
Reducing Memory Latency via

Non-blocking and F%efetching Caches

Tien-Fu Chen and Jean-Loup Baer

Department of Computer Science and Engineering

University of Washington

Seattle, WA 98195

Abstract

Non-blocking caches and prefetehing caches are two tech-
niques for hiding memory latency by exploiting the over-
lap of processor computations with data accesses. A non-

blocking cache allows execution to proceed concurrently
with cache misses as long as dependency constraints are ob-
served, thus exploiting post-miss operations, A prefetching
cache generates prefetch requests to bring data in the cache
before it is actually needed, thus allowing overlap with pre-
miss computations.

In this paper, we evaluate the effectiveness of these two
hardware-based schemes. We propose a hybrid design
based on the combination of these approaches. We also
consider compiler-based optimization to enhance the ef-
fectiveness of non-blocking caches. Results from instruc-
tion level simulations on the SPEC benchmarks show that
the hardware prefetching caches generally outperform non-
blocking caches. Also, the relative effectiveness of non-
blocklng caches is more adversely affected by an increase
in memory latency than that of prefetching caches,, How-
ever, the performance of non-blocking caches can be im-
proved substantially by compiler optimizations such as in-
struction scheduling and register renaming. The hybrid de-
sign cm be very effective in reducing the memory latency
penalty for many applications.

1 Introduction

As the gap between processor cycle time and memory la-
tency increases, the cache miss penalty becomes more se-
vere and thus results in lower processor utilization. Sev-
eral enhancements to cache designs have been proposed to
reduce the miss penalty: Multi-level cache hierarchies [2]
lower the average memory access times in a cost-effective
way; hit ratios can be improved by complementing caches
with small buffers or specialized caching structures[3]; faSt
context-switching can hide the memory latency of a thread
or of a process [16]. The focus of this paper is on another

Permi9eion to copy without fee all or part of this materiel is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires e fee
andlor specific permission.
ASPLOS V - 101921MA,USA
e 1992 ACM 0-89791-535-6/92/0010/0051 ...$1.50

approach, namely how to exploit the overlap of proces-
sor computations with data accesses within one process by
using write buffers, non-blocking caches, and prefetching
caches.

Usually, a processor must stall on a cache miss until the
miss is resolved. In the case of write misses, this can
be avoided by the use of a write buffer. The basic idea
in non-blocking and prefetching caches is to hide the la-
tency of (read and write) data misses by the overlap of data
accesses and computations to the extent allowed by the
data dependencies and consistency requirements. A non-
Mocking (or lockup-free) cache [12, 15] allows execution
to proceed concurrently with cache misses until an instruc-
tion that actually needs a value to be returned is reached.
Such caches exploit the overlap of memory access time
with post-miss computations. Hardware and/or software
Prefetching [1,9, 11,13, 14] can eliminate the miss penalty
by generating memory requests to bring the data into the
cache before its actual use. These techniques exploit the
overlap of computations prior io a cache miss.

In this paper, we evaluate the effectiveness of these
hardware-based techniques on reducing the memory la-
tency. We consider ways to improve the approaches
by compiler-based optimizations (e.g., code rescheduling,
software register renaming). We also propose a hybrid
design combining non-blocking and prefetching caches.
Our results confirm previous studies [6] indicating that
buffering writes can remove most of the write miss penalty
when reads are allowed to bypass writes. Our experiments
show that prefetching caches, which require extra hardware
complexity, generally outperform non-blocking caches and
that they are less sensitive to the increase in memory la-
tency. However, the compiler optimization that we pro-
pose can significantly improve the effectiveness of non-
blocking caches.

The rest of the paper is organized as follows: Section 2
gives some background information on non-blocking and
prefetching caches, Section 3 describes the processor and
memory architectures under study as well as the evalurt-
tion methodology. Simulation results are presented in Sec-
tion 4. Section 5 describes the compiler optimization algo-
rithms and discusses the results. In Section 6, we propose
and evaluate a hybrid design. Finally, we conclude in Sec-
tion 7.

51

g--------------- ------------------------------ --------------------,
i
I * I LA-PC
I
I Reference stride

I ~ I ‘F “

I Predction
t Table

prev

I
I

#—
:
I I

ORL
1 ------ -----, .- - - - --- - - - ---- - - -- - ------- - - - --- . ----

#l$3T—
exeeution brarrchtarget

CDw!e
unit

--- ------
Pc

1
I
I
I
1
I
I
I
I
I
1
I
1--

Figttrel: Overall stmctttre ofdataprefetching
\

2 Background and Performance Issues

We start this section with a brief description of non-
blocking caches, write buffers, and prefetching caches. We
then discuss performance issues and the extra hardware
support required for the additionzd features.

2.1 Non-blocking Caches

Lockup-free caches were originally proposed by Kroft
[12]. In his design, the following are included: (i) load
operations are non-blocking, (ii) write operations are non-
bloeking, and (iii) the cache is capable of servicing multiple
cache miss requests.

In order to allow non-blocking operations and multiple
misses, Kroft introduced Miss Information/Status Holding
Registers (MSHRS) that are used to record the information
pertaining to the outstanding requests. Each MSHR entry
includes the data block address, the cache line for the block,
the word in the block which caused the miss, and the func-
tion unit or register to which the data is to be routed. Subse-
quently, loekttp-free caches have been mentioned often in
the literature [6] but there is some confusion on what part
of the processor-cache-memoty interface should support a
given feature. Our view is that non-blocking loads are fea-
tures specified in the processor, non-blocking writes are
supported by buffering writes, whereas whether the cache
allows multiple pending accesses or not depends not only
on the presence of MSHRS, but also on the available cache
bandwidth as defined by the interface between caches and
memory modules. In the remainder of this paper, a non-
blocklng cache will be a cache supporting non-blocking
reads and non-bloeklng writes, and possibly servicing mul-
tiple requests.

