
A Performance Study of Software and Hardware

Data Prefetching Schemes*

Tien-Fu Chen

Department of Computer Science

and Information Engineering

National Chung Cheng University

Chiayi, Taiwan, R.O.C.

Abstract

Prefetching, i.e., exploiting the overlap of processor com-
putations with data accesses, is one of several approaches
for tolerating memory latencies. Prefetching can be ei-
ther hardware-based or software-directed or a combination
of both. Hardware-based prefetching, requiring some sup-
port unit connected to the cache, can dynamically han-
dle prefetches at run-time without compiler intervention.
Software-directed approaches rely on compiler technology
to insert explicit prefetch instructions. Mowry et al.’s soft-
ware scheme [13, 14] and our hardware approach [1] are two
representative schemes.

In this paper, we evaluate approximations to these two
schemes in the context of a shared-memory multiprocessor
environment. Our qualitative comparisons indicate that both
schemes are able to reduce cache misses in the domain of
linear array references. When complex data access patterns
are considered, the software approach has compile-time in-
formation to perform sophisticated prefetching whereas the
hardware scheme has the advantage of manipulating dynamic
information. The performance results from an instruction-
Ievel simulation of four benchmarks confirm these obser-
vations. Our simulations show that the hardware scheme
introduces more memory traffic into the network and that
the software scheme introduces a non-negligible instruction
execution overhead. An approach combining software and
hardware schemes is propos@ it shows promise in reducing
the memory latency with least overhead.

1 Introduction

Prefetching has been shown to be one of several effec-
tive approaches that can be used to tolerate large memory
latencies. Prefetching hides (part o~ the memory latency by
exploiting the overlap of processor computations with data
accesses. Whether prefetching should be hardware-based or
software-directed or a combination of both is an interesting
question for the architecture community.

Hardware-based prefetching [1, 8] requires some support
unit connected to the cache but little modification to the
processor. Its main advantage is that prefetches are handled
dynamiczdly at run-time without compiler intervention. The
drawbacks are that extra hardware resources are needed
and that memory references for complex access patterns are

“This work was supported in pan by NSF Grant CCR-91 -01541 and by
Apple Computer, Inc.

Jean-Loup Baer

Department of Computer Science

and Engineering

University of Washington

Seattle, WA 98195

difficult to predict. In contrast, software-directed approaches
[4, 9,11,13,14, 15] rely on compiler technology to perform
static progmm analysis and to selectively insert prefetch
instructions. The drawbacks are that there is some non-
negligible execution overhead due to the extra prefetch
instructions and that some useful prefetchilng cannot be
uncovered at run-time.

Mowry and Gupta’s software [13, 14] and Baer and Chen’s
hardware [1] approaches are two representative prefetching
schemes. The hardware scheme that we use in this paper is a
slight enhancement, described in the next section and in more
detail in [3], to the one we proposed originally,, The software
scheme is our “interpretation” of Mowry et al.’s compiler
algorithm and does not reflect advances in the algorithm
posterior to its publication. We first compare the two schemes
qualitatively, focusing on design aspects. A quantitative
evaluation is then performed by a direct-execution simulation
of three SPLASH benchmarks and of the Matnnat kernel in a-
shared-memory multiprocessor environment. The metrics of
interest include the effectiveness of prefetching, the increase
in network traffic, and the performance sensitivity to a range
of memory Iatencies. We also discuss means of combining
both approaches.

In the domain of Iinezu array references both hardware and
software schemes are able to generate prefetches to reduce
cache misses. When complex data access patterns are con-
sidered, the software approach may have more compile-time
information to perform sophisticated prefetching whereas the
hardware scheme has the advantage of manipulating dynamic
information. The software scheme might suffer from a code
expansion problem but the predictability that the prefetched
data will be used is greater than in the hardware solution. Our
performance results confirm these qualitative observations.
Our results also show that hardware prefetching introduces
more memory traffic into the network than software prefetch-
ing. Our simulations indicate that an approach combining
software and hardware schemes is very promising in reducing
the memory latency with least overhead.

The rest of the paper is organized as follows: the next W-
tion gives some background information on data prefetching.
In Section 3, we compare the two schemes in a qualitative
fashion. Section 4 describes the evahtation methodology.
Section 5 presents simulation results and explores the impact
of varying memory latencies, and side effects that prefetch-
ing can bring up. Section 6 proposes a way of combining
the software and hardware schemes. Finally, we conclude in

223

1063-6897/94 $03.0001994 IEEE

Section 7.

2 Data Prefetching- The two selected schemes
Software-directed Prefetching approaches are imple-

mented as an optimization phase of a compiler. Prefetch
instructions, loading data in the cache in a non-binding fash-
ion, are inserted several cycles before their corresponding
memory instructions. Portert3eld [15] showed that the in-
tuitive idea of inserting prefetches for array references one
iteration ahead in the most nested loops led to too much
overhead. The time to prefetch should depend on memory
latency and loop execution time [11, 4]. Gomish et al. [9]
proposed a conservative algorithm to find the earliest point
before a loop that an entire subarray could be prefetched.

In Mowry et al.’s approach [14], a compiler algorithm
identifies those data references that are likely to be cache
misses and prefetches are inserted only for them. Specifi-
cally, the focus is on array accesses whose indices are linear
functions of the loop indices. The algorithm performs data
reuse analysis and then derives, based on parameters such as
cache and block sizes, a set of accesses that belong to an it-
eration space in which locatity is preserved among accesses.
Once the locality is known, a prefetch pre&cate for each
reference that would lead to a cache miss is introduced in
the loop for determining if the prefetch should be executed
in a particular iteration. Loop splitting may be performed
in order to reduce the computational cost of evaluating the
predicates. Then prefetches are scheduled within the loop by
taking into account the memory latency and estimated loop
execution time.

