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Abstract

We investigate the implementation of IP look-up for core routers using multiple mi-

croengines and a tailored memory hierarchy. The main architectural concerns are limiting

the number of and contention for memory accesses.

Using a level compressed trie as an index, we show the impact of the main parameter,

the root branching factor, on the memory capacity and number of memory accesses. De-

spite the lack of locality, we show how a cache can reduce the required memory capacity

and limit the amount of expensive multibanking. Results of simulation experiments using

contemporary routing tables show that the architecture scales well, at least up to 16 pro-

cessors, and that the presence of a small on-chip cache increases throughput significantly,

up to 65% over an architecture with the same number of processors but without a cache,

all while reducing the amount of required off-chip memory.

1 Introduction

To reduce cost and improve flexibility, modern networking equipment is built around network

processors (NPs) – a new class of commodity, software-based microprocessor. The design

requirements for NPs are demanding: they must support diverse functionality in a wide range

of network environments. In this paper, we focus on the problem of supporting the longest

prefix match (LPM) algorithm at high speeds with a network processor. One important

application of this task – and the one used to motivate this paper – can be found in core

Internet routers, where LPM is used in IP packet look-up to match destination addresses with

a large number of forwarding rules. IP look-ups have often been studied, but a number of
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novel considerations arise when they are implemented on NPs, namely their multiprocessor

nature and the design of their memory hierarchy.

Conceptually, IP packet look-up is the process of searching a forwarding table for a rule (i.e.,

an entry in the table) for which there is a match between a packet’s destination address and a

destination address entered in the table. If it were not for the large sizes of the tables (several

tens of thousand entries), this matching problem would be simple. For example, one could

use hashing if all possible Internet addresses (32-bit strings for IPv4, 128-bit strings for IPv6)

were entered in the table. In practice this is not possible since such tables would have billions

of entries, the great majority of which would not be relevant. Furthermore, IP networks are

addressed hierarchically, so one bit-string prefix, and hence one routing rule, can often be used

for all hosts within an organization or subnet. Thus, what is stored in forwarding tables is

a set of prefixes and associated output ports. The look-up process requires a longest prefix

match (LPM).

Forwarding imposes stringent requirements on core routers, where packet arrival rates are

high. Assume, as an example, that we would like to process 1 Million packets per second, i.e.,

one packet must be forwarded in 1 microsecond. Any software-based solution on a general

purpose processor can barely meet this speed constraint if the forwarding table is large since a

single access to the memory where the table is stored will take over 50 ns and several memory

accesses, to the table and/or some large indexing structure, will be necessary. Conventional

cache-based solutions are of limited use because of the total lack of spatial locality and short-

lived temporal locality of incoming packet addresses. Therefore, network processors used for

forwarding must include engines and a memory system tailored to the search process while

retaining some programmability for performing other functions.

One of the saving factors is that packets can be forwarded independently of each other [3]; in

fact, network processors are organized as on-chip multiprocessors of microengines to exploit

this situation. Therefore several microengines can be dedicated to forwarding tasks in order

to increase forwarding throughput. However, the drawback is that the index, in our case a

variant of a compressed trie called a level-compressed trie (LC-trie), will be accessed by several

processes concurrently and the resulting contention must be reduced as much as possible.

We can summarize both the novelty and the challenges of implementing IP look-ups on a

commercial NP: to provide a memory system that allows multiple processors, or microengines,

to concurrently access a globally shared trie-based index structure. In this paper, the reduction

in the number of contention for memory accesses will be achieved in two ways: caching since
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the levels of the trie closest to the root are accessed most frequently and thus exhibit some

limited form of locality and multibanking to allow concurrent accesses to the memory holding

the LC-trie.

The rest of this paper is organized as follows. In Section 2 we give a short introduction to

IP look-ups in the context of large routing tables and review how the longest prefix matching

problem can be solved using an LC-trie [10]. In particular we show the impact of a key

parameter of the data structure, namely the root branching factor. As the root branching

factor bf grows, so does the size of the LC-trie. On the other hand, the average number of

memory accesses decreases with a larger bf. We show how a cache, even with a low hit-rate,

can reduce the need for a large capacity LC-trie without adversely affecting the number of

memory accesses.

In Section 3 we describe a multiprocessor architecture and memory hierarchy for the mapping

of the LC-trie, the forwarding table, and ancillary data structures. We provide an initial

analysis of the impact of multibanking the memory holding the LC-trie.