Non-blocking loads require extra support in the execution
unit of the processor in addition to the MSHRS associated
with a non-blocking cache. If static instruction scheduling
in pipelines is used in the processor, some form of register
interlock (like a full/empty bit for each register) is needed
for preserving correct data dependencies. Under dynamic
instruction scheduling, introducing out-of-order execution,
some scoreboarding mechanism is required. Both schedul-
ing strategies need interrupt handling routines that can deal
with interrupts generated by the non-blocking operations.

52

Write buffers are used to eliminate stalls on write oper-
ations. They permit the processor to continue executing
even though there may be outstanding writes. Write buffers
in conjunction with write-through caches are especially
useful in reducing the write penalty. For write-back caches
(with write-allocate), write buffers are used to temporarily
store the written value until the data line is returned and for
temporary storage of replaced dirty blocks. Some imple-
mentations [3] allow multiple writes on the same line to be
combined, thus reducing the total number of writes to the
next level of the memory hierarchy.

A consistency problem cam arise when the processor al-
lows non-bloeklng writes since a later (in program order)
read may be needed before a previous buffered write is per-
formed. If these two operations are on the same data block,
an associative check in the write buffer or the MSHRS must
be done to provide the correct value to the following read.

2.2 Prefetching Caches

Prefetching hides, or at least reduces, memory latency by
bringing data in advance rather than on demand. Prefetch-
ing can be hardware-based [1], software-directed [9, 11,13,
14], or a combination of both. The main advantages of
the hardware-based approach are that prefetches are han-
dled dynamically without compiler intervention and that
code compatibility is preserved. However, extra hard-
ware resources are required and unwanted data coutd be
prefetched. In contrast, software-dwected approaches rely
on data access patterns detected by static program analysis
and allow the prefetching to be done selectively. The draw-
backs are that some useful prefetching cannot be uncovered
and that the prefetch instructions generate execution over-
head.

The hardware-based prefetching scheme used in this paper
is derived from the one proposed in [1]. It consists of a
support unit (cf. Figure 1) for a conventional data cache
whose design is based on the prediction of the execution
of the instruction stream and associated operand references
in load/store instructions. The latter, and their referenc-
ing patterns, are kept in a reference prediction table (RPT)
which is organized as a regular cache. An entry in the RPT
consists of the instruction address (used as the cache tag),
the effective address of the operand generated at the last ac-

cess, the stride (updated at each access), and two state bits
for the encoding of a finite state machine to record the ac-

cess patterns and to decide whether subsequent prefetches

should deactivated orprevented. The RPTwillbeaccessed
ahead of the regular program counter (PC) by a look-ahead
program counter (LA-PC). The LA-PC is incremented and
maintained in the same fashion as the PC with the help of a
dynamic branch prediction mechanism. The LA-PC/RPT
combination is used to detect regular data accesses in the
RPT and to generate prefetching requests. The prefetched
data blocks will be put in the data cache. Data pollution
resulting from erroneous prefetches can be ahnost totally
avoided by the fine tuning of the RPT finite state machines.
The supporting unit is not on the critical path. Its presence
should not increase the cycle time or data access latency
except for an increase in bus traffic.

The key to hiding memory latency is to keep enou@ dis-
tance between PC and LA-PC so that the prefetched data
arrives “just before” it is needed. The LA-PC, which ini-
tially points to the instruction following the current PC,
moves ahead of the PC when the execution statls on real
misses. Incorrect branch predictions and other mechanisms
limit the distance from growing too large. Note that if the
(prefetched) data is not resident in the cache in time when
it is accessed by the PC, or if it has not been predicted, then
the processor will always wait until the cache miss is com-
pleted, i.e., cache miss operations are blocking.

2.3 Performances Issues

As we mentioned previously, the non-blocking operations
exploit the post-miss overlap of computation and memory
access while prefetching exploits the pre-miss overlap. We
give now a brief qualitative view of the expected benefits
for both types of overlap.

Non-blocking loads delay processor stalls until the neces-
sary data dependence is encountered. They will become
necessary for processors capable of issuing multilple in-
structions per cycle [15]. However, the non-blocking &-
tance, which is the number of instructions that can be over-
lapped with the memory access, is likely to be small in
the case of static scheduling. It can be increased when
compilers produce code optimized for this potential over-
lap (see Section 5). A larger non-blocking distance cart be
obtained with dynamic scheduling and out-of-order exe-
cution. However, the effectiveness is still subject lto data

dependence effects, branch prediction, and the size of the
lookahead window provided by the architecture [7].

By comparison, non-blocking writes can be more adk’anta-
geous in reducing the write miss penalty because the non-
blockmg distance is usually equal to the memory access
timel. Moreover, the write buffer, a FIFO queue lbuffer-
ing pending writes, does not need a supporting unit in the
processor. On the other hand, the write miss penalty may
not be a large fraction of the total data access penalty,
even without a write buffer. We will consider write buffers

1In other words, the processordoes not statl on most write misses.
A stall would occur only if a write miss is followed by a read miss on a
different word in the same block. In that case, the stall is attributed to
the read miss.

both with read bypuss (i.e., read misses have priority over
writes) and with no-bypuss,

In contrast with the non-blocking distance, the lookdteud
distunce, the number of cycles which a prefetch request is
generated ahead of the reference instruction, can be tuned
by the designer and be as large as a small multiple of the
memory latency. In our scheme, its magnitude is con-
strained by effects such as the capacity of the RPT, the
amount of regular data access patterns, and the success of
brrmch prediction techniques. The implementation costs
of prefetching caches, additional on-chip support units and
more hardwaxe complexity, are substantially higher than
those of non-blocking caches.