To our knowledge, Mowry et al.’s approach is the best
software prefetch algorithm currentty available. We will
use their framework as the basis of our comparison. We
refer to our interpretation of their approach as the” software
scheme.”

In many Hardware-based Prefetching schemes,
prefetches are generated on the basis of the access to the
current cache block. Smith [17] studied variations on the
one block lookahead (OBL) policy, i.e., upon referencing
block i, block i + 1 is to be prefetchcd. An extension to
OBL where several consecutive data blocks are prefetched
in FIFO stream bufers has been proposed by Jouppi [10].
In OBL and extensions, miss rates can be reduced at the
expense of some increase in memory traffic. These schemes
take advantage of limited (sequential) spatial locality but do
not deal with large strides. The use of stride information,
e.g., carried by vector instructions, led Fu and Patel [7,8] to
propose prefetch strategies for vector and scalar processors.

We have proposed a more elaborate approach[l], called
lookahead data prefetching, of which a slightly expanded
version will be the “hardware scheme” for our evaluation.
This scheme combines the advantages of stride information
and instruction lookahead.

The essential hardware component is a support unit for
a conventional data cache whose design is based on the
prediction of the instruction execution stream and associated
operand references in load instructions. The support unit is
not on the criticat path and therefore will not contribute to an
increase in the processor cycle time. A reference prediction
table (RPT) (cf. Figure 1), organized as a regular cache,
records the referencing patterns. The RPT will be accessed
ahead of the regular program counter (PC) by a Iookahcad
program counter (LA-PC). The LA-PC is incremented and

-- -

~

Figure 1: Structure of the hardware prefetching

maintained in the same fashion as the PC with the help
of a dynamic branch prediction mechanism. Each RPT
entry contains the reference prediction information for the
corresponding access instruction. A times field is provided
in each entry to indicate the number of iterations between
the LA-PC and PC when a prefetch is generated [3]. The
key to hiding memory latency is to keep enough distance,
at least the memory latency time, between PC and LA-PC
so that the prefetched data arrives just, or slightly before, it
is needed. A system parameter, the LA-limit, set to a value
slightly larger than the memory latency serves as an upper
bound on the distance between PC and LA-PC.

3 Qualitative Evaluation
3.1 Identifying Cache Misses

The success of software prefetching depends primarily on
identifying and inserting prefetch instructions only for those
accesses that are most likely to generate cache misses. To
that effect, the software scheme exploits three types of reuse
temporal, spatial, and group. Since reuses do not guarantee
locality [19], these reuses are mapped to data locality by
taking into account the loop iteration count and the cache
size. To illustrate the concept of reuse, let us consider the
loop in Figure 2 (a). The accesses to X[i] have spatiat
reuse since the same cache line is reused in consecutive
iterations. Accesses to Y [i] and Y[i+ 1] share group reuse
and the access Z has temporal reuse since it is referenced in
different iterations.

While misses for memory accesses with spatial reuse
are easily determined, the identification of cache misses
for accesses with temporal and group reuse is rendered
more complicated by other factors such as set associativity
and replacement policy. Moreover, conflict misses due to
self-interference from the same array references or cross-
interference from different arrays are not predictable at all.
Overall, the software scheme can be successful in identifying
most compulsory misses and some of the capacity misses
for linear array references, but is unable to handle conflict
misses.

In contrast, the hardware scheme has no information that
atlows it to avoid unnecessary prefetches. However, there
is no CPU-overhead associated with these extra prefetches
as long as they are not on the critical path of the processor.
Although prefetches are suppressed when the data block is
already found in the cache, there remains the drawback that
the additional lookup of thecachetag dirwtory may still delay
demand cache accesses or data refills from memory modules.
Furthermore, since the prefetches have no knowledge of
potential reuse, the hardware scheme is more likely to bring

224

(a) A loop example

fori=Oto255
X[i] = Y[i+l] + Y[i+2] - Z

end

(b) Instrumented code

fori=Oto3by2
prefetch(&X[i])
prefetch(&Y[i+l])

end

fori=Oto251by2
prefetch(&X[i+4])
prefetch(&Y[i+5])
X[i] = Y[i+l] + Y[i+2] - Z
X[i+l] = Y[i+2] + Y[i+3] - Z

end
for i = 252 to 255 by 2

X[i] = Y[i+l] + Y[i+2] - Z
X[i+l] = Y[i+2] + Y[i+3] - Z

}
prologue

/

main
loop

}

epilogue

Figure 2 Example of instrumented loop

data that are not useful. On the other hand, the hardware
mechanism can prefetch data that have been replaced due to
conflict misses.

3.2 Prefetch Instruction and Predicate

Once a potential cache miss has been identified, the
software scheme inserts a prefetch instruction. If accesses
have spatial or group locality in the same cache line, only the
first access to the line will result in a cache miss and only one
prefetch instruction should be inserted. However, testing for
this condition, i.e., computing a prefetch predicate, can be
very expensive mostly if it occurs in an inner loop. Instead,
the compiler will generally perform loop splitting and loop
unrolling (or loop peeling).

The instrumented code of the previous example is shown
in Figure 2 (b). We assume that a cache line holds two
array elements, and that the memory latency requires the
prefetch to be scheduled four iterations ahead. We split the
original loop in three sections prologue, main, and epilogue.
The prologue prefetches the initial data set for the first four
iterations. The main loop consists of the largest portion of
the loop execution where the loop is in a steady state, that
is, the demand of data can be satisfied by those prefetches
occurring several iterations ahead. Finally, the epilogue
finishes the last four iterations without any prefetching.
After the original split, the loops are unrolled by a factor
of two in order to eliminate the execution of the prefetch
condition (i mod 2) = O. One consequence of loop splitting
and unrolling is that the code will expand significant y. This
may result in an increase in the I-cache miss ratio and may
introduce extra spilling of store/load instructions due to an
increase in register pressure.

