 0.59 0.41

tpcc4b test 217.86 113.47 2.80 0.91 0.55 0.37

Table 2. Trace characteristics. This table shows the data
cache miss characteristics of our applications at both the
first and second-level caches. The first level (L1) cache is
16 KB and 4-way associative. The second-level (L2) cache
is 256 KB and 8-way associative. Both caches have 32 B
lines and used LRU replacement policies. For the L2
cache miss rate, we show the L2 misses per instruction (x
100) for three different line sizes. 



shown for both PRL and the optimal (OPT) replacement
policies. From the graphs, we see that PRL can noticeably
reduce the number of misses (up to 12% on specweb and
10% on tpcc). In all but one case, su2cor with 128 byte
lines, PRL generated fewer misses than LRU. For the case
where PRL performed worse than LRU, the additional
number of misses generated is less than 1%.

PRL’s performance on test data compared to its
performance on the training set is dependent upon the
application. PRL’s performance is generally slightly lower
and noticeably lower with 64 byte lines when specweb’ s
data is changed. On tpcc, the performance of PRL
changed, sometimes better and sometimes worse.
However, the relative data-dependent performance
changes seem to be due to the changes in opportunity, as
seen by the performance of OPT, rather than a change in
tpcc’ s data. PRL’s performance is unchanged for both
hydro2d and su2cor.  

For some cache configurations PRL performs the same
as traditional LRU. Recall from Section 3.2 that a general
trend is that with longer set lines, the percentage of
temporal loads is much lower (except for su2cor) which
decreases the opportunities for PRL to make a decision
different from LRU (see Table 5). This combined with the

application TRT(%)=10 20 30 40 50 60 70 80 90

static dyn static dyn static dyn static dyn static dyn static dyn static dyn static dyn static dyn

lsize 32, assoc 8

specweb 7367 89.63 7118 87.82 6781 86.47 6255 79.46 5886 75.95 4839 70.57 3910 62.72 3149 39.90 2561 2.122

tpcc2 8165 75.33 7650 68.32 6963 61.23 6137 51.80 5450 41.96 4188 32.78 3144 18.42 2429 8.13 1889 2.55

su2cor 168 77.30 152 71.35 137 64.26 119 47.62 101 37.33 87 32.48 76 28.41 68 24.00 60 22.11

hydro2d 234 35.05 218 25.88 187 13.31 154 5.15 142 1.60 121 1.53 114 1.51 94 0.38 86 0.15

lsize 64, assoc 8

specweb 6066 86.70 5608 81.35 5031 77.24 4323 55.82 3865 48.37 2949 41.92 2342 24.34 1993 4.16 1678 1.42

tpcc2 7018 64.87 6359 53.83 5501 44.61 4701 37.31 4185 29.18 3259 21.20 2575 15.25 2028 7.38 1626 2.58

su2cor 139 72.21 117 51.63 93 32.23 83 24.06 63 7.46 46 1.92 39 0.62 33 0.47 27 0.07

hydro2d 232 25.90 184 5.24 168 1.71 152 0.55 121 0.23 94 0.14 86 0.11 68 0.06 64 0.04

lsize 128, assoc 8

specweb 5269 81.94 4665 62.15 4003 54.62 3373 48.64 3003 12.82 2282 9.57 1836 5.62 1588 3.34 1380 1.51

tpcc2 6016 53.47 5212 42.25 4444 33.21 3815 27.02 3416 22.30 2698 18.48 2226 13.84 1823 8.19 1457 3.04

su2cor 178 97.74 167 93.96 160 87.60 158 87.58 151 86.93 122 70.82 103 56.35 70 32.52 45 8.03

hydro2d 181 5.23 162 0.72 135 0.31 130 0.28 121 0.23 100 0.15 85 0.08 65 0.05 64 0.05

Table 3. Instructions converted to temporal instructions. This table shows the number of static loads (column static) and
percentage of dynamic loads (column dyn) that were converted to temporal loads. The percentage is the ratio of L2
temporal loads executed to total L2 loads executed. The profile set and line size parameters targeted a 256 KB cache with
8-way associativity. A locality window of stack depth 2 through 6 was used.

Figure 5. PRL with various TRT values. These graphs
show the L2 cache misses incurred by PRL as a
percentage of the LRU misses for various TRT values. The
results were obtained with three different line sizes (32,
64, and 128 B lines). The L2 cache is 8-way associative
and 256 KB. 
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specweb 60

tpcc 30

hydro 40

su2cor 30

Table 4. Chosen TRT values. 



reduced opportunity, because of the narrowed gap
between OPT and LRU, results in limited, if any, PRL
gains. Still, PRL is able to obtain moderate gains (4-6%)
on tpcc with longer 128 bytes cache lines. 

