
APT-GET : Profile-Guided Timely Software
Prefetching

Saba Jamilan
University of California, Santa Cruz

USA
sjamilan@ucsc.edu

Tanvir Ahmed Khan
University of Michigan

USA
takh@umich.edu

Grant Ayers
Google
USA

granta@google.com

Baris Kasikci
University of Michigan

USA
barisk@umich.edu

Heiner Litz
University of California, Santa Cruz

USA
hlitz@ucsc.edu

Abstract
Prefetching which predicts future memory accesses and
preloads them from main memory, is a widely-adopted tech-
nique to overcome the processor-memory performance gap.
Unfortunately, hardware prefetchers implemented in today’s
processors cannot identify complex and irregular memory
access patterns exhibited bymodern data-driven applications
and hence developers need to rely on software prefetching
techniques. We investigate the challenges of enabling effec-
tive, automated software data prefetching. Our investigation
reveals that the state-of-the-art compiler-based prefetching
mechanism falls short in achieving high performance due to
its static nature. Based on this insight, we design APT-GET ,
a novel profile-guided technique that ensures prefetch time-
liness by leveraging dynamic execution time information.
APT-GET leverages efficient hardware support such as Intel’s
Last Branch Record (LBR), for collecting application execu-
tion profiles with negligible overhead to characterize the
execution time of loads. APT-GET then introduces a novel
analytical model to find the optimal prefetch-distance and
prefetch injection site based on the collected profile to enable
timely prefetches. We study APT-GET in the context of 10
real-world applications and demonstrate that it achieves a
speedup of up to 1.98× and of 1.30× on average. By ensur-
ing prefetch timeliness, APT-GET improves the performance
by 1.25× over the state-of-the-art software data prefetching
mechanism.

CCS Concepts: • Software and its engineering → Com-
pilers; • Computer systems organization → Architec-
tures.
Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
EuroSys ’22, April 5–8, 2022, RENNES, France
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9162-7/22/04.
https://doi.org/10.1145/3492321.3519583

Keywords: Software Prefetching, Compiler Analysis

ACM Reference Format:
Saba Jamilan, Tanvir Ahmed Khan, Grant Ayers, Baris Kasikci,
and Heiner Litz. 2022. APT-GET : Profile-Guided Timely Software
Prefetching. In Seventeenth European Conference on Computer Sys-
tems (EuroSys ’22), April 5–8, 2022, RENNES, France. ACM, New
York, NY, USA, 18 pages. https://doi.org/10.1145/3492321.3519583

1 Introduction
A vast majority of today’s software runs on processors
inspired by the Von-Neumann architecture. Consequently,
the Von-Neumann bottleneck (i.e., the processor-memory
speed gap [49, 80, 125]) is the root cause of many perfor-
mance problems in today’s software systems [14, 50, 62, 65,
98]. To make matters worse, the data-driven nature of mod-
ern applications (e.g., machine learning [6, 34, 127],mobile
applications [22, 24], and data analytics [23, 25, 128, 130])
has increased data footprints significantly, thus limiting the
ability of traditional approaches such as deeper cache/mem-
ory hierarchies or compile-time data locality optimiza-
tions to scale and provide significant performance improve-
ments [14]. Consequently, widely-used modern applications
lose more than 60% of all processor cycles due to frequent
on-chip cache misses and the subsequently induced high
memory access latency [13, 41, 62, 113].

Prefetching—anticipating upcoming memory accesses and
loading them before their use—can hide this memory access
latency if performed accurately and in a timely manner [48].
Therefore, a rich body of hardware [18, 30, 40, 59, 68, 88,
95, 108, 114, 121, 122] and software [9, 32, 33, 37, 78, 83, 89–
91, 116] data prefetching mechanisms have been proposed
in the literature to reduce memory access latency. While
there exists an exotic range of irregular data prefetching
proposals (e.g., record and replay prefetchers [118] and
indirect prefetchers [126]) in the computer architecture lit-
erature, only simple prefetchers (e.g., next-line [109] and
stride prefetchers [61]) are implemented in today’s hard-
ware since complex prefetchers require impractical on-chip

https://doi.org/10.1145/3492321.3519583
https://doi.org/10.1145/3492321.3519583

EuroSys ’22, April 5–8, 2022, RENNES, France Saba Jamilan, Tanvir Ahmed Khan, Grant Ayers, Baris Kasikci, and Heiner Litz

metadata storage along with significant hardware modifica-
tions [8, 10].

Consequently, to avoid thememory access latency induced
by irregular access patterns (e.g., indirect array access of
the form, 𝐴[𝐵 [𝑖]]), developers must rely on software data
prefetching mechanisms [65]. Manual software prefetching
performed by programmers has shown to be cumbersome
and error prone as it is difficult to evaluate the efficacy of
a manually inserted prefetch [76]. For irregular accesses,
memory addresses are computed by sequences of instruc-
tions (the load-slice) rendering manual prefetch injection
challenging [9]. Code changes can easily break the prefetch
address computation leading to inaccurate prefetches. As
software prefetching introduces an instruction overhead,
inaccurate prefetches can lead to a performance regression.
Recent work on compiler-based automatic prefetch injection
schemes [9] has addressed the challenge of generating accu-
rate prefetch-slices, however, it is still unable to address the
memory access latency problem satisfactorily.

In this work, we first perform a comprehensive characteri-
zation of existing automated software data prefetching mech-
anisms. Specifically, we investigate why the state-of-the-art
software data prefetching mechanism [9] falls significantly
short of an ideal (in terms of accuracy, coverage, and time-
lines) data prefetcher. In our investigation, we find that the
existing static software-based solutions fail to prefetch mem-
ory blocks in a timely manner, thereby missing significant
performance opportunities. In particular, prefetches gener-
ated too early may be evicted from the processor’s caches
unused while late prefetches are unable to hide the access
latency of demand loads completely. We find that for timely
prefetching, dynamic information such as the execution time
of the optimized code is required. Unfortunately, state-of-
the-art software mechanisms only rely on static heuristics
to inject prefetch instructions and hence cannot achieve the
full performance potential of an ideal data prefetcher.
Driven by our analysis, we propose APT-GET 1, a novel

profile-guided mechanism to ensure the timeliness of
software prefetch operations. APT-GET realizes software
prefetch timeliness by effectively finding the optimal value
for two key parameters: prefetch-distance and prefetch injec-
tion site. We define prefetch-distance as the distance between
the current memory access and a future memory access, mea-
sured in terms of the number of memory accesses. It defines
how far into the future we need to prefetch and it is deter-
mined by the program execution time that elapses in between
the memory accesses. Prefetch injection site, on the other
hand, determines the program location where the prefetch
instruction is inserted. Instead of exhaustively searching
over all-possible values of prefetch-distance and prefetch
injection site, APT-GET obtains these values through a new
profiling methodology leveraging existing hardware support.

1as an appropriate and timely (APT) prefetch (GET)

In particular,APT-GET profiles the elapsed time between two
instances of the same memory access instruction to deter-
mine near optimal prefetch-distance and prefetch injection
site for the corresponding prefetch.
We evaluate APT-GET in the context of 10 real-world,

memory-latency-bound applications. Across all applica-
tions, APT-GET achieves an average execution time speedup
of 1.30×. By optimizing the prefetching timeliness, APT-
GET significantly outperforms the state-of-the-art software
prefetching mechanism [9] and provides on average 1.25×
greater speedup.

Overall, we make the following contributions:
• A thorough investigation of how existing software
prefetching techniques fall significantly short of an ideal
data prefetcher due to lack of prefetch timeliness

• APT-GET : A profile-guided mechanism to ensure software
prefetch timeliness by identifying the optimal prefetch-
distance and the optimal prefetch injection site.

• An LLVM compiler pass for automatically injecting
prefetches that supports variable prefetch-distance and
prefetch injection site.

• An evaluation showing APT-GET ’s effectiveness at ensur-
ing prefetch timeliness for several widely-used memory-
bound applications while achieving a significant perfor-
mance improvement.
As an outline for the rest of this paper, we first charac-

terize the key challenges of automated software prefetching
in §2. Next, we describe APT-GET ’s design in §3. We then
describe APT-GET ’s evaluation on real-world applications
and benchmarks in §4. After discussing the related work in
§5, we finally conclude in §6.

2 Understanding the Challenges of
Automated Software Prefetching

In this section, we investigate the performance of exist-
ing automated software prefetching techniques and show
why they fall short of providing high performance. In
particular, we demonstrate that while existing techniques
can achieve high accuracy and coverage, they are often
unable to generate timely prefetches. This is because existing
approaches utilize static techniques to inject prefetch instruc-
tions without incorporating dynamic information such as
execution time. We perform this in-depth investigation using
a microbenchmark and highlight the challenges of injecting
timely prefetch instructions.

2.1 Methodology
We analyze existing automated software prefetching tech-
niques using a microbenchmark with an indirect memory
access pattern as shown in Listing 1. The microbenchmark
implements a two-nested loop leveraging indirect memory
addresses to retrieve a data value from a target array T.
The inner loop furthermore executes a do_work() function

APT-GET : Profile-Guided Timely Software Prefetching EuroSys ’22, April 5–8, 2022, RENNES, France

1 #define SIZE = ... ;
2 int BI[SIZE]; // all values are between 0 and SIZE
3 int BO[SIZE]; // all values are between 0 and SIZE
4 int T[2*SIZE];
5
6 void mbench(int prefetch_distance, int INNER) {
7 int OUTER = SIZE/INNER;
8 for (int e : OUTER) {
9 for (int i : INNER) {
10 int val = T[BO[e]+BI[i]];
11 //__builtin_prefetch((&T[BO[e]+BI[i+prefetch_distance]]));
12 do_work(COMPLEXITY, val);
13 }
14 }
15 }

Listing 1. Microbenchmark executing indirect memory
accesses and a work function. The parameters INNER and
COMPLEXITY denote the number of inner loop iterations
and the complexity of the work function respectively.

whose work is dependent on the loaded data. We define
two parameters to affect the behavior of the microbench-
mark. INNER determines the trip count [57] of the inner
loop, while COMPLEXITY defines the time spent in the work
function. We perform our microbenchmark analysis on an
Intel Xeon Gold 6242R CPU running at 3.10GHz (4.1GHz
Turbo) and 768GByte of DDR4-2666 DRAM. Because the
microbenchmark is performing indirect memory accesses,
Intel’s hardware prefetchers [115] are unable to predict the
irregular memory addresses, leaving opportunities for soft-
ware prefetching.

We automatically inject software prefetches utilizing the
state-of-the-art software prefetching approach [9] imple-
mented as an LLVM compiler pass. The pass operates at the
intermediate representation (IR) level of LLVM and deter-
mines software prefetching opportunities through static code
analysis. The pass identifies indirect memory accesses (loads)
and then performs a backward data dependency analysis uti-
lizing depth-first search until it finds the first loop induction
variable, while keeping track of all the instructions that are
encountered during this search. Since load instructions are
located inside the loop, their memory addresses are depen-
dent on the induction variable of the loop. Therefore, we
need to know the value of the induction variable in each loop
iteration to calculate the next memory addresses of the load
that we want to prefetch. We can calculate the addresses for
the next iterations by adding the prefetch-distance to the
current induction variable. Additionally, the key difference
between irregular access patterns such as in pointer chases
and indirect memory accesses inside loops is, that all indi-
rect accesses depend on the induction variable. Therefore,
we need to know the induction variable value to generate
prefetch instructions.
The identified instructions, which we refer to as a

load-slice, are duplicated for prefetching. This duplicated
load-slice is then transformed by replacing the original

Figure 1. Performance impact of prefetching various dis-
tances for indirect memory accesses with 256 inner loop
iterations and varying work function complexity

load instruction with a prefetch instruction. The prefetch
instruction’s address is computed by adding a constant
prefetch-distance to the address of the original memory
access. This allows prefetching memory blocks that will be
accessed in subsequent loop iterations. We note that the
technique described above relies on static code transfor-
mation, and it also depends on programmer-specified flags
(e.g.,-DFETCHDIST=32) to ensure the timeliness of prefetches
by tuning the prefetch-distance.
Next, we show that static approaches do not generalize

well across a large variety of application use cases. Moreover,
we also demonstrate that static techniques are unable to
realize a significant amount of the performance benefits
offered by the optimal software prefetching mechanism that
prefetches memory blocks with near-perfect accuracy, i.e., by
covering all potential data cache misses in a timely manner.