Another potential difficulty is that the prefetching refer-
ences are not necessarily aligned on a cache line boundary
(cf., X[i] and Y[i+l] in the example).

An advantage of the hardware scheme is that it executes
the original loop without modification. However, at least two
iterations are required before obtaining correct strides. There
is no equivalent to the prologue as the hardware scheme

prefetches the (initial) data by letting the LA-PC move
gradually several iterations ahead of the PC. When the loop is
in steady state, i.e., in the main loop, prefetching is performed
in a similar way in both schemes. One important drawback
of the hardware approach is that the system still continues to
prefetch data even in the last iterations (corresponding to the
epilogue), since the hardware is unable to knc~w when the
loop will end.

3.3 Scheduling Prefetches

Prefetches should be issued early enough to hide memory
latency but not too early so that they do not dkplace useful
data or are replaced before use. The software algorithm
usually schedules prefetches ahead by a number of iteration~

1$1 where 6 is the memory latency ands is the estimated
execution time of the loop body. As a result, the software
scheme prefetches a data item at least one iteration before it
is used. The prefetch is usually placed immediately before or
after a corresponding reference to minimize the computation
cost of the effective address. A window of vulnerability is
left open between the arrival time of the prefetched data and
its actual use. During this time window, the prefetched data
can be displaced or it can displace some data that is accessed
during that time.

The hardware scheme has a more flexible scheduling. As
in the software scheme, a prefetch can be identified several
iterations ahead if the memory latency is greater than the
loop execution time (recall the times field in the RPT). If
the latency is small, as for example in a multi-level cache
hierarchy, the prefetching can occur in the same iteration as
the load. Thus, in general, the data will arrive at the cache
at a time closer to its actual use than in the software scheme.
Therefore there will be fewer unwanted replacements in the
cache, and the prefetches will be more spaced in time. We
should note however a drawback of the hardware scheme,
namely its reliance on good branch prediction to predict the
look-ahead St.IWUTL

A potential advantage of the software scheme is that more
aggressive program-specific prefetches can be supported.
The software solution may be able to provide more flexible
prefetching, such as pointer-chasing for linked lists, block
prefetches (the prefetching size being determined in terms
of semantic object instead of cache line size), and can
take advantage of data reorganization. MowIry and Gupta
[13] have shown the success of several strategies by code-
specific and programmer-directed techniques. However, it is
still unknown whether the techniques can be automated for
general applications without programmers’ intervention.

3.4 Prefetching in Multiprocessors

Thus far we have been focusing on prefetching for unipro-
cessors. When we consider a multiprocessor environment,
additional factors come into play: (1) prefetches increase
memory traffic, (2) prefetching of shared data items can
bring additional coherence traffic, (3) invalidation misses
are not predictable at compile time, and (4) dynamic task
scheduling and migration policies are detrimental to the
efficiency of prefetching.

‘fhe first factor, additional memory traffic, stems from
the prefetching of unnecessary data (mostly in the hardware
scheme) and from the early displacement and later recall
of useful data (mostly in the software scheme). The in-
creased memory traffic has more of a performance impact

225

in a multiprocessor environment since it contributes to the
saturation of the interconnmt between the processors and
main memory. Tullsen and Eggers [18] have shown that
the prefetching benefits are limited if memory bandwidth
is a primary resource (e.g., in a bus-based shared memory
multiprocessor). We will examine in Section 5.3 the issue of
increase in the memory traffic when the available bandwidth
is not as limited as that of a single shared-bus.

The increase in coherence traffic is difficult to avoid in
both approaches. The problem arises from the same sources
as that of the increase in memory traffic. A prefetched data
item may need to be invalidated before it is used and an
exclusive-prefetch causes invalidation misses on data that
might yet have to be used in other processors. If a relaxed
consistency model is assumed, write propagations are usually
delayed until synchronizations. In this case, the first situation
is equivalent to the attempt at controlling data that arrive at
the cache just in time for its use. The second situation occurs
when there is high contention for some shared writable data.
Approaches, such as binding prefetch [9], avoid the problem
by suppressing prefetches that may have data and control
dependencies of accesses in other processors but they are
overly conservative.

The fact that invalidation misses are not predictable at
compile time is a weak point of the software approach, since it
lacks the dynamic information necessary to initiate prefetches
for missing data that have been invalidated. Restructuring the
&ta to alleviate the effects of false sharing [6] might partially
remedy the situation. On the other hand, the hardware scheme
should be able to fetch back the data that were invalidated, if
the state information mandates the prefetching.

Prefetching in parallel programs scheduled statically can
be handled by both approaches. Dynamic task scheduling and
task migration, and in particular fine grain task scheduling,
will be very detrimental to the efficiency of prefetching since
processor assignments may change before the prefetched
data in the cache has been used. The problem is more critical
to the hardware scheme which requires past access histories
stored in the RPT, a cache-like table.

In summary, the software scheme is able to identify access
locality for generating prefetches in the domain of linear
array references at compile time, whereas the hardware
scheme dynamically determines when and what to prefetch.
However, the software scheme may suffer from a code
expansion problem while the hardware scheme cannot predict
as well the usefulness of the data it prefetches. The two
approaches face the problems of increasing memory and
coherence traffic in a multiprocessor environment.

4 Quantitative Evaluation Methodology
4.1 Architectural Models

The architecture that we assume is a shared-memory
multiprocessor. It includes 16 MIPS R3000-like processors
connected to memory modules through an interconnection
network. We assume that instructions and private data
references hit in a local memory with the prcwessor incurring
no time penalty. The cache hierarchy is used only for
storing shared data. Cache coherence is maintained using
a full directory protocol [2] distributed among the memory
modules. Prefetched data are put into the caches so that the
data still remain visible to the cache coherence protocol.

