
From the Proceedings of the 2000 International Conference on Supercomputing, Santa Fe, N.M., May, 2000.

Characterizing Processor Architectures
for Programmable Network Interfaces

Patrick Crowley, Marc E. Fiuczynski, Jean-Loup Baer, and Brian N. Bershad*

 Department of Computer Science & Engineering
University of Washington

Seattle, WA 98195

{pcrowley,mef,baer,bershad}@cs.washington.edu

Abstract
The rapid advancements of networking technology have boosted
potential bandwidth to the point that the cabling is no longer the
bottleneck. Rather, the bottlenecks lie at the crossing points, the
nodes of the network, where data traffic is intercepted or
forwarded. As a result, there has been tremendous interest in
speeding those nodes, making the equipment run faster by means
of specialized chips to handle data trafficking. The Network
Processor is the blanket name thrown over such chips in their
varied forms. To date, no performance data exist to aid in the
decision of what processor architecture to use in next generation
network processor. Our goal is to remedy this situation. In this
study, we characterize both the application workloads that
network processors need to support as well as emerging
applications that we anticipate may be supported in the future.
Then, we consider the performance of three sample benchmarks
drawn from these workloads on several state-of-the-art processor
architectures, including: an aggressive, out-of-order, speculative
super-scalar processor, a fine-grained multithreaded processor, a
single chip multiprocessor, and a simultaneous multithreaded
processor (SMT). The network interface environment is simulated
in detail, and our results indicate that SMT is the architecture best
suited to this environment.

1. Introduction
As networks have evolved and expanded technologically, their
role and importance have also increased considerably. The role of
the network interface (NI), which allows a computer system to
exchange messages with other systems connected to the network,
has grown accordingly. To meet the functionality and
performance requirements of present and emerging network
applications, the current trend is to use programmable
microprocessors on network interfaces (PNI) that can be
customized with domain-specific software. This trend has created
the so-called network processor market niche that many vendors,
including Intel, IBM, and numerous start-ups, are eager to fill
with chip architectures designed specifically to match the network
application workload of PNIs. Although the architectural design

of the various network processors often differs significantly, all
are optimized to match the inherent parallelism present in network
workloads. To date, though, there exists little performance data
that allow fair comparisons between the various options. Our
goal, in this paper, is to remedy this situation.

To evaluate different network processor architectures, we consider
the following three questions: what workloads must the processor
architecture support, what level of performance is required, and
what type of architecture provides the required level of
performance. In this study, we characterize both the application
workloads that network processors need to support as well as
emerging applications that we anticipate may be supported in the
future. Then, we consider the performance of three sample
benchmarks drawn from these workloads on several state-of-the-
art processor architectures, including: an aggressive, out-of-order,
speculative super-scalar processor (SS), a fine-grained
multithreaded processor (FGMT), a single chip multiprocessor
(CMP) [11], and a simultaneous multithreaded processor (SMT)

[17]. After considering the benchmarks as individual standalone
workloads, we then investigate the performance of each of these
architectures when the applications run under an operating system
designed specifically for managing programmable network
interfaces [6]. In all of these performance evaluations, the key
metric is the number of messages per second that a given
architecture can support for a given workload, which translates
directly into the network speeds that are enabled by the different
architectures.

All of our performance evaluation is done within the context of a
simulator that is cycle accurate with respect to instruction issue
and execution, cache accesses, memory bandwidth and latency, as
well as to memory contention between the processor and DMA
transfers caused by network send and receive operations. As a
result, we are able to accurately simulate and measure the
performance of the aforementioned processor architectures in the
context of a programmable network interface.

The contributions of this work are as follows. First, we identify a
number of applications that can be used as components of a
workload suite to assess the performance of PNIs. Second, we
show the maximal performance attainable on these workloads
(i.e., the maximum sustainable link-rate) for four high-
performance processor architectures. As expected, architectures
designed for a high-degree of thread-level parallelism perform
best for these workloads. Lastly, we characterize the overall

* This work was supported in part by NSF Grant MIP-9700970, in

part by DARPA Grant F30602-97-2, and by a gift from Intel
Corporation.

2 of 12

performance of these processor architectures in the context of a
programmable network interface.

The remainder of the paper is organized as follows. The next
section presents background and other work related to
programmable network interfaces. PNI workloads, including the
benchmarks used in this study, and our experimental methodology
are discussed in Section 3. Section 4 describes the high
performance processor architectures evaluated in this paper.
Experiment descriptions and results are given in Section 5.
Finally, Section 6 concludes and proposes future work.

2. Background & Motivation
The rapid advancements of networking technology have boosted
potential bandwidth to the point that the cabling is no longer the
bottleneck. Rather, the bottlenecks lie at the crossing points, the
nodes of the network, where data traffic is intercepted or
forwarded. As a result, there has been tremendous interest in
speeding those nodes, making the equipment run faster by means
of specialized chips to handle data trafficking. The Network
Processor is the blanket name thrown over such chips in their
varied forms.

Network processors are used both in the “middle” of the network,
at nodes composing the backbone of the Internet, as well as at the
“edges” of the network in enterprise class routers, switches, and
host network interfaces. The conventional application workload
of such communication devices used to consist of simple packet
forwarding and filtering algorithms based on the addresses found
in layer-2 or layer-3 protocol packets. Today, however, the role
of such devices is changing from simple packet forwarders to
general-purpose computing/communications systems processing
packets at layer-3 and above [13]. The application workloads
used today include traffic shaping, network firewalls, network
address and protocol translations (NAT), and high-level data
transcoding (e.g., to convert a data stream going from a high-
speed link to a low-speed link). Additionally, with the
tremendous growth and popularity of the Web, many network
equipment manufacturers are touting devices that can
transparently load balance HTTP client requests over a set of
WWW servers to increase service availability [1].

These emerging applications require significant processing
capacity per network connection. Further, the processing
requirements within these domains are unique in that, generally
speaking, performance must be sustained at a level equivalent to
the speed of the network itself. Unfortunately, while the speed of
high-performance processors is increasing every year, the rate of
increase is not as fast as that of the data rate in the middle of the
network; hence the need to lookg at enhanced processor
architectures.