A finat point to mention is that in the case of non-blocking
loads, the binding of a register with a certain vatue starts at
the moment the non-blocking load is initiated. In contrast,
the prefetch request is non-binding; it is only a hint to bring
a data line in a cache closer to the processor.

3 Architectural Models and Evaluation
Methodology

In this section, we first describe our architectural models
for non-blocking and prefetching caches. We then present
our simulation methodology and the benchmarks used in
the evaluation.

3.1 Processor-cache Models

Our baseline system consists of a CPU with a load/store ar-
chitecture similar to the MIPS R300CI and am ideal instruc-
tion cache (no I-cache misses). The CPU has an instruction
decoding unit, a fixed point unit (FXU), a floating point unit
(FPU), and a cache interface. The decoding unit issues an
instruction per clock cycle and the FXU can execute an in-
teger operation in one cycle (perfect pipelining).

The FPU, which behaves like a co-processor, can accept
one floating-point operation at every cycle until a data de-
pendency on an unfinished instruction occurs. In this case,
the dependent instruction needs to wait until the conflicting
operation terminates. The FPU will handle FP operations in
a multicycle pipeline with execution times similar to those
of the MIPS processor.

The cache interface can handle one data access at each cy-
cle and, in case of a hit, the load latency is one cycle (i.e.,
delayed load with one delay slot). In the case of a write
hit, an extra cycle is required to modify the data block in
the cache. A real read miss will be given priority over
buffered prefetch requests or writes and the allocation due
to write miss has priority over prefetches. However, a fetch
in progress cannot be aborted.

All caches used in this study are 32K bytes, direct-mapped,
have 16 bytes block size, and use a write-back, write-

atlocate policy unless otherwise specified. In the baseline
architecture a cache operation is atways blocking.

When studying non-blocking loads, we assume a static
scheduling of the pipeline. A status bit is associated with
each register. On a cache miss, the target register status bit

53

fetch A
$ t fetch B

(a) t
req B xfer B

4

m ‘l~fi%’? k,f,, A

Overlapped ~-
. . . . ---- 1

w--------------l ‘fe’B {

q +xfer A
(c) I

req + xfer B
{

P@elined I i

............................
!

F
CPu

C1 ORL

..

..............................i

b!’
CPU !

cl ORL :

:0 ❑ :
..

+
bus

...............................

‘bid
CPU !

ORL ;
cl -;

...+i

lNTERCONNECf

@El Wkml m
Non-overla@(l) Overlapped(C,N) Pipdined~

ORL of cachesfor eachmemory models

Timiog of data acceasfor memoq models

Figure 2: Three memory models

is reset and the outstanding information is recorded. When
the miss is resolved, the register status bit is set. An instruc-
tion needing the value from a register with its status bit reset
will cause the processor to stall until the value is returned
from memory. If a cache miss occurs when a request is in
progress, the cache controller will check to ascertain that
the same block is not requested twice.

When studying non-blocking writes, we assume an 8-entry
write buffer. A write miss will allocate an entry in the write
buffer, update the word in the entry, set the corresponding
valid bit in a “valid bitmap”, and then initiate a data ac-
cess to memory whenever the memory interface is avail-
able. Subsequent misses check the write buffer. A read
miss finding a matched valid word in the write buffer is
treated as a cache hit. A write miss that finds a matched
entry in the write buffer can be merged by writing the data
in the buffer and setting the corresponding valid bit. When
the block is returned from memory, those words with valid
bits set in the buffer entry replace the corresponding ones
returned from memory before the entire block is written
into the cache.

A 256-entry reference prediction table is used to record and
generate data prediction streams in the case of prefetching
caches. This RPT and its associated complexity require
roughly as much real estate on the chip as a 2K bytes data
cache[l]. Branch prediction is performed through a two-
bit state transition Branch Target Buffer. Like the baseline
caches, the prefetching caches will cause the processor to
stall on each cache miss.

The various architectural choices that we experimented
with are shown in Table 1. Each simulated architecture is
based on the combination of components described earlier
that are not mutually exclusive. This allows us to study the
effect and contributed performance gain of various tech-
niques, including prefetching caches (PREFETCH), write
buffer (WB), prefetching caches coupled with write buffer
(PREFETCH/WB), non-blocking caches (NBC), and by-
pass of writes by reads.

3.2 Memory Models

Data bandwidth is an important consideration in the design
of an architecture that allows overlap of computation and
data access since several data requests can be present si-
multaneously. We present three memory interfaces with in-

54

~

cache fetch wrt read bypass bypass

WB x x x
PREFETCHAVB x x x x
NBC x x x x

WB x x x
PREFETCHAVB x x x x
NBC x x x x

HYBRID x x x x x

creasing capabilities of concurrency. Since several requests
can be present, either in process or waiting to be processed,
we associate an Outstanding Request List (OIU) with the
prefetching and non-blocking caches (in this latter case, the
ORL and MSHRS are similar). A requirement for this list
is that it can be searched associatively. The three memory
interfaces are as follows (cf. Figure 2 for timing charts and
block diagrams).

●

●

●

Non-overlapped(l) : As soon as a request is sent to
the next level, no other request can be initiated until
the (sole) request in progress is completed, This model
is typical of an on-chip cache backed up by a second
level cache.

Overlapped(Cm): The access time for a memory re-
quest can be decomposed into three parts: request is-
sue cycle, memory latency, and transfer cycles. We
assume that during the period of memory latency other
requests can be in their issue or transfer phases. How-
ever, no more than one issue or transfer can take place
at the same time. This model represents split busses
and a bank of C interleaved membry modules or sec-
ondary caches. An ORL with N entries is associated
with each module.

Pipeline: A request can be issued at every cycle.
This model is representative of processor-cache pairs
being linked to memory modules through a pipelined
packet-switched interconnection network. We assume
a loud lhrough mechanism, i.e., the desired word is

available as soon as the first data response arrives. An
N-entry ORL is associated with the cache.

