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Approximate Dynamic Programming

Approximate Dynamic Programming (ADP), also sometimes referred to as
neuro-dynamic programming, attempts to overcome the limitations of value
iteration in large state spaces where some generalization between states and
actions is required due to computational and sample complexity limits.
Further, all the algorithms we have discussed thus far require a strong ac-
cess model to reconstruct the optimal policy from the value function and to
compute the optimal value function at all.

Access Models

Implicitly up until now, we’ve largely assumed that we have complete, white
box access to a full description of the system dynamics. For different rein-
forcement learning problems, there may be different levels of system access.
For the Tetris problem we often assign as homework for this class, we can
create the exact same state over and over again while learning (or testing our
algorithms). For robotic systems, we have much less access – we can never
create exactly the same state again. It’s worth reviewing here some notions of
access model to the system, as the techniques we can apply (and which will
be most effective) are largely governed by the access model that is available
to us for the development of a good policy.

1. Full Probabilistic Description

In this model, we have access to the cost function and the transition func-
tion for every action. A downside of having this kind of model is that
it can become so large as to be computationally intractable for any non-
trivial problem. It is also information-theoretically hard to identify this
type of model from data.

2. Deterministic Generative Model

In this case, we have a function that maps f (x, a) ! x0, deterministi-
cally. Deterministic can mean that we have access to the random seed in a
computer program, so we can recreate the same system including the ran-
domness. Therefore, we can assume this kind of model for the upcoming
Tetris assignment.

3. Generative Model

In this model, we have programmatic access. We can put the system into
any state we want.
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4. Reset Model

In this model, we can execute a policy or roll-out dynamics any time we
want, and we can always reset to some known state or distribution over
states. This is a good model for a robot in the lab that can be reset to
stable configurations.

5. Trace Model

This is the model that best describes the real world. Samuel Butler said
"Life is like playing a violin solo in public and learning the instrument as
one goes on"; the trace model captures the inability to “reset” in the real
world.

There are a few general strategies one can pursue for applying approxi-
mation techniques.

Approximate the Algorithm. The most straightforward approach is to
take the algorithms we’ve developed thus far Policy Iteration and Value Itera-
tion, and replace the steps where we would update a tabular representation
of the value function with a set of sampled (state-action-next state) and a
supervised-learning function approximator.

This approach is an incredibly tempting way to pursue hard RL problems:
we simply plug in a regression estimator and run existing, known-to-be-
convergent algorithms. In a sense, we can see the tremendously successful
Differential Dynamic Programming approach as of this form: we are finding
quadratic approximations and running the existing value-iteration approach.

We find below that while at times successful in practice, there are many
sources of instability in these algorithms that result in often extremely poor
performance. We analyze informally the two main sources of error: the
bootstrapping that happens in dynamic programming mixes poorly with
generalization across states, and even more significantly, the change of pol-
icy induced by the max operation produces a change in distribution (affects
which state-actions matter most) that dramatically amplifies any errors in the
function approximation process. We discuss some strategies for remediating
these.

Approximate the Bellman Equation. The next broad set of strategies is
to treat the Bellman equation itself as a fixed point equation and optimize
to find a fixed point. These techniques, known as Bellman Residual Techniques
are dramatically more stable and have a richer theory.1 [2] Practically, the 1 L. C. Baird. Residual algorithms:

Reinforcement learning with function
approximation. In International Confer-
ence on Machine Learning, 1995; and Wen
Sun, Geoffrey J Gordon, Byron Boots,
and J Bagnell. Dual policy iteration. In
Advances in Neural Information Processing
Systems, 2018

performance is often (but not always!) worse then methods based on the
"approximate the dynamic programming" strategy above, and it suffers as
well from the change of distribution problem.

Approximate the Policy Alone. We cover a final approach that eschews
the bootstrapping inherent in dynamic programming and instead caches
policies and evaluates with rollouts. This is the approach broadly taken by
methods like Policy Search by Dynamic Programming 2 and Conservative Policy 2 J. A. Bagnell and J. Schneider. Covari-

ant policy search. In Proceedings of the
International Joint Conference on Artificial
Intelligence (IJCAI), 2003

Iteration3. 4

3 S. Kakade and J. Langford. Ap-
proximately optimal approximate
reinforcement learning. In Proceedings
of the 19th International Conference on
Machine Learning (ICML), 2002
4 Methods like the Natural Policy
approach that we discuss later are
closely connected.
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Action-Value Functions

In this lecture, we consider the finite horizon case with horizon T. The quality
function, Q-function, or action-value function is defined as,

Q⇤(x, a, t) = c(x, a) + total value received if optimal thereafter,

Qp(x, a, t) = c(x, a) + total value received if following policy p thereafter.

