
DMon: Efficient Detection and Correction of Data Locality Problems Using

Selective Profiling

Tanvir Ahmed Khan
University of Michigan

Ian Neal
University of Michigan

Gilles Pokam
Intel Corporation

Barzan Mozafari
University of Michigan

Baris Kasikci
University of Michigan

Abstract

Poor data locality hurts an application’s performance. While
compiler-based techniques have been proposed to improve
data locality, they depend on heuristics, which can sometimes
hurt performance. Therefore, developers typically find data
locality issues via dynamic profiling and repair them manually.
Alas, existing profiling techniques incur high overhead when
used to identify data locality problems and cannot be deployed
in production, where programs may exhibit previously-unseen
performance problems.

We present selective profiling, a technique that locates data
locality problems with low-enough overhead that is suitable
for production use. To achieve low overhead, selective pro-
filing gathers runtime execution information selectively and
incrementally. Using selective profiling, we build DMon, a
system that can automatically locate data locality problems
in production, identify access patterns that hurt locality, and
repair such patterns using targeted optimizations.

Thanks to selective profiling, DMon’s profiling overhead
is 1.36% on average, making it feasible for production use.
DMon’s targeted optimizations provide 16.83% speedup on
average (up to 53.14%), compared to a baseline that uses
the highest level of compiler optimization. DMon speeds up
PostgreSQL, one of the most popular database systems, by
6.64% on average (up to 17.48%).

1 Introduction

Poor data locality is the root cause of many performance
problems [6, 34, 48]. Rapidly increasing data footprints of
modern applications due to heavily data-driven use cases
(e.g., analytics [109], machine learning [1], etc.) make mat-
ters worse, precipitating data locality problems further [6].
Recent work shows that up to 64% of all CPU cycles are lost
due to poor data locality for widely used data center applica-
tions [90].

Although many compiler optimizations aim to eliminate
data locality problems statically [3, 22, 23, 70, 71], such op-
timizations rely on compile-time heuristics, which may not
accurately identify and repair problems that manifest dynami-

cally at run time. In fact, as we (§6.2) and others [2,15,20,27]
demonstrate, compiler-based techniques can sometimes even
hurt performance when the assumptions made by those heuris-
tics do not hold in practice.

To overcome the limitations of static optimizations, the
systems community has invested substantial effort in devel-
oping dynamic profiling tools [28, 38, 57, 97, 102]. Dynamic
profilers are capable of gathering detailed and more accurate
execution information, which a developer can use to identify
and resolve data locality problems.

Traditionally, existing dynamic profiling tools have been
used offline, namely during testing and development, where
test cases are designed to adequately represent real-world
program behavior. However, due to the proliferation of cloud
computing and mobile devices, programs exhibit vast vari-
ations in terms of how they execute and consume data in
production [48,84]. Consequently, it has become increasingly
difficult for offline profiling to be representative of how pro-
grams behave in production settings.

Unfortunately, existing dynamic profilers incur consid-
erable overheads when used to detect data locality issues,
and therefore they are not suitable for production environ-
ments [13, 57, 60–62, 77, 78].

In this paper, we present selective profiling, a data local-
ity profiling technique that not only accurately detects data
locality problems, but also incurs low overhead, making it
suitable for production deployment. Using selective profiling,
we design DMon, a system that can automatically detect and
eliminate data locality problems in production systems.

Selective profiling is a lightweight technique to continu-
ously monitor production executions for symptoms of poor
data locality (e.g., frequent memory stalls, increased cache
misses, etc.). As these high-level indicators of data locality
problems are identified, selective profiling automatically tran-
sitions to incrementally monitoring more precise information
about the source location and exact cause of the data locality
problem—this is done by traversing a hierarchical abstraction
we introduce, called the data locality tree (§3), which allows



DMon to monitor hardware events in a selective way to create
an accurate profile at low run-time overhead.

After gathering the profile, DMon performs an offline anal-
ysis to identify common patterns of memory accesses. DMon
then matches these patterns to a set of existing data locality op-
timizations (§4.1), which it primarily applies automatically, in
a targeted manner (unlike static techniques). For cases where
DMon cannot automatically apply an optimization, it provides
detailed information about the locality problem to the devel-
oper, who can fix the problem manually; in our evaluation,
this case occurs only once and the developer can apply DMon-
suggested optimization with minimal effort (<10 LOC). We
provide four optimization passes (§4.2) which DMon can use
to automatically fix data locality problems and are sufficient
for DMon to fix major data locality problems we identify
across the systems we test in our evaluation (§6).

Selective profiling incurs 1.36% monitoring overhead on
average, making it an ideal profiling technique for detecting
data locality issues in production. The run-time overhead of
selective profiling is significantly (i.e., 9×) lower than that of
the state-of-the-art data locality profiler [17, 68]. Overall, tar-
geted optimizations performed by DMon for 13 applications
deliver on average 16.83% (up to 53.14%) speedup. To show
the effectiveness of DMon for large real-world systems, we
applied DMon to PostgreSQL [92], a popular open-source
database system, where DMon-guided optimizations provided
on average 6.64% and up to 17.48% speedup across all 22
TPC-H [26] queries. Furthermore, the optimizations enabled
by DMon provides 20% more speedup, on average, than opti-
mizations provided by the same state-of-the-art profiler.

Overall, we make the following contributions:

• Selective profiling, a data locality profiling technique that
automatically and incrementally monitors fine-grained exe-
cution information to accurately detect data locality prob-
lems with low overhead.

• DMon, a system that implements selective profiling to de-
tect data locality problems in production systems. DMon
automatically selects specific optimizations based on mem-
ory access patterns, and applies these well-known optimiza-
tion techniques automatically in most cases.

• By evaluating DMon in the context of widely-used appli-
cations, we show that selective profiling can detect data
locality issues in production with low overhead (1.36% on
average). Moreover, we show that selective profile-guided
targeted data locality optimizations provide significant per-
formance speedup (16.83% on average, up to 53.14%).

We explain the key design challenge for accurately and
efficiently detecting data locality problems in §2. We describe
selective profiling in §3, DMon’s design in §4, and DMon’s
implementation in §5. We evaluate DMon in §6, compare
DMon to related work in §7, and conclude in §8.

2 Challenges

It is challenging to accurately pinpoint data locality prob-
lems, while incurring low run-time performance overhead.

Compiler-based static data locality optimizations [14, 70,
71, 82, 91] are appealing because they incur no run-time over-
head. However, static techniques apply optimizations based
on compile-time heuristics, which may not accurately identify
program locations that suffer from poor locality at run time.
In fact, compiler-based techniques can sometimes even hurt
performance when the assumptions made by those heuristics
do not hold in practice [2, 15, 20, 27].

To demonstrate how compile-time heuristics can hurt per-
formance, we use a compiler-based data prefetching tech-
nique [71] to improve data locality in two matrix decomposi-
tion benchmarks [104], lu_cb and lu_ncb from the PARSEC
suite [12]. This optimization combines loop splitting and ex-
plicit data prefetching to increase data locality. Using the
benchmarks’ standard inputs, we determine that 50% of all
the cache misses in lu_cb and lu_ncb stem from a single
function, which we optimized using compiler-guided data
prefetching [71]. The optimization provides a 19.4% speedup
for lu_ncb, but yields a 19.85% slowdown for lu_cb. This oc-
curs because, for lu_ncb, prefetching reduces all cache misses;
however, for lu_cb, there was a dramatic increase in L2 cache
misses despite a reduction in L1 and L3 cache misses.

Dynamic profilers can accurately pinpoint data locality
problems [13, 57, 60–62, 77, 78], however, they impose con-
siderable overhead (i.e., >10% on average), as they track
too much information: memory accesses, timestamps, cache
events, etc. Consequently, existing data locality profilers are
not deployed in production.

A potential remedy to the high overhead of existing pro-
filers is statistical sampling, which can collect information
with reasonable overhead [9]. For instance, the state-of-the-
art Intel VTune profiler [85] samples information such as
hardware and software performance counters, timestamps,
program locations, and accessed memory addresses to gather
the necessary information for detecting data locality issues.

Alas, even sampling is not enough to reduce the overhead
incurred by popularly available profilers (e.g., Intel VTune)
to detect data locality problems to levels acceptable for pro-
duction use. To assess the impact of sampling, we use the
state-of-the-art profiler VTune to detect the data locality is-
sues in our evaluation targets. Despite sampling-based data
collection, VTune still incurs 26% overhead on average (and
up to 60%), which is unacceptable for production settings.

We argue that not only the monitored execution informa-
tion must be deliberately chosen to only pertain to data local-
ity problems, but monitoring must occur incrementally, only
when there are increasingly clear signs of poor data locality.
Next, we explain how selective profiling achieves this.



Front-end 
Bound

Back-end 
Bound

Bad 
Speculation

Retiring

Core 
Bound

Memory 
Bound

L1 Bound L3 BoundL2 Bound
DRAM 
Bound

L1 cache 
misses

L2 cache 
misses

L3 cache 
misses

L
ay

er
 1

L
ay

er
 2

L
ay

er
 3

Data
Locality

TreeL
ay

er
 4

Fetch Bubbles Recovery Bubbles Retired Slots

Execution Stalls
Memory Stalls Load
Memory Stalls Store

…

Memory Stalls L1 miss
Memory Stalls L2 miss
Memory Stalls L3 miss

…

Figure 1: The locality tree abstraction. Performance events
that pertain to each tree node are in italic. There are no ded-
icated events to determine if a program is back-end bound.
Instead, selective profiling subtracts from total stalls the sum
of the stalls that cause other bottlenecks at layer 1 to determine
if an execution is back-end bound.

3 Selective Profiling

Selective profiling is a monitoring technique that incremen-
tally monitors more detailed, yet more targeted, run-time in-
formation to identify data locality problems. Next, we discuss
the three key components of selective profiling: (1) Targeted
Monitoring, (2) Incremental Monitoring, and (3) Sampling.

3.1 Targeted Monitoring

Unlike existing offline profilers [57, 97, 98, 102, 106] that
monitor many hardware events and information such as pro-
gram locations, selective profiling needs to carefully choose
which information to monitor in order to accurately and effi-
ciently detect data locality problems. A straw-man approach
is to only monitor events such as data cache misses, which are
directly related to data locality problems. However, simply
monitoring data cache misses in isolation can be misleading.
For instance, a seemingly large number of data cache misses
may have no impact on the performance of an application
that spends a lot of time fetching instructions to execute (a
common theme in modern Web services [8, 48]).

Selective profiling monitors a select group of hardware
events that allow it to determine if the execution of a program
is bounded by a subset of those events that we call the data

locality tree. As shown in Fig. 1, the data locality tree is a
hierarchical abstraction of data locality-related performance
events from Intel’s Top-Down methodology [106]. The Top-
Down methodology provides a breakdown of performance
events in Intel CPUs, which a developer can use as a guideline
to navigate their manual profiling efforts. However, unlike
Top-Down, selective profiling automatically transitions from
one layer to another, incrementally monitoring more events at
each layer of the tree, as increasing evidence of data locality
issues is observed at run time.