In our experiments, the default value for the memory la-
tency 6 is 30 cycles. The configurations of the ORLS that
we used are Non-overlapped(l), 0verlapped(8,2), and
Pipeline,

Note that a non-blocking cache with a Non-overlapped in-
terface model can only service one request a time while the
Overlapped and Pipelined models are capable of handling
multiple misses.

3.3 Simulation Method

We evaluated our proposed architectures using cycle-by-
cycle trace generation combined with on-the-fly simula-
tion. Benchmark programs were instrumented on a DEC-
station 5000 using the pixie facility. To simulate the in-
terlock mechanism for non-blocking reads, the simulator
reads the object code of the benchmark program and de-
codes instructions so that it is aware of which registers are
involved in each instruction as well as boundary informa-
tion on basic blocks. The experiment results are collected
at the clock cycle level from the individual configurations.

The traces captured at the beginning of the execution phase

of the benchmarks were discarded because they are traces
of initial routines that generate the test data for the bench-
marks. No statistical data was recorded while the system
simulated the first 500,000 data accesses. However, these
references were used to fill up the cache, the Branch Pre-
diction Table, and the Reference Prediction Table in order
to simulate a warm start. After the initialization phase and
the warm-start period, simulations results are collected for
the first 100 million instructions or for the entire execution,
whichever finishes first.

3.4 Benchmarks and Metrics

We use the SPEC2 Benchmarks (see Table 2), which are
compiled by the MIPS C and the MIPS F77 compilers, both
with default options. Table 2 shows some reference char-
acteristics for the applications. The data is collected based
on the simulation of our baseline cache. As usual, reads are
much more frequent than writes and the proportion of write
misses is considerably smaller than the proportion of read
misses.

In the following sections, we will present the results of our
experiments by using the CPI due to the data access penalty
as the main metric. This contribution is defined as:

cphta .,...,=
total data access penalty

number of instructions executed

when an average reduction of CP&a acce,, is summa-
rized, a geometric mean is used to average the percentages
of the penalty reduction for the benchmarks. In the figures,
we present a breakdown of the data access penalty as fol-
lows: the bottom section (light grey area) of each bar repre-
sents the stalls for reads, the black section shows the write

ZSPEC is a trtiernwk of the Standard Performance Evaluation
Corporation.

55

Table 2: Statistics of benchmarks (for first 100 million in-
tmctions

Name
lFfZEF

Tomcatv

Spice

Espressc

Doduc

Nasa

Fpppp

Gcc

Xlisp

Eqntott

] 32K baseline cache)

ratio over total instrs miss

-a-ia-
mm-
0.418

0.258

0.182

0.301

0.303

0.567

0.338

0.467

0.299

iZXi_ write ratio
w 0.154 0.087

0.326

0.209

0.167

0.223

0.152

0.449

0.223

0.315

0.265

0.092 II 0.063

1
0.049 0.116

0.015 0,184

0.078 0.017

0.151 0.281

0.118 0.004

0.115 0.018

0.151 0.014

0.035 0.033

$%0 of cache

*
m-i-
82.4

98.7

99.5

58.7

84.9

62.2

65.3

65.5

79.2

write
--W9---

17.6

1.3

0.5

41.3

15.1

37.8

34.7

34.5

20.8

miss penalty, and the section on top of tha (grey area) rep-
resents the stalls due to the memory interface being busy or
waiting due to the ORL or the write buffer being full.

4 Simulation Results

In this section, we present a comparative analysis of the
performance achieved by the various architectural choices
and show the impact of the memory models.

4.1 Effect of Architectural Variations

Figure 3 shows the results for the benchmarks when sim-
ulated on the various architectures. In this first set of ex-
periments, we used the Pipelined memory model so that
we could temporarily ignore bandwidth limitations. Thus,
there is no busy time penalty. We examine the data of Fig-
ure 3 according to three groups of architectures: (i) proces-
sors always stalling on a miss (blocking caches: BASE and
PREFETCH), (ii) architectures with non-blocking writes
and no bypass, and (iii) architectures with non-blocking
writes and bypass of writes by reads. In the last two cat-
egories, we consider a baseline cache with non-blocking
writes (WB), a prefetching cache with non-blocking writes
(PREFETCHAVB), and a non-blocking cache (NBC) (cf.
Table 1).

A comparison between the baseline and the prefetching
cache (the first two bars in the figures) shows a moder-
ate to very significant reduction in the penalty for data ac-
cess when the prefetching facility is added to the baseline
cache. The access penalty is reduced by 9690 for Matrix,
95% for Tomcatv, 19% for Spice, 27% for Espresso, 12%
for Doduc, 36% for Nasa, 4% for Fpppp and Gee, 41% for
Xlisp, and 19% for Eqntott (geometric mean is 21%). The
prefetching scheme can achieve reasonable gains at the cost
of the RPT and the additional logic. The effectiveness of
the prefetching technique relies mostly on the presence of
regular data access patterns, hence the large gains in Matrix

and Tomcatv.