2.2 Prefetching Timeliness
For the first experiment, we configure the microbenchmark
to utilize a loop trip count of 𝐼𝑁𝑁𝐸𝑅 = 256. We choose three
different work functions with low, medium, and high com-
plexity. Figure 1 shows the speedup obtained by injecting
prefetches for different prefetch-distance. There are a num-
ber of interesting observations. First, the potential perfor-
mance gains delivered by prefetching are significant, exceed-
ing 200% for a prefetch-distance of 16 and amedium complex-
ity work function. Second, choosing the optimal prefetching
distance has a significant performance impact. Third, the
optimal prefetch-distance varies between configurations and
depends on the complexity of the work function. In particu-
lar, for the low, medium, and high complexity work functions,
the optimal prefetch-distance is 32, 16, and 4 respectively.
Existing techniques [9] utilize a static prefetch-distance and
hence do not provide optimal and generalized performance
for different applications.

2.3 PMU Counter Study
To provide additional insight, we perform a performance
analysis with the tool, perf stat [43, 71]. We analyze

EuroSys ’22, April 5–8, 2022, RENNES, France Saba Jamilan, Tanvir Ahmed Khan, Grant Ayers, Baris Kasikci, and Heiner Litz

Table 1. Prefetch accuracy and timeliness depending on the
prefetch-distance

Prefetch IPC Prefetch Accuracy Late Prefetch
None 0.33 0% 0%
Dist-1 0.42 72% 95%
Dist-64 0.73 70% 1%
Dist-1024 0.29 3% 0%

the performance of the microbenchmark choosing a low
work complexity and 𝐼𝑁𝑁𝐸𝑅 = 256 while varying the
prefetching distance between 0, 1, 64, and 1024. Table 1
shows the instructions per cycle (IPC) performance as
well as the prefetch accuracy which is defined as the
number of prefetches (offcore_requests.all_data_rd-
offcore_requests.demand_data_rd) divided by the num-
ber of all loads (offcore_requests.all_data_rd). As can
be seen, as soon as prefetching is enabled with a prefetch-
distance of 1 or 64, 70% of all demand loads are effectively
prefetched, proving that automated injection passes are effec-
tive in determining the correct addresses to prefetch. How-
ever, when the distance (1024) exceeds the loop trip count,
prefetches are no longer accurate, since most of them are too
early prefetches. Therefore, prefetches which are generated
by using a very large prefetch-distance, can be evicted from
the cache before they are used while displacing other useful
data.

Observation: PMU counters reveal that for a range
of prefetch-distance, a significant fraction of demand
loads can be correctly prefetched using automatic
prefetch injection.
Insight: Static prefetch injection is sufficient to enable
high prefetching coverage and accuracy.

Column 4 of Table 1 shows the late prefetch ratio
which is defined as the number of demand loads hitting
a prefetch residing in the fill buffer (FB) of the proces-
sor (LOAD_HIT_PRE.SW_PF). Processors utilize fill buffers or
miss status hold registers to coalesce multiple loads to the
same cache line into a single memory access. The occur-
rence of this event means that a demand load was correctly
prefetched, however, that the prefetch was issued too late.
As the prefetched cache line has not yet been retrieved from
memory, the demand load needs to stall until the prefetch
has been completed.

Observation: For small prefetching distances, proces-
sors exhibit many events where a demand load hits a
corresponding prefetch in the fill buffer.
Insight: Static prefetching techniques are unable to
consistently achieve timely prefetches, thus dynamic pro-
filing information is required.

Figure 2. Performance impact of prefetch-distance for indi-
rect memory access kernel with low work function complex-
ity and varying inner loop trip count

2.4 Prefetch Injection Site
Table 1 showed that for a too-large prefetch-distance,
prefetches are no longer accurate (nor timely) and hence
may lead to a performance regression. Figure 2 shows the
prefetching performance for the microbenchmark using low
work function complexity while varying the loop trip count
between 4, 16, and 64. It can be seen that for a loop trip count
of 4, prefetching is no longer beneficial while for trip counts
of 16 and 64 improvements are moderate and furthermore
require a small prefetch-distance. Existing static prefetch
injection techniques offer no flexibility besides injecting
prefetches in the inner loop as they possess no information
about the optimal prefetch injection site. To enable significant
prefetching performance gains in cases where the loop trip
count is small, a prefetching mechanism should also be able
to evaluate additional prefetch injection sites such as the
outer loop based on dynamic profiling information.

Observation: Choosing the prefetch injection site
statically for example by always injecting prefetches
into the inner loop does not provide significant perfor-
mance gains for loops with low trip counts.
Insight: Dynamic techniques are required to determine
the optimal injection site of a prefetch.

2.5 Static Techniques to Infer Execution Time
Static compile-time techniques can, in principle, predict
the execution time of input-independent loops by count-
ing the number of instructions and by leveraging cost mod-
els [27, 44, 123] to infer the cost of each instruction. However,
due to the complexity of contemporary microprocessors,
cost models show limited accuracy [36]. The state-of-the-art
static techniques [4, 29, 58, 73, 74, 87, 103] incur 9-36% aver-
age errors while predicting the execution time of basic blocks
even under the assumption that all memory access times are
constant and well-known [36]. Moreover, these cost models
have to be well maintained and frequently updated when
the hardware changes [58]. For instance, as modern super-
scalar processors are deeply pipelined executing multiple

APT-GET : Profile-Guided Timely Software Prefetching EuroSys ’22, April 5–8, 2022, RENNES, France

instructions simultaneously, the cycle-per-instruction (CPI)
of a particular instruction is not fixed, but instead, it depends
on its data and control flow dependencies. Furthermore, the
average memory access time of a load is significantly affected
by its locality and cache-ability which is generally unknown
at compile time. Lastly, in the presence of input-dependent
code, static techniques cannot predict the execution time.
For these reasons, we propose a dynamic profile-guided tech-
nique to predict the execution time of loops enabling us to
infer the elapsed time between two instances of the same
load instruction.

3 Design of APT-GET
Our analysis shows that the prefetch timeliness, both in
terms of the prefetch-distance and the prefetch injection
site, significantly affects the effectiveness of automated soft-
ware prefetching mechanisms in achieving predictable high-
performance gains across different applications. While a
complete design space exploration can identify the best con-
figuration, performing such an exhaustive search over all
prefetch-distances and prefetch injection sites is infeasible
in large-scale real-world software systems. Hence, we pro-
pose APT-GET , a novel profile-guided mechanism to iden-
tify the optimal prefetch-distance and the optimal prefetch
injection site using only a single profiling run to capture
the dynamic behavior of an application. Specifically, APT-
GET employs efficient hardware support (Intel’s LBR [70])
to collect the application profile with negligible overhead
(§3.1). As widely-used profile-guided code layout optimiza-
tion techniques [31, 52, 66, 96, 97] already collect similar
program execution profiles in production, APT-GET can be
seamlessly integrated into existing systems. Based on this
profile, APT-GET applies a novel analytical technique to
find both the optimal prefetch-distance (§3.2) and the opti-
mal prefetch injection site (§3.3). Without LBR, APT-GET
lacks the dynamic information needed to improve prefetch
timeliness. While it may be possible to estimate loop exe-
cution times with software techniques [86], LBR provides
the most accurate results with the lowest overheads. Apart
from Intel processors, AMD processors support branch sam-
pling [47] and future ARM processors will implement the
Branch Record Buffer Extension (BRBE) [99], which can be
used as an alternative to LBR. Finally, APT-GET revises exist-
ing compiler-based prefetching mechanisms to incorporate
these optimal prefetch configurations to ensure the timeli-
ness of prefetch operations (§3.5).

3.1 Profile Collection
Enabling timely prefetches requires a detailed character-
ization of the corresponding demand loads. This charac-
terization includes the hit/miss ratio and the performance
impact of the load, the trip count of the loop containing the
load instruction, and the execution time of a single loop

OS

4

IS

9

IS

11

OS

13

IS

19

IS

21

IS

24

OS

26

Target

Time

OE IE IE OE IE IE IE OEPC

Figure 3. Schematic view of the Intel CPU’s Last Branch
Record (LBR) highlighting the outer loop branches in blue,
the inner loop branches in orange and the cycle times of
each branch in green

iteration. For instance, as shown in the analysis section
(§2), we need to determine the elapsed time between two
instances of the same load instruction for computing the
optimal prefetch-distance. The loop latency (execution time)
is hereby defined by two components: the instruction compo-
nent (IC) and the memory component (MC). The instruction
component includes all (non-load) instructions implement-
ing the loop. The latency of this component, IC_latency
depends on the number of instructions and their data and
control flow dependencies. However, frequently in practice,
IC_latency does not differ significantly across different loop
iterations. Moreover, this latency is constant even in the pres-
ence of optimal prefetching. The memory component, on the
other hand, includes the loads causing frequent cache misses.
Therefore, the latency of this component, MC_latency is
determined by the level within the memory hierarchy that
serves the load. As the L1 cache access latency (4 cycles) dif-
fers significantly from the DRAM access latency (hundreds of
cycles), MC_latency is highly variable. Our prefetching tech-
nique captures this variance to identify the optimal prefetch-
distance. To determine the optimal prefetch-distance, we
need to learn the latency of both the instruction and mem-
ory component, so that:

𝐼𝐶_𝑙𝑎𝑡𝑒𝑛𝑐𝑦 × 𝑝𝑟𝑒 𝑓 𝑒𝑡𝑐ℎ_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑀𝐶_𝑙𝑎𝑡𝑒𝑛𝑐𝑦 (1)

If Equation (1) holds then theMC_latency can be hidden with
prefetching. To separate the IC_latency from theMC_latency,
it is insufficient to measure the average time between two
instances of a load. Instead, we need to predict the execution
time of a loop in the absence of cache misses deriving the
optimal prefetch distance.
To enable the load characterization outlined above, we

leverage the Last Branch Record (LBR) feature offered by
Intel CPUs [70]. The LBR is a buffer that holds several key
pieces of information about the last 32 basic blocks (BBL)
executed by the CPU. A basic block is defined as a sequence
of consecutive instructions that was terminated by a taken
branch. Hence, when APT-GET collects hardware perfor-
mance event samples with the LBR feature enabled, the
collected profile includes LBR entries for the last 32 taken
branches immediately preceding the instruction that triggers
the performance event. We show an example schematic view
of the multiple LBR entries in Figure 3.

EuroSys ’22, April 5–8, 2022, RENNES, France Saba Jamilan, Tanvir Ahmed Khan, Grant Ayers, Baris Kasikci, and Heiner Litz

As we show in Figure 3, each LBR entry contains the
program counter (PC) of a taken branch, the target of the
branch, and the CPU cycle when the branchwas executed. By
finding two instances of the same branch PC implementing a
loop and subtracting their cycle counts, we can compute the
execution time of a loop iteration. As a specific demand load
instruction exists exactly once for a single loop iteration,
this enables us to compute the elapsed time between two
instances of the same load instruction. In the case of a nested
loop, if we know the branch PC corresponding to the outer
loop and the branch PC corresponding to the inner loop,
we can count the number of inner branch PCs within two
outer branch PCs in the LBR to compute the number of inner
loop iterations. For instance, in Figure 3, the average loop
execution time of I is 2.2 and the average loop trip count of
I is 2.5.