We experimented with three architectural choices: base-
line caches, caches with hardware prefetching, and caches

with software prefetching. In prefetching caches, prefetching
was performed for read misses only, not including exclusive-
prefetching. The default consistency model is weak con-
sistency [5] under which most of the write latency can be
hidden. Each cache-network interface has a prefetch issue
buffer which can hold up to 16 prefetches. The prefetch
request will check the tag directory in the cache and will
be forwarded to the memory system if there is no matched
cache line. When the buffer is full incoming prefetches are
just discarded. Each processor has a 64K-byte data cache,
which is direct-mapped and copy-back with a cache line size
of 16 bytes. The caches are lockup-free [12], thus allowing
multiple outstanding data requests. A 16-entry outstanding
request list (ORL) is used to keep track of pending requests,
some of which might then become hit-wait accesses when an
actual load hits on a pending request but still stalls waiting
for the data. The stall time incurred by a hit-wait access will
be referred to as hd-wait time. Reads on actual misses or on
hit-wait accesses are blocking.

We assume that the memory bandwidth is sufficient and
that a fixed latency time is used when a request travels
through the network. The one-way latency time betwem
caches and the global memory modules is 40 cycles. Hence,
a reference that misses in caches incurs a total latency of at
least 80 cycles (L~). A read miss to a dirty block owned by
another cache or a write request to a block that is already
cached elsewhere will need at least two network round trips,
i.e., 160 cycles. Although we do not model the contention
in the network, we do take into account interference at the
caches and at the memory directories since each cache and
directory module can process only one request per cycle.
Lo&/unlock and barrier requests are handled using a queue-
based protocol in the directory. A request waiting on a
synchronization operation will not cause extra traffic for the
caches and the network.

4.2 Benchmarks

We developed a direct-execution simulator that simulates
important events of interest in a shared-memory multiproces-
sor, while the computation instructions are directly executed
by the host machine. The benchmarks we used are Matmat
and three SPLASH benchmarks [16]. Table 1 summarizes
the statistics collected on these benchmarks once their paral-
lel sections are started up to the completion of the program.
Only shared references are recorded in the table and the
column below “shared data size” indicates the total size of
globat shared area which is explicitly allocated in the pro-
gram. Matrnat is a blocked matrix multiplication program,
run with two 300 x300 matrices with proper cache buffer
and block setting so that the effects of cache size and block
size can be balanced. Mp3d is a particle-based fluid flow
simulation program. We ran Mp3d with 100,000 particles
in a 14 x 24 x 7 space array for 10 time steps. Water, an
N-body molecular application, was run with 288 molecules
for 4 time steps. Cholesky performs parallel factorization of
a sparse matrix, run with the test set bcsttk15.

In order to implement the software scheme, we instru-
mented the original SPLASH benchmarks. Through pro-
filing, we identified those accesses with the highest cache
miss rates. The instruction addresses of the cache misses
(candidates for prefetching) were recorded by running each
program on a configuration similar to that of the prefetching
study and with the same data set. We surmise that this

226

Table 1: Benchmarks characteristics - average numbers for a
single processor in the 16 processor simulation

approach allowed us to determine realistic prefetching can-
didates as well as a thorough compiler analysis. For instance,
a reference which has temporal locality in a lwp will not be
prefetched because of its low miss frequency.

After the accesses for prefetching are identified, we man-
ually insert prefetch instructions related to these high miss
frequency items based on the following strategies:

1.

2.

3.

4.

A data item accessed in a loop is prefetched one or more
iterations ahead depending on the relative values of the
estimated loop execution time and the memory latency.

Taking the block size into account, we perform loop
unrolling and loop splitting. Additional spilled code
resulting from an increase in register pressure will
contribute to the prefetching overhead.

By default, each prefetch will bring one cache block.
If our profiling information detects that prefetching a
whole data object at once would be beneficial, block
prefetching is performed. An additional instruction is
needed to specify the prefetch size in that case.

If a mefetch is orhzinated from an indirect load. we at-
tempt to schedule he source load ahead in the inskuction
stream to provide as large a non-blocking span as pos-
sible. The address computation of prefetch instructions
is generally combined with that of the corresponding
loads thus resulting in no overhead. However, when
the prefetches are moved away from their loads the cost
of computing prefetch address expressions cannot be
completely eliminated.

In summary, we emulate a compiler algorithm that will
carefully generate effective prefetches. The overhead in our
implementation is relatively low (just over one instruction
per prefetch instance).

5 Quantitative Evaluation
5.1 General results

Figure 3 shows the simulation results of the average ex-
ecution time of the 16 processors with respect to various
approaches. The left-most bar shows the breakdown of the
execution time of the baseline cache (BASE). The next two
bars are for the hardware (HW-pf), and software (SW-pf)
schemes respectively. We present the data by normalizing
the total execution time with respect to the baseline organi-
zation. Each bar contains several sections. The exec section
denotes the time to execute instructions--it also includes the
extra instruction overhead for executing software prefetch-
ing instructions, necessary address/size computations, and
execution of possible extra spilling loads; read and write

indicate the fraction of processor stall time for reads and
wri-, delay shows the delay of demand accesses resulting
from handling prefetch and tag updates in the Cach% and
synch gives the time waiting for lock and barrier accesses.

Let us examine each stall time component. The instruction
execution time, corresponding to processor utilization, is
between 13% in Mp3d and 75% in Water. By looking at
the results for BASE, we note that there is much room for
improvement for reducing the read access penalty. This is
borne out by the results showing remarkable reductions in
read stall time for both schemes 10%-39% for HW-pf and
15%-43% for SW-pf of the original total cycles.