The effect of non-blocking writes on the baseline archi-
tecture is shown by the difference between the fist, third
(no-bypass), and sixth (bypass) bars in the figures. In the

BASE PEBFEP2H m “t%’+ ‘c “’ ‘w ‘c
No-bypass Bwass

Sj

1
Doduc

BASE w.mmtx m Fq&d+ NBc ?/B Pq#t NBc

No-bypass Bypass

BASE —H W PI fd.h+ NBC W 1% etch+ NBC

No-&pass
$/3

Bypass

BASE W.@5FIW w R 4+ NBc
i%

V/n BT: .,

No-bypass

Espresso
~1

BASE Pmn V/B h, .h+ NBc w% %0 din+ NBcWEI
No-bypass

in
Bypass

BASH P— WI q.~b+ NW w Fly&cbt NBc

No-bypass Bypass

BASE — W tie~~h+ NBC Q/B Pm&t+ NBC

No-bypass Bpass

BASE P-H
~N:@;w”’

m F7z debt NBc
b

B~a6s

Figure 3: Simulation Results for 6 = 30 (Pipelined)

baseline architecture, the processor stalls on a write miss
until the write completes. In the non-blocking writes (WB)
implementations, the write is put in the write buffer. The
processor will stall at the next read operation in the case of
no-bypass and only on a read miss – and the read will have
priority over buffered writes – or if the write buffer is full in
the case of bypass. As can be seen, the WB with no-bypass
has almost no effect on the write penalty (Nasa has a small

gain). This is because the writes are most often followed
by a read within a very small number of instructions. When
the restriction of stalling on a subsequent read is lifted,
i.e., WB with bypass, the penalty due to write misses is
in essence totally avoided (cf. Tomcatv, Doduc, and Nasa).
However, such a reduction by the WB may not contribute
to a significant overall performance improvement over the
total penalty when the fraction of write miss is very small

56

mfi!wt,w?iMfK&

4545,2

27.9
31.4

23,5 ,.,.,.

79 ‘6:118 ‘39,,*.:.,., ~32 ~
XII,~

Matrix Tomcatv Spice Espresso Doduc Nasa Xlisp Eqntott

Figure 4 Effect of a larger latency (for 6 = 30 vs 6 = 100 Pipelined)

(cf. Table 2). A surprising but subtle result is that a write
buffer may even reduce slightly the read miss penalty (e.g.,
12% reduction for Nasa). This reduction is a consequence
of forwarding data from a write to subsequent reads.

We now look at the performance of WB in conjunction with
prefetching (PREFETCWWB, fourth and seventh bars)
and non-blocking caches (NBC, fifth and eight bars). The

purpose of showing PREFETCWWB is to give a fair base
of comparison to contrast the effect of the read penalty re-
duction between the pre-miss overlap and the post-miss
overlap. We focus only on WB with bypass. The results
for no-bypass are qualitatively similar. The relative per-
formances of NBC and PREFETCWWB can be &lvided
into three groups: (i) PREFETCWWB performs extremely
well, (ii) PREFETCWWB has moderate improvement and
also outperforms NBC, and (iii) the performance of NBC
is better than that of PREFETCI-UWB.

The Matrix and Tomcatv benchmarks belong to the first
group. These programs have very good reference pre-
dictability. Although a non-blocking cache contributes to
some penalty reduction (12% for Matrix and 28% few Tom-
catv), prefetching still significantly outperforms N13C.

Spice, Espresso, Xlisp and Eqntott are the benchmarks in
the second group. The effectiveness of NBC is even less
than that in the first group (reductions of 10%, 3%,8% and
12% respectively) but so is PREFETCWWB ‘s. The aver-
age size of the basic blocks in these two programs is smatler
than that of basic blocks in the other programs [4]. The
small size usually restricts the prediction of references and
of branches for PREFETCWWB and also implies a limited
non-blocking distance. Therefore, for Spice and Espresso,
PREFETCH/WB has some moderate gains over the base-
line WB, and NBC is only slightly better than W13. Also,
WB does not help much since the fraction of write misses
is fairly low.

Doduc and Nasa form the third group where NBC becomes
more attractive than PREFETCWWB. NBC is quite effi-
cient for these two programs. The weak performance of
PREFETCWWB in Doduc can be related to the size (or
associativity) of the reference prediction table. Doubling
the size of the table, or makhtg it of larger associativity,
would remove the large number of conflicts (35Y0 with a
256-entry direct-mapped RPT). In the case of Nasa, both
schemes lead to a fair amount of performance gain, with
NBC showing an advantage.

57

PREFETCH/WB and NBC have little improvement over

WB on the performance of Fpppp and Gee. Since Fpppp
has already a low miss ratio and a large loop size (a 256-
entry RPT is too smatl), the improvement due to a prefetch-
ing scheme is very marginal. Gcc is a big program with
many conditional branches. Since its predictability is very
poor and the basic block size is small, prefetching will oc-
cur rarely.

4.2 Effect of Large Latency

Figure 4 shows the results for eight benchmarks when the
memory latency 6 is larger. The figure plots percentages of
reduction in data access penalty of PREFETCH/WB and
NBC over WB with bypass with 6 = 30 (left bars) and
6 = 100 cycles (right bars). In general, the effective-
ness of PREFETCH/WB is fairly insensitive to the (large)
memory latency (except for Espresso, see below) and is
more stable than NBC’S. This is because the lookahead
distance of the prefetching can be dynamically as large as
the memory latency so that data may be prefetched early
enough to hide the latency. In contrast, the non-blocking
distance, which is statically determined by the programs,
becomes relatively small when the latency increases. Thus
NBC’s relative effectiveness is reduced significantly (al-
most a factor of 6 in Doduc). Note, however, that the pre-
dictability will decrease as the latency increases mostly be-
cause branch prediction becomes less reliable. The pro-
gram Espresso, where the average size of basic blocks is 5.6
instructions, is an example with poor reference predictabil-
ity . PREFETCI-UWB’s effectiveness in this case is cut in
half when 6 increases from 30 to 100.

4.3 Impact of Memory Models

Figure 5 presents the data access penalties of some of the ar-
chitectural choices with respect to the three memory mod-
els (WI3 is with bypass). The Overlapped model takes 2
cycles for the request, 20 for the memory latency, and 8 for
the transfer. In the Overlapped and Non-overlapped mod-
els the interface cannot always forward a request at the next
cycle as in the Pipelined case. Therefore some busy time
can now become part of the access penalty. As could be
expected, the stall penalty increases when memory band-
width is restricted. This is especially noticeable in three of

3 FPPPP ~d Gm we not shown because comparisonsWhh rn@n~

improvementscould be misleading.