3.2 Determining the Optimal Prefetch Distance
As we describe in §3.1, measuring the average loop iteration
time is insufficient for determining the optimal prefetch-
distance. In particular, we need to predict the loop’s instruc-
tion component (IC) execution time under the assumption
that memory blocks corresponding to all memory accesses
have already been prefetched and that they can be served
with low latency. During the profiling step of our technique,
we have not injected any prefetches yet and hence this infor-
mation is unavailable. To address this challenge, we profile
the latency distribution of delinquent loads (loads that cause
frequent LLC misses) [39], instead of solely measuring their
average memory access time, resulting in the following appli-
cation profiling technique.

First, we capture delinquent load PCs that induce frequent
Last Level Cache (LLC) misses utilizing precise event-based
sampling (PEBS) [71, 119]. Second, we capture LBR samples
at the default frequency of once per millisecond while exe-
cuting the application. Third, we search all LBR samples that
contain a delinquent load PC. In particular, the load PC must
be greater or equal to the start PC of a BBL and smaller than
the terminating branch PC of the BBL (as provided by PC
and target information of two consecutive branch entries in
the LBR). Fourth, for all LBR samples that contain at least
two instances of the BBL containing the delinquent load, we
measure the loop execution time by subtracting the cycle
counts of the two subsequent branches. Fifth, we analyze the
latency distribution of the loop’s execution time to predict
the latency in the case that the load is served from the L1 or
L2 cache.
Figure 4 shows a distribution plot of the execution time

of a loop containing the delinquent load PC as used in the
graph benchmarks evaluated in (§4). The plot shows four
peaks at around 80, 230, 400, and 650 cycles. As the execu-
tion time of non-load instructions is relatively stable across
loop iterations, we posit that these peaks are caused by loads

Figure 4. Distribution of a loop’s execution time containing
a delinquent load [39] in terms of CPU cycles measured using
LBR samples

being served from different levels of the memory hierar-
chy such as the L1, L2, LLC, and DRAM. From this data
we derive that 𝐼𝐶_𝑙𝑎𝑡𝑒𝑛𝑐𝑦 = 80 cycles and 𝑀𝐶_𝑙𝑎𝑡𝑒𝑛𝑐𝑦 =

650−𝐼𝐶_𝑙𝑎𝑡𝑒𝑛𝑐𝑦 = 570 cycles. According to Equation (1) this
allows us to compute the 𝑝𝑟𝑒 𝑓 𝑒𝑡𝑐ℎ_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 570/80 ≈ 7.

3.3 Finding the Optimal Prefetch Injection Site
As we demonstrate in §2.4, when loops have low trip counts
and low execution time per iteration, prefetch instructions
inserted in the inner loop could not provide any performance
benefit. We extend APT-GET ’s LBR-based analytical tech-
nique described in §3.2 to identify such inner loops and inject
prefetch instructions into the outer loop instead of the inner
loop. This optimization enables APT-GET to prefetch ahead
and improve prefetch timeliness. To determine whether to
inject prefetches in the outer or inner loop, APT-GET ana-
lyzes the recorded LBR samples and determines the average
trip count of the inner loop (e.g., 2.2 in the example shown
in Figure 3). Then, APT-GET injects prefetch instructions
into the outer loop instead of in the inner loop only if the
following equation holds.

𝑙𝑜𝑜𝑝_𝑡𝑟𝑖𝑝_𝑐𝑜𝑢𝑛𝑡 × 𝑘 < 𝑝𝑟𝑒 𝑓 𝑒𝑡𝑐ℎ_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (2)
In Equation 2, 𝑘 represents a constant and APT-GET deter-

mines its value based on the loop characteristics. Every loop,
where prefetch instructions are injected, contains a prologue
and epilogue of size prefetch-distance (in iterations) in which
prefetching does not occur. No prefetches are executed for
the loads in the prologue and the prefetches performed in
the epilogue will not match any corresponding demand load.
As a result, if we want to prefetch 80% of all demand loads,
the value of 𝑘 needs to be 5. If APT-GET determines to inject
prefetches in the outer loop, the prefetch-distance will be
computed on the execution latency distribution of the outer

APT-GET : Profile-Guided Timely Software Prefetching EuroSys ’22, April 5–8, 2022, RENNES, France

loop as described in Section 3.2. To implement prefetching
in the outer loop, we extend our LLVM pass to extract the
load-slice in the inner loop and replicate it into the outer
loop. Furthermore, the induction variable of the outer loop
which is considered a constant from the perspective of the
inner loop (and the extracted load-slice), needs to be multi-
plied with the prefetch-distance to form the final prefetching
instruction sequence. Next, we provide APT-GET ’s further
implementation details.

3.4 Automated Profiling Methodology
APT-GET performs a fully automated approach consisting
of the following steps to generate timely software prefetch
instructions. First, APT-GET utilizes perf record [43, 71]
to detect frequent cache miss inducing loads and derives the
start PCs of their basic blocks. Second, APT-GET captures
application’s LBR profiles and filters them for the PCs deter-
mined in the previous step. To compute prefetch-distance
and prefetch injection site, APT-GET extracts the average
loop trip count by counting the number of consecutive inner
loop PCs in the LBR record. It furthermore, computes the
average iteration execution time from the cycle counts in
the LBR record. Therefore, APT-GET obtains the peaks in
the scatter plot as they represent the execution time of the
BBL when the delinquent load PC is served from a level in
the memory hierarchy. For detecting the peaks inside the
plot automatically, APT-GET uses find_peaks_cwt [2, 45]
of scipy.signal [1], which performs a continuous wavelet
transform algorithm to find the location of the peaks. The
result of our automated approach is a list of delinquent load
PCs with their corresponding prefetch-distance and prefetch
injection site which can be consumed by the LLVM software
prefetching pass.

3.5 LLVM Prefetch Injection Pass
We implement a function level LLVM pass that detects indi-
rect memory access patterns inside the IR of an application
and injects prefetching kernels based on the generated list
of delinquent loads. To convert a delinquent load PC to an
instruction in the IR, APT-GET utilizes AutoFDO’s [31] capa-
bility of converting arbitrary PCs into lines of code in the
IR. Algorithm 2 describes an overview of our implemented
LLVM pass for software prefetching of indirect memory
access patterns. During the initialization of our algorithm,
Lines 3-7, it scans through every function in the module
and checks whether there are samples related to functions
inside the application IR or not. If it finds at least one sam-
ple, we can use the input profile to find precisely the delin-
quent load PC inside the IR. In this case, the algorithm sets
AutoFDOMapping variable to True. If the algorithm doesn’t
find any sample during initialization, Lines 35-38, it performs
the same static searching scheme as proposed by Ainsworth
& Jones [9] to traverse through all BBLs inside each function

Algorithm 2. An overview of proposed profile-guided
LLVM pass for software prefetching
1 // REQUIRE input profiling file
2 bool AutoFDOMapping;
3 doInitialization(Module &M){
4 for (F: M):
5 if(SamplesFound):
6 AutoFDOMapping=true;
7 }
8 runOnFunction(Function &F) {
9 modified = false;
10 //vectors to keep candidate loads and their
11 //prefetch-distance for emitting prefetches
12 SmallVector<Instruction*,30> prefetches;
13 SmallVector<Instruction*,30> prefetchDists;
14 if(AutoFDOMapping):
15 //Map the PC to the correct load instruction
16 //inside the IR
17 for(curLoad: BBL):
18 HintsFound =FoundHints(curLoad,SamplesFound);
19 if(HintsFound):
20 for(S: HintsFound)
21 prefechDist = S.second;
22 if(SearchAlgorithm(curLoad, SetOfPhiNodes,

SetOfPhiLoads, SetOfInstrs)):
23 prefetches.push_back(curLoad);
24 prefetchDists.push_back(prefechDist);
25 for(p: prefetches):
26 if(SetOfPhiNodes[p].size()>1):
27 //The load is located inside a nested
28 //loops
29 if(InjectPrefechesMorePhis(p, prefechDists[p])):
30 modified =true;
31 else:
32 //The load is located inside a single
33 //loop
34 if(InjectPrefechesOnePhi(p, prefechDists[p])):
35 modified =true;
36 else:
37 //Search BBLs statically to emit prefetches
38 //for all indirect memory patterns
39 return modified;
40 }

to capture all load instructions with indirect memory access
patterns for generating prefetch-slices.
If there exists an AutoFDO mapping for a function con-

taining a delinquent load PC (line 14-35), the algorithm tra-
verses the BBLs inside the function to capture the delinquent
load PCs identified inside the LBR sample. In Line 18, the
FoundHints function compares the debugging location of
each load instruction inside the BBLs with the profiling infor-
mation in the sample to find the precise delinquent Load PC’s
location. When a delinquent load PC is found inside the IR
the algorithm reads the sample to capture the corresponding
calculated prefetch-distance from LBR analysis for the load
instruction (lines 18-20).

In Lines 22-24, the algorithm calls the SearchAlgorithm
function, which is a load slice search function similar
to Depth-First Search (DFS) algorithm proposed by
Ainsworth & Jones [9]. This function extracts the load slices
of the load instructions by performing a backward data
dependency analysis while tracking all instructions that form
the load slice. The search terminates when all loop induc-
tion variables (PHINode), that the load is dependent have

EuroSys ’22, April 5–8, 2022, RENNES, France Saba Jamilan, Tanvir Ahmed Khan, Grant Ayers, Baris Kasikci, and Heiner Litz

been found. We extend Ainsworth & Jones’s algorithm by
continuing to search for backward-dependent instructions
after the first induction variable is found for the purpose
of enabling outer-loop prefetch injection. In particular, we
explore the previous BBL and if the two BBLs implement
a nested loop, we determine the induction variable of the
outer loop by extending the prefetch slice to contain both
induction variables enabling injection into both the inner
and/or outer loop.
After capturing load slices determined by the PHINodes

of delinquent load instructions (lines 25-35), the algorithm
executes the corresponding prefetching function to inject the
prefetch-slice into the IR of the application. If the number of
captured PHINodes for a delinquent load PC ismore than one,
it means that the load is located inside a nested loop and algo-
rithm calls the InjectPrefechesMorePhis function, other-
wise, the algorithm calls the InjectPrefechesOnePhi func-
tion for inserting the slice. For generating the prefetch slice,
the captured load slice is replicated while replacing the delin-
quent load instruction with a prefetch instruction and adding
the calculated prefetch-distance from LBR analysis to the
BBL induction variable.
Listing 3 illustrates the simplified IR representation of

the nested loop with an indirect memory access pattern as
shown in the microbenchmark code 1.The indirect pattern
load is located in line 13 and is dependent on the instructions
in lines 7-12 as well as on the inner loop induction variable
%iv2 in line 6. It is also dependent on the outer loop induc-
tion variable %iv1 in line 2 and the instruction in line3. For
this code, we can inject the prefetch instructions inside the
inner loop for the indirect pattern load by replicating lines
2-7. In this case the outer loop induction variable %iv1 is
considered a constant for all executions of the inner loop.
The highlighted lines, line 13-21, in Listing 4 illustrates the IR
representation of the microbenchmark 1 after injecting the
prefetch slice for the indirect pattern load inside the inner
loop. In line 9, the calculated prefetch-distance value by APT-
GET is added to the inner loop induction variable, %iv2, to
generate timely prefetch instructions. If we want to inject
prefetches into the outer loop, %iv1 is no longer considered
a constant, hence, we need to extend our prefetch-slice by
following dependencies across the inner BBL including %iv1.
Note that, from the outer loop perspective, the inner loop
induction variable %iv2 is unknown (it depends on the inner
loop iteration). As a result, we assign %iv2 to 0, line 6, so that
only the first inner loop iteration is prefetched in the outer
loop. To improve coverage, we can emit multiple prefetches
where %iv2 is swept from 0 to the average number of inner
loop iterations as observed in §2 using LBR-based profile.
To further generalize our technique, our pass introduces

the capability for detecting indirect pattern loads that have
non-canonical-type induction variables. In particular, our
pass supports arbitrary computation on the loop induction
variable such as i*=2 instead of just allowing i++. We also

1 for.body1:
2 %iv1 = phi i64
3 %1 = getelementptr inbounds i32, i32* %BO, i64 %iv1
4 [....]
5 for.body2: ; preds = %for.body1
6 %iv2 = phi i64
7 %2 = load i32, i32* %1
8 %3 = getelementptr inbounds i32, i32* %BI, i64 %v2
9 %4 = load i32, i32* %3
10 %5 = add i32 %2, %4
11 %6 = sext i32 %5 to i64
12 %7 = getelementptr inbounds i32, i32* %T, i64 %6
13 %8 = load i32, i32* %7
14 [....]