In Section 4 we present experimental results obtained via trace-driven simulation. We vary the

factors that can influence throughput, namely those related to the data structure (branching

factor), to the parallelism in the architecture (number of microengines), and to the memory

hierarchy (latency, caching, and multibanking). In the absence of a cache, the largest branch-

ing factor yields the best throughput. This throughput is limited by the number of memory

banks when the memory latency is large but this effect is not as visible for low memory la-

tencies. In general, throughput increases almost linearly with the number of processors until

contention to memory becomes important. When a cache is present, the branching factor

does not need to be as large since hits in the cache produce two complementary effects: faster

access to the part of the index that is currently cached and and reduced contention for the

part that is not. With large memory latencies, the throughput is practically independent of

the branching factor and superior to the best throughput obtained without a cache. When

memory and compute times are balanced, the cache impact is less dramatic but still yields

improvements in throughput. Moreover, with caching both the size of the LC-trie and the

number of memory banks can be reduced without affecting adversely the throughput.

In Section 5 we review previous work in this area and in Section 6 we summarize the results

and suggests areas of further study.
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2 IP Look-up using LC-trie indexing

The longest prefix match problem within the context of general-purpose processors acting as

Internet routers has been thoroughly researched. The problem is characterized by:

• The forwarding tables mapping destination addresses and output ports are large, with

say a number of entries n ≈ 50, 000, but they are small compared to the number of

possible entries (232 for IPv4 and 2128 for IPv6).

• There is no spatial locality in the accesses to these tables and temporal locality (access

to same addresses) is short-lived.

• The distribution of the length of “longest prefixes” is heavily skewed with most of the

prefixes being between 14 and 24 bits [9] with peaks at 16 and 24 bits for historical

reasons, namely the IP scheme of classification into A, B, and C subnets [12].

• Search for a match occurs at least two orders of magnitude more frequently than inser-

tions/deletions of prefixes.

• IP look-up must be done at wire speed thus any solution employing a programmable

device must have a limited number of off-chip memory accesses.

• IP look-up is the bottleneck in the pipelined process of forwarding a packet to its next

destination.

The size of the tables and the performance constraints preclude direct searches in the for-

warding tables. Instead, search in an indexing structure such as a trie is commonly used. The

trie is searched for a given string and upon a successful match yields a pointer to an entry in

the forwarding table. All the techniques (see [15] for an excellent survey) share some common

features such as prefix expansion and level compression that are reviewed next. They differ,

among other criteria, in the internal representation of the data structures and the choice of

the selection of levels in the compressed tries. We choose to concentrate on one particular

data structure, namely LC-tries (LC stands for Level Compressed) [10], because it is rather

simple to construct and can be easily modified from IPv4 to IPv6 addresses. (In this pa-

per, our experiments will only be conducted with IPv4 addresses.) The conclusions that we

reach for the efficient utilization of LC-tries should also be correct for other compressed tree

implementations because the latter are based on the same basic structures.
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2.1 Level Compressed Tries (LC-tries)

As mentioned above, a basic data structure to represent strings for efficient storage and re-

trieval is the trie. In the case of binary strings, like Internet addresses, the trie becomes a

binary tree. Strings are stored at the leaves and the value of the string is the value of the

path used to reach it, with 0 (1) being the value of a traversal of the left (right) pointer of a

node. While binary tries are attractive for their simplicity, they yield search times involving a

number of comparisons, and hence of memory accesses, equal in the worst case to the length

of the string (32 for IPv4). This is unacceptable performance-wise and the two techniques pre-

sented below have as their goal to reduce the number of these comparisons. We will illustrate

them with the forwarding table shown in Figure 1 (a) along with its binary trie. Notice that

we have removed the entry corresponding to P5 which is a prefix of P6. This is to facilitate

the LPM process and avoid backtracking in the trie. The justification is that updates to the

forwarding tables are relatively infrequent, and therefore the tables can be preprocessed and

strings that are prefixes of other addresses can be removed and stored in a prefix table. In our

example, the forwarding table entry for P6 will have a link to the prefix table entry containing

P5. Measurements on existing tables [8] show that prefix tables contain fewer than 10% of all

entries.