The basic observation is that workloads for network processors
have an inherent characteristic: network packets or messages,
which are the basic unit of work for these applications, are often
independent and may be processed concurrently. It is this packet-
level parallelism that can be exploited at the architectural level to
achieve the sustained high-performance demanded by fast
networks. Thus, it is no big surprise that network processor parts,
such as Intel's IXP1200 [10], IBM's Rainier [9], and those from
various startup companies, use parallel architectures, such as
multiple processor cores on a single chip or fine-grain
multithreaded processors, to match this packet-level parallelism.

Unfortunately, there exists little data that identifies which
processor architecture is best suited for the application workload
used by the next generation communication devices. This lack of
data and the uniqueness of the workloads motivated us to conduct
this study.

3. Workloads & Methodology
This section identifies the application workloads used by network
nodes, describes the evaluation methodology used to compare the
performance that each processor architecture yields for these
workloads, and details the execution environment that these
applications are run within, which is markedly different from that
of traditional operating system environments.

3.1 Workloads
There are currently three main application domains for
programmable NIs, which can be roughly categorized into Server
NI software, Web Switching software [1], and Active Networking
software [15, 18]. The first two are product niches in their own
right and are driving the development of programmable NIs. The
latter is a research area that is pursuing the ability to dynamically
deploy innovative network services rapidly and securely. With
computation becoming less expensive, other NI resident
applications are emerging as well.

In the context of these application domains we have identified a
set of application-specific packet processing (ASPP) routines that
are representative of workloads in the context of a PNI execution
environment. Table 1 briefly describes present and emerging
ASPPs in ascending order of per packet processing requirements.

The applications in Table 1 can be divided into two categories
according to the amount of the packet that is processed. The first
six applications process a limited amount of data within the
protocol headers of the packet, and their processing requirements
are independent of the packet’s overall size. However, these
applications tend to maintain state tables in complex data
structures that need to be searched or accessed on a per packet
basis. In contrast, the last three applications listed in Table 1
compute over all of the data contained in a packet, and therefore
require a significant amount of processing capacity to process
packets at the network link rate. As mentioned earlier, in these
applications the processing of one packet is largely, and usually
entirely, independent of the processing of any other packet.
Consequently, packets may be processed in parallel.

We have selected three benchmarks from this set of workloads,
namely, IP forward*, hereafter denoted ip4, and two components
of IP security, MD5 and 3DES. The first benchmark, ip4,
performs address-based packet lookups in a tree data structure and
is a component of conventional layer-3 switches and routers. In
test runs of ip4 we perform lookups into a routing table of 1000
entries, a size representative of a large corporate (or campus)
network. MD5 is a message digest application used to uniquely
identify messages. MD5 computes a unique signature over the
data in each packet and is used for authentication. Finally, 3DES
is an encryption routine that is used here to encrypt the full
payload of a packet.

* We used algorithms for forwarding table compression and fast

IP lookup described in [12].

3 of 12

Dynamic instruction characterization for these benchmarks is
presented in Table 2. An examination of the instruction and data
cache performance for ip4, MD5 and 3DES indicates that these
applications are compute bound as both the instruction and data
working sets fit within L1 caches of size 32K and greater (miss
rates generally less than 1%). While none of our applications tax
the memory hierarchy in isolation, it is likely that cache
performance and organization will be important when more than
one program is running concurrently. As noted later, we will
consider this fact as we evaluate the simultaneous execution of
these workloads in future work.

3.2 Evaluation Methodology
As previously noted, our approach is to use the benchmarks in
Table 2 to evaluate and compare the performance achieved by a
number of different architectures for programmable network
interfaces. Figure 1 depicts the basic components of a PNI. To
drive applications during experiments, our simulator uses an IP
packet trace collected from our local network to provide realistic
network packet delivery to the PNI. Packets are delivered to the
NI via either the host controller (out-bound packets) or the
network controller (in-bound packets) and, upon message arrival,
the processor is signaled. As described in the next section, the
network processor then stores (into buffer memory) and processes
the packet. At this point, packets may be redirected, modified,
dropped or measured in some way dependent upon the target
application. Since the emphasis of this study is to consider the
programmability and performance of these PNI’s, we focus on the
network processor and its interaction with buffer memory.

To do this, we have assembled a simulation environment capable
of simulating: several processor organizations (based on the SMT

simulator [17], itself based on the Alpha 21x64 ISA), a full
memory hierarchy including caches and main (buffer) memory,
and DMA/packet transfers between main memory and a physical
network link. With our simulation infrastructure, we are able to
measure overall PNI system performance, in terms of packets per
second, as well as many other lower level performance metrics
including instructions-per-cycle (IPC), cache miss rates,
prediction rates, and contention for resources such as functional
units (FUs) and busses. Our simulation infrastructure provides a
cycle accurate simulation of a modern high-performance, out-of-
order, superscalar microprocessor core and memory system. By
varying the microprocessor and memory system configurations,
we can investigate a number of architectural alternatives.

3.3 Execution Environment
The execution environment for a PNI can be characterized as
having a basic store-process-forward structure. The store and
forward stages simply transfer message data into and out of the
NI’s buffer memory. The process stage invokes application-
specific handlers based on some matching criteria applied to the
message. Figure 2 illustrates this structure as a pipeline of stages.

As messages arrive on the input channel, as depicted in Figure 2,
they are first stored in the NI’s buffer memory. Messages are
then classified and dispatched to some application-specific
handler function to be processed. Finally, the messages may then
be forwarded on to an output channel. To achieve high
throughput and low latency it is important that messages be
pipelined through these stages. Thus, the goal is to sustain three
forms of concurrent operation: message reception from the input
channel, message processing on the NI, and message transmission
to the output channel. It is the task of the system software to

Applications Description
Packet Classification/Filtering Claim/forward/drop decisions, statistics gathering, and firewalling.
IP Packet Forwarding Forward IP packets based on routing information.
Network Address Translation
(NAT)

Translate between globally routable and private IP packets. Useful for IP
masquerading, virtual web server, etc.

Flow management Traffic shaping within the network to reduce congestion and enforce
bandwidth allocation.