The portions of stall time due to writes ancl synchroniza-
tions are almost negligible in the BASE case. Writes can
be efficiently buffered since we operate under a weak con-
sistency model. The stall time due to synchronizations is
very small in all cases except Water where it reaches 5.570.
Neither HW-pf nor SW-pf modify significantly these figures.
The last component in the overall execution time, i.e., the
delay due to contention in the cache between prefetch and
regular accesses, is clearly art overhead introduced by the
prefetching. As seen from the delay section in Figure 3, the
number of cycles lost because of this interference are very
small (only 0.05% -O.670). Hence, this side effect is rdmost
negligible.

Extra instruction execution time is yet another overhead,
which is present only in SW-pf. As shown in the exec section
of SW-pf, the SW-pf instruction overhead can be substantial.
The portion of normalized time due to the software overhead
ranges from 0.9% in Mp3d to 8.6940for Mat.mat and may
offset part of what was gained in reducing the read penalty.

5.2 Detailed Analysis

We examine further the effectiveness of prefetching by
looking in more detail at the individual behavior of the four
benchmarks (cf. Table 1).

Matmat is a blocked matrix multiplication program in
which almost atl references are regular and sequential. Both
HW-pf and SW-pf perform quite well on the Matmat bench-
mark since data access patterns are regular (read penalty
reduced by 77% and 87% respectively). Even so not all of
the read penalty has been eliminated. In HW-lpf some of the
read penalty is contributed by a portion of hit-wait cycles in
the first iterations. Another portion of the remaining read
penalty stems from the fact that the blocking technique tries
to localize the referenced domain of inner loops and thus data
blocks prefetched at the last iteration of an inner loop are
generally unused. Similarly, SW-pf has a portion of hit-wait
cycles. Moreover, the loop splitting introduced because of
the prefetching increases the register pressure that is already
very tight because of the tiling of the inner-most loop. Look-
ing in more detail at SW-pf shows that the execution time
of one iteration of the inner-most loop (unrollled by a factor
of 2) takes 85 ideal cycles. It has been increased by 11 ‘ZO,

compared with the execution time of the original code (76
cycles for two iterations). The increase comes from the
prefetch instructions and extra spilling code. This explains
the magnitude of the instruction overhead (8.6% of total
time) for SW-pf. It indicates that SW-pf should be more
conservative when taking into account optimization arising
from locality considerations.

In Mp3d, the two data structures that account for most of

227

Matmat
81

86s

13.1

Mp3d -~:

❑w mitemmfl

67.2g!

I--Ill

49 83
53.3

. 34.3

13.1 14

BASE Hw pf Sw pf BASE Hw pf Sw pf

Water

.-

BASE Hw pf Sw pf BASE HW pf Sw pf

Figure 3: Simulation results

the references are particles and space cells. The particles are
statically rdlocati, the spacecells are accessedin a relatively
random manner depending on the location of the particle
being moved. In such an application where data structures
are more complex, SW-pf exhibits better performance in
reducing the read penalty than HW-pf (38Y0 for HW-pf in
Mp3d vs. 60% reduction for SW-pf). Although HW-pf has
no difficulty in prefetching a particle record, it is not good
at dealing with space cells because their locations vary with
time. Thus only roughly half of the cache misses are covered
through HW-pf. In contrast, SW-pf performs much better
than HW-pf. SW-pf can statically prefetch pzuticle data and
use indirect load prefetches to get the space cell when the
address of an associated particle is determined. Moreover,
particle objects and space cells can be prefetched by a single
block prefetch instruction. Consequently, several memory
access requests triggered by only one prefetch instruction can
be pipelined to the memory system. The prefetching of space
cells is scheduled so that it can be performed in parallel with
other computations. Therefore the latency of the indirect load
prefetch is hidden further. The use of block prefetches is also
the reason that Mp3d has a negligible instruction overhead.

In Water, the main data structure is an array of molecules
where each element holds all the data for one molecule.
Each molecule requires about 38 cache lines. Data accesses
preserve spatial locality in the intramolecular computations
and data access patterns are predictable in the intermolecular
computation phases. Since the ratio of the number of shared
references to instructions is very small, the instruction time
accounts for a large portion of the total execution time (cf.
Table 1). In addition because the cache can hold almost the
entire working set, most of the accesses result in cache hits.
Therefore the read penalty contributes only 18% of the total
execution time. In this benchmark with predictable access
patterns and small nested loops, the read penalty rtiuction

is very good but does not improve performance that much
since the read penalty is relatively small. SW-pf moderately
outperforms HW-pf (52% for HW-pf vs. 83% for SW-pf).
Both schemes can easily handle the shared references in
the intra and intermolecular computation phases. The main
reason for the superiority of SW-pf is that each computation
of a molecule involves two or three nested small inner loops
with only a small number of iterations in each level of loop.
SW-pf simply prefetches data for all the iterations at one
time, whereas the small loops hinder HW-pf from gaining
sufficient prefetching distance.

Choiesky is dynamically scheduled with coarse task gran-
ularity (about 86,000 shared references per task), Each task
works on supemodes, which are sets of columns of a very
large sparse matrix. The input data file is a 3948-by-3948
matrix with only 56934 non-zero elements. The primary op-
eration is a column modification algorithm which involves
the addition of two columns in order to cancel a non-zero
element in the upper triangle of the matrix. Since all non-zero
elements belonging to a certain column are stored contigu-
ously in an array and the row numbers of these non-zero
elements are stored in a compressed manner, the program
iterates on the array of row numbers to find matching rows
and then fetch the non-zero elements to perform the compu-
tations. As a result, the starting and ending values of loops
me generally unknown at compile time. In this benchmark,
the hardware scheme performs better than SW-pf (82% vs.
48%). The HW-pf scheme can benefit from the assignment of
large supemodes to the processors by sequentially prefetch-
ing the array and dynamically extracting data access patterns
for the accesses of non-zeros. Similarly, SW-pf can prefetch
the data for accesses to the array holding row numbers.
However, our implementation is conservative in prefetching
the non-zeros by using indirect load prefetches only after the

228

Matmat

BASE Hw pf Sw pf

BASE Hw pf Sw pf

Water
111.8

100 100.8

29.7

111

35.3 29.9
...