From our simulations we have demonstrated that PRL
can improve the L2 cache performance of some
applications. While the improvements are relatively
moderate reductions, these reductions are on applications
that have high L2 miss rates and significant miss
frequencies. Thus, the L2 cache improvements should
result in noticeable end-to-end improvements. However,
static classification can be ineffective in some cases,
exemplified by hydro2d and su2cor, where relatively few
instructions are responsible for the majority of L2
accesses. In the next section, we propose a hardware-
based alternative to PRL to address these limitations.

3.3 Hardware based approach 

The purely hardware based online algorithm, Online
Reference Locality (ORL), that we present now does not
statically classify an instruction; instead, the hardware sets
the temporal bit in the cache based upon the instruction’ s
previous reference history. A disadvantage of ORL is that
the hardware has limited reference history information
available. We expect some loss in performance, compared
with PRL, due to the limited history and lack of future
reference information that was approximated with
profiling. However, we also expect an increase in
performance due to dynamic instruction classification.

3.3.1 ORL evaluation

To evaluate ORL, we present the results of two sets of
experiments. In the first set, we assume an unbounded
locality table size (i.e., with one entry for each possible PC
value). Using an unlimited locality table allows us to
determine the extent to which ORL can improve
performance. In the subsequent experiments, we evaluate
ORL with practical locality table geometries.

3.3.2 Unbounded locality table

In Figure 7 we compare the performance of the ORL and
PRL strategies. On specweb, ORL was able to
consistently generate fewer misses than PRL. On tpcc, the
results were mixed; ORL’s performance with tpcc2 and
tpcc3 were slightly worse. However, on the more difficult
to improve tpcc4, ORL achieved fewer misses. ORL’s
performance on hydro2d and su2cor was similar to that
of PRL. Surprisingly, ORL was able to improve
performance with longer 128 byte lines where PRL was
generally not able to. From these experiments, we
conclude that the ORL strategy has the potential to obtain
performance similar to or better than that of PRL.   

Figure 6. PRL Performance with different application
input. These graphs show the performance of PRL when
different application data are used. PRL-train are the
cases where the profiling phase and subsequent PRL
simulation used the same application data. The
performance is measured as the number of L2 misses
generated relative to LRU. 
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application 32 B lines 64 B lines 128 B lines

specweb2 48.25 28.05 8.81

specweb3 45.98 26.57 8.24

specweb4 46.34 26.49 8.82

tpcc3a 57.17 40.54 30.71

tpcc3c 74.65 54.43 40.96

tpcc4a 19.97 15.75 11.72

tpcc4b 13.95 11.16 8.38

hydro2d-t 5.15 0.55 0.28

su2cor-t 49.93 23.08 72.10

Table 5. Instructions converted to temporal instructions
with different traces. This table shows the percentage of
dynamic L2 references that were treated as temporal
instructions. The static counts are not shown and are the
same as in Table 3. 



3.3.3 Fixed locality table
In this section, we investigate the performance of ORL
with practical locality table geometries, namely 8 K, 16 K
and 32 K entries (recall that an entry is a single bit). For all
applications, except specweb, the performance of ORL,
measured in relative L2 misses, with limited table sizes
was within 1% of the performance of ORL with
unbounded tables. For specweb (Figure 8), 32 K entries
were required in order to limit the increase of L2 misses to
2% with 32 B lines. Although the number of misses
increased with a fixed locality table, the total misses are
still lower than with PRL (see Figure 9). Generally, there
was not a significant increase in the number of L2 misses
with practical locality table geometries when compared
with an unlimited locality table. 

An entry in the locality table is small: a single bit and,
thus, a 32 K entry table requires a real estate of 4 KB. The
PCtag field in the data cache requires less than 2 bytes to
address the 32 K entry locality table. For a 256 KB, 8-way
set-associative cache, the PCtag costs would be 16 KB, 8
KB, and 4 KB for 32 B, 64 B, and 128 B L2 line sizes,

respectively. The estimated total cost of ORL would be 8-
20 KB for our targeted 256 KB L2 geometries. 

In summary, ORL performs as well, and noticeably
better in some cases, than PRL. It can adapt better to
dynamic changes and does not require a profiling phase or
changes to the ISA. On the other hand, it requires
additional hardware both in the L2 tag array and in the
form of an additional table as well as the constraint of
transmitting the PC value to the L2 cache on a L1 miss.

Table 6 show the IPC speedups obtained by ORL when
compared to LRU. The execution cycles were calculated
with a simple inorder, single-issue pipeline. The L2
latency is 10 cycles and the memory latency is 100 cycles.
Understandably, the IPC speedups are lower than the L2
miss rate reductions. Still, the speedups are noticeable on
the specweb application with all cache line sizes.  