Nonoverlappsd Overlapped Pipelined

Nasa

Pm fet.h W R ch+ NBC Fwfetda W R. eta+ NBC
% LB

,.tcwh m W&&A+ NBc rlcr..h m r%p+ l?sc Ref?f& m Re&&b+ NBc R,,.* w F?.$&&+ NBc

Nonoverlapped Overlapped Pipelined Nonoverlap~d Overlapped Pipelined

Figure 5: Effect of memory models for 6 = 30

the benchmarks: Espresso, Xlisp, and Nasa. It indicates
that an adequate interface is necessary to meet the memory
bandwidth demand (concurrent requests) of the prefetch-
ing and non-blocking techniques. In particular, for Nasa,
a large portion of busy time is eliminated when passing
from the Non-overlapped model to the Overlapped and to
the Pipelined models. The primary reason is that the av-
erage interval of time between (data) cache misses is 12
cycles. Clearly, the bandwidth of an interface like the Non-
overlapped model with 6 = 30 is insufficient.

One interesting observation regarding the comparison be-
tween PREFETCH and NBC is that when moving to a
larger bandwidth, both the read miss and busy time por-
tions of the penalty in Prefetch are reduced, whereas, in
NBC, only the busy time portion diminishes. The reason is
that when the bandwidth is sufficient, the prefetching will
bring some blocks in the cache sufficiently ahead of time
and thus avoid some of the misses that would be generated
otherwise.

5 Compiler Assistance for Non-blocking
Loads

In this section, we consider code generation optimization
for non-blocking loads. We examine two kinds of opti-
mization: instruction scheduling for exploiting a possibly
large non-blocking distance within a basic block and reg-
ister renaming for removing false dependencies before the
instruction scheduling is applied.

5.1 Instruction Scheduling

The instruction scheduling that we study here, based on the
scheme given by Gibbons and Muchnick [8], is performed
after register allocation. The goal of the algorithm is to cre-
ate as much distance as possible between a load and the first

58

instruction dependent on it. At the same time, we want to
intersperse the loads so that the lack of memory bandwidth
does not become too much of a constraint. The algorithm
schedules instructions only within basic blocks. Instruc-
tions within the block are the nodes of a weighted directed
acyclic graph (DAG), Edges represent dependencies and
are labeled with latencies. The latency of an edge between
two dependent nodes is one except when the first instruc-
tion is a load. To achieve non-blocking distances as large
as possible and to avoid the clustering of loads at the begin-
ning of the block, we estimate the latency of a load edge as
the minimum of either the size (in number of instructions)
of the basic block size divided by the number of loads in
the basic block, or the actual memory latency. Once the la-
tencies of the edges have been determined, we can assign
weights to the nodes of the DAG, with the weight of a node
being the number of child nodes plus the maximum (over
its children) of the sum of the weight of a child and of the
weight of the edge leading to the child. After the weighted
DAG is built, we apply a list scheduling algorithm to derive
the final schedule (see Appendix A).

With more information on program behavior, the estimates
of latencies could be improved. For instance, a load of an
array element with a large stride is likely to be a cache miss
while accesses to the stack area will most often result in
cache hits. An intelligent compiler could take this into ac-
count when assigning edge latencies.

Register renaming at compile time has been used in con-
junction with software pipelining [10]. The purpose of
register renaming is to remove write-after-read (WAR)
and write-after-write (WAVV) dependencies, thus allowing
greater freedom in moving instructions around. The algo-
rithm we use first identifies the live ranges (from a new
definition to the last use before the next definition) for each
register to be renamed (local registers). Then, for the live

ranges entirely falling within the basic block, except the
last live range, the destination register used in a load oper-
ation is replaced by a new register. This renaming is carried
on for those instructions using the same register within the
live range. Since the scheduling is performed after register
allocation, we assume that there is a set of “spare” registers
available. This is in order to keep the atgorithm simple.
Otherwise, we would have to identify temporary registers
and unused registers in the basic block and our algorithm
woutd become global rather than being restricted to the ba-
sic block level. After the register renaming process, we ap-
ply the instruction scheduling described above on the new
DAG from which some false dependence edges have been
removed.

A potential criticism of our study is that we adversely in-

crease the register pressure in a basic block. A compensat-
ing factor is that WB may help the extra spilling store/load
instructions that could be generated by buffering writes.
Our point is that we give priority for register use to a load
operation with a large latency, even at the cost of adding
spill code. Although the results of ottr register renaming
procedure are optimistic since we do not limit the number
of registers, the approach is still feasible if the compiler
identifies the unused registers or performs a priority-based
register allocation [5] by taking into account the cost of data
access penalty.

5.2 Effect of Instruction Scheduling

In general, the non-blocking dkxance based on the original
code is fairly small. The instruction scheduling algorithm
is very effective for increasing the non-blocking distance
for Matrix and Tomcatv (increased from 2.23 to 8.33 for
Matrix and from 3.38 to 10 for Tomcatv) [4]. This indi-
cates that in these two benchmarks there are severat data
loading phases followed by computations on that data. The
scheduling algorithm reorganizes the instructions to atlow
more overlap between the independent loading phases. For
the other benchmarks that do not have this characteristic,
the distance is moderately increased.

When register renaming is added to instruction scheduling,
the compiler has more flexibility to optimize the code re-
ordering. A significant increase in non-blocking distance is
achieved in Doduc and Nasa with the use of a small number
of extra registers (less than one per block on the average)
[4]. On the other hand Matrix and Tomcatv need more reg-
isters with not much improvement for the latter. Note that
the number of registers required for renaming is cweresti-
mated, since two live ranges, which are originally far apart,
are less likely to be live at the same time after renaming
because of other dependence chaining between them, This
was not taken into account in our algorithm but could be
checked out by the compiler.