Listing 3. The simplified LLVM’s IR-level representation of
the microbenchmark 1 before injecting the prefetch slice

1 for.body1:
2 %iv1 = phi i64
3 %1 = getelementptr inbounds i32, i32* %BO, i64 %iv1
4 [....]
5 for.body2: ; preds = %for.body1
6 %iv2 = phi i64
7 %2 = load i32, i32* %1
8 %3 = getelementptr inbounds i32, i32* %BI, i64 %v2
9 %4 = load i32, i32* %3
10 %5 = add i32 %2, %4
11 %6 = sext i32 %5 to i64
12 %7 = getelementptr inbounds i32, i32* %T, i64 %6
13 %9 = add i64 %iv2, prefetch_distance

14 %10 = icmp slt i64 %INNER, %9

15 %11 = select %10, i64 %INNER, i64 %9

16 %12 = getelementptr inbounds i32, i32* %BI, i64 %11

17 %13 = load i32, i32* %12

18 %14 = add i32 %2, %13

19 %15 = sext i32 %14 to i64

20 %16 = getelementptr inbounds i32, i32* %T, i64 %15

21 %17 = bitcast i32* %16 to i8*

22 call void @llvm.prefetch.p0i8(i8* %17, i32 0, i32 3, i32 1)

23 %8 = load i32, i32* %7
24 [....]

Listing 4. The simplified LLVM’s IR-level representation
of the microbenchmark 1 after injecting the prefetch slice
inside the inner loop

add support formultiple and complex exit conditions to break
out of a loop such as for(i:K){if(cond(i)) break;}.

3.6 Limitations of APT-GET
Our proposed technique has a number of limitations. How-
ever, none of these limitations has shown to be a significant
issue in practice. The first two limitations are due to the
limited size of the LBR containing only 32 entries on our sys-
tem. In the case of a two-nested loop, where the inner loop
containing the delinquent load has a high loop trip count,
LBR samples will only contain the branch PC implementing
the inner loop. As a result, we cannot measure the outer loop
latency. This is not a real problem because with high loop
trip counts we can always prefetch in the inner loop and do
not have to revert to outer loop prefetch injection.

APT-GET : Profile-Guided Timely Software Prefetching EuroSys ’22, April 5–8, 2022, RENNES, France

Another potential scenario limiting APT-GET ’s effective-
ness can occur when the inner loop containing the delin-
quent load also contain 32 other taken branches. Conse-
quently, LBR samples contain the inner loop branch PC only
once prohibiting latency measurements. In this case, the loop
execution time is generally high enough so that a default
prefetch-distance of one is sufficient.
Lastly, if the execution time of a loop is input data-

dependent, we need to re-profile the application for each
input. This means that in contrast to static compile-time tech-
niques, APT-GET also allows optimizing input-dependent
code.We believe re-profiling is feasible in this case, especially
in the data center setting where profile-guided optimization
techniques have been most successful [15, 64–67, 79, 96, 112]
and where applications are compiled and released at high
cadence. Furthermore, AutoFDO [31] has shown that even
stale profiles enable PGO techniques to provide good perfor-
mance as data inputs tend to change slowly over the course
of multiple weeks.

4 Evaluation
In this section, we describe the software infrastructure, test
setups, real world benchmarks and data sets that we use to
evaluate APT-GET .

4.1 Experimental Setup
The techniques described in Section 3 are implemented as
a function level LLVM pass [72] that is available at [5].
We utilize the Clang compiler, version 10.0, on Ubuntu
Linux 20.04 with kernel version 5.4 to apply the pass on
the IR representation of the applications. We enable the high-
est compiler-level optimizations (-O3). We use (-gmlt) and
(-fdebug-info-for-profiling) to emit debugging infor-
mation for identifying delinquent load PCs inside the pass [3].
We compare APT-GET against a no-prefetching baseline and
against the static prefetch injection technique Ainsworth
& Jones [9]. We execute each experiment three times and
utilize perf stat [43, 71] to obtain the results presented
in this section. The machine configuration of the evaluated
system is described in Table 2.

Table 2. The Machine Configuration

Component Parameters

Core Intel(R) Xeon(R) Gold 5218 CPU
@2.30GHz (3.9GHz Turbo)

L1 I/D Cache 64KiB/core
L2 Cache 1MiB/core
LLC 22MiB shared

Main Memory
DIMM DDR4

capacity: 32GiB, channels: 6,
@2666MHz

Table 3. The list of real-applications

App Description

BFS Searches a target vertex
given a start node in a graph

DFS
Searches a target vertex

by performing a depth-first traversal
given a start node

PR Computes ranking of web-pages

BC
A measure of centrality computed by
finding all the shortest paths between

all vertices

SSSP Computes the shortest path
to all vertices given a source vertex

IS Bucket sorting of random integers
CG sparse matrix multiplications

RandAcc Measuring memory
system performance

HJ2/HJ8 Represents a database application

Graph500 Breadth-first search
on an undirected graph

Table 4. Graph data-sets properties

Data-set Name #Vertices #Edges
web-Google (WG) 875,713 5,105,039
p2p-Gnutella31 (P2P) 62,586 147,892
roadNet-CA (CA) 1,965,206 2,766,607
roadNet-PA (PA) 1,088,092 1,541,898
loc-Brightkite (LBE) 58,228 214,078
web-BerkStan (WB) 685,230 7,600,595
web-NotreDame (WN) 325,729 1,497,134
web-Stanford (WS) 281,903 2,312,497

4.2 Methodology
Our proposed technique is generic and automated; hence it
can in principle be applied to any application that is perfor-
mance limited by LLC cache misses. For evaluatingAPT-GET ,
we examine ten real-world, memory-bound applications as
described in Table 3. In accordance with prior work [9],
applications were selected for exhibiting indirect memory
accesses located inside loops (including nested loops) as
hardware prefetchers do not handle those. Figure 5 shows
how much the selected applications are bounded by the L3
cache and DRAM. In particular, we evaluated graph full pro-
grams including breadth-first search (BFS), depth-first
search (DFS), pageRank (PR), betweenness centrality
(BC), and single-source shortest path algorithm (SSSP)
from the CRONO benchmark suite [7]. Traversing graph
data structures frequently requires executing indirect mem-
ory access patterns inside a nested loop where the loop
trip counts depends on the number of graph vertices or
edges. For running these applications, we use both real-world
graph data-sets from the Stanford Network Analysis Plat-
form (SNAP) [77] as well as synthetic graphs that exhibit

EuroSys ’22, April 5–8, 2022, RENNES, France Saba Jamilan, Tanvir Ahmed Khan, Grant Ayers, Baris Kasikci, and Heiner Litz

Figure 5. The percentage of L3/DRAM stalls is obtained for
each application’s non-prefetching baseline. On average, the
performance of selected applications is 49.37% bounded by
the memory system.

a sufficiently large number of vertices and edges per ver-
tex to induce high Misses Per Kilo Instructions (MPKI) in
the Last Level Cache (LLC) for the non-prefetching base-
line configuration. The utilized graph data sets are shown in
Table 4.

We evaluate additional applications including Integer
Sort (IS) and Conjugate Gradient (CG) applications from
the NAS parallel benchmark suite [16]. The integer sort algo-
rithm induces indirect memory access patterns during the
bucket sorting process of random integers inside an array. For
evaluating IS we set the number of the iterations to 25 using
two different problem sizes, Class B and Class C. The CG
benchmark executes sparse matrix multiplications generat-
ing irregular indirect memory accesses for traversing vectors
in the compressed sparse row (CSR) format. We also evaluate
the RandomAccess (randAccess) benchmark from HPC
Challenge Benchmark Suite[85] which randomly updates
elements of a large table to compute the giga updates per
second (GUPS) memory system performance. We utilize a
table size of 1GiB for the RandomAccess benchmark suite.
We also use two different forms of the Hash join bench-

mark [19], Hash Join 2EPB (HJ2) and Hash Join 8EPB
(HJ8), to evaluate the performance of APT-GET . Both Hash
Join benchmarks implement hashing to lookup target values
based on some key distribution, where HJ8 utilizes hash buck-
ets of 8 elements while HJ2 just utilizes 2 elements per bucket.
The size of hash table is 970 MiB and we run both of these
benchmarks with two hasing algorithms (NPO and NPO_st).
TheGraph500 benchmark [92] executes breadth-first search
on an undirected graph that has an average degree of 16. We
utilize a scale factor of 22 and an edge-factor of 10.

4.3 Performance Improvement
Figure 6 shows the execution time speedup of APT-GET
and Ainsworth & Jones [9] across all benchmarks over the
no-prefetching baseline. Ainsworth & Jones utilizes a static
prefetch-distance and, furthermore, is limited to injecting
prefetches into the inner loop. As can be seen, APT-GET pro-
vides a maximum speedup of 1.98× for HJ8 and BFS and an
average speedup of 1.30× over the baseline while Ainsworth
& Jones only provides gains for few applications resulting
in an average speedup of 1.04×. We calculate the average
speedup values by using the geometric mean. Except for the
CG benchmark,APT-GET improves performance for all appli-
cations whereas Ainsworth & Jones shows a performance
regression for BC. This shows that injecting prefetches with
non-optimal prefetch-distance and prefetch injection site can
reduce performance due to the injected instruction overhead.

4.4 Cache Miss Reduction
In Figure 7 we show the cache miss reduction
enabled by APT-GET measured in misses per kilo
instructions (MPKI). We measure misses utilizing the
offcore_requests.demand_data_rd PMU counter and
compare against the non-prefetching baseline. Note that
demand loads that hit a prefetch to the same address in the
fill buffer are counted as a cache miss. In average, APT-GET
reduces cache misses by 65.4%, while Ainsworth & Jones
reduces cache misses by 48.3% and MPKI improvements are
most significant where APT-GET also provides the highest
execution time benefits. We leave analyzing the interplay of
hardware and software prefetches for future work. While
for BC with 50K nodes and degree of 8, Ainsworth &
Jones reduces cache misses over APT-GET it also injects
significantly more instructions as we will show in Figure 11
explaining the higher execution time improvement of
APT-GET . To provide further insights, in the following
sections, we evaluate the individual techniques of APT-GET .