27.1 27.9 27.3

0
:::::::::::::,:,;,,.,.,.,.,.,.,.,. ;;.::~
W 34.4

43.2
~jj 40.3

_ ,::~jyfi

m 14.1
::::::.:.:.:,::::,,,,:,:,:,::::.:.
~.3

Mp3d

100 101.2 101.9

BASE Hw pf Sw pf

Cholesky - ~$&ti

121.9 s ~ m
~~~~prefetch

1111”

34.5
101.1

i

5.9
.................
::::::.,......., 34.4,.,.,.:.:.:::j,::,,,,,..,,,,,...,,:,:,:,<::::::;:: .:.,.,.,.::,:,:,:
@ 77.2 *:::::;
:,::::::::::::~: = 49.9M :::;::::~::::::.:.:.:.:.::;:::::::::W: ::::::::,:.:.:.:..,.,.,.,,,.,,,.,.
:.:.:.:.:........ M##_Lo.9,

BASE Hw pf Sw pf

Figure 4: Network traffic

row pointer is knownl. This will usually cause prefetched
blocks to arrive in the cache too late and thus to contribute
a large portion of hit-wait cycles to the read penalty. In
addition, because the starting and ending vahtes are run-time
variables, the code is significantly expanded as a result of
loop unrolling and splitting as well as prefetch insertion. For
example, an IF statement is required in the prologue to align
the prefetch access on the cache line boundary. Hence, the
instruction execution time is increased.

To summarize, our data show that SW-pf and HW-pf
can achieve good performance improvements in programs
with regular access patterns. HW-pf can handle applications
with input data dependence if the loop granularity is not too
small. SW-pf is flexible and can deal with programs with
complicated but well-organized data structures. However,
the benefit of software prefetching may be offset by the extra
overhead it incurs.

5.3 Negative Effects of Prefetching
As mentioned earlier, prefetching increases memory traf-

fic. The main sources for the increase are (1) prefetches
of unused data lines, (2) extra cache misses due to conflicts
with the current working set, (3) extra invalidates due to
additional write-sharing caused by prefetching, and (4) the
increase of invalidation misses due to exclusive prefetches.
Since we do not perform prefetch for writes, the last problem
does not occur in our study.

In Figure 4, we present the increase in network traffic. We
consider four kinds of requests for the network: read misses,
prefetch requests, write requests (write misses and write hits

1A ~feme has ~k~d out that Cholesky has been rewire SOhat tie

compiler can cleat with this problem.

on clean), and invalidates. While the number of memory
requests increase, as expected, for both types of prefetching
for all benchmarks, the increaseduetoprefetching (especially
SW-pf) is relatively insignificant with respect to the total
traffic. Most of the memory traffic increase stems from the
fact that the total requests of read misses and prefetches are
greater than those of read misses for the baseline cache. Since
prefetching may fetch write-shared data, a slight increase of
write requests and invalidates can be also observed in the
figure. In general, SW-pf is more conservative in introducing
memory traffic than HW-pf. The reasons me that HW-pf
has less information to avoid sending unnecessary prefetches
to the system and that data blocks prefetched during the
last iterations are generally unused. The traffic increase is
more significant in benchmarks with small iterations, such
as Water, where the penalty reduction by IHW-pf is less
than that by SW-pf, but where HW-pf brings more network
traffic. One exception is Matmat, where SW-pf results in
more network traffic than HW-pf. However, the increase is
mainly because more writes and invalidates are issued since
there is more prefetching of write-shared data.

To examine the impact of prefetching on the working set
in the cache, we estimate the negative effect by measuring
conflicts between the working set and prefetched data. We
record the information on replaced data lines in a‘’ shadow”
direct-mapped cache with the same size as the data cache.
If a cache miss finds a matched entry in the shadow cache,
we record the status of both replaced and current blocks.
As most cache misses are reduced by prefetching, we are
interested in conflict misses. Table Z gives tlhe proportions
of those conflict misses among three categories: conflicts
within the current working set itself, between the working set

229



Matmat

BUG Hw-pf Sw-pf k aw-pf Sw-pf B- HW-pf SW.pf

Latency 40 hc31Cy 80 Latency 160

Bane mv.pf Sw-pf Base Hw.pf Sw.pf Bnc HW-pf SW-pf

Latency 40 t.23kllCy 80 Latency 160

B- HW-pf SW.pf Base HW-pf SW-pf B= HW-pf SW-pf B- HW-pf SW.pf Emc Hw.pf Sw.pf Base HW-pf SW-pf

Latency 40 Lstettcy 80 Latency 160 Latency 40 tAtSflCy 80 Latency 160

Figure 5: Effect of memory latency

Table 2: Proportions of conflicts in direct-mapped cache

Programs

Kmiiir
Mp3d
Water
Choleskv

and txefetched blocks. and between txefetched blocks them-
selv&. In the table, the miss ratio of ‘wftware prefetching for
Matmat is very small (< 0.001) and in Water, there are very
few conflict misses left, since most of the data set fits in the
cache and misses are mainly caused by invalidation misses.
The results show that a large portion of conflicts occurs
among data in the working set itself. When a prefetched item
arrives in the cache at a time close to its actual use, the prob-
ability of conflicts with the current working set is small. It is
only in the case of HW-pf in Cholesky that significantly more
prefetched data than necessary is brought into the cache. In
that benchmark we can observe a non-negligible amount of
conflict between the prefetched data and the working set.
This explains partially the increase of data read (read misses
and prefetches) traffic in the network, as shown in Figure 4.

To sum up, we observe that the negative effect of prefetch-
ing in network traffic and conflicts with the working set is
not severe. The increase of network traffic is very small for
SW-pf, whereas HW-pf may give a slight increase. Most

conflict misses are caused by the working set itself.