TCP/IP Offload TCP/IP processing from Internet/Web servers to the network
interface.

Web Switching1 Web load balancing and proxy cache monitoring.
Virtual Private Network
IP Security (IPSec)

Encryption (3DES) and Authentication (MD5)

Data Transcoding2 Converting a multimedia data stream from one format to another within
the network.

Duplicate Data Suppression3 Reduce superfluous duplicate data transmission over high cost links.

Table 1. Representative application specific packet processing routines. 1 [1], 2 [7], 3 [14]

Application Insts Executed
per Message

Loads/Stores
(%)

Ctrl Flow
(%)

Other
(%)

IP forward ~200 25.4 12.7 61.9
MD5 ~2000 10.7 2.8 86.5
3DES ~40000 17.8 1.2 81.0

Table 2. Benchmark characteristics.

4 of 12

schedule these concurrent operations such that each pipeline stage
is occupied. Varying degrees of programmability may be used to
implement each of these stages. Much work has been done to
design packet classifiers in both hardware [2, 8] and software [3,
5, 16]. For this study, we assume that all packet classification is
performed in dedicated hardware that is ideal in the sense that it is
never the performance bottleneck in the system. The experiments
discussed in this paper consider both hardware and software
implementations of the packet storage stage. These
implementations are generally applicable to the forward stage as
well, although our benchmarks do not exercise this stage. That is,
in our experiments, the PNI always acts as a consumer, or
observer, of packets. From our perspective, the creation or
forwarding of packets will only increase demand on the busses
connecting processor, memory, and controllers. We will consider
these effects in our future work.

We have designed and implemented an execution environment for
a PNI with the above-mentioned properties for both uniprocessor
and multiprocessor configurations. Fiuczynski et al. [6] describes
this execution environment in more detail.

4. Processor Architectures

In this section, we briefly describe the four high-performance
processor architectures that we consider in this study. Unless
specified otherwise, all processors may be assumed to have
instruction latencies as depicted in Table 3. Their instruction set
is an extension of the Alpha ISA with support for byte and 16-bit
word load/store operations. The functional units in each processor
are capable of executing each of the instruction types found in
Table 3. Table 4 details the general characteristics of the four
processor architectures most relevant for this study. As indicated,
some of these parameters are varied in the following experiments.
Our intention is to make fair comparisons between architectures
possessing roughly equal resources. Therefore, to keep resources
approximately equal as we scale, we provision each architecture
with an equivalent amount of the primary resource, namely, the
total number of functional units.

4.1 Processor Descriptions
Superscalar (SS). The SS out-of-order processors we simulate in
this study have a deep pipeline (7 stages) and use scoreboarding
and register renaming to resolve dynamic dependencies. The
maximum number of instructions that can be issued each cycle
(issue width) is equal to n, the number of functional units, which
is a parameter varied in our experiments.

Host
Controller

Network
Controller

Buffer
Memory

Network
Processor

Host Internal NI Components Net

Figure 1. Generic Programmable Network Interface Architecture

handler 1
handler 2

handler n

output
channel

input
channel

packet
classifier

Filter
manager

Applications

Message-driven
CPU scheduling

Message Queues

Store Stage Forward StageProcessing Stage

Figure 2. The Store-Process-Forward stages of messages flowing through a programmable NI.

Instruction type Latency
ALU 1
Multiply 8 & 16
Divide 16
Branch 2
Load 1
Store 1
Synchronization 4

Table 3. Instruction latencies.

5 of 12

Fine-Grain Multithreaded (FGMT). The multithreading
support extends the core out-of-order, superscalar microprocessor
by adding support for multiple hardware thread contexts. In an
FGMT architecture, instructions may be fetched and issued from a
different thread of execution each cycle. The FGMT architecture
attempts to find and exploit all available ILP within a thread of
execution, but can also mitigate the effects of a stalled thread by
quickly switching to another thread. In this way, ideally, overall
system throughput is increased. The architecture simulated here
uses a round-robin thread fetch and issue policy among runnable
threads (i.e., those threads in a valid state and not blocked on a
synchronization event).

Chip-Multiprocessor (CMP). A CMP partitions chip resources
rigidly in the form of multiple processors [11]. As an example, a
4 processor CMP has 4 separate execution pipelines, 4 separate
register files, 4 separate fetch units, etc. CMP has the benefit of
permitting multiple threads to execute completely in parallel.
However, CMP has the drawback of restricting the amount of
total chip resources a given thread may utilize to those resources
found within its local processor. In the experiments described in
this study, each processor will have only one functional unit, and,
hence, an issue width of one (therefore, the CMP will exploit no
ILP). Each processor has a private L1 (both data and instruction),
while a single L2 is shared amongst all processors. These caches
are as described in Table 4. The L1 caches are kept coherent
using an invalidation protocol similar to the one described in
[11].

Simultaneous Multithreaded (SMT). An SMT architecture
[17] has hardware support for multiple thread contexts and
extends instruction fetch and issue logic to allow instructions to be
fetched and issued from multiple threads each cycle. As a result,
overall instruction throughput can be increased according to the
amount of ILP available within each thread and the amount of
thread-level parallelism (TLP) available between threads. The
SMT architectures we simulate in this study fetch eight
instructions each cycle from a maximum of two threads.

5. Experimental Results
The experiments in this study consider the performance of each
architecture while executing the benchmarks both with and
without an operating system. The following subsections describe
and discuss our three sets of experiments: standalone application
performance, standalone operating system overhead, and OS-
governed application performance.

5.1 Single Application Performance
Our first set of experiments considers the performance of each
benchmark in isolation on each type of processor. Furthermore,
we initially operate under the assumption that our network
interface possesses "ideal" hardware for packet handling and
delivery. This means that the processor will not be concerned
with handling DMA requests for moving packets into and out of
main (buffer) memory; this task is managed in hardware. Instead,
the processor is provided with a set of buffers in memory, which
are filled with packets that require application specific processing.