At layer 1, selective profiling determines whether the ex-
ecution is back-end bound—i.e., spends a large portion of

Time
0 p (100 ms) 2p 3p

Layer 1

Back-end
Bound
>10%

Memory
Bound
>10%

L2 or L3 or 
DRAM
Bound
>10%

runs till
execution

ends

Layer 2

Layer 3

Layer 4

Figure 2: Incremental monitoring

the time either in CPU execution (CPU bound) or accessing
memory (memory bound). At layer 1, a program can also be
front-end bound (i.e., fetching instructions), incurring mis-
speculations, or retiring instructions. For executions that are
back-end bound, selective profiling determines whether they
are processor-core bound or memory bound in layer 2.

If an execution is memory bound in layer 2, selective profil-
ing monitors events that provide a breakdown of the execution
into 4 categories in layer 3. Of those 4 categories, only 3 are
related to data locality problems: L2 bound and L3 bound
represent the time spent accessing the L2 and the L3 cache,
respectively; “DRAM bound” represents the time spent ac-
cessing the DRAM. If a program is L1 bound, the data or
instructions that the program uses are already as close to the
processor as possible and it is hard to improve data locality fur-
ther. In such cases, the program may have other performance
problems, such as false sharing [93] or lock contention [87].

Selective profiling also tracks information to map perfor-
mance problems back to code. In layer 4, selective profiling
records program location information along with hardware
events. For example, if a program is L2 bound, selective profil-
ing records L1 cache misses and the location of the instruction
causing the miss. By locating and reducing L1 cache misses,
the execution time will potentially not be L2 bound, and the
locality problem will likely be fixed. Similarly, if a program
is L3 or DRAM bound, selective profiling records L2 and L3
cache misses and associated program locations, respectively.

3.2 Incremental Monitoring

Unfortunately, merely restricting the scope of monitored
performance events to the data locality tree is not sufficient
for low overhead monitoring of data locality issues. Thus,
selective profiling instead adopts an incremental monitoring
approach. This approach increases the amount of information
gathered at run time to efficiently identify program locations
that may have a locality problem.

Fig. 2 shows the details of incremental monitoring. By de-
fault, selective profiling monitors the hardware events that
provide the layer 1 breakdown. Selective profiling only transi-
tions to monitoring layer 2 events if the execution is back-end
bound for at least 10% of a time-slice p (100ms by default).



We use 10% as the default threshold, which we empirically
determine to be a reasonable threshold (§6.4). We also choose
100ms as a reasonable time-slice for our programs, since the
shortest execution across our benchmarks was 1 second and
the longest was 2867 seconds. Nonetheless, the percentage
and monitoring periods are both configurable. We explore the
sensitivity of our results to all these parameters in §6.4.

If selective profiling determines that the execution is also
memory bound for at least 10% of the same interval p, it starts
monitoring layer 3 events. If selective profiling determines
that the execution is L2, L3, or DRAM bound for at least
10% of the same interval p, it transitions to layer 4. Selective
profiling then gathers L1, L2, and L3 cache miss events and
program locations where the misses occur.

Incremental monitoring is key to ensuring selective profil-
ing’s low performance overhead. Successive layers are more
costly to monitor as they must count more events—for exam-
ple, layer 2 requires counting 3× more hardware performance
events than layer 1. However, unless selective profiling deter-
mines that an execution is back-end bound, it only needs to
monitor events at layer 1. As shown in §6.1, only monitoring
layer 1 events incurs a negligible overhead (0.7% on average).

Programs can go through phases of different locality issues
(e.g., L2 cache misses in one phase and L3 cache misses in
another phase). Selective profiling can pinpoint the root cause
of the locality problem for each phase, provided the duration
of a given phase is at least 4p (where p is the duration of selec-
tive profiling’s time-slice, per layer). If this time-slice is too
long, selective profiling may miss some short-running phases.
The time slice is configurable. We empirically determine that
a time slice of 100ms is effective in practice (§6.4).

3.3 Sampling

In addition to targeted and incremental monitoring, selec-
tive profiling also employs sampling at layer 4 for recording
L1, L2, and L3 cache misses to further reduce the overhead.
Although sampling can reduce run-time overhead, it can also
reduce the coverage of data locality issues that selective pro-
filing detects if the sampling period is too high. We define
coverage as the ratio of the number of locality issues detected
with a given sampling rate to the number of locality issues
detected with the highest possible sampling rate.

By default, selective profiling uses a conservative sampling
period of 1000 (1 sample per 1000 events), which we have
empirically found to yield high coverage (97%, discussed
in §6.4) in detecting locality problems across the 13 bench-
marks we evaluated. The developer, however, can use a lower
sampling period (up to 1 sample per 100 events, as allowed
per Linux’s perf interface). We analyze the coverage versus
overhead trade-off of different sampling periods in §6.4.

Selective profiling does not apply sampling in layers 1–
3 since sampling reduces coverage. Moreover, in layers 1–
3, selective profiling’s incremental monitoring reduces the
overhead to a negligible amount in all tested applications (on

Source
Code

Selective Profiling

101100

010110

100101

Static Memory 
Access Pattern 

Analysis

Automated/Manual 
Locality 

Optimizations
3

In Production

Offline

1

2

101011

010110

010101

Targeted 
Monitoring

Incremental 
Monitoring

Sampling

Figure 3: How DMon leverages selective profiling to detect
and repair data locality problems.

average 1.36%). Therefore, selective profiling does not need
to apply sampling at those layers. However, if the overhead of
the first three layers is high, selective profiling can optionally
enable sampling at those layers as well.

Now, we describe how data locality information collected
via selective profiling can be used to guide automated and
manual profile-guided optimizations using DMon.

4 DMon

Selective profiling detects program locations with poor data
locality in production. DMon analyzes these locations offline
to identify the data access patterns causing data locality issues.
Based on the recognized access patterns, DMon applies exist-
ing compiler optimizations only to these program locations in
a targeted manner to improve data locality. We offer four such
optimizations which we describe in §4.2. These optimiza-
tions can be automatically applied in most cases for C/C++
applications; for applications written in other programming
languages, selective profiling results can still enable manual
optimizations (§6.3).

Fig. 3 shows how DMon employs selective profiling to
identify and eliminate data locality issues. In step 1 , DMon
monitors programs in production to determine whether they
suffer from poor locality using selective profiling.

Steps 2 – 3 happen offline, during recompilation. In step
2 , DMon determines the memory access patterns that are

causing poor data locality (§4.1). In step 3 , based on the
identified access patterns, either profile-guided automatic op-
timizations or manual optimizations can be performed to im-
prove data locality (§4.2). The optimized program is then
rebuilt and redeployed in production.

4.1 Static Memory Access Pattern Analysis

Once selective profiling identifies memory access instruc-
tions that suffer from poor locality in production, DMon an-
alyzes the corresponding program locations offline to deter-
mine the cause of the problems. DMon only analyzes memory
access instructions that incur more than 10% of the total cache
miss events sampled in layer 4 of selective profiling.



Table 1: Four common memory access patterns that cause
data locality problems in many applications. Here, we show
their examples from the PARSEC [12] benchmark suite.

Benchmark Code snippet Access pattern

lu_ncb a[i] += alpha*b[i];
Direct 

Addressing

radix
this_key = key_from[i] & bb;

this_key = this_key >> shiftnum;

tmp = rank_ff_mynum[this_key];

Indirect 
Addressing

radiosity

while(int_list)

{

if(int_list->dst==inter->dst)return(1);

int_list = int_list->next ;

}

Unbalanced 
Access

dedup if(LstElmnt->seq.l2num > H->Elmnts[Child]-

>seq.l2num){
Pointer Chasing

To determine the patterns of data locality issues, we ini-
tially analyze the results of selective profiling manually for
the benchmarks from the popular PARSEC [12] benchmark
suite. Based on our manual analysis of program statements
causing data locality issues, we identify four key memory
access patterns that can lead to poor data locality. Table 1
shows one example of each of these memory access patterns
that cause poor data locality. Perhaps unsurprisingly, all the
accesses that contribute significantly to poor data locality are
in loops that execute many times and access a relatively large
amount of data compared to other memory access operations
in the application. These four memory access patterns also
cause data locality problems in a diverse set of real-world
applications (as we show in §6.3).

For lu_ncb, most cache misses that hurt program perfor-
mance happen while accessing arrays in a loop. Since the loop
induction variable (i) is directly used to index those arrays,
we call this pattern direct addressing. For radix, the loop in-
duction variable (i) is used to index an auxiliary array to load
an intermediate value (this_key). The loaded intermediate
value is used as index while accessing another array, and the
last access suffers from poor data locality. We categorize this
pattern as indirect addressing.

For radiosity, most cache misses occur in a while loop,
where two member variables (dst and next) of a structure
(int_list) are accessed repeatedly. We determine that this
structure also contains four other member variables not ac-
cessed in this loop. Since only accessing a subset of all mem-
ber variables causes cache misses, we call this access pat-
tern as unbalanced access. Finally, for dedup, locality suf-
fers while accessing a chain of structure pointers (pointers H,
Elmnts[Child], and seq, and finally a member variable l2num)
in a loop. We denote this pattern as pointer chasing.

Based on findings of these manual observations, we de-
sign the static memory access pattern analysis component of
DMon, as shown in Fig. 4. Although DMon’s pattern detec-
tion is inspired by the manual analysis of locality issues in
PARSEC, we show in our evaluation that the patterns DMon
identifies generalize to a broad set of systems (§6.2 and §6.3).
In particular, the four patterns of poor locality constitute the

Determine
Structure Access

Pattern

Indirect 
Addressing

Direct 
Addressing

Direct 
Prefetching

Indirect 
Prefetching

Instruction

Structure
Splitting

Determine
Addressing

Mode

Pointer 
Chasing

Unbalanced
Access

Structure 
Merging

Optimizations

Figure 4: Static memory access pattern analysis in DMon and
their corresponding optimizations. Shaded optimizations are
mutually exclusive.

root causes of all the data locality problems we discover in
nine other benchmarks that we had not studied previously.

As shown in Fig. 4, DMon determines the addressing mode
of the memory instruction (i.e., direct or indirect addressing).
If the access is made to a structure instance, DMon also de-
termines the type of the access (i.e., unbalanced access and
pointer chasing). We discuss each analysis next.
Addressing mode. DMon’s static analysis checks if the in-
struction uses direct or indirect addressing. Here, direct ad-
dressing occurs if the computation of the accessed location
does not involve another memory address (e.g.,for(i=...)
a[i]). Conversely, indirect memory addressing occurs if the
computation of the accessed location involves computing an-
other memory address (e.g.,for(i=...) a[b[i]]).
Structure access pattern. In addition to determining the
addressing mode, DMon’s static analysis checks to see if the
instruction accesses a member of a structure. DMon does
this by mapping the instruction to the compiler intermediate
representation and checking if it accesses a structure field.
DMon searches for two patterns when a structure member is
accessed, namely unbalanced access and pointer chasing.