The first technique to reduce the number of LC-trie comparisons is path compression, a tech-

nique derived from Patricia tries [6]. We remove from the trie any internal node, say A, that

has a single child. The skip value [10], i.e., the number of internal links that have disappeared,

is stored in either the first node with 2 children or the leaf (whichever comes first) on the path

below node A. The path compressed trie of the trie of Figure 1 (b) is shown in Figure 1(c)

The second technique is level compression. Instead of a node having 2 children, we let it have

2k children, where k is called the branching factor. For example, with k = 2 the 4 children

of the root will be those reached by strings “00*”, “01*”, “10*” and “11*” respectively as

shown in Figure 1 (d). In most cases though, some of these children might not exist in the

original trie. However we can have several nodes in the trie pointing to the same entry in the

forwarding table if they correspond to strings with the same longest prefix. We can therefore

perform a prefix expansion replacing internal nodes with one child by internal nodes with

2 children and so on depending on the branching factor. We expand each node to cover a

different number 2n of children, ensuring the expansion will yield less than d2n(1− x)e empty

leaves, where x is called the fill factor.
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Figure 1: Forwarding table and corresponding binary trie

2.2 LC-tries for forwarding tables

The indexing structure that we will consider, a variant of LC-tries, will use:

• Prefix expansion at the root. This expansion is justified by the fact that very few prefixes

are of length less than 14. How to choose the branching factor of the root is part of the

tuning process.

• Path compression and level compression. We will use a fill factor of 0.5 as suggested in

[10] (we experimented with values of x between 0.25 and 0.75 and found little difference

in the metrics discussed below).

In addition to the LC-trie, the data structures involved in the forwarding process are:

• The forwarding table. Each entry in the table consists of a prefix, its length (to check

the correctness of the match), an output port number, and a pointer (possibly null) to
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the prefix table. For IPv4, a possible implementation would devote: 4 bytes (32 bits) for

the prefix, 1 byte for the prefix length, 1 byte for the port number (allowing 256 output

ports), and 2 bytes for the pointer to the prefix table, i.e., 8 bytes per entry. Even for

large forwarding tables, this represents less than 1 MByte.

• The prefix table is a set of linked-lists, each linked-list corresponding to prefixes of one

particular forwarding table entry. For each element of a linked-list, an entry consists

of: the length of the string (1 byte), the output port number (1 byte), and a pointer,

possibly null, to the next entry in the list (2 bytes). Thus each entry is 4 bytes. If we

assume that at most 10% of the forwarding table has to be stored in the prefix table,

the latter should be less than 50 KBytes.

The LC-trie itself will be built starting from the forwarding table that will need to be sorted

beforehand. The LC-trie is represented as an array corresponding to a breadth-first traversal

of the trie. Each element of the array has the following fields that fit within 4 bytes:

• The branching factor bf of the node; bf = 0 indicates a leaf (5 bits)

• The skip value (5 bits which is sufficient for IPv4)

• A pointer. If bf 6= 0, the pointer is the index in the array of the leftmost child of the

node. This pointer is restricted to 22 bits thus limiting the branching factor to be 21.

If bf = 0, the pointer points to an entry in the forwarding table and 21 bits allows for

2 million entries, an order of magnitude more than what is needed.

The number of nodes in the LC-trie depends principally on the branching factor at the root

and to a much lesser degree on the fill factor and the number of skip values.

A root branching factor of k compares the first k bits of the IP address with the prefixes of

length k in a single access to the trie. Thus the number of comparisons to find the LPM will

decrease with a larger k. However, this comes with a significant increase in the number of

nodes at the first level of the trie. For example, with the the above implementation constraints

of a 4 byte LC-trie node, the largest branching factor is 21. If we were to choose this root

branching factor, the first level would have about 2 million nodes, two orders of magnitude

more than the number of entries in the forwarding table. Clearly, a large proportion of these

nodes will never be accessed.

In Table 1, we show how the 2k nodes of the first level are divided into the 4 categories: exact

matches (i.e., number of rules of length k), prefixes (i.e., there are rules of length greater
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than k having prefixes of size k), nodes that are prefix expansions, and nodes that do not

correspond to any rule at all. The data is for a Mae-West table from January 1st, 2002 [8]

with 26664 entries (1862 entries that are prefixes of one or more of these entries have been

removed as explained earlier) with the root branching factor k varying from 8 to 16. We also

show the total number of nodes in the LC-trie. As can be seen, there is no rule of prefix less

than 8 (no expansion at k = 8) and the number of unused nodes grows exponentially (in fact

more than doubles with every increment of k), reaching 88% of the first level and more than

50% of the total trie size at k = 16. In order to keep a reasonable size for the LC-trie, we will

limit our experiments with k between 8 and 16.