Figure 6 shows the relative performance of the optimiza-
tion for the NBC architecture under the Non-overlapped
model. The data access penatty for the two code optimiza-
tion algorithms is normalized to the penalty of the originat

4In the following discussion, we omit the results of Xlisp and Eqntott
because of their small average block size (4.97 and 3.S4 respectively)
similar to those of Espresso and Spice.

Makix Tomcatv Spice Eqxe.sso Doduc. Nasa

Figure 6: Effect of instruction scheduling on NBC for 6 =
30 (Non-overlapped)

code. Only those programs with low miss ratios (Matrix,
Tomcatv, and Doduc) can benefit from instruction schedul-
ing. This is not surprising because the Non-overlapped
model does not provide sufficient bandwidth to fully ex-
ploit the advantage of the overlap. Also, register renaming
does not contribute much performance gain to the NBC and
it might even degrade the performance slightly (cf. Ma-
trix). Instruction scheduling tends to increase the cluster-
ing of read accesses. Scheduling instructions which have
no false dependencies by applying register renaming causes
the read accesses to be more clustered.

Matrix Torncatv Spice Espresso Do&c Nasa

F@ure 7: Effect of instruction scheduling on NBC for 6 =
30 (Pipelined)

When the Pipelined model is assumed (shown in Figure
7), the clustering of reads becomes an advantage that can
be exploited by the NBC. In all cases, except Espresso
and Spice, the experiments show significant gains from
instruction scheduling (improvement varies from 2% for
Espresso to 35% for Tomcatv). Even better results are
achieved when register renaming is applied before instruc-
tion scheduling (improvement varies from 3% for Espresso
to 67% for Matrix but recall that the results are optimistic).
The geometric mean of penalty reduction by instruction
scheduling for those benchmarks is 9.590 over the original
code and when register renaming is added, this geometric
mean is up to 24% over the original code. This illustrates
that instruction scheduling and register renaming provide
an inexpensive solution to help hide the large memory la-
tency for non-blocking loads in processors whose design
is based on static instruction scheduling. By extending in-
struction scheduling across basic block boundaries further
improvements should be achieved.

6 A Hybrid Design

Since prefetching and non-blocking caches are not mutu-
atly exclusive, a further enhancement would be to combine
the two schemes: a prefetch hint is provided prior to the
load instruction and the binding of a loaded value with a

59

register is delayed until the value is actually used. This
hybrid design is attractive since the combined scheme can
tolerate the drawbacks of poor predictability and of short
non-blocking distance. However, the cost to be paid is that
of an RPT and associated logic for prefetching, an ORL (or
MSHRS) that can be searched associatively, and register in-
terlocks for the non-blocking caches.

Tomcatv

1.22

0.92

CM

(dStS) (361

0.31

I

-+- Basetine cache
-+ Prefetch

\

+ NBC (bypsSS)
+ Hybrid (bypsSS)
-+ Hybrid+scheduled (bypsss)

0.00 4
I I I I I

8 16 ’32 64 128

Csche size (K)

Nasa

CP1 I \

*
0.00

+ ---*---4-.-..-+. --_*
I I I I I I I

8 16 32 64 128

Cachesize (K)

Figure 8: Hybrid design on varying cache size 6 = 30
(Pipelined)

In Figure 8, we present the results of the simulation of such
an hybrid scheme with and without instruction reschedul-
ing when compared to the baseline cache, a prefetching
only scheme, and a non-blocking cache with bypass. We
vary the cache size from 8K bytes to 128K bytes and show

only two benchmarks: Tomcatv where prefetching was per-
forming much better than NBC, and Nasa where the con-
verse was true. In Tomcatv, the prefetch scheme already
had reduced the data access penalty to only a few hun-
dredths of a cycle. The hybrid design has now nearly ideal
performance. The performance of the hybrid scheme has
more dramatic effects in Nasa. The data access penalty
that was far from being negligible if either prefetching or
NBC was applied alone becomes small even at the smallest
cache size. Code optimization helps the hybrid combina-
tion further so that only 4% of the initial penalty incurred
with a baseline cache remains. These results indicate that
the length of the overlap from pre-miss to post-miss can be
large enough to cover the memory latency to a great extent.
The additional cost paid for the hybrid design is justified by
the significant performance improvement.

7 Conclusion

In this paper, we have compared the effectiveness of
prefetching caches, write buffers, and non-blocking caches
in exploiting the overlap of data accesses with computa-
tion. These comparisons were made using the SPEC bench-
marks and simulations were performed on a cycle by cy-
cle basis. Three models of memory interface were used
with each model showing an increasing possibility of con-
currency of access to the next level of the memoxy hierar-
chy. The results show that a prefetching cache can elim-
inate significantly and, in some cases, ahnost entirely the
data access penalty. We confirmed previous stndles show-
ing that buffering writes while allowing bypass of reads can
eliminate entirely the write miss penalty. When the non-
blocklng write with bypass is used as a basis, the average
percentage of read penatty reduction by prefetching caches
was 35%, whereas the average percentage of read penatty
reduction by non-blocking caches was 16%. Also, the ef-
fectiveness of prefetching caches is less sensitive to a large
memory latency than that of non-blocking caches.

Code optimization via instruction scheduling can reduce
prominently the data access penalty in the case of non-
blocking caches. We have presented a local (at the basic
block level) algorithm that, on the average, reduced the
penatty by 9.5%. With the addition of an (optimistic) re-

naming scheme, this reduction went up to 24%. These re-
sults illustrate that anon-blocking cache assisted by a good
code optimizer and associated with a statically scheduled
processor can achieve remarkable gains at a cost of less
complicated hardware complexity than what is needed for
a dynamically scheduled processor.