DMon concludes that there is an unbalanced access pattern,
when accesses to only a subset of member variables incur a
large fraction of cache misses. Pointer chasing occurs when
the accessed memory location belongs to a hierarchy of nested
structures (e.g., A->B->C).

4.2 Optimizations Implemented in DMon

To show the usefulness of selective profiling, we implement
four profile-guided data locality optimization passes using
LLVM [56] for C/C++ programs. Our passes optimize the
four patterns of poor data locality that DMon identifies. For
applications written in other languages, selective profiling
results can be used to apply manual optimizations (§6.3).

As shown in Fig. 4, DMon recommends applying a specific
optimization technique based on the addressing mode and the
structure access patterns of the memory access instruction.
While these optimizations are well-known and usually applied
statically, selective profiling information enables the targeted



for(i=0;i<128;i++)

ACCESS a[i];

for(i=0;i<16;i+=8)

prefetch(&a[i]);

for(i=0;i<112;i+=8){

prefetch(&a[i+16]);

ACCESS a[i], …, a[i+7];

}

for(i=112;i<128;i++)

ACCESS a[i];

Original Loop Prefetched Loop

Figure 5: Software prefetching for direct memory access,
adapted from [71]. The induction variable is of type int. The
prefetch instruction prefetches one cache line (64 bytes).

application of these optimizations to where they are absolutely
needed in a program. As we show in §6.2, DMon-enabled
targeted profile-guided optimizations outperform purely static
optimizations by 10% on average.

Direct prefetching. The first optimization we implement
uses direct prefetching [71] to fix locality problems that stem
from memory accesses that use direct addressing. Direct
prefetching fetches the cache lines that a program will ac-
cess in the near future into the cache to improve data locality.

At a high level, direct prefetching works by splitting each
loop suffering from poor data locality into three loops, as
shown in Fig. 5. The first loop is responsible for prefetching
the initial cache line that contains the data accessed by the
loop. The second loop starts prefetching the next cache line(s).
It also simultaneously performs the original computation that
was carried out in the original loop, starting with the first
prefetched cache line. The third and last loop completes the
computation using the last prefetched cache line.

Direct prefetching can be applied based on compile-time
heuristics only. However, this can cause significant perfor-
mance degradation [29], as we also show in our evaluation
(§6.2). This happens because these heuristics might (1) bloat
the code footprint by adding unnecessary prefetching instruc-
tions (e.g., for lines that would anyways be prefetched by
the hardware prefetcher), and (2) cause cache pollution by
prefetching data that is not frequently-accessed.

Direct prefetching can also be applied in hardware with
popular hardware prefetchers including next-line and stride
prefetchers that most modern processors supposedly em-
ploy [42, 94]. However, DMon finds that many directly ad-
dressed memory accesses suffer from poor data locality, be-
cause the underlying hardware prefetchers can not prefetch
the cache lines in a timely manner. This is because prefetchers
work in a reactive manner, i.e., it takes several iterations for
the hardware prefetcher to detect the pattern and start prefetch-
ing, but if prefetching is done with explicit instructions, the
performance benefits are immediate.

Instead of applying direct prefetching based on compile-
time heuristics, our pass only applies it to program locations
where DMon identifies that direct addressing access pattern
is causing poor data locality.

for(i=0;i<A_SIZE;i++)

b[a[i]]++;

for(i=0;i<A_SIZE;i++){

prefetch(&a[i+16*2]);

if(i+16<A_SIZE)

prefetch(&b[a[i+16]]);

b[a[i]]++;

}

Original Loop Prefetched Loop

1

2

Figure 6: Software prefetching for indirect memory access,
adapted from [3].

Indirect prefetching. Our second optimization uses indirect
prefetching [3], which is similar to direct prefetching in that
it brings data that will soon be used into the cache. Unlike
direct prefetching, indirect prefetching also has to prefetch
one additional cache line per each level of indirection.

Fig. 6 shows an example of indirect prefetching. Here, the
original loop increments elements in an array, b. However, the
index of the array b is computed using another array, a. The
loop on the right side prefetches the cache line containing the
elements of b that will be accessed in the near future (prefetch
2 ). Prefetching the elements of b requires accessing the

elements of a. Thus, to prefetch the elements of b, we need to
(1) have an array boundary check, and (2) also prefetch the
cache line containing the elements of a (prefetch 1 ).
Structure splitting. The third optimization, structure split-
ting, moves infrequently-accessed members of a structure
with a pointer to a new structure that only contains those
members. Structure splitting is beneficial only when the total
size of infrequently-accessed member(s) is larger than the
pointer size. Thus, the size of the original structure is reduced,
fitting into fewer cache lines. During memory access pattern
analysis, if DMon detects that an unbalanced access pattern
(i.e., a subset of structure members are accessed more fre-
quently than others) to members of a structure is causing poor
locality, structure splitting is an appropriate optimization.

Fig. 7 shows an example of structure splitting. Here, before
structure splitting, the structure S has three members (a, b,
c) of types A, B, C, respectively. In the original program, an
instance of S spans two cache lines. Both cache lines need to
be accessed each time the program accesses an instance of S.
For example, if neither of these cache lines is present in the
L1 cache, the program will incur two L1 cache misses.

After structure splitting, the new structure S’ fits in a single
cache line (Cache Line 1) because the infrequently-accessed
member b is moved into a new structure S2, residing in its
own cache line (Cache Line 2). Consequently, when the pro-
gram accesses an instance of S, it will usually only need to
access the cache line (Cache Line 1) containing the frequently-
accessed members (a, c), which would incur a single L1 cache
miss (rather than two).

Structure splitting has been previously explored [22] in
type-safe languages (e.g., Java). However, implementing struc-
ture splitting in a type-unsafe language (we target C/C++) is
more challenging. This is because structure splitting needs to



struct S{

A a;

B b;

C c;

};

a b

Cache Line 1

Structure
Splitting

Cache Line 1

struct S’{

A a;

C c;

S2* p;

};

Cache Line 2

Frequently-accessed

a c p

Cache Line 2

struct S2 {

B b;

};

Infrequently-accessed

c b

Figure 7: Structure splitting, example adapted from [22].

ensure that the program continues operating correctly when
the layout of the structure is modified. More specifically, all
the instructions that used to refer to the old layout need to be
updated to refer to the new layout.

In our optimization pass, we addresses this challenge using
a complete, interprocedural, inclusion-based pointer analy-
sis [5] that can determine all instructions that could possibly
access the split structures. As shown in §6.2, this optimization
can automatically be applied in all but one of the benchmarks.

Structure merging. The final optimization, structure merg-
ing, is the inverse of structure splitting as it replaces a
frequently-accessed pointer member of a structure with the
data that the pointer references. The key idea is to eliminate
the pointer chasing pattern that DMon identifies by removing
a level of indirection for frequently-accessed elements.

Fig. 8 shows an example of structure merging. Before merg-
ing, the structure S has three members (a, b, p) of types A,
B, S2*, respectively. The instance of S resides in the first
cache line, and the pointer p points to an instance of struc-
ture S2 that resides in the second cache line. The size of a,
b, and c is such that they can all fit in one cache line. If c
is accessed as frequently as a and b, then data locality can
be improved by merging these two structures into one. This
structure merge will also bypass one memory access (S’->C
instead of S->S2->C). Structure merging only combines mem-
ber variables across different structure types and hence does
not perform exhaustive data structure conversions (e.g., trans-
forming a linked list into an array) [22, 23].

DMon employs structure merging conservatively so that it
will only be applied if soundness can be guaranteed. In other
words, DMon applies this optimization only if all updates via
the structure pointer can be safely redirected (e.g., in Fig. 8, all
changes to S->S2->C could be replaced by S’->C). To ensure
this, structure merging also uses the same pointer analysis [5]
that structure splitting uses.

Other optimizations.. DMon can be easily extended to ac-
commodate additional optimizations if needed to fix different
patterns of memory accesses which cause data locality prob-
lems. For example, DMon can work as a framework to apply
optimizations like loop reordering, blocking, tiling, and strip
mining in a profile-guided manner. However, many of these
optimizations require expensive memory access trace collec-
tion which can not be deployed in production due to high

struct S{

A a;

B b;

S2* p; 

};

a b p

Cache Line 1

Structure

Merging

Cache Line 1

struct S’{

A a;

B b;

C c;

S2’* p;

};

struct S2{

C c;

D d;

E e;

};

Cache Line 2

Frequently-accessed

a b c pc d e d e

Cache Line 2

struct S2’{

D d;

E e;

};

Infrequently-accessed

Figure 8: Structure merging example.

overheads [64]. In the future, we intend to explore how these
optimizations can be applied based on more efficient profiling.

5 Implementation

DMon’s selective profiling prototype is implemented for
Intel processors. In particular, selective profiling relies on the
Linux perf [97] interface for profiling hardware events in lay-
ers 1–4 (§3). We initially build the benchmarks using debug
information and the highest level of compiler optimization
(-O3), and then use the strip utility [101] to remove the de-
bug information. During in-production monitoring, selective
profiling records the program counter for each sampled cache
miss event in layer 4. To efficiently deal with multi-threaded
applications, selective profiling maintains a per-thread buffer
(2MB per thread) to record the program counters. When the
buffer gets full, the previous samples get overwritten. Offline,
DMon uses the program counter, the stripped debug informa-
tion, and the program binary to find the source code location
where a cache miss occurred in production.

We implement DMon’s optimizations in the LLVM [56]
compiler framework. We use clang [99] to generate the
LLVM intermediate representation (IR) that the optimiza-
tion passes of DMon can operate on. The optimizations rely
on the program’s debug information to map the source code
location to LLVM IR, because a 1-to-1 mapping between
machine code and LLVM IR does not exist.

Similar to other state-of-the-art profile-guided optimization
techniques [17, 68], DMon’s use of debug information for
mapping machine code to LLVM and locating code locations
to optimize can introduce inaccuracies. This happens due
to optimizations such as inlining. Although it is possible to
improve the accuracy of such mapping using more invasive
instrumentation and tracing [7], this would be prohibitively
costly for production usage [48]. In our evaluation (§6), we
show that the accuracy provided by debug information can
lead to substantial speedup.

The optimizations for structure splitting and structure merg-
ing use a whole-program pointer analysis [19].

6 Evaluation

In this section, we first evaluate the efficiency of selec-
tive profiling by measuring its run-time monitoring overhead.
Then, we evaluate the effectiveness of DMon by showing
the extent to which fixing the locality problems detected by



DMon improves performance of popular benchmarks. Next,
we evaluate selective profiling’s generality by applying it
to widely-used real-world applications. Finally, we perform
sensitivity studies to evaluate how DMon’s overhead and de-
tection results vary in response to changes of the different
system parameters of DMon.

Software. All experiments are conducted in Ubuntu 18.04
(kernel version 4.15.0-46-generic). The static compiler analy-
ses are implemented in LLVM (7.0.0) on bitcode emitted by
clang. Therefore, we use clang 7 as the baseline compiler.