Property Superscalar
n-way

FGMT
n-way
m thread contexts

CMP
p processors,
each 1-way

SMT
n-way
m thread contexts

of CPUS 1 1 p 1
Total issue width n n p n
Total fetch width n n p n
of architectural registers 32 32 32*p 32
of physical registers 100 100*m 32*p 100
of integer FUs min 1/max 8 min 1/max 8 p min 1/max 8
BTB entries 256 256 256 256
Return stack size 12 12 12*p 12
Instruction queue size 32 32 8*p 32
I cache (size/assoc/banks) 32K/2/8 32K/2/8 32K/2/8 32K/2/8
D cache (size/assoc/banks) 32K/2/8 32K/2/8 32K/2/8 32K/2/8
L1 hit time (cycles) 1 1 1 1
Shared L2 cache
(size/assoc/banks)

512K/1/1 512K/1/1 512K/1/1 512K/1/1

L2 hit time (cycles) 10 10 10 10
Memory latency (cycles) 68 68 68 68
Thread fetch width 1 1 p 2
Cache line Size (bytes) 64 64 64 64
L1-L2 bus width (bytes) 32 32 32 32
Memory bus width (bytes) 16 16 16 16

Table 4. Architectural details. Cache write policies: L1 write-through, L2 write-back, no write-allocate.

6 of 12

The processor fully commits its resources to processing those
packets.

5.1.1 Dynamic discovery of ILP: aggressive
superscalar
We first consider the performance of the aggressive superscalar
processor. In this experiment, as in the others, we scale a number
of architectural parameters, including clock rate and number of
functional units (i.e., issue width). We scale issue width (and
functional units) to show the limits of available ILP within a
single thread of execution for these workloads. The overall
system performance, expressed in packets processed per second,
achieved by this architecture for each of our benchmarks is shown
in Figure 3.

There are a number of observations to be made. First,
performance for all benchmarks scales reliably with clock rate, as
we expect to find with compute bound workloads. Secondly, we
note that these benchmarks exhibit differing degrees of ILP, as
evidenced by the fact that ip4 benefits from the addition of
functional units up to the sixth, while MD5 and 3DES peak at
around two and three functional units, respectively. Indeed, the
aggressive SS achieved, with a maximum issue width of eight, an
IPC of 2.79, 1.29, and 2.72 for ip4, MD5, and 3DES, respectively.
Dramatically increasing other processor resources such as
instruction queue length and renaming registers did nothing to
improve performance. Hence, we may conclude that these ILP
limits are properties of the workloads themselves. Given an
average packet size of 128 bytes, the peak throughput of the SS
architecture at 500 Mhz corresponds to network rates of 12 Gbps,
330 Mbps, and 32 Mbps for ip4, MD5 and 3DES, respectively.

These results demonstrate, and later experiments will confirm,
that discovering ILP, alone, within a single thread of execution
does not hold much promise towards achieving scalable, high
performance.

5.1.2 Tolerating blocked threads: FGMT
We next consider the performance of the FGMT architecture
while executing these benchmarks. An important distinction exists
between this experiment and the previous one. With FGMT (and
likewise for SMT and CMP), we use multithreaded versions of
our benchmarks. In the SS case, the application was organized as
a single thread of execution since the use of software-based
threads is a detriment to performance for compute bound
workloads such as ours. Our multithreaded benchmarks are
symmetric in the sense that each thread executes the same code.
Figure 4 graphs the performance of the FGMT architecture on
each of our benchmarks. Note that in this figure, both issue width
and number of thread contexts are scaled along the x-axis. We are
scaling issue width just as we did in the SS case, and we are in
addition adding thread contexts, i.e., m = n in Table 4.

We see only a modest performance improvement over SS on
MD5, while performance is nearly unchanged for ip4 and 3DES.
Since there is sufficient ILP in ip4 and 3DES there is no need to
hide the sorts of latencies that FGMT can help mitigate. Fine-
grained thread switching was able to tolerate some of this type of
delay with MD5, hence the slightly improved performance, but it
did nothing to help in finding greater parallelism since at each
cycle only one thread may issue. Hence, in the absence of long
latency operations, performance for FGMT is limited by the ILP
within a single thread and, therefore, essentially equivalent to SS
performance.

ip4 on SS

0.0E+00

2.0E+06

4.0E+06

6.0E+06

8.0E+06

1.0E+07

1.2E+07

1.4E+07

1 2 3 4 5 6 7 8

Issue Width/Number of Functional Units

ip
 p

ac
ke

ts
 p

er
 s

ec
o

n
d

SS@100MHz

SS@200MHz

SS@300MHz

SS@400MHz

SS@500MHz

MD5 on SS

0.0E+00

5.0E+04

1.0E+05

1.5E+05

2.0E+05

2.5E+05

3.0E+05

3.5E+05

4.0E+05

1 2 3 4 5 6 7 8

Issue Width/Number of Functional Units

ip
 p

ac
ke

ts
 p

er
 s

ec
o

n
d

SS@100MHz

SS@200MHz

SS@300MHz

SS@400MHz

SS@500MHz

3DES on SS

0.0E+00

5.0E+03

1.0E+04

1.5E+04

2.0E+04

2.5E+04

3.0E+04

3.5E+04

1 2 3 4 5 6 7 8

Issue Width/Number of Functional Units

ip
 p

ac
ke

ts
 p

er
 s

ec
o

n
d

SS@100MHz

SS@200MHz

SS@300MHz

SS@400MHz

SS@500MHz

Figure 3. IP packet throughput achieved with each benchmark on a SS processor.