Finally, we have proposed a hybrid design incorporating
features from both prefetching and non-blocking caches.
We have showed that the combination of pre-miss overlap
and post-miss overlap present in such a scheme can be very
effective in hiding large memory latencies.

Acknowledgments

We would like to thank Craig Anderson and Richard
Zucker for their helpful comments on an earlier version of
this paper. This work was supported by NSF Grants CCR-
9101541 and CCR-8904190, and by Apple Computer.

References

[1]

[2]

[3]

J.-L. Baer and T.-F. Chen. An effective on-chip
preloading scheme to reduce data access penalty. In
Supercomputing ’91, pages 176-186, 1991. Also TR
91-03-07, Department of Computer Science and En-
gineering, University of Washington.

J.-L. Baer and W.-H. Wang. Multi-level cache
hierarchies: Organizations, protocols and perfor-
mance. Journal of Parallel and Distributed comput-
ing, 6(3):45 1-476, 1989.

B. K. Bray and M. J. Flynn. Writes caches as an al-
ternative to write buffers. Technicat Report CSL-TR-
91-470, Stanford University, April 1991.

60

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

T.-F. Chen and J.-L. Baer. Reducing memory latency
via non-blocking and prefetching caches. Technical
Report 92-06-03, Department of Computer Science,
University of Washington, Seattle WA, June 1992.

F. C. Chow and J. L. Hennessy. The priority-based
coloring approach to register allocation. ACM Trans-
actions on Programming Lunguages and Systems,
12(4):501–536, October 1990.

K. Gharachorloo, A. Gupta, and H. Hemessy. Perfor-
mance evaluation of memory consistency models for
shared-memory multiprocessors. In Proc. ASPLOS-
IV, pages 245-259, 1991.

K, Gharachorloo, A. Gupta, and H, Hennessy. Hiding
memory latency using dynamic scheduling in shared-
memory multiprocessors. In Proc. of the 19th Annual
Znt. Symp. on Computer Architecture, 1992.

P. B. Gibbons and S. S. Muchnick. Efficient instruc-
tion scheduling for a pipelined architecture. In Proc.
of SIGPLAN Symp. on Compiler Construction, July
1986.

E, Gomish, E. Granston, and A. Veidenbaum.
Compiler-directed data prefetching in multiprocessor
with memory hierarchies. In Proc. 1990 Int. Conjl on
Supercomputing, pages 354-368, 1990.

S. Jain. Circular scheduling: a new technique to per-
form software pipelining. In Proc. SIGPLAN Conf on
Programming Language Design and Implementation,
pages 219-228, 1991,

A. C. Klaiber and H. M. Levy. An architecture for
software-controlled data prefetching, In Proc. of Ihe
18th Annual Int. Symp. on Computer Architecture,
pages 43-53, 1991.

D. Kroft. Lockup-free instruction fetch/prefetch
cache organization. In Proc. of the 8th Annual Int.

Symp. on Computer Architecture, pages 81-87,1981.

T. Mowry and A. Gupta. Tolerating latency through

software-controlled prefetching in shared-memory
multiprocessor. Journal of Parallel and Distributed
computing, 12(2):87–106, June 1991.

A. K. Porterfield. Software methods for improvement
of cache performance on supercomputer application.
Technical Report COMP TR 89-93, Rice University,
May 1989.

G. S. Sohi and M. Franklin. High-bandwidth data
memory systems for superscalar processor. In Proc.
ASPLOS-IV, pages 53-62, April 1991.

W.-D. Weber and A. Gupta. Exploring the benefits of
multiple hardware contexts in a multiprocessor archi-
tecture: Preliminary results. In Proc. 1989 M, Con?
on Supercomputing, pages 273–280, 1989.

A

1,

2.

3.

Instruction Scheduling Algorithm

Build DAG G(V, E) for a basic block

Each instruction is a vertex vi E V; an edge
e(vi, vj) c E if Vj depends on vi.
/(vi, Vj) is the estimated latency between nodes vi and Vj:

/(’Vi, Vj) =

{

Vi Vj if f3(Vi, Vj)

BB size
#of oads

1

load other” true dependency

other any true dependency
1 any any false dependency

1 leaf branch control dependency

oAny instruction node other than load

Define ~eight(vi):

~eight(vi) =

{

o if ?)i is a leaf node

n – 1 + ~<~<~ {l(VI, Vj~) + Wt@M(Vjk)}

where v; h–asn child nodes Vj ~, . . . , Vj.

Schedule the instructions based on DAG

The scheduling algorithm is a variation on list schedul-
ing. Several sets of nodes are maintained. Sready (a

set of vertices that have all their predecessors already
scheduled) and S~/Ot[i] where i varies from 1 to the
largest estimated latency. Whenever a node vi from
S,ea~Y is scheduled, if it was the only unscheduled
predecessor of its child node Vj, the latter is included
in the set S’~lOt[l(U~,.j)], When an instruction k sched-
uled, all of S~/O$[i] sets are shifted “left” by one slot
with fi’s/O~[l] joining Sready. when there is no inS~C-

tion available in Sready, we do not insert a NOp, but
simply keep moving S,~~t[,l Until Sempty is not emptyo

procedure reorder (G)
initialize SsrO1[qwith empty pointer
S~~@ = {vi l~j has no parent node in DAG}
new-order = 1

while newmder < length of BB
while &ady is empty

Sreadg+ S,b$[l]-e .. . * 5,1+]

choose a node vi in Sready,

where weight (vi) is largest.
order(vi) = new-order++
for each child Vj of vi (with an edge latency ~)

if Vj has no other unscheduled parent then
s,,o,[q= Sqq U{vj}

S,..dv=Sready IJ %ot[i]

S./ot[l]e ...e Sdot[n]
end

end

61.