5.4 Effect of Memory Latency

In this section we explore how variations in the secondary
cache and main memory latencies influence the performance
of the three prefetching schemes. We consider three sets
of latencies: the one used previously (Lj = 80), one where
we consider a processor twice as slow (L.~ = 40), and one
where the main memory latency is doubled (L. = 160) with
the rationale here that our 16-processor system might be a
subset of a larger multiprocessor. In Figure 5, we show the
read access times for these three ormnizations normalized
with respect to the no-prefetch BASE”default case (L = 80).
The read access penalty is decomposed into two section.x
read miss, the stall time due to cache misses, and hit-wait,
the waiting time for a prefetch which is issued too late. In
order to have a fair comparison for SW-pf, we modified and
moved around some prefetch instructions in an attempt to
provide a sufficient prefetching span for large latencies.

As can be seen in Figure 5, the reduction in the read
penalty slightly degrades as the memory latency increases.
This illustrates that both HW-pf and SW-pf still can be
effective, to a lesser extent, in tolerating large latencies by
adjusting prefetching to occur several iterations ahead of the
actual use. Note that since the number of instruction executed
is generally fixed, the slight increase in the read penalty in
SW-pf is more than compensated by the relative decrease in
the overhead of the prefetch instructions. For example, when
passing from L. = 80 to L. = 160, the overall execution
time increases and the overhead from software prefetching
(not shown in the figure), an almost constant number of
instructions for each benchmark, decreases from 8.6% to 690

in Matmat, from 0.9% to 0.04% in MP3D, from 1.770 to

230



k Hw pf Sw pf
%%Ri3%’f

Baa Hw pf Sw pf mmpf

Water

B8ss Hw pf Sw pf
Y.Y.2Qf

b Hw pf Sw pf W= pf

Figure 6: Effectiveness of combining HW-pf and SW-pf

0.013% in Water, and from 3.5% to 0.3% in Cholesky. This
leads us to conjecture that software prefetching should be
more advantageous as the prefetch overhead becomes less
significant with an increase in latency.

The cost of the hit-wait cycles is particularly important
in prefetching. The read penalty in HW-pf contains a fair
amount of hit-wait time. In this scheme, the bokahead
mechanism needs to be reset to the value of the PC after
each incorrect branch prediction. Therefore, the first few
prefetches are not yet one “memory latency time” ahead
of when their data will be used. This phenomenon tends to
be serious in those programs with nested inner loops with
only a few iterations such as Matmat and Water. For SW-pf
(cf. Cholesky), the hit-wait cycles are mostly contributed
by the indirect load prefetches, which are constrained by the
data dependencies. While SW-pf is generally able to identify
most of the cache misses, the stall time for prefetches in the
prologue loop becomes more significant when the latency
increases. There remains the challenge of scheduling useful
computations to overlap with the prefetches, a task that
becomes more difficult as latencies get larger.

6 Combining Hardware and Software
Prefetching

In this section, we propose a combination of hardware and
software prefetching techniques. The main idea is that the
compiler inserts prefetches for user’s semantic data objects
that can be of any size, not necessarily a cache line, in a
manner more related to the program information available
to the compiler, and that the hardware supporting unit takes
care of individual element accesses in loops. The advantage
of this combined scheme is that the amount of software
prefetching instructions is considerably reduced and loop
splitting can be avoided. Thus, the compiler simply finds a

proper prefetching program point for each data object to be
used in loops. To achieve maximum gains, the hardware part
is aimed at prefetching data from the secondary cache to a
relatively small primary cache -- a portion of the design space
where it is recognized that the hardware scheme performs
best [1] -- and the software part is aimed at a large block
fetch from memory modules to the secondary cache. By
adding a special control instruction to the instruction set,
some unnecessary prefetches in the hardware prefetching
scheme can be further reduced by using the instruction as a
control hint to enable (and disable) the hardware mechanism.
Such control hints can be inserted around a loop body so that
the hardware unit will operate only during loop execution.

We performed experiments for studying the effectiveness
of the HW-pf and SW-pf combined architecture. In the ex-
periment, we consider an architecture similar to the previous
ones, except that each processor has a 32K-byte primary
cache (C 1) backed up by a 256K-byte seeonld-level cache
(C2). Both caches are direct-mapped, copy-back with a
cache line size of 16 bytes and are lockup- free,, The one-way
latency time between C 1 and C2 is 5 cycles and thus the
delay for a miss in Cl with a hit in C2 is 10 cycles. Misses
in C2 trigger requests to the global memory lmodules. The
one-way network latency is 35 cycles. Hence, a reference
that misses in both caches incurs a total latency of at least 80
cycles as before. In the experiment, we modify the strategy
for prefetch insertion in software prefetching: we do not
prefetch data in inner-most loops, we do not perform loop
unrolling and splitting, we insert prefetches for user data
structures to be used (regardless of cache size, line size), and
we move prefetches far ahead of actual use (they may even
move to locations before the loop).

Figure 6 gives the simulation results of the new architecture
with the combined hardware and software schemes. The read
access penalty has been further decreased when compared