Root bf Matches Prefixes Expansions Unused Total at 1st level Total # nodes

8 4 95 0 157 256 55537

9 0 171 8 333 512 55289

10 1 308 16 699 1024 55761

11 1 565 34 1448 2048 56189

12 8 1016 70 3002 4096 57807

13 15 1766 156 6255 8191 60559

14 38 2444 342 13160 16384 66871

15 78 4239 760 27691 32768 80461

16 1816 4216 1676 57828 65536 109705

Table 1: Influence of root branching factor on LC-trie first level and total sizes

In Figures 2 and 3 we show the influence of the branching factor on the average number of

memory accesses per packet. We use the same table and two synthetic traces of 1 Million

packets, RandIP (Figure 2) and RandNet (Figure 3), that will be described in Section 4. As

expected the number of memory accesses decreases with the branching factor, with savings in

the average number of memory accesses abf of one memory access when the root branching

factor grows from 8 to 16.

Although there is no locality of IP addresses in the synthetic traces, the trie levels closest to

the root are accessed more frequently. It is therefore interesting to see what would be the

result of introducing a cache for the index. Figures 2 and 3 show the miss rate m and the

average number of memory accesses abf ×m for the same table and traces when we introduce

a 16 KByte, 2-way set associative cache of line size 4 bytes, i.e., a cache that can store 4 K

trie nodes. The best miss rate is 0.2 for RandIP and k = 8 and the worst is 0.7 for RandNet
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and k = 16. We also experimented with an 8 KByte and a 32 KByte cache. In the case of the

smaller cache, the miss rates were noticeably worse, sometimes by more than 50%. With the

larger cache, the miss rates were all the same except for RandIP and bf = 16 where it was

3% lower. In the remainder of the paper, we will always use a 16 KByte cache.

The main metric of interest in IP look-up is throughput (number of packets processed per

cycle). Throughput is inversely proportional to the time it takes to forward a packet. In turn,

the time to forward a packet depends on the number of accesses to the LC-trie. As shown in

Figures 2 and 3 this number depends on the branching factor bf .

Consider first an architecture with a single processor and no cache. The time to process a

packet Tbf can be expressed as:

Tbf = abf × (c+ L) + b× L

where abf is average number of memory accesses as defined above, L is the memory latency, c

the time to compute the next node index in the LC-trie (for this data structure c is the same

for all levels of the trie), and the term b×L represents access to the base vector and possibly

the prefix table (b is in general slightly above 1).

With a cache for the LC-trie memory of miss rate m and access time w then the time to

process a packet TCbf becomes:

TCbf = abf × (c+ w +m× L) + b× L
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In a memory bound environment, the significant factor is the average number of accesses to

the LC-trie memory, i.e., abf for the no-cache case and abf ×m if a cache is present. Despite

the miss rates shown in Figures 2 and 3 that would be considered dismal for general-purpose

processors, on the average between 1 and 2 “expensive” memory accesses are saved and the

average number of accesses to the non-cached memory is almost the same for all branching

factors between 8 and 16.

When the memory access time and the compute time are balanced, i.e., c and L are of the

same order of magnitude, and w is always small with respect to L, the savings introduced by

a cache will not be as important since in addition to the average number of memory accesses

abf×m (almost constant over the range of bf) we must now also take into account the compute

cycles abf × c (smaller for large bf).

The analysis in the previous paragraphs holds only for a single processor. Our main interest

though is in a multiprocessor environment. The miss rate m will remain essentially the same

with extremely minor differences that might arise due to the sequencing of accesses to memory.

However, contention for access to the LC-trie memory will be reduced in the presence of a

cache. We will return to this aspect of the overall performance in the next section.

We also have to be aware that the gains in throughput in the presence of a cache will be

tempered by the fact that for each packet we have to spend b×L cycles accessing the memory

that holds the base vector and the prefix table. There is no point in caching elements of

these data structures since they are accessed randomly. This is reflected in the architecture

presented in the next section.