4.5 Effectiveness of the LBR Profiling
We first evaluate the effectiveness of our LBR profiling tech-
nique to determine the optimal prefetch-distance. Therefore,
we execute all benchmarks with the following 8 different
prefetch distances 𝐷 = {1, 2, 4, 8, 16, 32, 64, 128}. We then
take the prefetch-distance that performed best and compare
the achieved performance against APT-GET . As shown in
Figure 8, the proposed LBR approach is able to determine a
near optimal prefetch-distance for all applications.

4.6 Effectiveness of the Prefetch Distance
Optimization

In figure 9, we evaluate the effectiveness of our proposed LBR
sampling technique against using a static prefetch-distance
approach. We compare the speedup results for APT-GET
against 3 different static prefetch-distance values of 4, 16, 64,

APT-GET : Profile-Guided Timely Software Prefetching EuroSys ’22, April 5–8, 2022, RENNES, France

Figure 6. Execution time speedup provided by APT-GET over the non-prefetching baseline: APT-GET achieves 1.30× average
speedup on average, compared to the 1.04× speedup provided by the state of the art (Ainsworth & Jones).

Figure 7. APT-GET ’s LLC MPKI, misses per 1000-instructions, reduction over the non-prefetching baseline (lower is better):
on average, APT-GET provides 1.35× greater MPKI reduction than the state of the art (Ainsworth & Jones).

and the calculated prefetch-distance value from LBR samples
for eachworkload. As we can see, for most of the applications
APT-GET achieves a higher performance gain by using the
calculated prefetch-distance from LBR samples than utilizing
a static prefetch-distance of 4, 16, 64, highlighting the efficacy
of our approach. While a static prefetch-distance of 64 also
performs well it is outperformed by APT-GET by 1.06× for
RandomAccess and by 1.09× for HJ2-NPO.

4.7 Effectiveness of the Prefetch Injection Site
Optimization

Figure 10 shows the effect of optimizing the prefetch injec-
tion site for all applications. In this experiment, we measure
the speedup of APT-GET by prefetching either in the outer or
the inner loop for all applications that contain nested loops.
The goal of these experiments is to evaluate the effective-
ness of our proposed approach for detecting the appropri-
ate prefetch injection site. For all the workloads except for

DFS, injecting prefetch instructions inside the inner loop
decreases the performance over the non-prefetching base-
line. Therefore, it is crucial to enable outer-loop prefetching
but also to detect the appropriate prefetch injection site
for each prefetch individually. We can see that based on
the number of edges and vertices the input graph contains,
the achieved performance gain from inner or outer loop
prefetching can be significantly different. For example, if
we compare the achieved speedup for the BFS application
by considering two different inputs, loc-Brightkite with 58K
nodes and an average edge degree of 3, as well as graph
with 80K nodes and an average edge degree of 8, we can see
that the achieved speedup gain from outer loop prefetching
differs significantly.

4.8 Instruction Overhead
Injecting prefetch slices introduces overheads in terms of
additional instructions that need to be executed by the

EuroSys ’22, April 5–8, 2022, RENNES, France Saba Jamilan, Tanvir Ahmed Khan, Grant Ayers, Baris Kasikci, and Heiner Litz

Figure 8. Speedup of prefetch-distance from LBR sampling technique and optimal prefetch-distance over non-prefetching
baseline: LBR sampling technique achieves 1.30× overall speedup in average, compared to 1.32× speedup of optimal prefetch-
distance, over non-prefetching baseline.

Figure 9. Speedup for different static offset values and LBR over non-prefetching baseline: prefetch-distance of 4, 16, 64, and
LBR sampling technique achieve 1.16×, 1.26×, 1.28×, and 1.30× speedup in average over non-prefetching baseline, respectively.

processor. In particular, while prefetching almost always
improves the instructions per cycle (IPC) performance of
an application it increases the instruction count potentially
offsetting the performance gains. While we have already
shown that APT-GET provides a net performance gain, Fig-
ure 11 provides insight about the number of instructions
injected by APT-GET and Ainsworth & Jones. While for
most applications the instruction overhead is negligible, for
IS and RandomAccess, it is significant which limits the per-
formance gains provided for these applications. We believe
there exist future research opportunities in considering the
instruction overhead for conditional prefetch slice injection.

4.9 Inputs for profiling and testing
We use different realistic data sets (such as graphs) for eval-
uating the input sensitivity of APT-GET . In particular, Fig-
ure 12 shows the performance of training and evaluating

APT-GET on the same input (TRAIN-DATA) vs. evaluating
on a different input (TEST-DATA). The obtained results indi-
cate that there are no significant performance differences
between the two inputs showing that APT-GET can general-
ize across inputs.

4.10 Profiling overhead
In Google’s data centers, all applications are already contin-
uously profiled [15, 102] and recompiled before deployment.
Our technique does not introduce additional overheads here.
Our approach only requires a single profiling run. The aver-
age total overhead is less than 15-20 seconds. Note that opti-
mization is performed only once in data centers while the
application is executed on 1000s of nodes.

APT-GET : Profile-Guided Timely Software Prefetching EuroSys ’22, April 5–8, 2022, RENNES, France

Figure 10. Speedup of injecting prefetches inside the outer or inner loops over non-prefetching baseline: For most of the
applications, injecting prefeches inside the outer loop achieves 1.20× overall speedup in average, while injecting prefetches
inside the inner loop improves speedup for DFS up to 1.11× over non-prefethcing baseline.

Figure 11. The overhead of injected prefetching instructions over non-prefetching baseline: APT-GET increases the total
number of instructions 1.14× in average, compared to 1.19× in average of Ainsworth & Jones, over non-prefetching baseline.

5 Related Work
Prefetching is a well-studied and yet widely open area
that spans many types of access patterns and implemen-
tations. We classify prior works in three categories. Soft-
ware prefetching. Traditional software prefetching [26]
techniques utilize compilers to perform static code analysis
to generate fixed prefetch targets [11, 35, 53, 111]. These
approaches are limited by lacking knowledge about which
memory accesses actually cause performance degradation
and which prefetch distances should be used. Furthermore,
they are limited by practical constraints such as the abil-
ity to only detect simple patterns such as Singly-Nested
Loop Nests [120] or strides [63, 91, 124]. Other approaches
can analyze more complex behaviors like linked list traver-
sals and insert jump pointers into source code at compile
time [38, 83, 104, 105]. However, these require source code
modification and result in additional run-time storage costs

whenever a pointer is inserted into a data structure. In con-
trast, APT-GET does not rely on source code modification, it
can handle arbitrarily complex indirect and direct access pat-
terns, and uses profiling information to identify performance-
critical loads and tune prefetch distances to improve prefetch
timeliness.

Improving upon static methods, some prior works utilize
dynamic profiling to better identify prefetch candidates [81,
84], but they don’t utilize profiling information to improve
timeliness, or introduce overheads by requiring to executed a
separate prefetching thread in parallel to the workload [131].

Hardware prefetching. Stream prefetchers [56, 106] and
pattern-based prefetchers [42, 59, 68, 69, 88, 95, 100, 107, 109]
can be implemented with low to moderate hardware com-
plexity and are capable of prefetching strides and other
simple access patterns. Spatial [18, 21, 51, 110] and tempo-
ral [17, 28, 55, 60, 117] prefetchers can learn and replay more

EuroSys ’22, April 5–8, 2022, RENNES, France Saba Jamilan, Tanvir Ahmed Khan, Grant Ayers, Baris Kasikci, and Heiner Litz

Figure 12. Execution time speedup provided by APT-GET over the non-prefetching baseline for different inputs as train/test
data: APT-GET achieves 1.36× average speedup on average for test data sets compared to the 1.39× average speedup obtained
for train data sets

complex memory access patterns, but they require costly on-
chip storage and rely upon highly-recurrent access patterns.
None of these prefetchers is well-suited for large instruction
footprint applications exhibiting many irregular and indirect
memory patterns such as pointer-based traversals.
Several hardware mechanisms have been proposed to

prefetch complex memory access patterns that are based
on the data and control flow of an application [12, 39, 46,
54, 75, 82, 93, 94, 101, 132]. While general-purpose in nature,
they require fast and complex hardware resources such as
helper threads to run ahead of the application and prefetch
upcoming memory accesses. Unlike APT-GET , these tech-
niques cannot easily filter relevant address calculations from
the main application and their high cost and complexity is
often better spent on additional CPU cores.

Hybrid hardware-software prefetching.
Hybrid hardware-software prefetching mecha-
nisms [10, 20, 66, 114, 129] attempts to combine the
best of both worlds while also addressing the limitations of
hardware-only and software-only mechanisms. However,
these techniques require both hardware prefetching support
and software programming model, neither of which exists in
today’s processor. In contrast, APT-GET employs hardware
and software interfaces already available in today’s pro-
cessors, identifies the key limitation of software-managed
prefetching in terms of prefetch timeliness, and proposes
a profile-guided low-overhead mechanism to ensure the
timeliness. Hence, APT-GET can be readily be employed
on existing processors to optimize the performance of
real-world applications.

6 Conclusion
We propose a novel automated prefetch injection technique
for reducing stall cycles in memory latency-bound programs.
Our approach provides performance gains of up to 1.98×
and 1.30× in average over state-of-the-art mechanisms. To
motivate our technique, we first study prior software-based
prefetching mechanisms for indirect memory access patterns
that cannot be handled by existing hardware prefetchers.
This analysis reveals that, while existing techniques provide
high accuracy and coverage, due to their static nature, they
are unable to generate timely prefetches. To address this chal-
lenge, we propose a profile-guided optimization technique
utilizing the last branch record capability of contemporary
microprocessors. Our approach, implemented as an LLVM
compiler pass, enables a detailed characterization of mem-
ory latency-bound loops, enabling timely prefetching of the
performance limiting loads. We believe that this work can
establish dynamic prefetch injection as a generic, efficient,
low-overhead compiler technique.

Acknowledgments
We thank the anonymous reviewers for their insightful feed-
back and suggestions. This work was supported by Google
and NSF grants #1942754 and #2010810, and the Applications
Driving Architectures (ADA) Research Center, a JUMP Cen-
ter co-sponsored by SRC and DARPA. Any opinions, findings,
conclusions, or recommendations expressed in this material
are those of the authors and do not necessarily reflect the
views of the funding agencies. We thank Anant Nori and
Ahmad Yasin from Intel for their helpful discussions and
feedback.

APT-GET : Profile-Guided Timely Software Prefetching EuroSys ’22, April 5–8, 2022, RENNES, France

References
[1] 2008. scipy.signal. https://docs.scipy.org/doc/scipy/reference/signal.

html
[2] 2008. scipy.signal.find_peaks_cwt. https://docs.scipy.org/doc/scipy/

reference/generated/scipy.signal.find_peaks_cwt.html
[3] 2018. Support for inserting profile-directed cache prefetches. https:

//reviews.llvm.org/D54052
[4] 2021. llvm-mca - LLVM Machine Code Analyzer. https://llvm.org/

docs/CommandGuide/llvm-mca.html. [Online; accessed 9-October-
2021].

[5] 2022. Profile Guided Software Prefetching. https://github.com/
SabaJamilan/Profile-Guided-Software-Prefetching

[6] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy
Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irv-
ing, Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga,
Sherry Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay
Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang
Zheng. 2016. TensorFlow: A System for Large-Scale Machine Learn-
ing. In 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16). USENIX Association, Savannah, GA, 265–
283. https://www.usenix.org/conference/osdi16/technical-sessions/
presentation/abadi

[7] Masab Ahmad, Farrukh Hijaz, Qingchuan Shi, and Omer Khan. 2015.
Crono: A benchmark suite for multithreaded graph algorithms exe-
cuting on futuristic multicores. In 2015 IEEE International Symposium
on Workload Characterization. IEEE, 44–55.

[8] Sam Ainsworth and Timothy M Jones. 2016. Graph prefetching using
data structure knowledge. In Proceedings of the 2016 International
Conference on Supercomputing. 1–11.