Hardware. We use a 20-core 2.2 GHz Intel Xeon NUMA
(with 2 sockets) machine, with 64 KB of L1-cache (32 KB
instruction and 32 KB data), 1024 KB of L2-cache, 14 MB
of L3-cache (shared across the same NUMA node), and 96
GB of RAM. Like most Intel processors, each core in the
machine uses two hardware prefetchers (next-line and sequen-
tial load history driven prefetchers) in the L1 data cache and
two hardware prefetchers (adjacent cache line and streaming
prefetchers) in the L2 cache [42, 94]. We configure multi-
threaded applications and benchmarks to run with 8 threads.

Benchmarks. We use a combination of benchmarks and
real-world programs that have been widely used in prior
performance profiling and optimization work. In particu-
lar, we use all 12 benchmarks from the PARSEC [12] suite,
all 11 benchmarks from the SPLASH-2X [103] suite, and
all 3 benchmarks written in C from the NPB [10] suite, as
well as HashJoin, RandomAccess, kcstashtest, and DIS, which
are programs with poor data locality from other popular
benchmark suites [11, 24, 63, 73]. We also study one of the
most popular and heavily-optimized open-source databases,
PostgreSQL [81], running the TPC-H analytical workload [26].
Finally, we study real-world applications from the Renais-
sance benchmark suite [83].

Metrics. In all our plots, we report speedup numbers as the
ratio between the execution time of the original application
compiled with the highest level of optimization (-O3) and its
run time after applying DMon-guided optimizations. Negative
speedup denotes slow-down. Similarly, we report selective
profiling overhead as the percentage increase in benchmark
execution time while enabling selective profiling. We report
performance data as the average of 25 runs in all experiments.

6.1 Selective Profiling Efficiency

We evaluate the selective profiling efficiency by studying
the overhead selective profiling incurs during dynamic de-
tection of locality problems. Fig. 9 shows this overhead. We
present results for all the benchmarks we evaluated, including
the ones for which selective profiling did not find locality
optimization opportunities. For each benchmark, we present
the overhead of each layer of monitoring (1–4) that selective
profiling employs. Since, selective profiling monitors only
one layer at a time, the effective overhead for a given program
is less than the maximum overhead across four layers.

Across all layers and benchmarks, selective profiling incurs
up to 4.92% overhead, and on average only 1.36% overhead.
On average, selective profiling incurs an overhead of 0.7% in
layer 1, an overhead of 1.5% in layer 2, an overhead of 2.5% in
layer 3, and an overhead of 2% in layer 4. For benchmarks that
do not have locality problems, layers 2–4 are never triggered.

In only 3 out of all 28 benchmarks, selective profiling incurs
more than 3% overhead: IS (4.6%), kcstashtest (4.2%), and
HashJoin (4.9%). However, as we detail in §6.2, optimizations
suggested by DMon also provide greater speedups for these
benchmarks than for others (IS 30.3%, kcstashtest 32.4%,
and HashJoin 53.1%—compared to 16.83% average speedup
enabled by DMon). These benchmarks suffer the most from
poor locality, and consequently, selective profiling incurs more
overhead to pinpoint the root cause of those problems.

6.2 Effectiveness

We evaluate the effectiveness of DMon by studying (1) data
locality problems detected by DMon, (2) speedups pro-
vided by DMon-guided optimizations, (3) comparison of
the speedups provided by DMon-guided optimizations to
the speedups provided by Google’s AutoFDO [17]—the
state-of-the-art profile-guided locality optimization approach,
(4) whether DMon-guided optimizations generalize across
different program inputs, and (5) the overhead on compilation
times due to DMon-guided optimizations.

Locality issues detected by DMon. Table 2 summarizes the
data locality problems that DMon detects. For brevity, Table 2
omits benchmarks where less than 10% of the execution time
is bounded by locality problems, as these benchmarks could
not benefit from eliminating locality improvements. We also
omit these benchmarks in our average performance numbers.

Additionally, Table 2 shows the most prominent level of the
memory hierarchy for the locality issues detected by selective
profiling. Note that, in many cases, DRAM accesses constitute
the locality bottlenecks. This is expected, since the highest-
latency memory access instructions are served from DRAM.
Finally, Table 2 also reports the program locations (as “file”:
“line number”) that suffer the most from poor locality, along
with the optimizations DMon recommends in each case.

As shown, DMon successfully identifies locality problems
and suggests appropriate optimizations in each case. In all
cases but one (fmm), DMon applies optimizations automati-
cally. For fmm, while the direct prefetching is applied automati-
cally, structure splitting cannot be applied automatically. This
is because, due to excessive type casts, the compile-time opti-
mization cannot exactly determine which program statements
may access the modified structure, and therefore cannot auto-
matically update such statements. Nonetheless, since DMon
points the developer to the exact source of the locality issue in
fmm, the fix can easily be applied manually with an 8 LOC up-
date. Moreover, structure splitting and merging can be applied
automatically for other applications (dedup and radiosity)



	0

	1

	2

	3

	4

	5

bl
ac
ks
ch
ol
es

bo
dy
tra
ck

fa
ce
sim

fe
rr
et

flu
id
an
im
at
e

fr
eq
m
in
e

sw
ap
tio
ns

vi
ps

ca
nn
ea
l

de
du
p

st
re
am
cl
us
te
r

ba
rn
es
fm
m

oc
ea
n_
cp

ra
di
os
ity

w
at
er
_n
sq
ua
re
d

w
at
er
_s
pa
tia
l fft

lu
_c
b

lu
_n
cb

ra
di
x
CG D

C IS

Ra
nd
om
A
cc
es
s

H
as
hJ
oi
n

kc
st
as
ht
es
t
D
IS

O
v
er
h
ea
d
	(
%
)

Layer	1 Layer	2 Layer	3 Layer	4

Figure 9: Monitoring overhead of selective profiling (All σ < 0.02µ).

Table 2: DMon’s detection results of locality problems.

Benchmark
Execution 

time 
(seconds)

Memory 
hierarchy 
bottleneck

Program location Optimization Automated 
fix?

canneal 71.8 L3, DRAM netlist_elem.cpp: 80 Direct Prefetching Yes
dedup 5.1 DRAM binheap.c: 93 Structure Merging Yes

fmm 18.8 DRAM interactions.C: 169
Structure Splitting No
Direct Prefetching Yes

ocean_cp 36.2 L2, L3, DRAM multi.C: 273 Direct Prefetching Yes
radiosity 95.8 L2, L3 rad_tools.C: 399 Structure Splitting Yes
fft 1.2 DRAM fft.C: 765 Direct Prefetching Yes
lu_ncb 47.8 L3, DRAM lu.C: 466 Direct Prefetching Yes
radix 6.1 L2, L3, DRAM radix.C: 624 Indirect Prefetching Yes
IS 1 L3, DRAM is.c: 392 Indirect Prefetching Yes
RandomAccess 607.1 DRAM randacc.c: 125 Indirect Prefetching Yes
HashJoin 2867.3 L3, DRAM npj2epb.c: 300 Indirect Prefetching Yes
kcstashtest 3.20 L2, L3, DRAM kcstashdb.h: 146 Direct Prefetching Yes
DIS 165.3 L2, L3, DRAM transitive.c: 107 Direct Prefetching Yes

Table 3: Speedup comparison between
DMon and compile-time optimizations.

Benchmark
Speedup provided 

by compile-time 
optimizations (%)

Speedup 
provided by 

DMon (%)

canneal -7.90 1.07

dedup -18.90 3.65

fmm 2.83 2.68

ocean_cp -1.06 2.90

radiosity -7.14 11.21

fft 1.11 4.57

lu_ncb 3.49 19.40

radix 0.96 1.85

IS 30.52 30.29

RandomAccess 38.83 47.67

HashJoin 9.74 53.14

kcstashtest 37.41 32.39

DIS -0.28 7.93

where the automatic transformation can identify and update
all statements pointing to the split and merged structures.

Speedup. Table 3 compares the speedup provided by the
DMon-guided optimizations. Optimizations guided by DMon
provide up to 53.14% and on average 16.83% (8% me-
dian) speedup. To study the impact of the targeted optimiza-
tions guided by selective profiling results, we also report the
speedup achieved by the same optimizations if they are ap-
plied indiscriminately (i.e., in a non-targeted way), through
purely-static compiler passes [3, 71].

As shown in Table 3, DMon-guided optimizations outper-
form compile-time optimizations in 10/13 benchmarks. Cru-
cially, static optimizations hurt performance in 5/13 cases due
to being applied too broadly (with no runtime information),
and therefore causing outcomes such as cache pollution and
code bloat. DMon-guided optimizations always improve the
performance. In 3/13 benchmarks where static optimizations
outperform DMon-guided optimizations, the margin is ≤ 5%
which can be reduced by reducing the incremental monitoring
threshold (default, 10%) of selective profiling.

Comparison against Google AutoFDO. We compare the
speedup provided by DMon-guided optimizations to that of
Google’s AutoFDO [17], the state-of-the-art profile guided

ocean cp radiosity fft IS HashJoin

0

20

40

S
p

ee
d

u
p

(%
)

AutoFDO

DMon

Figure 10: Speedup comparison to AutoFDO (All σ < 0.09µ)

optimization technique. AutoFDO has limited data locality
optimization capabilities [68]; our comparison is thus limited
to five benchmarks for which AutoFDO can optimize locality.

We compare the speedup provided by DMon-guided opti-
mizations to the speedup provided by AutoFDO in Fig. 10. As
shown, DMon-guided optimizations provide better speedup
than AutoFDO for all five benchmarks. This is because Aut-
oFDO could only identify data locality problems that can be
solved by performing direct prefetching optimizations. By
contrast, DMon can identify other data locality issues that can
be addressed by additional locality optimizations (i.e., indirect
prefetching, structure splitting, and structure merging).

For example, AutoFDO’s direct prefetching slows down the
execution of IS by 15%, while DMon-guided indirect prefetch-
ing provides a 30% speedup. Even for cases where both DMon



ocean cp radiosity fft IS HashJoin
1

10

100

1000

O
v

er
h

ea
d

(%
)

AutoFDO

DMon

Figure 11: Overhead comparison to AutoFDO (All σ< 0.07µ)

	0

	4

	8

	12

	16

	20

#1 #2 #3 #4 #5 #6
	0

	30

	60

	90

	120

	150

S
p
ee
d
u
p
	(
%
)

B
as
el
in
e	
E
xe
cu
ti
o
n

T
im
e	
(s
ec
o
n
d
s)

Different	Inputs

6.31
7.59

8.89

11.68
13.37 14.12

Figure 12: DMon-generated optimization after observing in-
put #4 generalizes to unseen inputs (All σ < 0.01µ).

and AutoFDO suggest direct prefetching (e.g., ocean_cp),
DMon-guided optimizations outperform AutoFDO, because,
unlike AutoFDO, DMon provides hints as to where (e.g., L1,
L2, or L3) the cache line should be prefetched.