231



to either the hardware approach or the software approach.
The total reductions of the read penalty are 90% for Matmat,
78% for Mp3d, 88% for Water, 80% for Cholesky. The
instruction overhead of the new scheme is relatively small
when compared with the software approach (note that SW-
pf already performed blcck prefetching in Mp3d). The
portion of total normalized time due to the overhead ranges
from 0.8% in Mp3d to 2.1% in Matmat. Overall, the total
execution time is significantly improved by the combination
of software and hardware schemes.

7 Conclusion
In this paper, we have studied the performance of

hardware-based and software-directed prefetching schemes.
Our qualitative comparisons indicate that in the domain of
linear array references, both hardware and software schemes
are able to generate prefetches for cache misses. However,
the software scheme may have a code expansion problem,
while the hardware scheme has less information on the
usefulness of the prefetched data. The software approach
may use compile-time information to perform sophisticated
prefetching, whereas the hardware scheme has the advantage
of manipulating dynamic information.

The quantitative evaluation was performed by running
direct-execution simulations of a shared-memory multipro-
cessor using four benchmarks. Our experiments confirm the
above observations. We observed that the cache interference
incurred by prefetching is almost negligible. The software
approach has less negative effect on network traffic and
conflicts with the working set than the hardware approach.
However, the overhead due to the extra prefetch instructions
and associated computations is substantial in the software-
directed approach and can offset the performance gain of
prefetching. Our results show that the relative effectiveness
of prefetching is slightly degraded by the increase of memory
latencies, with the software prefetching suffering less.

Finally, we proposed and examined a technique for com-
bining the software and hardware solutions. The main idea is
that software will use program user’s semantics to prefetch
data objects into a secondary cache and that the hardware
supporting unit will take care of accesses in the loop and
fetch the data into the primary cache, The new approach
can combine advantages of both hardware and software ap-
proaches and at the same time avoid most of their negative
effects. Our experimental results show that the new solution
is very attractive in reducing the data access penalty without
incurring much overhead.

References
[1] J.-L. BaerandT.-F. Chen. An effectiveon-chip’ reload-

ing scheme to reduce data access 5nalt . In roe. of
Supercomputing ’91, pages 176--1%, 19~1.

[2] L. Censier and P. Feautrier. A new solution to coherence
problems in multicache systems. IEEE Transactions
on Computers, C-27( 12):1112--1 118,1978.

[3] T.-F. Chen. Data Prefetching for Hi h-Pe~ormance
fProcessors. PhD thesis, Department o Computer Sci-

ence and Engineering, Univ. of Washington, 1993.

[4] W. Y. Chen, S. A. Mahlke, P. P. Chang, and W.-M.
Hwu. Data access microarchitectttres for superscalar

rocessors with com iler-assisted data prefetching. In
F Jroceedings of the 4th International Symposium on
Mircoarchitecture, 1991.

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

M. Dubois, C. Scheurich, and F. Briggs. Memory
access buffering in multiprocessors. In Proc. of the
13th Annual Intl. Symp. on Computer Architecture,
pages 434-442,1986.

S. J. Eg ers and T. E. Jeremiassen. Eliminating false
5sharing. n Proc. of the Int. Conf on Parallel Process-

ing, pages 1:377--1:381,1991.

J. W. C. Fu and J. H. Patel. Data prefetching in
multi rocessor vector cache memories. In Proc. of

Ithe 1 th Annual Intl. Symp. on Computer Architecture,
pages 54--63,1991.

J. W. C. Fu and J. H. Patel. Stride directed ~refetching
in scalar processors. In Proc. of the 25th Znt 1Sy

TonMicroarchitecture, pages 102--110, December 192.

E. Gomish, E. Granston, and A. Veidenbaum.
Compiler-dtrected data prefetching in multi rocessors

fwith memory hierarchies. In Proc. 1990 Int. Conf on
Supercomputing, pages 354--368,1990.

N. P. Joup i. Improvin direct-mapped cache perfor-
mance~~eadd~tionofismallfully-associativecache
and pre etch buffers. In Proc. of the 17th Annual Intl.

. on Computer Architecture, pages 364--373, May
;6%.

A. C. Klaiber and H. M. Levy. An architecture for
software-controlled data prefetching. In Proc. of rhe
18th Annual Intl. Symp. on Computer Architecture,
pages 43--53,1991.

D. Kroft. Locku -free instruction fetch/ refetch cache
% ?organization. In roe. of the 8th Annua Intl. Symp. on

Computer Architecture, pages 81--87,1981.

T. Mowry and A. Gupta. Tolerating latent through
clsoftware-controlled prefetching in shar -memory

f
multiprocessors. Journal o Parallel and Distributed
Computing, 12(2):87--106, une 1991.

T. Mowry, M. S. Lam, and A. Gupta. Design and
evaluation of a com iler algoritm for prefetchmg. In

rProc. of the 5th Int . Con, on Architectural Support
for Pro ram”n Languages and Operating Systems,
pages 65--73,19$2.

A. K. Porterfield. Software methods for improvement
of cache rformance on su rcom uter a lications.
Techni x Report COMP 1#89-9~ Rice~niversity,
May 1989.

J. P. Singh, W.-D. Weber, and A. Gu ta. SPLASH
IStanford parallel applications for s ared-memory.

Co uter Architecture News, 20(1):5--44, March
199Y

A. J. Smith. Cache memories. ACM Computing Sur-
veys, 14(3):473--530, September 1982.

D. M. Tullsen and S. J. Eggers. Limitation of cache
prefetching on a bus-based multiprocessor. In Proc. of
the 20th Annual Ind. Symp. on Computer Architecture,
1993.

M. E: Wolf and M. Lam. A data locality o timizing

?algorithm. In Proc. ACM SIGPLAN 91 Con erence on
Programm@ Language Design and Implementation,
pages 30--44,1991.

232