3 A multiprocessor architecture for IP look-up

3.1 Architecture

The basic architecture of our multiprocessor for IP forwarding is shown in Figure 4. Its

features include:

• A control processor - for building the look-up structures

• Microengines - for performing the look-ups

• Two memory channels - one holds the LC-trie index, and might have a cache, and the

other holds the other structures, including the route and prefix tables.
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Figure 4: Multi-engine architecture

When there is a cache, only nodes from the LC-trie will be cached. While there is some locality

in accessing the index as shown in Figures 2 and 3, there is none at all in the access to the

base vector. Sharing the cache between these two structures would certainly be detrimental.

As indicated in the figure, we vary a number of architectural parameters in our experiments.

Specifically, we consider:

• Whether a cache for the LC-trie index is present or not. If it is, it will be a 16 KByte,

2-way set-associative, 4 byte line size, LRU replacement, 1 cycle access time cache

• The number of processors (1, 2, 4, 8, 16)

• The latency of memory (12, 42, 100 cycles)

• The number of memory banks (1, 2, 4, 8)

We set the latency of buses to be 2 cycles from the processors to the memory system, allowing

1 cycle to model bus arbitration and 1 cycle to transfer data. The latency of buses from

the memory or cache is set to 1 cycle since we assume bus arbitration is not required in this

case. The cache is shared amongst all processors and hence needs to be lock-up free. Our

experiments show that contention at the cache level does not affect performance.
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This architecture has a number of features in common with commercial network processors,

such as the Intel IXP2800. Most notably, this architecture employs multiple simple processors,

called microengines here, to exploit packet-level parallelism [3]. The experiments in this paper

investigate how to use, and modify, such an architecture for fast IP look-ups. These conclusions

are of interest to IXP2800 programmers as well, since the programmer must decide how many

microengines and memory channels to devote to a given task.

3.2 Impact of Multibanking

In a single processor environment, the goal is to reduce the number of accesses to the memory

holding the LC-trie. In the case of multiple engines we want also to reduce the contention in

the concurrent memory accesses. This can be partially achieved by using memory banking

where the various banks can retrieve data in parallel.

A simplistic analysis in the case where compute time between memory accesses is small gives

nonetheless an idea of the impact that banking can have. Consider the following analogy. Let

a memory access be represented as choosing a ball from an urn. The urn contains balls of b

colors where there are as many colors as there are banks. There is a very large number of

balls compared to b and to n, the number of processors that are going to pick up balls, and

balls are equally distributed among the b colors. That is, the probability of choosing a ball of

a given color is 1/b. At each step of the computation, each of the n processors chooses a ball;

only one ball of each color can be chosen at each step. So, if 2 processors choose a ball of the

same color, one of them has to be returned in the urn.

If there is only one processor, only one ball can be picked up at a given time. Similarly, if there

is only one bank, all balls but one will be returned, regardless of the number of processors.

Now if there are n processors and b banks, the expected number of balls picked up will be:

e =
∑b

i=1
i× Pn(i) where Pn(i) is the probability that i balls of different colors will be picked

by the n processors. That is, the expected number of balls not returned is e. Couched in

terms of n processors and b memory banks, e is the speed-up in execution time or increase in

throughput a single processor.

For example, with 2 banks and 2 processors, P2(1) = 0.5 and P2(2) = 0.5 yielding e = 1.5.

Working up the combinatorics show that e = 1.87 for 4 processors and 2 banks and e = 2.85

for 4 processors and 4 banks.
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In reality, the contention is not as bad as indicated in the previous paragraphs since after

a memory accesses, on average, the processor will have to access the forwarding table, thus

freeing an LC-trie memory time slot for the other processors. For example, in the case of

RandIP and a branching factor of 16, the processors split almost evenly the accesses to the

LC-trie and those to the base vector. Thus for n processors, there is a diminishing return in

having more than n/2 banks. This is even more true for the LC-trie memory if we introduce

a cache since now the contention is almost halved (miss factor is about 0.5). Note however,

that as the number of processors increase, so does the contention for base vector access and

for that data structure access is completely random and no caching can help.

In the next section, we present simulation results that give a more accurate view of the

impact on throughput due to the data structure parameter bf, the number of processors, and

the memory hierarchy parameters (latency, caching and multibanking).