We compare selective profiling overhead against Auto-
FDO’s profiling overheads in Fig. 11. For the 5 benchmarks
in this study, selective profiling incurs 3.3% mean overhead,
whereas AutoFDO incurs 978% mean overhead, making the
latter unsuitable for production use.

Generalization across program inputs. Profile-guided op-
timizations perform best when the application is optimized
with a profile that is representative of the application’s com-
mon behavior [17,79,95]. DMon-guided fixes also generalize
if the program shows similar data locality behavior across
different inputs. Therefore, we evaluate DMon’s generality
across different program inputs for 9 benchmarks. These pro-
gram inputs vary widely both in terms of input size (from
megabytes to gigabytes) as well as execution times needed to
process the input (from seconds to minutes).

We report a detailed case study using the radiosity bench-
mark to determine how well the locality optimizations sug-
gested by DMon generalize to different inputs. We choose this
benchmark because the fix suggested by DMon is structure
splitting—an optimization that modifies the data layout, and
hence has the potential to be affected by changing program
inputs. Fig. 12 shows the speedup provided by DMon-guided
optimizations for radiosity for various input sizes.

Here, for brevity, we refer to different input sizes using
“#1” through “#6”. DMon only observes the execution for the
randomly selected input #4. After observing input #4, DMon-
guided optimizations are applied. Then, all inputs are rerun
with the newly-optimized program, with the results of this run
reported in Fig. 12. As shown, the optimization suggested by
DMon generalizes well to other inputs, providing considerable

dedup
canneal fmm

ocean cp fft lu ncb radix

RandomAccess
0

20

40

S
p

ee
d

u
p

(%
)

Input

#1

#2

#3

Figure 13: Input generalization (All σ < 0.04µ)

ca
nnea

l

ded
up

fm
m

oce
an

cp

ra
dio

sit
y

kcs
ts

hts
t fft

lu
ncb

ra
dix IS

RndA
cc

H
as

hJo
in

D
IS

10−1

100

101

T
im

e
(s

ec
o

n
d

s)

Original-compilation

DMon-optimization

Figure 14: Overhead of DMon-guided optimizations com-
pared to baseline compilation time (σ < 0.1µ, log-scaled y).

speedups in each case. Longer executions that use larger

inputs benefit more from optimizations.
Fig. 13 shows how DMon-guided optimizations improve

data locality for unobserved inputs of several other bench-
marks. Here, we include all benchmarks with at least 3 inputs.
Across all evaluation targets, we find that data locality behav-
ior follows a similar trend for different inputs. Hence, DMon’s
fixes generalize to different inputs for these benchmarks.
Recompilation overhead. We evaluate the offline recompi-
lation overhead while applying DMon-guided optimizations,
though this does not impact the production overhead. We
perform this experiment, because automated structure split-
ting and merging require pointer analysis, which is known to
be expensive [55]. However, the specific pointer analysis we
employ is flow- and context- insensitive and scales well [40].

Fig. 14 shows the offline compilation overhead incurred by
our DMon-guided optimizations on top of the baseline compi-
lation overhead (clang). On average, DMon-guided optimiza-
tions incur 72% more overhead. However, the optimization
takes on average less than 7 seconds and is no longer than 26
seconds. Even for large applications (e.g., PostgreSQL [92]
code base has over 1M LOC), the analysis takes 307 sec-
onds. For an offline process, we believe these durations are
reasonable and on par with standard compiler transforma-
tions that use whole-program pointer analysis. Moreover, this
is a one-time compile-time overhead and will be amortized
for long-running applications (e.g., data-center applications
that are compiled once but run on thousands of servers for
days). Finally, structure splitting and merging can be applied
manually if the cost of pointer analysis is deemed prohibitive.



	0

	5

	10

	15

	20

	25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

S
p

ee
d

u
p

	(
%

)

Query	#

Figure 15: Speedup due to DMon-guided optimizations for
22 TPC-Hqueries on PostgreSQL (All σ < 4.53% of µ).

6.3 Real-World Case Studies

We evaluate the applicability of selective profiling and
DMon to large systems by studying (1) speedups provided by
DMon-guided optimizations on PostgreSQL [81]—one of the
most popular database systems, and (2) speedups achieved
after manual repair of data locality problems detected by se-
lective profiling for just-in-time (JIT) compiled real-world
applications from the Renaissance benchmark suite [83].
PostgreSQL case study. We evaluate DMon’s ability to im-
prove the locality (and thereby performance) of PostgreSQL
v11.2 [81], one of the most popular open-source database
management systems. For this study, we run the popular TPC-
H [26] queries on a 1GB database stored in PostgreSQL. We
intentionally select the database size to fit in memory to ensure
a memory-bound workload (instead of disk-bound one), as the
vast majority of real-world databases fit in memory [67, 80].

To evaluate DMon, we profile PostgreSQL with DMon
while serving all 22 TPC-H queries. For these queries, se-
lective profiling incurs 1.2% average and 2.7% maximum
overhead. For PostgreSQL, DMon identifies a locality prob-
lem in a function (ExecParallelHashNextTuple) that ac-
cesses the members area and parallel_state of structure
hashtable [39]. DMon identifies that this memory access
is the primary reason for poor data locality in 6 out of 22
TPC-H queries. Moreover, this memory access causes L2
and L3 cache misses for all 22 TPC-H queries. The cause of
the locality problem in this case is pointer chasing. Structure
merging automatically repairs this problem and speeds up all
22 TPC-H queries, as shown in Fig. 15. The L3 cache misses
in PostgreSQL are reduced by up to 22.11% (3.05% on aver-
age) and the latency of the 22 TPC-H queries are improved
by up to 17.48% (6.64% on average). We also test optimized
PostgreSQL based on DMon-profile on larger databases (10
and 100GB), where DMon improves the latency of the 22
TPC-H queries by 4.68% on average. For larger databases (10
and 100GB), the overall performance gain due to DMon’s op-
timizations are comparatively less than (2% on average) that
of smaller databases (1GB). That is because the performance
of PostgreSQL for larger databases are primarily bottlenecked
by storage I/O costs.

These results are particularly encouraging, considering that
PostgreSQL is one of the most heavily-optimized codebases,
having been improved by developers over the past 20 years.

fj-kmeans page-rank stm-bench7

0

20

40

S
p

ee
d

u
p

(%
)

Tiered-compilation

DMon

Figure 16: Speedup provided by selective profile-guided opti-
mizations for just-in-time (JIT) compiled applications against
tiered compilation (All σ < 7.68% of µ).

Most database developers hand-tune their code using the TPC
benchmarks as regression tests (i.e., their performance is best
on TPC). This fact makes it even more promising that DMon-
guided optimizations are able to improve the performance of
these benchmark queries on a mature database system. We re-
ported this data locality issue to the developers of PostgreSQL
(for the version 11.2), which they have fixed since then.

Renaissance case study. A key advantage of just-in-time
(JIT) compilation over ahead-of-time compilation (e.g., Java
vs. C++) is that JIT can apply dynamic optimizations—
including limited data locality optimizations—using tiered
compilation [65]. We compare selective profile-guided data
locality optimizations to tiered compilation from Open-
JDK [100] on real-world applications from the Renaissance
suite [83]. For these applications, selective profiling incurs
2.2% average and 2.6% maximum overhead.

We use selective profiling to detect data locality issues
in three Renaissance applications (jdk-concurrent fj-kmeans,
apache-spark page-rank, and Scala stm-bench7). We omit
other Renaissance benchmarks for which selective profiling
does not find any data locality problems. Most of the data
locality issues found here corresponds to Java/Scala source
code (we map binary instruction information back to Java
code using perf-map-agent [45]) of Renaissance applications.
Since currently DMon’s optimizations only support C/C++
applications, we manually apply data locality optimizations
to these applications. In all cases, we modify <10 LOC.

As shown in Fig. 16, selective profile-guided optimizations
provide on average 26% and up to 47% more speedup than
tiered compilation. This demonstrates that selective profiling
is effective even for JIT-compiled applications.

Apart from these real-world case studies, we have also
tested DMon on Memcached [35] and RocksDB [33] with YCSB
benchmarks [25]. For these two applications, the individual
pieces that make up the locality issues are relatively minor.
Compiler-based data locality optimizations typically add ex-
tra instructions and logic in the code, which only helps when
there are many cache misses causing slowdowns. For pro-
gram statements responsible for a relatively small percentage
of all cache misses (less than 5%), applying these optimiza-
tions do not provide any speedup, as the extra code and logic
outweighs the benefits.



 0

 20

 40

 60

 80

 100

 0  100  200  300  400  500

 0

 2

 4

 6

 8

 10

C
o
v
e
ra

g
e
 (

%
)

O
v
e
rh

e
a
d
 (

%
)

Time-slice (ms)

Coverage
Overhead

Figure 17: Effect of granularity of in-production time-slice
on detection coverage and overhead (All σ < 3.03% of µ).

6.4 Sensitivity Analysis

We evaluate the impact of selective profiling’s different
parameters on effectiveness (coverage) and efficiency.
In-Production Monitoring Time-Slice. The granularity of
the monitoring time-slice is a key design decision for selective
profiling’s incremental monitoring scheme (§3). Small time-
slices allow selective profiling to identify locality problems
for shorter-running applications, but also trigger frequent tran-
sitions during incremental monitoring and result in higher
monitoring overhead. On the other hand, larger time-slices
lower overhead but may fail to detect locality problems for
shorter-running programs.

Fig. 17 shows the impact of the time-slice granularity on
selective profiling’s detection coverage (left y-axis) and over-
head (right y-axis) for the benchmark, (lu_ncb). We vary the
time-slice granularity from 10ms to 500ms (with 10ms incre-
ments) and measure selective profiling’s coverage in detecting
data locality issues and the associated performance overhead.

As shown in Fig. 17, selective profiling has lower coverage
and higher overhead for smaller time-slices. As the time-slice
granularity increases, selective profiling achieves greater cov-
erage with lower overhead. Selective profiling’s coverage is
lower for smaller time-slices because selective profiling can-
not monitor sufficient performance events in a small time
slice. Beyond 100ms, both the coverage (99.07% on average
with standard deviation of 3%) and the overhead (2.04% on
average with standard deviation of 0.6%) lines flatten. Ergo,
we set selective profiling’s default time-slice as 100ms.
Incremental Monitoring Threshold. We vary the threshold
of incremental monitoring (§3) from 1% to 50% and measure
the coverage of data locality issues selective profiling detects
for all 13 benchmarks in Table 2. 100% coverage is achieved
when there is no incremental monitoring (i.e., DMon contin-
uously monitors events at the all levels of the locality tree).
As shown in Fig. 18, selective profiling achieves greater than
80% coverage if the incremental monitoring scheme uses a
threshold of <29%. Nevertheless, we set the default-threshold
as 10%, as this threshold achieves 100% coverage.
In-Production Sampling Period. As described in §3, sam-
pling period is a key design decision for selective profiling.
Fig. 19 shows the impact of the sampling period on the cover-
age of locality issues selective profiling detects and its runtime

 0

 20

 40

 60

 80

 100

 5  10  15  20  25  30  35  40  45  50

C
o
v
e
ra

g
e
 (

%
)

Threshold (%)

Figure 18: Effect of incremental monitoring threshold on
the coverage of locality problems selective profiling detects
across all benchmarks.