[9] Sam Ainsworth and Timothy M Jones. 2017. Software prefetching for
indirect memory accesses. In 2017 IEEE/ACM International Symposium
on Code Generation and Optimization (CGO). IEEE, 305–317.

[10] Sam Ainsworth and Timothy M Jones. 2018. An event-triggered
programmable prefetcher for irregular workloads. ACM Sigplan
Notices 53, 2 (2018), 578–592.

[11] Hassan Al-Sukhni, Ian Bratt, and Daniel A Connors. 2003. Compiler-
directed content-aware prefetching for dynamic data structures. In
2003 12th International Conference on Parallel Architectures and Com-
pilation Techniques. IEEE, 91–100.

[12] Murali Annavaram, Jignesh M Patel, and Edward S Davidson. 2001.
Data prefetching by dependence graph precomputation. In Proceed-
ings 28th Annual International Symposium on Computer Architecture.
IEEE, 52–61.

[13] Grant Ayers, Jung Ho Ahn, Christos Kozyrakis, and Parthasarathy
Ranganathan. 2018. Memory hierarchy for web search. In 2018 IEEE
International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 643–656.

[14] Grant Ayers, Heiner Litz, Christos Kozyrakis, and Parthasarathy Ran-
ganathan. 2020. Classifying Memory Access Patterns for Prefetching.
In Proceedings of the Twenty-Fifth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems.
513–526.

[15] Grant Ayers, Nayana Prasad Nagendra, David I August, Hyoun Kyu
Cho, Svilen Kanev, Christos Kozyrakis, Trivikram Krishnamurthy,
Heiner Litz, Tipp Moseley, and Parthasarathy Ranganathan. 2019.
AsmDB: understanding and mitigating front-end stalls in warehouse-
scale computers. In Proceedings of the 46th International Symposium
on Computer Architecture. ACM, 462–473.

[16] David Bailey, Tim Harris, William Saphir, Rob Van Der Wijngaart,
Alex Woo, and Maurice Yarrow. 1995. The NAS parallel benchmarks
2.0. Technical Report. Technical Report NAS-95-020, NASA Ames
Research Center.

[17] Mohammad Bakhshalipour, Pejman Lotfi-Kamran, and Hamid
Sarbazi-Azad. 2018. Domino temporal data prefetcher. In 2018 IEEE

International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 131–142.

[18] Mohammad Bakhshalipour, Mehran Shakerinava, Pejman Lotfi-
Kamran, and Hamid Sarbazi-Azad. 2019. Bingo spatial data prefetcher.
In 2019 IEEE International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 399–411.

[19] Cagri Balkesen, Jens Teubner, Gustavo Alonso, and M Tamer Özsu.
2013. Main-memory hash joins on multi-core CPUs: Tuning to the
underlying hardware. In 2013 IEEE 29th International Conference on
Data Engineering (ICDE). IEEE, 362–373.

[20] Abanti Basak, Shuangchen Li, Xing Hu, Sang Min Oh, Xinfeng Xie, Li
Zhao, Xiaowei Jiang, and Yuan Xie. 2019. Analysis and optimization of
the memory hierarchy for graph processing workloads. In 2019 IEEE
International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 373–386.

[21] Rahul Bera, Anant V Nori, Onur Mutlu, and Sreenivas Subramoney.
2019. Dspatch: Dual spatial pattern prefetcher. In Proceedings of the
52nd Annual IEEE/ACM International Symposium on Microarchitecture.
531–544.

[22] Ketan Bhardwaj, Matt Saunders, Nikita Juneja, and Ada Gavrilovska.
2019. Serving mobile apps: A slice at a time. In Proceedings of the
Fourteenth EuroSys Conference 2019. 1–15.

[23] Laurent Bindschaedler, Jasmina Malicevic, Nicolas Schiper, Ashvin
Goel, andWilly Zwaenepoel. 2018. Rock you like a hurricane: Taming
skew in large scale analytics. In Proceedings of the Thirteenth EuroSys
Conference. 1–15.

[24] Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata
Ausavarungnirun, Eric Shiu, Rahul Thakur, Daehyun Kim, Aki
Kuusela, Allan Knies, Parthasarathy Ranganathan, et al. 2018. Google
workloads for consumer devices: Mitigating data movement bottle-
necks. In Proceedings of the Twenty-Third International Conference
on Architectural Support for Programming Languages and Operating
Systems. 316–331.

[25] Rodrigo Bruno, Duarte Patricio, José Simão, Luis Veiga, and Paulo Fer-
reira. 2019. Runtime object lifetime profiler for latency sensitive big
data applications. In Proceedings of the Fourteenth EuroSys Conference
2019. 1–16.

[26] David Callahan, Ken Kennedy, and Allan Porterfield. 1991. Software
Prefetching. In Proceedings of the Fourth International Conference
on Architectural Support for Programming Languages and Operating
Systems (Santa Clara, California, USA) (ASPLOS IV). ACM, New York,
NY, USA, 40–52. https://doi.org/10.1145/106972.106979

[27] Steve Carr, Kathryn SMcKinley, and Chau-WenTseng. 1994. Compiler
optimizations for improving data locality. ACM SIGPLAN Notices 29,
11 (1994), 252–262.

[28] Chandranil Chakraborttii and Heiner Litz. 2020. Learning i/o access
patterns to improve prefetching in ssds. In Joint European Conference
on Machine Learning and Knowledge Discovery in Databases. Springer,
427–443.

[29] Andres S Charif-Rubial, Emmanuel Oseret, José Noudohouenou,
William Jalby, and Ghislain Lartigue. 2014. CQA: A code quality
analyzer tool at binary level. In 2014 21st International Conference on
High Performance Computing (HiPC). IEEE, 1–10.

[30] Mark J Charney and Anthony P Reeves. 1995. Generalized correlation-
based hardware prefetching. Technical Report. Technical Report EE-
CEG-95-1, Cornell University.

[31] Dehao Chen, David Xinliang Li, and Tipp Moseley. 2016. AutoFDO:
Automatic feedback-directed optimization for warehouse-scale appli-
cations. In Proceedings of the 2016 International Symposium on Code
Generation and Optimization. ACM, 12–23.

[32] Shimin Chen, Anastassia Ailamaki, Phillip B Gibbons, and Todd C
Mowry. 2004. Improving Hash Join Performance through Prefetching.
In Proceedings of the 20th International Conference on Data Engineering.
116.

https://docs.scipy.org/doc/scipy/reference/signal.html
https://docs.scipy.org/doc/scipy/reference/signal.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.find_peaks_cwt.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.find_peaks_cwt.html
https://reviews.llvm.org/D54052
https://reviews.llvm.org/D54052
https://llvm.org/docs/CommandGuide/llvm-mca.html
https://llvm.org/docs/CommandGuide/llvm-mca.html
https://github.com/SabaJamilan/Profile-Guided-Software-Prefetching
https://github.com/SabaJamilan/Profile-Guided-Software-Prefetching
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://doi.org/10.1145/106972.106979

EuroSys ’22, April 5–8, 2022, RENNES, France Saba Jamilan, Tanvir Ahmed Khan, Grant Ayers, Baris Kasikci, and Heiner Litz

[33] Shimin Chen, Phillip B Gibbons, and Todd CMowry. 2001. Improving
index performance through prefetching. ACM SIGMOD Record 30, 2
(2001), 235–246.

[34] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie
Yan, Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis
Ceze, et al. 2018. TVM: An automated end-to-end optimizing compiler
for deep learning. In 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 18). 578–594.

[35] William Y Chen, Scott A Mahlke, Pohua P Chang, and Wen-mei W
Hwu. 1991. Data access microarchitectures for superscalar processors
with compiler-assisted data prefetching. In MICRO, Vol. 24. 69–73.

[36] Yishen Chen, Ajay Brahmakshatriya, Charith Mendis, Alex Renda,
Eric Atkinson, Ondřej Sỳkora, Saman Amarasinghe, and Michael
Carbin. 2019. BHive: A benchmark suite andmeasurement framework
for validating x86-64 basic block performance models. In 2019 IEEE
International Symposium on Workload Characterization (IISWC). IEEE,
167–177.

[37] Trishul M Chilimbi and Martin Hirzel. 2002. Dynamic hot data
stream prefetching for general-purpose programs. In Proceedings of
the ACM SIGPLAN 2002 Conference on Programming language design
and implementation. 199–209.

[38] Jamison Collins, Suleyman Sair, Brad Calder, and Dean M Tullsen.
2002. Pointer cache assisted prefetching. In Proceedings of the 35th
annual ACM/IEEE international symposium on Microarchitecture. IEEE
Computer Society Press, 62–73.

[39] Jamison D Collins, HongWang, DeanM Tullsen, Christopher Hughes,
Yong-Fong Lee, Dan Lavery, and John P Shen. 2001. Speculative pre-
computation: Long-range prefetching of delinquent loads. In Proceed-
ings 28th Annual International Symposium on Computer Architecture.
IEEE, 14–25.

[40] Robert Cooksey, Stephan Jourdan, and Dirk Grunwald. 2002. A state-
less, content-directed data prefetching mechanism. ACM SIGPLAN
Notices 37, 10 (2002), 279–290.

[41] Charlie Curtsinger and Emery D Berger. 2015. Coz: Finding code that
counts with causal profiling. In Proceedings of the 25th Symposium on
Operating Systems Principles. 184–197.

[42] Fredrik Dahlgren and Per Stenström. 1995. Effectiveness of Hardware-
Based Stride and Sequential Prefetching in Shared-Memory Multi-
processors.. In hpca. 68–77.

[43] Arnaldo Carvalho De Melo. 2010. The new linux’perf’tools. In Slides
from Linux Kongress, Vol. 18. 1–42.

[44] Jialin Dou and Marcelo Cintra. 2007. A compiler cost model for
speculative parallelization. ACM Transactions on Architecture and
Code Optimization (TACO) 4, 2 (2007), 12–es.

[45] Pan Du, Warren A Kibbe, and Simon M Lin. 2006. Improved peak
detection in mass spectrum by incorporating continuous wavelet
transform-based pattern matching. bioinformatics 22, 17 (2006), 2059–
2065.

[46] James Dundas and Trevor Mudge. 1997. Improving data cache per-
formance by pre-executing instructions under a cache miss. In Inter-
national Conference on Supercomputing. Citeseer, 68–75.

[47] Stephane Eranian. 2021. Add AMD Fam19h Branch Sampling support.
https://lwn.net/Articles/875869/.

[48] Babak Falsafi and Thomas F Wenisch. 2014. A primer on hardware
prefetching. Synthesis Lectures on Computer Architecture 9, 1 (2014),
1–67.

[49] Alireza Farshin, Amir Roozbeh, Gerald QMaguire Jr, and Dejan Kostić.
2019. Make the most out of last level cache in intel processors. In
Proceedings of the Fourteenth EuroSys Conference 2019. 1–17.

[50] Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros Volos,
Mohammad Alisafaee, Djordje Jevdjic, Cansu Kaynak, Adrian Daniel
Popescu, Anastasia Ailamaki, and Babak Falsafi. 2012. Clearing the
clouds: a study of emerging scale-out workloads onmodern hardware.
In ACM SIGPLAN Notices, Vol. 47. ACM, 37–48.

[51] Michael Ferdman, Stephen Somogyi, and Babak Falsafi. 2009. Spatial
memory streaming with rotated patterns. 1st JILP Data Prefetching
Championship 29 (2009).

[52] Google. 2020. Propeller: Profile Guided Optimizing Large Scale LLVM-
based Relinker. https://github.com/google/llvm-propeller.