4 Experimental results

4.1 Methodology

We use trace-driven simulation to assess the performance of variations of the multiprocessor

architecture of the previous section. A trace represents a sequence of LC-tries searches. A

search consists of a sequence of tuples (compute time, memory access) where the compute time

corresponds to the determination of (1) whether the longest prefix match has been obtained,

and (2) in case it is not of the index of the LC-trie node to be searched subsequently. When

a match is obtained (a leaf of the trie has been reached), the forwarding table is accessed and

the prefix table is also searched if so required. The compute time of the access to the first

level is 13 cycles (the root node is kept in a register) and subsequent compute times, all the

same, are 15 cycles (this was determined by instrumenting the look-up function in [10]).

In order to determine the memory accesses, we use two synthetic traces, RandIP and RandNet

[9]. Both traces, 1 million packets each, only contain IP addresses for which there exists a

matching rule in the routing table. This is consistent with real traces where very few addresses

will not match any rules and the default route has to be used.

These synthetic traces represent two different approaches to generating random traffic for a

given route table. RandIP generates a random IP address and checks to see if it matches a rule
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in the routing table. If the address does match a rule, it is added to the trace. The process

is repeated until the trace contains the required number of addresses. RandNet randomly

chooses a rule in the routing table, then extends this prefix to 32 bits (for IPv4). RandIP

tends to produce traces in which short prefix rules predominate because a randomly generated

number is more likely to match eight bits rather than 24. As shown in [9], RandNet has similar

characteristics to a core router packet trace, whereas RandIP is more like an edge router packet

trace. Note, however, that neither trace includes the small amount of temporal locality found

in real traces, thus biasing even more against the use of caches. The synthetic traces are

pessimistic with respect to real traces, adopting a more even distribution of packets amongst

all rule lengths.

4.2 Simulation Experiments and Results

4.2.1 Impact of the branching factor

In Section 2 we presented data on the influence of the branching factor bf on the average

number of memory accesses abf . We also presented an initial analysis of the impact of the

presence of a cache on the time to process a packet, and henceforth on throughput. Figures 5

and 6, showing the results of simulating the traces in both a cache and a no-cache single engine

environment, confirm the analysis.
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Figure 6: RandNet 1 processor throughput

versus memory latency.

More precisely, the following conclusions can be reached:
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• In the absence of a cache, bf is the most important factor. Throughputs for bf = 16

are significantly better than those for bf = 12 or bf = 8 for all 3 memory latencies

considered. For RandIP at all latencies, the improvement in throughput is 17% when

bf increases from 8 to 12 and 46% from 12 to 16. For RandNet, the improvement is 6%

and 21% respectively.

• In the presence of a cache, the value of bf has much less importance. At long latencies,

all bf ’s yield the same throughput and at low latencies, a larger bf is still better but

relatively less so.

• In all cases, a cache improves throughput. For example when the root branching factor

is 12 and the memory latency is 100 cycles, a cache improves throughput by 47% for

RandIP and 33% for RandNet.

We observe that root branching factors of 8 and 12 give approximately the same throughput

with a slight advantage to root branching factor 12 (this observation remains true for all the

experiments that we run). Since from Table 1 we can see that these two root branching factors

require the same amount of LC-trie memory, we will from now on consider only bf = 12 and

bf = 16.
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Figure 7: RandIP 4 processors and 4 memory

banks throughput versus memory latency.
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Figure 8: RandNet 4 processors and 4 mem-

ory banks throughput versus memory latency.

It is important to see if the conclusions we reached regarding the branching factor for a single

processor hold in the case of multiple engines. To that effect we simulated several “balanced”

systems where the number of engines and of memory banks were the same. As a representative

of these experiments we show in Figures 6 and 7 the throughput for a system including 4

engines and 4 memory banks. As can be seen, the three points set previously hold also in a
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multiprocessor environment.

Looking at the performance for 1 and 4 processors in Figures 4 and 6 for RandIP and Figures

5 and 7 for RandNet, we see an approximate 4-fold increase in throughput when scaling from

1 to 4 processors. In the next subsection, we investigate more thoroughly the impact of scaling

the architecture.

4.2.2 Impact of scaling the architecture: processors and memory banks

The current trend in network processors is to increase the number of microengines. For

example, in the Intel IXP we see an increase from 6 to 16 engines from one generation to the

next. It is therefore of interest to see if forwarding throughput can scale with the number of

microengines devoted to it. To this effect, we simulated the same workload, increasing the

number of processors up to 16 but keeping the number of memory banks set to 4. The results

for RandIP are shown in Figures 8 and 9 (similar curves are obtained for RandNet). In these

figures, the throughput is normalized to the case of 1 processor, no cache and bf = 12.
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Figure 9: RandIP 12 cycle memory latency, 4

memory banks throughput versus processors.