7 of 12

ip4 on FGMT

0.0E+00

2.0E+06

4.0E+06

6.0E+06

8.0E+06

1.0E+07

1.2E+07

1.4E+07

1 2 3 4 5 6 7 8

Number of Thread Contexts

ip
 p

ac
ke

ts
 p

er
 s

ec
o

n
d

FGMT@100MHz

FGMT@200MHz

FGMT@300MHz

FGMT@400MHz

FGMT@500MHz

MD5 on FGMT

0.0E+00

5.0E+04

1.0E+05

1.5E+05

2.0E+05

2.5E+05

3.0E+05

3.5E+05

4.0E+05

4.5E+05

1 2 3 4 5 6 7 8

Number of Thread Contexts

ip
 p

ac
ke

ts
 p

er
 s

ec
o

n
d

FGMT@100MHz

FGMT@200MHz

FGMT@300MHz

FGMT@400MHz

FGMT@500MHz

3DES on FGMT

0.0E+00

5.0E+03

1.0E+04

1.5E+04

2.0E+04

2.5E+04

3.0E+04

3.5E+04

1 2 3 4 5 6 7 8

Number of Thread Contexts

ip
 p

ac
ke

ts
 p

er
 s

ec
o

n
d

FGMT@100MHz

FGMT@200MHz

FGMT@300MHz

FGMT@400MHz

FGMT@500MHz

Figure 4. IP packet throughput achieved with each benchmark on a FGMT processor.

ip4 on CMP

0.0E+00

5.0E+06

1.0E+07

1.5E+07

2.0E+07

2.5E+07

1 2 3 4 5 6 7 8

Number of Processors

ip
 p

ac
ke

ts
 p

er
 s

ec
o

n
d

CMP@100MHz

CMP@200MHz

CMP@300MHz

CMP@400MHz

CMP@500MHz

MD5 on CMP

0.0E+00

2.0E+05

4.0E+05

6.0E+05

8.0E+05

1.0E+06

1.2E+06

1.4E+06

1.6E+06

1.8E+06

1 2 3 4 5 6 7 8

Number of Processors

ip
 p

ac
ke

ts
 p

er
 s

ec
o

n
d

CMP@100MHz

CMP@200MHz

CMP@300MHz

CMP@400MHz

CMP@500MHz

3DES on CMP

0.0E+00

1.0E+04

2.0E+04

3.0E+04

4.0E+04

5.0E+04

6.0E+04

7.0E+04

8.0E+04

9.0E+04

1.0E+05

1 2 3 4 5 6 7 8

Number of Processors

ip
 p

ac
ke

ts
 p

er
 s

ec
o

n
d

CMP@100MHz

CMP@200MHz

CMP@300MHz

CMP@400MHz

CMP@500MHz

Figure 5. IP packet throughput achieved with each benchmark on a CMP.

8 of 12

5.1.3 Simple replication: CMP
An alternative approach for increasing overall IPC is to replicate
the processor core on the chip, as opposed to devoting hardware
resources to thread support. In our experiments regarding CMP,
the processor core that we replicate has an issue width of one (a
single FU) and, in the graphs, we scale the number of processor
cores along the x-axis. It is important to note that we are not
scaling the issue width of each processor core individually, but,
rather, we are increasing the total chip issue width by scaling the
number of single-issue processor cores. Not surprisingly, CMP
performance scales linearly with the number of processors as
shown in Figure 5. Despite the fact that each processor core is
somewhat under-provisioned (that is, there is more ILP available
in each thread of execution than the single issue core can
accommodate), by replicating cores, the CMP achieves linear
speedups by issuing from multiple threads simultaneously. With
8 processors, CMP achieves throughput between 2 and 4 times
greater than SS.

5.1.4 ILP & Thread-level Parallelism: SMT
Finally, we consider SMT. By fetching and issuing from multiple
threads each cycle, SMT combines the best features of the
previous architectures, namely ILP, with thread-level parallelism.
Again, in this experiment, we scale both issue width and number
of hardware thread contexts. As the graphs in Figure 6 indicate,
the performance of each of our benchmarks scales linearly with
the number of thread contexts and issue slots. What neither the
SS nor the FGMT architecture could find within a single thread of
execution, SMT is able to find among all executing threads. Both

CMP and SMT, that reach the same level of throughput, see linear
performance increases for the same reason: they are each capable
of issuing a maximum number of instructions each cycle by
finding available work in all threads. It is the same characteristic
that enables both, but each architecture has a different mechanism
for issuing from multiple threads. Neither of the other two
architectures can issue from more than one thread, and, hence,
their performance is not as scalable in this manner. However, we
can see that performance appears to saturate at the high-rates
achieved with ip4. The SMT architecture is still being fine-tuned,
and we speculate that this saturation represents contention for a
shared hardware resource that has not been scaled in these
experiments.

5.1.5 Comparison
These results show that SS and FGMT have basically the same
performance for these workloads, and, likewise, CMP and SMT
have roughly equivalent performance that is 2 to 4 times greater.
For ease of comparison, Figure 7 depicts the results for all
architectures clocked at 500 MHz. CMP and SMT, at clock rates
of 500 Mhz, are able to sustain peak message rates of roughly 20
million, 1. 5 million, and 90 thousand IP packets per second on
ip4, MD5 and 3DES, respectively. Given an average packet size
of around 128 bytes, these rates correspond to network speeds on
the order of 10, 1, and 0.1 Gbps. While these results clearly
indicate that SMT and CMP are architectures better suited to
exposing the parallelism inherent in these workloads, one could
argue effectively that both the SS processor and the FGMT
processor will more easily scale by clock rate, as they are less
complex than SMT. This is a valid point. However, no such

ip4 on SMT

0.0E+00

5.0E+06

1.0E+07

1.5E+07

2.0E+07

2.5E+07

1 2 3 4 5 6 7 8

Number of Thread Contexts

ip
 p

ac
ke

ts
 p

er
 s

ec
o

n
d

SMT@100MHz

SMT@200MHz

SMT@300MHz

SMT@400MHz

SMT@500MHz

MD5 on SMT

0.0E+00

2.0E+05

4.0E+05

6.0E+05

8.0E+05

1.0E+06

1.2E+06

1.4E+06

1.6E+06

1.8E+06

1 2 3 4 5 6 7 8

Number of Thread Contexts

ip
 p

ac
ke

ts
 p

er
 s

ec
o

n
d

SMT@100MHz

SMT@200MHz

SMT@300MHz

SMT@400MHz

SMT@500MHz

3DES on SMT

0.0E+00

1.0E+04

2.0E+04

3.0E+04

4.0E+04

5.0E+04

6.0E+04

7.0E+04

8.0E+04

9.0E+04

1.0E+05

1 2 3 4 5 6 7 8

Number of Thread Contexts

ip
 p

ac
ke

ts
 p

er
 s

ec
o

n
d

SMT@100MHz

SMT@200MHz

SMT@300MHz

SMT@400MHz

SMT@500MHz

Figure 6. IP packet throughput achieved with each benchmark on an SMT processor.