 0

 2

 4

 6

 8

 10

 12

107 106 105 104 769 142 131
 94

 95

 96

 97

 98

 99

 100

A
v

er
ag

e
O

v
er

h
ea

d
 (

%
)

A
v

er
ag

e
C

o
v

er
ag

e 
(%

)

Sampling Period

Average Overhead

2.
1 2.

9

1.
6 2.

2 2.
6

5.
7

7.
4Average Coverage

95
.4

96
.6 96

.9

96
.8 97

.5 97
.9

98
.9

Figure 19: Effect of sampling period on the coverage of lo-
cality problems selective profiling detects and the average
overhead across all benchmarks (σ < 0.01µ).

overhead. We compute coverage with respect to the baseline
coverage of 100%, achievable via the lowest possible sam-
pling period offered by Linux perf (sampling every 100th
event). A sampling period k on the x-axis means selective
profiling will record one out of each k events. The left y-axis
represents the runtime overhead and the right y-axis repre-
sents the coverage of locality issues selective profiling detects.

The overhead and coverage reported in Fig. 19 are arith-
metic averages over all benchmarks. A smaller sampling pe-
riod increases the overhead of selective profiling, but also
increases coverage. In our experiments, we chose a sampling
period of 1000, which yields a high coverage of 97% with
2.6% overhead on average in layer 4 of selective profiling.

7 Related Work

DMon finds data locality problems with low overhead us-
ing selective profiling, identifies the root cause behind the
problem, and guides optimizations to eliminate the problem.
Existing profilers are not able to determine the root causes of
data locality problems without incurring a high overhead.
Profilers. General-purpose profilers [57, 97, 102] report pro-
gram hotspots without identifying the root cause behind per-
formance problem. Consequently, recent studies propose spe-
cialized profilers to locate root cause for specific performance
issues. Parallel profilers [36, 41, 44, 46] focus on critical path
profiling to estimate potential performance gain [28, 107].
Synchronization profilers [4, 30, 108, 110] identify lock con-
tention. Similarly, we design selective profiling as a special-



ized profiling technique for data locality. Selective profil-
ing uses the APIs of a state-of-the-art profiler, Linux perf,
and targets a subset of the events explored as part of the
Top-Down [106]. Our main contributions over perf and Top-
Down are: (1) full automation in profiling, (2) low-enough
overhead for production deployment, (3) ability to automati-
cally identify targeted optimizations based on the underlying
performance problem.
Profile-guided data locality optimizations. Profile-guided
approaches collect execution traces to identify where opti-
mizations can be applied [21, 49, 51, 52, 59, 60, 69, 78]. State-
of-the-art techniques [17,37,74–76] primarily address instruc-
tion locality. While prior work [50,53,86] also optimizes data
locality, these solutions incur >10% profiling overhead. Se-
lective profiling, however, incurs only 1.36% overhead on
average (§6.1).
Static locality optimizations. Static approaches use complex
analysis techniques to find opportunities to apply locality-
improving transformations [14, 16, 18, 31, 47, 58, 66, 88, 105].
Alas, these techniques use compile-time heuristics to apply
transformations, which can lead to sub-optimal speedups or
even reductions in performance. To avoid these issues, we use
application profiles collected by selective profiling to apply
optimizations in a targeted manner, leading to better speedups
and avoiding transformations which hurt performance.
Dynamic locality optimizations. There are several propos-
als for monitoring program execution and modifying program
binaries to improve locality on the fly [32, 72, 89, 96]. These
techniques require non-existent hardware support and incur
high overhead (up to 6× [96]). Just-in-time (JIT) compilation
techniques [21, 43] provide limited data locality optimiza-
tions. On the other hand, DMon works with existing hard-
ware, incurs negligible overhead, and guides optimizations
that provide better speedup (16.83% on average).

8 Conclusion

Poor data locality is a major performance problem that
hurt applications in production. Unfortunately, existing data
locality profilers are not efficient enough to be deployed in
production. This is limiting, since production profiles are diffi-
cult to replicate offline. We address this problem by selective
profiling, a technique capable of discovering data locality
problems with negligible overhead (on average 1.36%) in pro-
duction. We also design DMon, which guides automatic and
manual data locality optimizations based on profiles generated
using selective profiling. For an extensive set of real-world
applications and widely-used benchmarks, DMon provides
up to 53.14% and on average 16.83% speedup for the cases
where DMon applies targeted optimizations after detecting
significant data locality problems.

Acknowledgments

We thank the anonymous reviewers and our shepherd,
Michael Stumm, for their insightful feedback and suggestions.
This work was supported by the Intel Corporation, the NSF

grants #1553169, #1629397, #2010810, and the Applications
Driving Architectures (ADA) Research Center, a JUMP Cen-
ter co-sponsored by SRC and DARPA. Any opinions, findings,
conclusions, or recommendations expressed in this material
are those of the authors and do not necessarily reflect the
views of the funding agencies. We thank Yifan Zhao for run-
ning several PostgreSQL experiments. We also thank Xiaohe
Cheng, Zhiqi Chen, and Shariq Hafeez for testing DMon on
various applications. Finally, we thank Kevin Loughlin for
his feedback on this paper’s earlier versions.

A Artifact Appendix

Abstract

We provide the open-source public repository as an artifact
for DMon.

Scope

This artifact allows to validate the effectiveness and effi-
ciency of the selective profiling technique.

Contents

This artifact includes one end-to-end example of how to
apply selective profiling to monitor in-production data locality
issues and one example of data locality optimization applied
in a targeted manner based on the output of selective profiling.

Hosting

We host the artifact on Github. Our open-source arti-
fact repository can be obtained from https://github.com/

efeslab/DMon-AE. The branch name for the artifact is main.
The commit hash for the artifact is d9a0f31.

Requirements

Intel processor, Linux perf, pmu-tools [54] that implement
the Top-Down methodology [106], and LLVM [56].

References

[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek G. Murray, Benoit Steiner, Paul Tucker,
Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan
Yu, and Xiaoqiang Zheng. Tensorflow: A system
for large-scale machine learning. In 12th USENIX

Symposium on Operating Systems Design and Imple-

mentation (OSDI 16), pages 265–283, Savannah, GA,
November 2016. USENIX Association.

[2] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jef-
frey D. Ullman. Compilers: Principles, Techniques,

and Tools (2nd Edition). Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2006.



[3] Sam Ainsworth and Timothy M. Jones. Software
prefetching for indirect memory accesses. In Proceed-

ings of the 2017 International Symposium on Code

Generation and Optimization, CGO ’17, pages 305–
317, Piscataway, NJ, USA, 2017. IEEE Press.

[4] Mohammad Mejbah Ul Alam, Tongping Liu, Guang-
ming Zeng, and Abdullah Muzahid. Syncperf: Cat-
egorizing, detecting, and diagnosing synchronization
performance bugs. In Proceedings of the Twelfth Eu-

ropean Conference on Computer Systems, pages 298–
313, 2017.

[5] Lars Ole Andersen. Program analysis and special-

ization for the C programming language. PhD thesis,
University of Cophenhagen, 1994.

[6] Grant Ayers, Jung Ho Ahn, Christos Kozyrakis, and
Parthasarathy Ranganathan. Memory hierarchy for
web search. In 2018 IEEE International Symposium

on High Performance Computer Architecture (HPCA),
pages 643–656. IEEE, 2018.

[7] Grant Ayers, Heiner Litz, Christos Kozyrakis, and
Parthasarathy Ranganathan. Classifying memory ac-
cess patterns for prefetching. In Proceedings of the

Twenty-Fifth International Conference on Architectural

Support for Programming Languages and Operating

Systems, pages 513–526, 2020.

[8] Grant Ayers, Nayana Prasad Nagendra, David I August,
Hyoun Kyu Cho, Svilen Kanev, Christos Kozyrakis,
Trivikram Krishnamurthy, Heiner Litz, Tipp Moseley,
and Parthasarathy Ranganathan. Asmdb: understand-
ing and mitigating front-end stalls in warehouse-scale
computers. In Proceedings of the 46th International

Symposium on Computer Architecture, pages 462–473.
ACM, 2019.

[9] Reza Azimi, Michael Stumm, and Robert W Wis-
niewski. Online performance analysis by statistical
sampling of microprocessor performance counters. In
Proceedings of the 19th annual international confer-

ence on Supercomputing, pages 101–110, 2005.

[10] David Bailey, Tim Harris, William Saphir, Rob Van
Der Wijngaart, Alex Woo, and Maurice Yarrow. The
nas parallel benchmarks 2.0. Technical report, Techni-
cal Report NAS-95-020, NASA Ames Research Center,
1995.

[11] Cagri Balkesen, Jens Teubner, Gustavo Alonso, and
M Tamer Özsu. Main-memory hash joins on multi-
core cpus: Tuning to the underlying hardware. In
2013 IEEE 29th International Conference on Data

Engineering (ICDE), pages 362–373. IEEE, 2013.

[12] Christian Bienia, Sanjeev Kumar, and Kai Li. Parsec
vs. splash-2: A quantitative comparison of two multi-
threaded benchmark suites on chip-multiprocessors. In
Workload Characterization, 2008. IISWC 2008. IEEE

International Symposium on, pages 47–56. IEEE, 2008.

[13] Michael D Bond and Kathryn S McKinley. Contin-
uous path and edge profiling. In Proceedings of the

38th annual IEEE/ACM International Symposium on

Microarchitecture, pages 130–140. IEEE Computer
Society, 2005.

[14] Uday Bondhugula, Albert Hartono, Jagannathan Ra-
manujam, and Ponnuswamy Sadayappan. A practi-
cal automatic polyhedral parallelizer and locality op-
timizer. In Acm Sigplan Notices, volume 43, pages
101–113. ACM, 2008.

[15] Derek Bruening, Timothy Garnett, and Saman Ama-
rasinghe. An infrastructure for adaptive dynamic opti-
mization. In International Symposium on Code Gen-

eration and Optimization, 2003. CGO 2003., pages
265–275. IEEE, 2003.

[16] Steve Carr, Kathryn S. McKinley, and Chau-Wen
Tseng. Compiler optimizations for improving data
locality. In Proceedings of the Sixth International

Conference on Architectural Support for Programming

Languages and Operating Systems, ASPLOS VI, pages
252–262, New York, NY, USA, 1994. ACM.

[17] Dehao Chen, David Xinliang Li, and Tipp Moseley.
Autofdo: Automatic feedback-directed optimization
for warehouse-scale applications. In Proceedings of

the 2016 International Symposium on Code Generation

and Optimization, pages 12–23. ACM, 2016.