Throughput normalized to 1 processor, bf =

12, no cache.
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Figure 10: RandIP 100 cycle memory latency,

4 memory banks throughput versus proces-

sors. Throughput normalized to 1 processor,

bf = 12, no cache.

As can be seen, there is an almost linear increase in throughput until we reach 8 processors.

After that, the contention for memory access starts to take its toll, mostly in the case of

an architecture without a cache. This is consistent with the analysis of Section 3.1. With

8 processors and no cache there is limited contention with 4 banks and much more when
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16 processors vie for memory access. When there is a cache, the contention is halved and

the combination of 16 processors and 4 banks is still sufficiently balanced. The important

point, though, is that adding processors to the forwarding task will improve performance.

Moreover, at long latencies, if we have a cache we can reduce the number of processors and

achieve approximately the same throughput. For example, a configuration with 8 processors

and a cache has sometimes slightly better (with bf = 12) and sometimes slightly worse (with

bf = 16) throughput than a configuration with 16 processors and no cache.

Since too small a number of memory banks might limit performance, we performed experi-

ments where we fixed the number of processors and varied the number of banks.
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Figure 11: RandIP 12 cycle memory la-

tency, 4 processors throughput versus banks.

Throughput normalized to bf = 12, no cache.
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Throughput normalized to bf = 12, no cache.

In Figures 11 and 12 we show the throughput for 4 processors for RandIP with a varying

number of banks (experiments with RandNet yield the same overall picture). The throughput

is normalized to the case of 4 processors and a single bank with bf = 12. For large memory

latencies and no cache, passing from 1 bank to 2 yields a 46% improvement and from 2 to

4 another 17% (the percentages are 62% and 29% for RandNet). With a cache the improve-

ment is 30% and 11% respectively (49% and 18% for RandNet). As can be expected, the

improvements are relatively smaller for low latencies.

Scaling the architecture brings forth three important points:

• All other parameters being equal, caching improves throughput in all cases. For example,

sometimes by over 60% as for bf = 12 for 8 and 16 processors.
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• The architecture scales well: the number of microengines devoted to forwarding can be

increased with an almost linear increase in throughput.

• Although of secondary importance compared to caching, the impact of multibanking

is not negligible. An interesting observation is that the performance achieved with an

architecture with caching and b/2 banks is better than that with an architecture with

no cache and b banks.

4.3 Discussion

From a performance viewpoint, the results of our experiments indicate that IP look-up through-

put will be best when using an LC-trie index if (1) the branching factor is large and (2) we

have a multiengine architecture with as many engines as is practical, a cache, a memory with

low latency, and a number of banks being about one fourth the number of processors.

However, some of these desired features interfere with each other. For example, having a

low memory latency is synonymous with having on-chip memory. Unfortunately, scaling the

architecture (more micro engines) leaves less on-chip real estate for the memory and using

a large branching factor requires more memory (recall Table 1). Note also that we have

not addressed the problem of updates which, in general, will be performed in batches and

might involve two copies of each data structure: one for active use and one for updating.

Accommodating updates in this way will double the required amount of memory.

If we assume that there is a limited amount of memory that we can put on-chip, as is the

case for the current generation of network processors, then it is best to organize it as a cache.

In the results that we report, we have considered a single-ported, shared cache. We have

experimented with various cache structures – multiported, multibanked, private, and shared –

and found no significant differences in throughput so the cheapest implementation is adequate.

Furthermore, the hit rate in the cache is independent of the number of engines and therefore

the cache capacity does not have to scale with the number of engines. Since in current systems

the index memory is off-chip (long latency) we don’t have to choose a large branching factor

because, as we saw, its value does not matter much, performance-wise. A branching value of,

say 12, will save some off-chip memory needs.

Therefore, a possible configuration would be: 16 microengines, a 16K on-chip cache, and an

off-chip memory with 4 banks holding an LC-trie of branching factor 12 (less than 1 MByte

for tables of up to 100,000 entries), in addition of course to the off-chip memory holding the
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base vector. We can give a rough estimate of the absolute throughput of this IP look-up

engine as follows. We assume an implementation consistent with current NPs, i.e., 1 GHz

microengines and an off-chip memory latency of 100 cycles. According to Figures 4 and 5 a

single microengine without a cache could sustain a throughput of about 2 Million packets/sec

or 1 Gbit/sec (less than what is required by OC-48). A 16 processor configuration without a

cache would improve throughput by a factor of 7 (Figure 10). Adding a cache would almost

improve by another factor of 1.65 (Figure 10), resulting in a 12x improvement overall. At 24

Million packets/second (12 Gbit/sec), we would fulfill OC-192 requirements for the IP look-up,

the most time consuming portion of forwarding.