9 of 12

argument may be made against CMP. In the next section of
results, we consider how the landscape changes as we transition
from ideal packet handling hardware to OS-based packet handling
in software.

5.2 Operating System Overhead
The results we have presented to this point executed in a simple
test harness and assumed the presence of zero overhead operating
system software and networking hardware that managed packet
handling, classification, and delivery to the application processes.
This section considers overall performance of these processor
architectures in the context of a programmable network interface
that is similar to the high-speed Myrinet [4] managed by an
operating system, called SPINE, designed to enable application
specific software to process messages as they stream through the
system [6].

Our simulator emulates the register interface of the Myrinet
packet interface and its DMA controller. As a result, the same
SPINE operating system device driver code can be used either
with the simulator or the actual Myrinet network interface
hardware. The benefit of using the simulator is that we can study
different processor architectures as well as faster network speeds.
That said, we have found that the simple DMA controller used in
the Myrinet incurs a fair amount of overhead when managed in
software, which will become apparent in the following
performance evaluation. We are considering a more sophisticated
DMA controller model for use in future work to reduce the
amount of software overhead incurred by the operating system.

The SPINE operating system executes in the context of a single
thread. On a uniprocessor all operating system and application
processing is done within that single thread context. For the
multiprocessor configurations, one processor is devoted to the
operating system for low latency message handling to avoid the
overhead of interrupts, while the remaining processors are
devoted to application processing. It is transparent to SPINE
whether the multiprocessor configuration uses a FGMT, CMP, or
SMT processor. A work-list based parallel computation model is
used to schedule work (i.e., unprocessed packets) across the
“ application processors.” Each of these application processors
runs a single worker thread that waits for available work items,
consumes it from the work-list, processes it, and then waits for the
next work item, and so on.

The remainder of this section describes our performance results.

5.2.1 SPINE/OS Performance
First, we determine the maximum number of packets per second
that SPINE is able to deliver—the basic packet delivery rate. To
do this, we execute just the operating system on the processor.
That is, SPINE consumes packets from the physical network
controller as quickly as possible, without dispatching any worker
threads for application specific processing. The maximum packet
rate SPINE is able to sustain in this situation represents the upper
bound on the performance of our system since under no
circumstances will worker threads be able to consume more
packets than SPINE is able to produce. The results of this
experiment, for processors clocked at 500Mhz, are shown in
Figure 8.

ip4 with Clock Rate of 500Mhz

0.0E+00

5.0E+06

1.0E+07

1.5E+07

2.0E+07

2.5E+07

1 2 3 4 5 6 7 8

No. of FUs, Contexts, and Processors

ip
 p

ac
ke

ts
 p

er
 s

ec
o

n
d

SS@500MHz

FGMT@500MHz

CMP@500MHz

SMT@500MHz

1 Gbps

10 Gbps

MD5 with Clock Rate of 500Mhz

0.0E+00

2.0E+05

4.0E+05

6.0E+05

8.0E+05

1.0E+06

1.2E+06

1.4E+06

1.6E+06

1.8E+06

1 2 3 4 5 6 7 8

No. of FUs, Contexts, and Processors

ip
 p

ac
ke

ts
 p

er
 s

ec
o

n
d

SS@500MHz

FGMT@500MHz

CMP@500MHz

SMT@500MHz

1 Gbps

0.1 Gbps

3DES with Clock Rate of 500Mhz

0.0E+00

2.0E+04

4.0E+04

6.0E+04

8.0E+04

1.0E+05

1.2E+05

1.4E+05

1 2 3 4 5 6 7 8

No. of FUs, Contexts, and Processors

ip
 p

ac
ke

ts
 p

er
 s

ec
o

n
d

SS@500MHz

FGMT@500MHz

CMP@500MHz

SMT@500MHz

0.1 Gbps

0.01 Gbps

Figure 7. Performance results for all architectures, clocked at 500 MHz, running all benchmarks.

10 of 12

As indicated, SPINE on the SS, FGMT and SMT architectures
delivers packets at roughly the same rate, which is, moreover,
well above the packet delivery rate sustained by SPINE on CMP.
This is precisely as we would expect. SPINE runs as a single
thread of execution, and, hence, has the performance
characteristics of a single-threaded program. With a single thread
of execution, the SS, FGMT, and SMT architectures are all more
or less equivalent. Recall, however, that the CMP processor has a
constant number, one, of functional units per processor core.
Adding processor cores to CMP, while generally improving multi-
threaded performance, does not improve single thread
performance. The packet delivery rates shown in Figure 8,
approximately 1.4 million packets per second for SS, FGMT, and
SMT and about half of that, i.e., 0.7 million packets per second,
for CMP, are therefore the performance upper-bounds that our
applications are subject to while executing on SPINE.

In the best case, the above results roughly translate to 360 cycles
and 720 cycles per packet on average for SS/FGMT/SMT and
CMP, respectively, for packets with an average size of roughly
128 bytes. Or in other words, SPINE using a 500 Mhz processor
can deliver packets to applications at a sustained rate of roughly
1.4 Gbits per second for SS/FGMT/SMT and approximately half
that rate for CMP. Our previous ideal hardware results indicate
that this will only be a major bottleneck for ip4, which, in a
standalone fashion, processes packets above these ranges in most
cases.

5.2.2 Application Performance on SPINE
Having determined a strict upper bound on performance, the next
set of experiments will measure the performance of the three
applications running on top of an operating system. This
experiment differs from our previous single application
experiments in that there is now operating system code that will
compete with the application code for processor resources. As we
have already demonstrated the effect of scaling clock rate, from
this point on we report performance results only for processors
clocked at 500 Mhz. The performance results for each of our
benchmarks on each of the architectures is shown in Figure 9.
Incidentally, in all three graphs, the first data point, which
corresponds to a single functional unit, thread context, and
processor for SS, FGMT & SMT, and CMP, respectively,
correctly demonstrates that the architectures are equivalent for
these parameter choices. Hence, each architecture’ s curve begins

at this point. Let us consider ip4 first.