[18] Dong Chen, Fangzhou Liu, Chen Ding, and Sreepathi
Pai. Locality analysis through static parallel sampling.
In Proceedings of the 39th ACM SIGPLAN Conference

on Programming Language Design and Implementa-

tion, PLDI 2018, Philadelphia, PA, USA, June 18-22,

2018, pages 557–570, 2018.

[19] Jia Chen. Andersen’s inclusion-based pointer analysis
re-implementation in LLVM. https://github.com/
grievejia/andersen, 2018. [Online; accessed 16-
Nov-2018].

[20] W. Y. Chen, P. P. Chang, T. M. Conte, and W. W. Hwu.
The effect of code expanding optimizations on instruc-
tion cache design. IEEE Trans. Comput., 42(9):1045–
1057, September 1993.

[21] Wen-ke Chen, Sanjay Bhansali, Trishul Chilimbi, Xi-
aofeng Gao, and Weihaw Chuang. Profile-guided
proactive garbage collection for locality optimization.



In Proceedings of the 27th ACM SIGPLAN Conference

on Programming Language Design and Implementa-

tion, PLDI ’06, pages 332–340, New York, NY, USA,
2006. ACM.

[22] Trishul M Chilimbi, Bob Davidson, and James R Larus.
Cache-conscious structure definition. In ACM SIG-

PLAN Notices, volume 34, pages 13–24. ACM, 1999.

[23] Trishul M. Chilimbi, Mark D. Hill, and James R. Larus.
Cache-conscious structure layout. In Proceedings of

the ACM SIGPLAN 1999 Conference on Program-

ming Language Design and Implementation, PLDI ’99,
pages 1–12, New York, NY, USA, 1999. ACM.

[24] cloudfare. kyotocabinet/kcstashtest.cc at
master - cloudflare/kyotocabinet. https:

//github.com/cloudflare/kyotocabinet/

blob/master/kcstashtest.cc, 2013. [Online;
accessed 4-April-2019].

[25] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking
cloud serving systems with ycsb. In Proceedings of

the 1st ACM symposium on Cloud computing, pages
143–154, 2010.

[26] Transaction Processing Performance Council. Tpc-h.
[Online; accessed 23-April-2019].

[27] Charlie Curtsinger and Emery D. Berger. Stabilizer:
Statistically sound performance evaluation. In Pro-

ceedings of the Eighteenth International Conference

on Architectural Support for Programming Languages

and Operating Systems, ASPLOS ’13, page 219–228,
New York, NY, USA, 2013. Association for Computing
Machinery.

[28] Charlie Curtsinger and Emery D Berger. Coz: Finding
code that counts with causal profiling. In Proceedings

of the 25th Symposium on Operating Systems Princi-

ples, pages 184–197, 2015.

[29] Daniel Lemire. Is software prefetching
(__builtin_prefetch) useful for performance?,
2018. [Online; accessed 24-April-2019].

[30] Florian David, Gael Thomas, Julia Lawall, and Gilles
Muller. Continuously measuring critical section pres-
sure with the free-lunch profiler. ACM SIGPLAN No-

tices, 49(10):291–307, 2014.

[31] Chen Ding and Yutao Zhong. Predicting whole-
program locality through reuse distance analysis. In
Acm Sigplan Notices, volume 38, pages 245–257.
ACM, 2003.

[32] Tyler Dwyer and Alexandra Fedorova. On instruc-
tion organization. In 15th Workshop on Hot Topics in

Operating Systems (HotOS {XV}), 2015.

[33] Facebook. Rocksdb: A persistent key-value store
for flash and ram storage. https://github.com/

facebook/rocksdb/, 2021.

[34] Michael Ferdman, Almutaz Adileh, Onur Kocberber,
Stavros Volos, Mohammad Alisafaee, Djordje Jevdjic,
Cansu Kaynak, Adrian Daniel Popescu, Anastasia Ail-
amaki, and Babak Falsafi. Clearing the clouds: a study
of emerging scale-out workloads on modern hardware.
In ACM SIGPLAN Notices, volume 47, pages 37–48.
ACM, 2012.

[35] Brad Fitzpatrick. Distributed caching with memcached.
Linux journal, 124, 2004.

[36] Saturnino Garcia, Donghwan Jeon, Christopher M
Louie, and Michael Bedford Taylor. Kremlin: rethink-
ing and rebooting gprof for the multicore age. ACM

SIGPLAN Notices, 46(6):458–469, 2011.

[37] Google. Propeller: Profile guided optimizing large
scale llvm-based relinker. https://github.com/

google/llvm-propeller, 2020.

[38] Susan L Graham, Peter B Kessler, and Marshall K
Mckusick. Gprof: A call graph execution profiler. ACM

Sigplan Notices, 17(6):120–126, 1982.

[39] The PostgreSQL Global Development Group. Line
number 3225. https://github.com/postgres/

postgres/blob/master/src/backend/executor/

nodeHash.c.

[40] Ben Hardekopf and Calvin Lin. The ant and the
grasshopper: fast and accurate pointer analysis for mil-
lions of lines of code. In Proceedings of the 28th ACM

SIGPLAN Conference on Programming Language De-

sign and Implementation, pages 290–299, 2007.

[41] Yuxiong He, Charles E Leiserson, and William M Leis-
erson. The cilkview scalability analyzer. In Proceed-

ings of the twenty-second annual ACM symposium on

Parallelism in algorithms and architectures, pages 145–
156, 2010.

[42] Ravi Hegde. Optimizing application performance
on intel core microarchitecture using hardware-
implemented prefetchers. Intel Software Network,
2008. [Online; accessed 5-December-2020].

[43] Xianglong Huang, Stephen M. Blackburn, Kathryn S.
McKinley, J Eliot B. Moss, Zhenlin Wang, and Perry
Cheng. The garbage collection advantage: Improv-
ing program locality. In Proceedings of the 19th An-

nual ACM SIGPLAN Conference on Object-oriented



Programming, Systems, Languages, and Applications,
OOPSLA ’04, pages 69–80, New York, NY, USA, 2004.
ACM.

[44] José A Joao, M Aater Suleman, Onur Mutlu, and
Yale N Patt. Bottleneck identification and schedul-
ing in multithreaded applications. ACM SIGARCH

Computer Architecture News, 40(1):223–234, 2012.

[45] jvm-profiling-tools. perf-map-agent, 2018. [Online;
accessed 6-December-2020].

[46] Melanie Kambadur, Kui Tang, and Martha A Kim. Har-
mony: Collection and analysis of parallel block vec-
tors. In 2012 39th Annual International Symposium on

Computer Architecture (ISCA), pages 452–463. IEEE,
2012.

[47] Mahmut Taylan Kandemir. A compiler technique for
improving whole-program locality. In ACM SIGPLAN

Notices, volume 36, pages 179–192. ACM, 2001.

[48] Svilen Kanev, Juan Pablo Darago, Kim Hazelwood,
Parthasarathy Ranganathan, Tipp Moseley, Gu-Yeon
Wei, and David Brooks. Profiling a warehouse-scale
computer. In Proceedings of the 42Nd Annual Inter-

national Symposium on Computer Architecture, ISCA
’15, pages 158–169, New York, NY, USA, 2015. ACM.

[49] Baris Kasikci, Thomas Ball, George Candea, John Er-
ickson, and Madanlal Musuvathi. Efficient tracing of
cold code via bias-free sampling. In 2014 USENIX An-

nual Technical Conference (USENIX ATC 14), pages
243–254, 2014.

[50] Muneeb Khan, Andreas Sandberg, and Erik Hagersten.
A case for resource efficient prefetching in multicores.
In 2014 43rd International Conference on Parallel

Processing, pages 101–110. IEEE, 2014.

[51] Tanvir Ahmed Khan, Akshitha Sriraman, Joseph De-
vietti, Gilles Pokam, Heiner Litz, and Baris Kasikci.
I-spy: Context-driven conditional instruction prefetch-
ing with coalescing. In 2020 53rd Annual IEEE/ACM

International Symposium on Microarchitecture (MI-

CRO), pages 146–159. IEEE, 2020.

[52] Tanvir Ahmed Khan, Dexin Zhang, Akshitha Sriraman,
Joseph Devietti, Gilles Pokam, Heiner Litz, and Baris
Kasikci. Ripple: Profile-guided instruction cache re-
placement for data center applications. In Proceedings

of the 48th International Symposium on Computer Ar-

chitecture (ISCA), ISCA 2021, June 2021.

[53] Tanvir Ahmed Khan, Yifan Zhao, Gilles Pokam,
Barzan Mozafari, and Baris Kasikci. Huron: hybrid
false sharing detection and repair. In Proceedings of

the 40th ACM SIGPLAN Conference on Programming

Language Design and Implementation, pages 453–468,
2019.

[54] Andi Kleen. Github - andikleen/pmu-tools: Intel pmu
profiling tools. https://github.com/andikleen/

pmu-tools.

[55] William Landi and Barbara G Ryder. Pointer-induced
aliasing: A problem classification. In Proceedings

of the 18th ACM SIGPLAN-SIGACT symposium on

Principles of programming languages, pages 93–103,
1991.

[56] Chris Lattner. Llvm and clang: Next generation com-
piler technology. In The BSD conference, pages 1–2,
2008.

[57] John Levon and Philippe Elie. Oprofile: A system
profiler for linux, 2004.

[58] Jonathan Lifflander and Sriram Krishnamoorthy.
Cache locality optimization for recursive programs.
In ACM SIGPLAN Notices, volume 52, pages 1–16.
ACM, 2017.

[59] Xu Liu and John Mellor-Crummey. Pinpointing data
locality problems using data-centric analysis. In Pro-

ceedings of the 9th Annual IEEE/ACM International

Symposium on Code Generation and Optimization,
pages 171–180. IEEE Computer Society, 2011.

[60] Xu Liu and John Mellor-Crummey. A data-centric
profiler for parallel programs. In SC’13: Proceedings

of the International Conference on High Performance

Computing, Networking, Storage and Analysis, pages
1–12. IEEE, 2013.

[61] Xu Liu, Kamal Sharma, and John Mellor-Crummey.
Arraytool: a lightweight profiler to guide array regroup-
ing. In 2014 23rd International Conference on Paral-

lel Architecture and Compilation Techniques (PACT),
pages 405–415. IEEE, 2014.

[62] Xu Liu and Bo Wu. Scaanalyzer: A tool to identify
memory scalability bottlenecks in parallel programs.
In Proceedings of the International Conference for

High Performance Computing, Networking, Storage

and Analysis, SC ’15, pages 47:1–47:12, New York,
NY, USA, 2015. ACM.

[63] Piotr R Luszczek, David H Bailey, Jack J Dongarra,
Jeremy Kepner, Robert F Lucas, Rolf Rabenseifner, and
Daisuke Takahashi. The hpc challenge (hpcc) bench-
mark suite. In Proceedings of the 2006 ACM/IEEE

conference on Supercomputing, volume 213. Citeseer,
2006.



[64] Stanislav Manilov, Christos Vasiladiotis, and Björn
Franke. Generalized profile-guided iterator recognition.
In Proceedings of the 27th International Conference

on Compiler Construction, pages 185–195, 2018.