3.3.4 Comparison with other cache models
We compared the ORL approach with two other cache
assist models. The first model follows a victim cache (VC)
strategy [Jouppi 90]. The second model follows the CNA
strategy which uses instruction-based classification for
data reuse [Rivers et al. 98]. For both models, we used a
256 KB primary cache and added a 16 KB, 32-way set-
associative assist cache (see Figure 10). The size of the
assist cache (data and tags) is comparable to the size (8-20

Figure 7. ORL performance. These graphs show the
performance of ORL. The number of L2 misses normalized
to LRU misses are shown both for ORL and PRL
strategies. The performance of ORL is with an unbounded
locality table. 
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Figure 8. Performance with a fixed locality table. These
graphs show the miss rate increases on specweb for ORL
with using a fixed bounded locality table compared with
an unbounded locality table. The number of locality table
entries were 8 K, 16 K, and 32 K. The increase in L2
misses, relative to an unbounded locality table, are shown.
Each line is the performance with a specific L2 line size. A
16 byte PC granularity was used to index into the locality
table. 
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KB) of the additional structures required by ORL. Note
that the CNA strategy also requires a structure similar to
our locality table, called a detection unit (DU) in their
paper. The CNA’s DU consists of 4 K entries with 4-way
set-associativity.  

In Figure 11 we show the performance for the three
cache models, ORL, VC, and CNA. Our ORL approach
tends to perform similarly or better than VC, except with
su2cor. On su2cor, VC is effective, where ORL and
CNA are not. CNA, on occasion, is able to noticeably
outperform the other models (specweb with long cache
lines and tpcc3b). However, it’ s behavior is more erratic
and can lead to noticeable degradation (e.g., specweb4
with short cache lines). With the specweb and tpcc

applications, despite using less amount of cache, ORL
provides the best overall performance and has the
advantage of a single cache structure. 

4 Conclusions 

The current trends of decreasing memory latency not
keeping pace with increases in processor speed suggests
that eliminating cache misses at the cache-memory
interface will continue to be important for speeding up
large applications. With caches becoming more set-
associative, strategies that eliminate conflict misses will
exhibit diminishing returns in performance with future
cache geometries. Instead, strategies that target making
more intelligent replacement decisions will continue to
show performance improvement. 

Consistent with this trend, we demonstrate the
effectiveness of a new replacement algorithm for large set-
associative L2 caches that is a modification of the standard
LRU replacement algorithm. The modifications take into
account the potential temporal locality of lines residing in
the L2 cache by favoring the victimization of non-
temporal lines. We have investigated two possible
strategies for detecting temporal locality. 

The first strategy is a profile-based approach (PRL)
that statically determines temporal and non-temporal
instructions. We show that PRL can yield up to 12% fewer
misses than LRU. With compiler analysis or programmer
hints, it should be possible to further increase the
effectiveness of this static classification approach.

The second strategy is a purely hardware-based online

Figure 9. Comparing ORL with a fixed locality table and
PRL. These graphs show the L2 miss rate (normalized to
LRU) on specweb for the fixed and unlimited ORL
strategy compared with PRL. The locality table for the
fixed ORL approach has 32 K entries with a 16 byte
granularity.

application 32 B lines 64 B lines 128 B lines

specweb 1.1042 1.1233 1.1080

specweb2 1.1091 1.0689 1.0488

specweb3 1.1042 1.0666 1.0451

specweb4 1.1073 1.0624 1.0397

tpcc2 1.0197 1.0123 1.0075

tpcc3a 1.0218 1.0128 1.0078

tpcc3c 1.0369 1.0224 1.0140

tpcc4a 1.0110 1.0085 1.0088

tpcc4b 1.0062 1.0063 1.0069

su2cor 1.0166 1.0108 1.0007

su2cor-t 1.0216 1.0130 1.0024

Table 6. IPC Speedups. This table shows the IPC
speedups obtained by ORL over LRU. 
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Figure 10. Other cache models. This figure illustrates the
organization of the other cache models in our
comparisons. The victim cache model uses the assist
cache to cache victims from L2. The CNA model
selectively allocates lines to either the primary or higher
set-associative assist cache. 
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approach (ORL). By dynamically classifying the locality
behavior of instructions at run-time, ORL has similar
performance as PRL and is even capable of achieving up
to 20% fewer misses than LRU. We show that the
hardware requirements of ORL are not large and can be
implemented with the equivalent space of a relatively
small cache. 

We are planning research using the temporal line
concept to further improve the behavior of L2 caches. In
this paper, we have looked at references to each set in
isolation and we have not attempted to detect locality in
adjacent sets. Doing so and coupling replacement
algorithms with prefetching might yield further
improvements. The fact that our current on-line scheme
requires the value of the PC that generated the L1 miss to
be transmitted to the L2 along with the missing L1 line
address should be advantageous in this respect.
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