First note that for ip4, FGMT, SMT and CMP have curves similar
to those seen in Figure 8. This suggests that these architectures
have rather quickly run into their packet delivery bottlenecks.
Further, as noted in Section 5.2.1, the ip4 application processes
packets faster than SPINE delivers them. Hence, only one worker
thread is ever utilized. These architectures do not achieve the
peak performance shown in Figure 8 since the OS and application
are now competing for resources. SS, on the other hand, performs
around 1.5 times slower than its maximum. Recall that in the SS
case, packet handling and application specific packet processing
occur within the same thread. Hence, we see diminished results
because every packet must be processed before the next one can
be retrieved (these activities are overlapped in the other
architectures). In many ways, ip4 is the least interesting result
since the operating system represents such a severe limit to
performance.

With MD5, we have a few more issues to consider. In the second
column of data points, when there are two FUs, we see that SS in
fact slightly outperforms SMT and CMP, which in turn slightly
outperform FGMT. We have already seen that neither SPINE nor
MD5 perform well with only a single functional unit. This artifact
suggests that the multithreaded implementation of this application
is a slightly inferior form of organization compared to the single-
threaded one when the architecture is not sufficiently provisioned
for any of the executing threads. However, we see drastic
improvements for the multithreaded implementations when we
increase processor resources. In contrast, SS performance settles
well below that seen in the non-OS version, in Figure 3, due to the
additional overhead of managing packet delivery. FGMT settles
slightly below its non-OS version performance (which is
considerably lower than the peak packet delivery rate) and, as
before, outperforms SS by hiding instruction latencies. CMP once
again settles just beneath its peak packet delivery rate. SMT, on
the other hand, sees the best performance but suffers as a result of
the SPINE packet producer thread competing fiercely with the
worker threads. From Figure 3, we know that each MD5 thread of
execution can fully utilize 2 functional units; likewise, SPINE can
utilize at least 2 functional units. Here however, resources are
shared more or less evenly so it may be presumed that each thread
is allotted a single FU. Therefore, the performance increase
diminishes greatly beyond the packet delivery rate of SPINE with
one FU (approximately 7*105 packets per second). It is likely that
both FGMT and SMT would benefit from increasing the SPINE
thread’ s execution priority.

With 3DES, SS outperforms the others as resources increase up to
the fourth FU for the reasons discussed above regarding MD5:
when there are no unused resources, serializing packet handling
and processing, as SS does, is better than parallelizing these tasks.
CMP and SMT achieve the linear speedups obtained in the non-
OS versions shown in Figure 5 and Figure 6 as soon as there are at
least two FUs. FGMT, however, exhibits terrible performance
and, in fact, converges to SS performance from below. There are
two reasons for this. First, performance will never exceed the
non-OS result (see Figure 4), which is equivalent to SS
performance and is approximately 3.2*104 messages per second.
Second, performance will slowly approach this value, and lag
behind SS, since resources are wastefully consumed in packet
handling when they would be better spent processing packets. In
this case, the SPINE thread is consuming its equal share of

Baseline SPINE Performance with Clock Rate of 500Mhz

0.0E+00

2.0E+05

4.0E+05

6.0E+05

8.0E+05

1.0E+06

1.2E+06

1.4E+06

1.6E+06

1 2 3 4 5 6 7 8

No. of FUs, Contexts, and Processors

ip
 p

ac
ke

ts
 p

er
 s

ec
o

n
d

SS@500MHz

FGMT@500MHz

SMT@500MHz

CMP@500MHz

Figure 8. Basic SPINE packet delivery performance test. SS and
SMT have coincident curves.

11 of 12

resources, as a consequence of the round-robin scheduling policy.
Since 3DES is heavily compute bound, a better policy would be to
give the worker threads priority over the packet delivery thread so
that no resources are wasted managing packets that won’ t be used
until the relatively distant future.

5.3 Summary
In the first set of experiments, CMP and SMT clearly demonstrate
their superiority over SS and FGMT in exploiting the packet-level
parallelism available within these workloads. In particular, the
ability to issue from multiple threads simultaneously is key to this
scalable performance. This fact is supported by the performance
achieved by CMP, which exploits no ILP.

In the second set of experiments, both the operating system and
applications contribute to overall system performance. Managing
packet delivery and handling in software only involves a
significant decrease in performance for ip4. In this case, ip4
process packets faster than the OS delivers them, hence ip4
performance on SPINE converges to SPINE performance, which
is roughly an order of magnitude lower than ip4’ s standalone
performance. MD5 and 3DES, on the other hand, process packets
much slower and tend towards the standalone performance. In our
simulations, SMT proves to be the architecture best suited to the
workload since it is able to exploit both ILP and TLP, as no other
architecture can. SPINE performance on CMP is severely limited
and under-performs all other architectures since it can exploit no
ILP. That said, the generally competitive performance of CMP is
somewhat surprising in spite of the simplicity of each processor
core.

6. Summary and Future Work
In this study, we have characterized the performance of processor
architectures for programmable network interfaces. We have
identified a set of benchmarks for network processors, evaluated
the performance of a subset of these benchmarks on four high-
performance computer architectures, and considered their
performance with the added overhead from both operating system
management and the underlying networking hardware. We have
observed that network processor workloads exhibit a high-degree
of parallelism at the packet-level, which represents an opportunity
for high performance. Our experimental results suggest that, on
the basis of equivalent processor resources, SMT performs better
than CMP and more than a factor of two better than FGMT and
SS by dynamically exploiting both instruction and thread level
parallelism. For simple applications, such as IP forwarding, SMT
and CMP can sustain network speeds exceeding 10Gbits/second
(e.g., OC12 links). Higher speeds may be attained with better IP
forwarding algorithms, such as [16]. For computationally
intensive applications, such as MD5, both SMT and CMP sustain
network speeds approaching 1Gbits (e.g., gigabit Ethernet).