[65] Markus Weninger. What exactly does -xx:-
tieredcompilation do?, 2016. [Online; accessed 11-
November-2019].

[66] Kathryn S. McKinley and Olivier Temam. A quanti-
tative analysis of loop nest locality. In ASPLOS-VII

Proceedings - Seventh International Conference on Ar-

chitectural Support for Programming Languages and

Operating Systems, Cambridge, Massachusetts, USA,

October 1-5, 1996., pages 94–104, 1996.

[67] Prashanth Menon, Todd C Mowry, and Andrew Pavlo.
Relaxed operator fusion for in-memory databases:
Making compilation, vectorization, and prefetching
work together at last. Proceedings of the VLDB En-

dowment, 11(1):1–13, 2017.

[68] Mircea Trofin. Support for cache prefetching profiles.
by mtrofin · pull request #75 · google/autofdo, 2018.
[Online; accessed 17-November-2019].

[69] Svetozar Miucin and Alexandra Fedorova. Data-driven
spatial locality. In Proceedings of the International

Symposium on Memory Systems, pages 243–253. ACM,
2018.

[70] Todd C Mowry. Tolerating latency through software-

controlled data prefetching. PhD thesis, to the De-
partment of Electrical Engineering.Stanford University,
1994.

[71] Todd C. Mowry, Monica S. Lam, and Anoop Gupta.
Design and evaluation of a compiler algorithm for
prefetching. In Proceedings of the Fifth International

Conference on Architectural Support for Programming

Languages and Operating Systems, ASPLOS V, pages
62–73, New York, NY, USA, 1992. ACM.

[72] Anurag Mukkara, Nathan Beckmann, Maleen Abey-
deera, Xiaosong Ma, and Daniel Sanchez. Exploit-
ing locality in graph analytics through hardware-
accelerated traversal scheduling. In 2018 51st Annual

IEEE/ACM International Symposium on Microarchi-

tecture (MICRO), pages 1–14. IEEE, 2018.

[73] Joseph Musmanno. Data intensive systems (dis) bench-
mark performance summary. Technical report, TITAN
SYSTEMS CORP WALTHAM MA, 2003.

[74] Guilherme Ottoni. Hhvm jit: A profile-guided, region-
based compiler for php and hack. In Proceedings of

the 39th ACM SIGPLAN Conference on Programming

Language Design and Implementation, pages 151–165.
ACM, 2018.

[75] Maksim Panchenko, Rafael Auler, Bill Nell, and Guil-
herme Ottoni. Bolt: a practical binary optimizer for
data centers and beyond. In Proceedings of the 2019

IEEE/ACM International Symposium on Code Genera-

tion and Optimization, pages 2–14. IEEE Press, 2019.

[76] Maksim Panchenko, Rafael Auler, Laith Sakka, and
Guilherme Ottoni. Lightning bolt: powerful, fast, and
scalable binary optimization. In Proceedings of the

30th ACM SIGPLAN International Conference on Com-

piler Construction, pages 119–130, 2021.

[77] Paratools. Threadspotter. http://threadspotter.

paratools.com/, 2019. [Online; accessed 22-Oct-
2019].

[78] Aleksey Pesterev, Nickolai Zeldovich, and Robert T
Morris. Locating cache performance bottlenecks using
data profiling. In Proceedings of the 5th European con-

ference on Computer systems, pages 335–348. ACM,
2010.

[79] Karl Pettis and Robert C. Hansen. Profile guided
code positioning. In Proceedings of the ACM SIG-

PLAN 1990 Conference on Programming Language

Design and Implementation, PLDI ’90, pages 16–27,
New York, NY, USA, 1990. ACM.

[80] Orestis Polychroniou, Arun Raghavan, and Kenneth A
Ross. Rethinking simd vectorization for in-memory
databases. In Proceedings of the 2015 ACM SIG-

MOD International Conference on Management of

Data, pages 1493–1508. ACM, 2015.

[81] PostgreSQL. Postgresql: The world’s most advanced
open source relational database. [Online; accessed
23-April-2019].

[82] Louis-Noël Pouchet, Cédric Bastoul, Albert Cohen,
and John Cavazos. Iterative optimization in the poly-
hedral model: Part II, multidimensional time. In ACM

SIGPLAN Conference on Programming Language De-

sign and Implementation (PLDI’08), pages 90–100,
Tucson, Arizona, June 2008. ACM Press.

[83] Aleksandar Prokopec, Andrea Rosa, David
Leopoldseder, Gilles Duboscq, Petr Tuma, Mar-
tin Studener, Lubomir Bulej, Yudi Zheng, Alex
Villazon, Doug Simon, et al. Renaissance: bench-
marking suite for parallel applications on the jvm. In
Proceedings of the 40th ACM SIGPLAN Conference on

Programming Language Design and Implementation,
pages 31–47. ACM, 2019.

[84] Manman Ren and Shane Nay. Improving iOS Startup
Performance with Binary Layout Optimizations, 2019.
[Online; accessed 25-Oct-2019].



[85] Roman Oderov. Sampling and vtune’s disadvantages,
2012. [Online; accessed 23-April-2019].

[86] Andreas Sandberg, David Eklöv, and Erik Hagersten.
Reducing cache pollution through detection and elimi-
nation of non-temporal memory accesses. In Proceed-

ings of the 2010 ACM/IEEE International Conference

for High Performance Computing, Networking, Stor-

age and Analysis, SC ’10, pages 1–11, Washington,
DC, USA, 2010. IEEE Computer Society.

[87] J Sedlacek and H Thomas. Visualvm all-in-one java
troubleshooting tool, 2018.

[88] Yonghong Song and Zhiyuan Li. New tiling techniques
to improve cache temporal locality. ACM SIGPLAN

Notices, 34(5):215–228, 1999.

[89] Jithendra Srinivas, Wei Ding, and Mahmut Kandemir.
Reactive tiling. In 2015 IEEE/ACM International Sym-

posium on Code Generation and Optimization (CGO),
pages 91–102. IEEE, 2015.

[90] Akshitha Sriraman, Abhishek Dhanotia, and Thomas F
Wenisch. Softsku: Optimizing server architectures for
microservice diversity@ scale. In Proceedings of the

46th International Symposium on Computer Architec-

ture, pages 513–526, 2019.

[91] Kevin Stock, Martin Kong, Tobias Grosser, Louis-Noël
Pouchet, Fabrice Rastello, J. Ramanujam, and P. Sa-
dayappan. A framework for enhancing data reuse via
associative reordering. In Conference on Programming

Language Design and Implementation (PLDI), 2014.

[92] Michael Stonebraker and Lawrence A. Rowe. The
design of postgres. In Proceedings of the 1986 ACM

SIGMOD International Conference on Management of

Data, SIGMOD ’86, pages 340–355, New York, NY,
USA, 1986. ACM.

[93] Josep Torrellas, HS Lam, and John L. Hennessy. False
sharing and spatial locality in multiprocessor caches.
IEEE Transactions on Computers, 43(6):651–663,
1994.

[94] Vish Viswanathan. Disclosure of hardware prefetcher
control on some intel processors. Intel SW Developer

Zone, 2014.

[95] David W Wall. Predicting program behavior using
real or estimated profiles. ACM SIGPLAN Notices,
26(6):59–70, 1991.

[96] Zhenjiang Wang, Chenggang Wu, Pen-Chung Yew,
Jianjun Li, and Di Xu. On-the-fly structure splitting
for heap objects. ACM Transactions on Architecture

and Code Optimization (TACO), 8(4), 2012.

[97] Wikipedia contributors. Perf (linux) — Wikipedia, the
free encyclopedia, 2018. [Online; accessed 24-April-
2019].

[98] Wikipedia contributors. Vtune — Wikipedia, the free
encyclopedia, 2018. [Online; accessed 23-April-2019].

[99] Wikipedia contributors. Clang — Wikipedia, the free
encyclopedia, 2019. [Online; accessed 24-April-2019].

[100] Wikipedia contributors. Openjdk — Wikipedia, the
free encyclopedia. https://en.wikipedia.org/

w/index.php?title=OpenJDK&oldid=927329117,
2019. [Online; accessed 23-November-2019].

[101] Wikipedia contributors. Strip (unix) — Wikipedia, the
free encyclopedia, 2019. [Online; accessed 24-April-
2019].

[102] Wikipedia contributors. Dtrace — Wikipedia, the
free encyclopedia. https://en.wikipedia.org/

w/index.php?title=DTrace&oldid=950798652,
2020. [Online; accessed 25-April-2020].

[103] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie,
Jaswinder Pal Singh, and Anoop Gupta. The splash-2
programs: Characterization and methodological con-
siderations. ACM SIGARCH computer architecture

news, 23(2):24–36, 1995.

[104] Steven Cameron Woo, Jaswinder Pal Singh, and John L.
Hennessy. The performance advantages of integrating
block data transfer in cache-coherent multiprocessors.
In Proceedings of the Sixth International Conference

on Architectural Support for Programming Languages

and Operating Systems, ASPLOS VI, pages 219–229,
New York, NY, USA, 1994. ACM.

[105] Xiaoya Xiang, Chen Ding, Hao Luo, and Bin Bao.
HOTL: a higher order theory of locality. In Architec-

tural Support for Programming Languages and Operat-

ing Systems, ASPLOS ’13, Houston, TX, USA - March

16 - 20, 2013, pages 343–356, 2013.

[106] Ahmad Yasin. A top-down method for performance
analysis and counters architecture. In 2014 IEEE In-

ternational Symposium on Performance Analysis of

Systems and Software (ISPASS), pages 35–44. IEEE,
2014.

[107] Adarsh Yoga and Santosh Nagarakatte. Parallelism-
centric what-if and differential analyses. In Pro-

ceedings of the 40th ACM SIGPLAN Conference on

Programming Language Design and Implementation,
pages 485–501. ACM, 2019.

[108] Tingting Yu and Michael Pradel. Syncprof: Detecting,
localizing, and optimizing synchronization bottlenecks.



In Proceedings of the 25th International Symposium on

Software Testing and Analysis, pages 389–400, 2016.

[109] Matei Zaharia, Mosharaf Chowdhury, Michael J
Franklin, Scott Shenker, Ion Stoica, et al. Spark: Clus-
ter computing with working sets. HotCloud, 2010.

[110] Fang Zhou, Yifan Gan, Sixiang Ma, and Yang Wang.
wperf: generic off-cpu analysis to identify bottleneck
waiting events. In 13th {USENIX} Symposium on Op-

erating Systems Design and Implementation ({OSDI}
18), pages 527–543, 2018.


	Introduction
	Challenges
	Selective Profiling
	Targeted Monitoring
	Incremental Monitoring
	Sampling

	DMon
	Static Memory Access Pattern Analysis
	Optimizations Implemented in DMon

	Implementation
	Evaluation
	Selective Profiling Efficiency
	Effectiveness
	Real-World Case Studies
	Sensitivity Analysis

	Related Work
	Conclusion
	Artifact Appendix