[53] Edward H Gornish, Elana D Granston, and Alexander V Veidenbaum.
2014. Compiler-directed data prefetching in multiprocessors with
memory hierarchies. In ACM International Conference on Supercom-
puting 25th Anniversary Volume. ACM, 128–142.

[54] Milad Hashemi, Onur Mutlu, and Yale N Patt. 2016. Continuous
runahead: Transparent hardware acceleration for memory intensive
workloads. In The 49th Annual IEEE/ACM International Symposium
on Microarchitecture. IEEE Press, 61.

[55] Milad Hashemi, Kevin Swersky, Jamie A Smith, Grant Ayers, Heiner
Litz, Jichuan Chang, Christos Kozyrakis, and Parthasarathy Ran-
ganathan. 2018. Learning memory access patterns. arXiv preprint
arXiv:1803.02329 (2018).

[56] Ibrahim Hur and Calvin Lin. 2006. Memory prefetching using adap-
tive stream detection. In Proceedings of the 39th Annual IEEE/ACM
International Symposium on Microarchitecture. IEEE Computer Soci-
ety, 397–408.

[57] Tatsushi Inagaki, Tamiya Onodera, Hideaki Komatsu, and Toshio
Nakatani. 2003. Stride prefetching by dynamically inspecting objects.
ACM SIGPLAN Notices 38, 5 (2003), 269–277.

[58] Intel Corporation. 2019. Intel Architecture Code Analyzer. https:
//software.intel.com/content/www/us/en/develop/articles/intel-
architecture-code-analyzer.html. [Online; accessed 9-October-2021].

[59] Yasuo Ishii, Mary Inaba, and Kei Hiraki. 2011. Access map pat-
tern matching for high performance data cache prefetch. Journal of
Instruction-Level Parallelism 13, 2011 (2011), 1–24.

[60] Akanksha Jain and Calvin Lin. 2013. Linearizing irregular memory
accesses for improved correlated prefetching. In Proceedings of the
46th Annual IEEE/ACM International Symposium on Microarchitecture.
ACM, 247–259.

[61] Norman P Jouppi. 1990. Improving direct-mapped cache performance
by the addition of a small fully-associative cache and prefetch buffers.
ACM SIGARCH Computer Architecture News 18, 2SI (1990), 364–373.

[62] Svilen Kanev, Juan Pablo Darago, Kim Hazelwood, Parthasarathy
Ranganathan, Tipp Moseley, Gu-Yeon Wei, and David Brooks. 2015.
Profiling a Warehouse-scale Computer. In Proceedings of the 42Nd
Annual International Symposium on Computer Architecture (Portland,
Oregon) (ISCA ’15). ACM, New York, NY, USA, 158–169. https:
//doi.org/10.1145/2749469.2750392

[63] Muneeb Khan, Andreas Sandberg, and Erik Hagersten. 2014. A case
for resource efficient prefetching in multicores. In 2014 43rd Interna-
tional Conference on Parallel Processing. IEEE, 101–110.

[64] Tanvir Ahmed Khan, Nathan Brown, Akshitha Sriraman, Niran-
jan K Soundararajan, Rakesh Kumar, Joseph Devietti, Sreenivas
Subramoney, Gilles A Pokam, Heiner Litz, and Baris Kasikci. 2021.
Twig: Profile-Guided BTB Prefetching for Data Center Applications.
In MICRO-54: 54th Annual IEEE/ACM International Symposium on
Microarchitecture. 816–829.

[65] Tanvir Ahmed Khan, Ian Neal, Gilles Pokam, Barzan Mozafari, and
Baris Kasikci. 2021. DMon: Efficient Detection and Correction of Data
Locality Problems using Selective Profiling. In Proceedings of the 15th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI) (OSDI 2021). USENIX Association.

[66] Tanvir Ahmed Khan, Akshitha Sriraman, Joseph Devietti, Gilles
Pokam, Heiner Litz, and Baris Kasikci. 2020. I-SPY: Context-Driven
Conditional Instruction Prefetching with Coalescing. In 2020 53rd
Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 146–159.

https://lwn.net/Articles/875869/
https://github.com/google/llvm-propeller
https://software.intel.com/content/www/us/en/develop/articles/intel-architecture-code-analyzer.html
https://software.intel.com/content/www/us/en/develop/articles/intel-architecture-code-analyzer.html
https://software.intel.com/content/www/us/en/develop/articles/intel-architecture-code-analyzer.html
https://doi.org/10.1145/2749469.2750392
https://doi.org/10.1145/2749469.2750392

APT-GET : Profile-Guided Timely Software Prefetching EuroSys ’22, April 5–8, 2022, RENNES, France

[67] Tanvir Ahmed Khan, Dexin Zhang, Akshitha Sriraman, Joseph Devi-
etti, Gilles Pokam, Heiner Litz, and Baris Kasikci. 2021. Ripple: Profile-
Guided Instruction Cache Replacement for Data Center Applications.
In Proceedings of the 48th International Symposium on Computer Archi-
tecture (ISCA) (ISCA 2021).

[68] Jinchun Kim, Seth H Pugsley, Paul V Gratz, AL Narasimha Reddy,
Chris Wilkerson, and Zeshan Chishti. 2016. Path confidence based
lookahead prefetching. In 2016 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, 1–12.

[69] Jinchun Kim, Elvira Teran, Paul V Gratz, Daniel A Jiménez, Seth H
Pugsley, and Chris Wilkerson. 2017. Kill the program counter: Recon-
structing program behavior in the processor cache hierarchy. ACM
SIGPLAN Notices 52, 4 (2017), 737–749.

[70] Andi Kleen. 2016. An Introduction to Last Branch Records. https:
//lwn.net/Articles/680985/

[71] Andi Kleen. 2022. GitHub - andikleen/pmu-tools: Intel PMU profiling
tools. https://github.com/andikleen/pmu-tools

[72] Chris Lattner and Vikram Adve. 2004. LLVM: A compilation frame-
work for lifelong program analysis & transformation. In International
Symposium on Code Generation and Optimization, 2004. CGO 2004.
IEEE, 75–86.

[73] Jan Laukemann, Julian Hammer, Georg Hager, and Gerhard Wellein.
2019. Automatic throughput and critical path analysis of x86 and
ARM assembly kernels. In 2019 IEEE/ACM Performance Modeling,
Benchmarking and Simulation of High Performance Computer Systems
(PMBS). IEEE, 1–6.

[74] Jan Laukemann, Julian Hammer, Johannes Hofmann, Georg Hager,
and GerhardWellein. 2018. Automated instruction stream throughput
prediction for intel and amd microarchitectures. In 2018 IEEE/ACM
performance modeling, benchmarking and simulation of high perfor-
mance computer systems (PMBS). IEEE, 121–131.

[75] Jaejin Lee, Changhee Jung, Daeseob Lim, and Yan Solihin. 2009.
Prefetching with helper threads for loosely coupled multiproces-
sor systems. IEEE Transactions on Parallel and Distributed Systems 20,
9 (2009), 1309–1324.

[76] Jaekyu Lee, Hyesoon Kim, and Richard Vuduc. 2012. When prefetch-
ing works, when it doesn’t, and why. ACM Transactions on Architec-
ture and Code Optimization (TACO) 9, 1 (2012), 1–29.

[77] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford large
network dataset collection.

[78] Chuanpeng Li, Kai Shen, and Athanasios E Papathanasiou. 2007.
Competitive prefetching for concurrent sequential I/O. In Proceedings
of the 2nd ACM SIGOPS/EuroSys European Conference on Computer
Systems 2007. 189–202.

[79] Heiner Litz, Grant Ayers, and Parthasarathy Ranganathan. 2022.
CRISP: Critical Slice Prefetching. In Proceedings of the 27th Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS).

[80] Christianto C Liu, Ilya Ganusov, Martin Burtscher, and Sandip Tiwari.
2005. Bridging the processor-memory performance gap with 3D IC
technology. IEEE Design & Test of Computers 22, 6 (2005), 556–564.

[81] Jiwei Lu, Howard Chen, Rao Fu, Wei-Chung Hsu, Bobbie Othmer,
Pen-Chung Yew, and Dong-Yuan Chen. 2003. The performance of
runtime data cache prefetching in a dynamic optimization system. In
Proceedings of the 36th annual IEEE/ACM International Symposium on
Microarchitecture. IEEE Computer Society, 180.

[82] Jiwei Lu, Abhinav Das,Wei-Chung Hsu, Khoa Nguyen, and Santosh G
Abraham. 2005. Dynamic helper threaded prefetching on the sun
ultrasparc cmp processor. In Proceedings of the 38th annual IEEE/ACM
International Symposium onMicroarchitecture. IEEEComputer Society,
93–104.

[83] Chi-Keung Luk and Todd C Mowry. 1996. Compiler-based prefetch-
ing for recursive data structures. In ACM SIGOPS Operating Systems
Review, Vol. 30. ACM, 222–233.

[84] Chi-Keung Luk, Robert Muth, Harish Patil, Richard Weiss, P Geof-
frey Lowney, and Robert Cohn. 2002. Profile-guided post-link stride
prefetching. In Proceedings of the 16th international conference on
Supercomputing. ACM, 167–178.

[85] Piotr R Luszczek, David H Bailey, Jack J Dongarra, Jeremy Kepner,
Robert F Lucas, Rolf Rabenseifner, and Daisuke Takahashi. 2006. The
HPC Challenge (HPCC) benchmark suite. In Proceedings of the 2006
ACM/IEEE conference on Supercomputing, Vol. 213. 1188455–1188677.

[86] Gabriel Marin, Alexey Alexandrov, and Tipp Moseley. 2021. Break
dancing: low overhead, architecture neutral software branch trac-
ing. In Proceedings of the 22nd ACM SIGPLAN/SIGBED International
Conference on Languages, Compilers, and Tools for Embedded Systems.
122–133.

[87] Charith Mendis, Alex Renda, Saman Amarasinghe, and Michael
Carbin. 2019. Ithemal: Accurate, portable and fast basic block through-
put estimation using deep neural networks. In International Confer-
ence on machine learning. PMLR, 4505–4515.

[88] Pierre Michaud. 2016. Best-offset hardware prefetching. In 2016 IEEE
International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 469–480.

[89] Todd Mowry and Anoop Gupta. 1991. Tolerating latency through
software-controlled prefetching in shared-memory multiprocessors.
Journal of parallel and Distributed Computing 12, 2 (1991), 87–106.

[90] Todd C. Mowry, Angela K. Demke, and Orran Krieger. 1996. Auto-
matic Compiler-Inserted I/O Prefetching for Out-of-Core Applica-
tions. In Proceedings of the Second USENIX Symposium on Operating
Systems Design and Implementation (OSDI), Seattle, Washington, USA,
October 28-31, 1996, Karin Petersen and Willy Zwaenepoel (Eds.).
ACM, 3–17. https://doi.org/10.1145/238721.238734

[91] Todd C. Mowry, Monica S. Lam, and Anoop Gupta. 1992. Design
and Evaluation of a Compiler Algorithm for Prefetching. In Proceed-
ings of the Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems (Boston, Mas-
sachusetts, USA) (ASPLOS V). ACM, New York, NY, USA, 62–73.
https://doi.org/10.1145/143365.143488

[92] Richard C Murphy, Kyle B Wheeler, Brian W Barrett, and James A
Ang. 2010. Introducing the graph 500. Cray Users Group (CUG) 19
(2010), 45–74.

[93] Onur Mutlu, Hyesoon Kim, and Yale N Patt. 2005. Techniques for
efficient processing in runahead execution engines. In ACM SIGARCH
Computer Architecture News, Vol. 33. IEEE Computer Society, 370–
381.