There are a number of questions we plan to investigate in future
work. First, we will augment some of the experimental
architectures used in this study. The threaded architectures,
FGMT and SMT, will support thread priorities to improve the
thread fetch and issue scheduling algorithms. We will consider a
more aggressive CMP core, with increased issue width, so that it
can exploit some of the ILP available in these workloads.
Secondly, we will implement additional benchmarks both from

ip4 with SPINE with Clock Rate of 500Mhz

0.0E+00

2.0E+05

4.0E+05

6.0E+05

8.0E+05

1.0E+06

1.2E+06

1.4E+06

1 2 3 4 5 6 7 8

No. of FUs, Contexts, and Processors

ip
 p

ac
ke

ts
 p

er
 s

ec
o

n
d

SS@500MHz

FGMT@500MHz

SMT@500MHz

CMP@500MHz

MD5 with SPINE with Clock Rate of 500Mhz

0.0E+00

1.0E+05

2.0E+05

3.0E+05

4.0E+05

5.0E+05

6.0E+05

7.0E+05

8.0E+05

1 2 3 4 5 6 7 8

No. of FUs, Contexts, and Processors

ip
 p

ac
ke

ts
 p

er
 s

ec
o

n
d

SS@500MHz

FGMT@500MHz

SMT@500MHz

CMP@500MHz

3DES with SPINE with Clock Rate of 500Mhz

0.0E+00

1.0E+04

2.0E+04

3.0E+04

4.0E+04

5.0E+04

6.0E+04

7.0E+04

8.0E+04

9.0E+04

1.0E+05

1 2 3 4 5 6 7 8

No. of FUs, Contexts, and Processors

ip
 p

ac
ke

ts
 p

er
 s

ec
o

n
d

SS@500MHz

FGMT@500MHz

SMT@500MHz

CMP@500MHz

Figure 9. IP packet throughput achieved with each benchmark on each architecture, with all processors clocked at 500Mhz.

12 of 12

the set of more conventional applications (e.g., flow management)
and emerging applications (HTTP load balancing) to round out
our network processor workloads. Thirdly, we plan to implement
packet classification in software to investigate the performance
tradeoffs relative to hardware-based packet classification. That is,
assuming that the hardware-based packet classification requires a
similar number of transistors relative to a processor core, is it
better to perform packet classification in software with N
processors or in hardware with N-1 processors? Finally, we
realize that network processors in switches/routers and host
adapters will need to support some combination of these
applications concurrently. Consequently, we believe that the
combined behavior of these applications running in the previously
described execution environment yields an interesting and
compelling workload at both the system software and architectural
level. Hence, we plan to measure the performance of these
applications as executed in a multi-programmed environment.

References
[1] Alteon. WEBWORKING: Networking with the Web in

mind. Alteon WebSystems, White Paper:
www.alteon.com/products/white_papers/webworking
May 3rd 1999 San Jose, California.

[2] M.L. Bailey, B. Gopal, M.A. Pagels, L.L. Peterson, and
P. Sarkar. PATHFINDER: A Pattern-Based Packet
Classifier. Proceedings of the First USENIX
Conference on Operating System Design and
Implementation (OSDI), pp. 115-224. Monterey CA,
November 1994.

[3] A. Begel, S. McCanne, and S.L. Graham. BPF+:
Exploiting Global Data-Flow Optimization in a
Generalized Packet Filter Architecture. Proceedings of
the ACM Communication Architectures, Protocols, and
Applications (SIGCOMM ’99), 1999.

[4] N. Boden and D. Cohen. Myrinet -- A Gigabit-per-
Second Local-Area Network. IEEE Micro, 15(1):29-36,
1995.

[5] D.R. Engler and M.F. Kaashoek. DPF: Fast, Flexible
Message Demultiplexing using Dynamic Code
Generation. Proceedings of the ACM Communication
Architectures, Protocols, and Applications (SIGCOMM
’96), 1996.

[6] M.E. Fiuczynski, R.P. Martin, T. Owa, and B.N.
Bershad. SPINE: An Operating System for Intelligent
Network Adapters. Proceedings of the Eighth ACM
SIGOPS European Workshop, pp. 7-12. Sintra,
Portugal, September 1998.

[7] A. Fox, S.D. Gribble, E.A. Brewer, and E. Amir.
Adapting to Network and Client Variability via On-
Demand Dynamic Distillation. Proceedings of the
ASPLOS-VII, pp. 160-170, Oct. 1996.

[8] P. Gupta and N. McKeown. Packet Classification on
Multiple Fields. Proceedings of the ACM
Communication Architectures, Protocols, and
Applications (SIGCOMM ’99), 1999.

[9] IBM. The Network Processor: Enabling Technology for
High-Performance Networking. IBM Microelectronics,
1999

[10] LevelOne. IX Architecture Whitepaper. An Intel
Company, 1999

[11] B.A. Nayfeh, L. Hammond, and K. Olukotun.
Evaluation of Design Alternatives for a Multiprocessor
Microprocessor. Proceedings of the 23rd International
Symposium on Computer Architecture, pp. 67-77, May
1996.

[12] S. Nilsson and G. Karlsson. Fast Address Lookup for
Internet Routers. Broadband Communications: The
Future of Telecommunications, 1998.

[13] L. Peterson, S. Karlin, and K. Li. OS Support for
General-Purpose Routers. Proceedings of the HotOS
Workshop, March 1999.

[14] J. Santos and D. Wetherall. Increasing Effective Link
Bandwidth by Suppressing Replicated Data.
Proceedings of the Usenix Annual Technical
Conference, pp. 213-224. New Orleans, Louisiana, June
1998. USENIX.

[15] J.M. Smith, K.L. Calvert, S.L. Murphy, H.K. Orman,
and L.L. Peterson. Activating Networks: A Progress
Report. IEEE Computer Magazine vol. 32, no. 4, pp. 3-
41, April 1999.

[16] V. Srinivasan, S. Suri, and G. Varghese. Packet
Classification Using Tuple Space Search. Proceedings
of the ACM Communication Architectures, Protocols,
and Applications (SIGCOMM ’99), 1999.

[17] D. Tullsen, S. Eggers, and H. Levy. Simultaneous
Multithreading: Maximizing On-Chip Parallelism.
Proceedings of the 22nd Annual International
Symposium on Computer Architecture, pp. 392-403.
Santa Margherita Ligure, Italy, June 1995.

[18] D.J. Wetherall, U. Legedza, and J. Guttag. Introducing
New Internet Services: Why and How. IEEE Network
Magazine , July/August 1998.