5 Previous work

Previous work in the area of IP look-up can be divided into hardware-oriented solutions and

software approaches. Since our architecture is programmable, we emphasize the latter.

An attractive hardware solution is to use ternary CAMs (ternary because of the importance

of don’t cares in the LPM setting). However, CAMs are expensive, require high-power, and

updating them is difficult[4]. With base vectors of tens of thousands of entries, this approach

is not feasible [14]. Many current routers use ASICs. Two examples with widely different

designs are Cisco’s Toaster and the Iflow processor. Toaster 2 [7] uses 16 microcoded processors

arranged in a matrix of 4 rows by 4 columns and working in a pipeline fashion. Routing tables

are off-chip. The Iflow processor [11] uses large embedded DRAMs as well as three rows of

SRAMs to hold the first 3 levels of a B-tree representing the index. The LPM is pipelined

over the SRAMs and the DRAM.

Previous work on software approaches has been focused on designing data structures and

algorithms to bound the worst-case latency by minimizing levels in an index structure for a

given amount of memory and reduce the size of the index. The intent is to have general-purpose

processors perform the forwarding function. The two main techniques use respectively tries [15]

and binary searches on hash tables [16]. While the LC-trie method [10] does not result in the

most compact trie representation, it is competitive and easier to build and update. The main

differences between these studies and ours is that we consider a multiprocessor environment

and consider the impact of caching on throughput. This is consistent with the trend in current

network processors, e.g., Intel IXP and IBM NP, where multiple programmable engines are

devoted to specific tasks [5].
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The synthetic traces RandIP and RandNet are introduced and their characteristics are com-

pared to those of real traces in [9]. This paper also uses average throughput as a metric and

models and validates cache performance when varying the branching factor of the root. The

main differences with our study is that in [9] the emphasis is on validating an L2 cache model

when the root branching factor can be very large, thus yielding extensive on-chip and off-chip

memory requirements for the index, while we try and limit the on-chip memory to stay in the

spirit of current network processors. The study is also only for a single processor.

A totally different approach to caching is introduced in [1, 2]. In these papers, the cache

hierarchy holds the most recent IP addresses translations [1] or ranges thereof [2]. The spe-

cialized cache design takes advantage of the predominance of some prefix lengths by selecting

wisely the bits that will index the cache. Because of this last constraint, the method is more

beneficial when tuned to local environments as for example in edge routers.

A recent study [13] investigates the use of a wide word pipelined memory that allows concurrent

accesses. This is an interesting alternative to the multibanked shared memory that we have

been assessing but performance comparisons are yet to be done.

6 Conclusion

In this paper we have investigated the throughput performance of a multiprocessor architecture

dedicated to fast IP look-ups. Our results show that when a trie-based data structure with

prefix expansion (e.g., LC-trie) is used on a network processor with multiple microengines,

a cache can be used to effectively increase throughput while decreasing the need for more

memory banks.

Specifically, the cache reduces the number of references to external memory by taking ad-

vantage of the locality among references to the nodes in the upper levels of the trie; even

completely random accesses to index entries create some amount of locality among nodes

nearest to the root. Although hit rates are low, reducing the number of external memory

references has two positive effects: reduced memory latency for those references that hit in

the cache, and reduced contention for external memory for those references that do not hit in

the cache.

We found that throughput scales almost linearly with the number of processors as long as

memory contention is not serious. Throughput is greatly enhanced, up to 65% in some cases,
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by introducing a cache for the index structure.

In future work, we plan to extend this investigation to other applications of the longest prefix

match algorithm. One challenging example can be found in firewalls or distributed denial

of service detection systems where extremely large legitimacy lists (often hundreds of thou-

sands) of valid or invalid hosts must be maintained. This application occurs near the edge of

the network, where packet arrival rates are lower, but other challenges emerge: updates are

generally much more frequent, and matching must often be done in multiple dimensions (e.g.,

both source and destination addresses).
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