[94] Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N Patt. 2003.
Runahead execution: An alternative to very large instruction win-
dows for out-of-order processors. In The Ninth International Sympo-
sium on High-Performance Computer Architecture, 2003. HPCA-9 2003.
Proceedings. IEEE, 129–140.

[95] Kyle J Nesbit and James E Smith. 2004. Data cache prefetching using
a global history buffer. In 10th International Symposium on High
Performance Computer Architecture (HPCA’04). IEEE, 96–96.

[96] Maksim Panchenko, Rafael Auler, Bill Nell, and Guilherme Ottoni.
2019. BOLT: a practical binary optimizer for data centers and beyond.
In Proceedings of the 2019 IEEE/ACM International Symposium on Code
Generation and Optimization. IEEE Press, 2–14.

[97] Maksim Panchenko, Rafael Auler, Laith Sakka, and Guilherme Ottoni.
2021. Lightning BOLT: powerful, fast, and scalable binary optimiza-
tion. In Proceedings of the 30th ACM SIGPLAN International Conference
on Compiler Construction. 119–130.

[98] Aleksey Pesterev, Nickolai Zeldovich, and Robert T Morris. 2010.
Locating cache performance bottlenecks using data profiling. In Pro-
ceedings of the 5th European conference on Computer systems. ACM,
335–348.

[99] Lucas Prates. 2020. Add support for the Branch Record Buffer exten-
sion. https://reviews.llvm.org/D92389.

https://lwn.net/Articles/680985/
https://lwn.net/Articles/680985/
https://github.com/andikleen/pmu-tools
https://doi.org/10.1145/238721.238734
https://doi.org/10.1145/143365.143488
https://reviews.llvm.org/D92389

EuroSys ’22, April 5–8, 2022, RENNES, France Saba Jamilan, Tanvir Ahmed Khan, Grant Ayers, Baris Kasikci, and Heiner Litz

[100] Seth H Pugsley, Zeshan Chishti, Chris Wilkerson, Peng-fei Chuang,
Robert L Scott, Aamer Jaleel, Shih-Lien Lu, Kingsum Chow, and
Rajeev Balasubramonian. 2014. Sandbox prefetching: Safe run-time
evaluation of aggressive prefetchers. In 2014 IEEE 20th International
Symposium on High Performance Computer Architecture (HPCA). IEEE,
626–637.

[101] Tanausu Ramirez, Alex Pajuelo, Oliverio J Santana, and Mateo Valero.
2008. Runahead threads to improve SMT performance. In 2008 IEEE
14th International Symposium on High Performance Computer Archi-
tecture. IEEE, 149–158.

[102] Gang Ren, Eric Tune, Tipp Moseley, Yixin Shi, Silvius Rus, and Robert
Hundt. 2010. Google-wide profiling: A continuous profiling infras-
tructure for data centers. IEEE micro 30, 4 (2010), 65–79.

[103] Alex Renda, Yishen Chen, Charith Mendis, and Michael Carbin. 2020.
Difftune: Optimizing cpu simulator parameters with learned differen-
tiable surrogates. In 2020 53rd Annual IEEE/ACM International Sym-
posium on Microarchitecture (MICRO). IEEE, 442–455.

[104] Amir Roth, Andreas Moshovos, and Gurindar S Sohi. 1998. Depen-
dence based prefetching for linked data structures. ACM SIGOPS
Operating Systems Review 32, 5 (1998), 115–126.

[105] Amir Roth and Gurindar S Sohi. 1999. Effective jump-pointer prefetch-
ing for linked data structures. In ACM SIGARCH Computer Architec-
ture News, Vol. 27. IEEE Computer Society, 111–121.

[106] Suleyman Sair, Timothy Sherwood, and Brad Calder. 2003. A decou-
pled predictor-directed stream prefetching architecture. IEEE Trans.
Comput. 52, 3 (2003), 260–276.

[107] Manjunath Shevgoor, Sahil Koladiya, Rajeev Balasubramonian, Chris
Wilkerson, Seth H Pugsley, and Zeshan Chishti. 2015. Efficiently
prefetching complex address patterns. In 2015 48th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). IEEE, 141–
152.

[108] Zhan Shi, Akanksha Jain, Kevin Swersky, Milad Hashemi,
Parthasarathy Ranganathan, and Calvin Lin. 2021. A hierarchical
neural model of data prefetching. In Proceedings of the 26th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems. 861–873.

[109] Alan Jay Smith. 1978. Sequential program prefetching in memory
hierarchies. Computer 12 (1978), 7–21.

[110] Stephen Somogyi, Thomas F Wenisch, Anastassia Ailamaki, Babak
Falsafi, and Andreas Moshovos. 2006. Spatial memory streaming.
ACM SIGARCH Computer Architecture News 34, 2 (2006), 252–263.

[111] Seung Woo Son, Mahmut Kandemir, Mustafa Karakoy, and Dhruva
Chakrabarti. 2009. A compiler-directed data prefetching scheme for
chip multiprocessors. In ACM Sigplan Notices, Vol. 44. ACM, 209–218.

[112] Shixin Song, Tanvir Ahmed Khan, Sara Mahdizadeh Shahri,
Akshitha Sriraman, Niranjan K Soundararajan, Sreenivas Subra-
money, Daniel A Jiménez, Heiner Litz, and Baris Kasikci. 2022. Ther-
mometer: Profile-Guided BTB Replacement for Data Center Applica-
tions.. In 49th Annual International Symposium on Computer Architec-
ture (ISCA).

[113] Akshitha Sriraman, Abhishek Dhanotia, and Thomas FWenisch. 2019.
Softsku: Optimizing server architectures for microservice diversity@
scale. In Proceedings of the 46th International Symposium on Computer
Architecture. 513–526.

[114] Nishil Talati, Kyle May, Armand Behroozi, Yichen Yang, Kuba Kaszyk,
Christos Vasiladiotis, Tarunesh Verma, Lu Li, Brandon Nguyen,
Jiawen Sun, et al. 2021. Prodigy: Improving the memory latency
of data-indirect irregular workloads using hardware-software co-
design. In 2021 IEEE International Symposium on High-Performance
Computer Architecture (HPCA). IEEE, 654–667.

[115] Vish Viswanathan. 2014. Disclosure of hardware prefetcher control
on some Intel processors. Intel SW Developer Zone (2014).

[116] ZhenlinWang, Doug Burger, Kathryn SMcKinley, Steven K Reinhardt,
and Charles CWeems. 2003. Guided region prefetching: A cooperative

hardware/software approach. In 30th Annual International Symposium
on Computer Architecture, 2003. Proceedings. IEEE, 388–398.

[117] Thomas F Wenisch, Michael Ferdman, Anastasia Ailamaki, Babak
Falsafi, and Andreas Moshovos. 2009. Practical off-chip meta-data
for temporal memory streaming. In 2009 IEEE 15th International Sym-
posium on High Performance Computer Architecture. IEEE, 79–90.

[118] Thomas F Wenisch, Stephen Somogyi, Nikolaos Hardavellas, Jang-
woo Kim, Anastassia Ailamaki, and Babak Falsafi. 2005. Temporal
streaming of shared memory. In 32nd International Symposium on
Computer Architecture (ISCA’05). IEEE, 222–233.

[119] Thomas Willhalm and Roman Dementiev. 2012. Intel Perfor-
mance Counter Monitor - A Better Way to Measure CPU Utiliza-
tion. https://software.intel.com/en-us/articles/intel-performance-
counter-monitor#abstracting.

[120] Michael Joseph Wolfe and Michael Wolfe. 1996. High performance
compilers for parallel computing. Vol. 102. Addison-Wesley Reading.

[121] Hao Wu, Krishnendra Nathella, Joseph Pusdesris, Dam Sunwoo,
Akanksha Jain, and Calvin Lin. 2019. Temporal prefetching without
the off-chip metadata. In Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture. 996–1008.

[122] Hao Wu, Krishnendra Nathella, Dam Sunwoo, Akanksha Jain, and
Calvin Lin. 2019. Efficient metadata management for irregular data
prefetching. In 2019 ACM/IEEE 46th Annual International Symposium
on Computer Architecture (ISCA). IEEE, 1–13.

[123] PengWu, Arun Kejariwal, and Călin Caşcaval. 2008. Compiler-driven
dependence profiling to guide program parallelization. In Interna-
tional Workshop on Languages and Compilers for Parallel Computing.
Springer, 232–248.

[124] Youfeng Wu. 2002. Efficient discovery of regular stride patterns
in irregular programs and its use in compiler prefetching. In ACM
SIGPLAN Notices, Vol. 37. ACM, 210–221o.

[125] Wm. A. Wulf and Sally A. McKee. 1995. Hitting the Memory Wall:
Implications of the Obvious. SIGARCH Comput. Archit. News 23, 1
(March 1995), 20–24. https://doi.org/10.1145/216585.216588

[126] Xiangyao Yu, Christopher J Hughes, Nadathur Satish, and Srinivas
Devadas. 2015. IMP: Indirect memory prefetcher. In Proceedings of
the 48th International Symposium on Microarchitecture. 178–190.

[127] Yuan Yu, Martín Abadi, Paul Barham, Eugene Brevdo, Mike Burrows,
Andy Davis, Jeff Dean, Sanjay Ghemawat, TimHarley, Peter Hawkins,
et al. 2018. Dynamic control flow in large-scale machine learning. In
Proceedings of the Thirteenth EuroSys Conference. 1–15.

[128] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott
Shenker, Ion Stoica, et al. 2010. Spark: Cluster computing with work-
ing sets. HotCloud (2010).

[129] Chao Zhang, Yuan Zeng, John Shalf, and Xiaochen Guo. 2020. RnR:
A software-assisted record-and-replay hardware prefetcher. In 2020
53rd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 609–621.

[130] Haoyu Zhang, Brian Cho, Ergin Seyfe, Avery Ching, and Michael J
Freedman. 2018. Riffle: optimized shuffle service for large-scale data
analytics. In Proceedings of the Thirteenth EuroSys Conference. 1–15.

[131] Weifeng Zhang, Brad Calder, and Dean M Tullsen. 2006. A self-
repairing prefetcher in an event-driven dynamic optimization frame-
work. In Proceedings of the International Symposium on Code Genera-
tion and Optimization. IEEE Computer Society, 50–64.

[132] Weifeng Zhang, Dean M Tullsen, and Brad Calder. 2007. Accelerating
and adapting precomputation threads for efficient prefetching. In 2007
IEEE 13th International Symposium on High Performance Computer
Architecture. IEEE, 85–95.

https://software.intel.com/en-us/articles/intel-performance-counter-monitor#abstracting
https://software.intel.com/en-us/articles/intel-performance-counter-monitor#abstracting
https://doi.org/10.1145/216585.216588

	Abstract
	1 Introduction
	2 Understanding the Challenges of Automated Software Prefetching
	2.1 Methodology
	2.2 Prefetching Timeliness
	2.3 PMU Counter Study
	2.4 Prefetch Injection Site
	2.5 Static Techniques to Infer Execution Time

	3 Design of APT-GET
	3.1 Profile Collection
	3.2 Determining the Optimal Prefetch Distance
	3.3 Finding the Optimal Prefetch Injection Site
	3.4 Automated Profiling Methodology
	3.5 LLVM Prefetch Injection Pass
	3.6 Limitations of APT-GET

	4 Evaluation
	4.1 Experimental Setup
	4.2 Methodology
	4.3 Performance Improvement
	4.4 Cache Miss Reduction
	4.5 Effectiveness of the LBR Profiling
	4.6 Effectiveness of the Prefetch Distance Optimization
	4.7 Effectiveness of the Prefetch Injection Site Optimization
	4.8 Instruction Overhead
	4.9 Inputs for profiling and testing
	4.10 Profiling overhead

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