These can be restated in terms of the Q-function itself as

Q⇤(x, a, t) = c(x, a) + gEp(x0 |x,a)[min
a0

Q⇤(x0, a0, t + 1)]

Qp(x, a, t) = c(x, a) + gEp(x0 |x,a)[Q
p(x0, p(x0), t + 1)]

Note that unlike infinite horizon case where a single value function/action-
value function is defined, there are T value functions/action value functions
for the finite horizon case, one for each time step.

Once we have the action-value functions, the value function V⇤ and the
optimal policy p⇤ are easily computed as

V⇤(x, t) = min
a2A

Q⇤(x, a, t)

p⇤(x, t) = argmin
a2A

Q⇤(x, a, t)

We can compare the above equation to how we compute the optimal policy
from the optimal value function,

p⇤(x, t) = argmin
a2A

c(x, a) + gEp(x0 |x,a)[V
⇤(x0, t + 1)]

Pros and Cons of Action-Value Functions

Pros

1. Computing the optimal policy from Q⇤ is easier compared to extracting
the optimal policy from V⇤ since it only involves an argmax and does not
require evaluating the expectation and thus the transition model.

2. Given Q⇤, we do not need a transition model to compute the optimal
policy.

Cons

1. Action-value functions take up more memory compared to value func-
tions (|States| x |Actions|, as opposed to |States|).5 5 Note, however, that if we use a value

function instead of Q-function, we
may need another |States| x |Actions|
table to store the transition probability
in order to find the optimal policy
if the transition model is not given
analytically.

Fitted Q-Iteration

We can now describe Fitted Q-Iteration, an approximate dynamic program-
ming algorithm that learns approximate action-value functions from a batch
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of samples. Once the data is collected the Q-function is approximated with-
out any interaction with the system.

Algorithm FittedQIteration({xi, ai, ci, x0i}n
i=1)

Q(x, a, T) 0, 8x 2 X, a 2 A

forall t 2 [T � 1, T � 2, . . . , 0] do
D+  ∆
forall i 2 1, . . . , n do

input {xi, ai}
target ci + g mina0 Q(x0i , a0, t + 1)
D+  D+ [ {input, target}

end
Q(·, ·, t) Learn(D+)

end
return Q(·, ·, 0 : T � 1)

Algorithm 10: Fitted Q-iteration with finite horizon.

The algorithm takes as input a dataset D which contains samples of the
form {state, action, associated cost, next state}. In practice, this is obtained by
augmenting expert demonstration data with random exploration samples.
As in value iteration, the algorithm updates the Q functions by iterating
backwards from the horizon T � 1. Essentially, for each time step t, we
create a training dataset D+ by using the learned Q function learned for time
step t + 1. This dataset is fed into a function approximator Learn, which
could be any of your favorite machine learning algorithms (linear regression,
neural nets, Gaussian processes, etc), to approximate the Q function from the
training dataset. We could also start with an initial guess for Q(·, T). 6 6 The version presented here assumes

the dynamics and cost functions are the
same at each time-step.

Note that the above fitted Q-iteration algorithm can be easily modified to
work for infinite horizon case. In fact, the infinite horizon version is simpler,
because we can choose to maintain a single Q function. Hence, for each
iteration, we can just collect a batch of samples, and update the Q function.

Algorithm FittedQIteration({xi, ai, ci, x0i}n
i=1)

Q(x, a) 0, 8x 2 X, a 2 A

while not converged do
D+  ∆
forall i 2 1, . . . , n do

input {xi, ai}
target ci + g mina0 Q(x0i , a0)
D+  D+ [ {input, target}

end
Q Update(Q, D+)

end
return Q

Algorithm 11: Fitted Q-iteration with infinite horizon.

There are a few of things that we need to be aware of when using fitted
Q-iteration in practice:

• In a goal-directed problem, we need to make sure that our samples in-
clude goal states in order to get meaningful iterations.

• Often it makes sense to run the algorithm on features of the state-action
pair (x, a), not the raw state-action pair itself.

• Fitted Q-iteration can be run repeatedly, augmenting the data set with
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new samples from the resulting policies.

• For goal-directed problems, the goal states xi are nailed down to 0 Q-
value (target = ci), and bad or infeasible states are provided a large con-
stant target value c�. The former ensures that the Q-values do not drift
up over time, and the latter prevents the Q-value for bad states from
blowing up to •.

Example

An example of work that uses Fitted Q-Iteration was the paper "Learning to
Drive a Real Car in 20 Minutes". Link below:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.70.3532&rep=rep1&type=pdf
Highlights:

• Learned a model from scratch for driving a car along a GPS guided
course, minimizing cross-track-error (distance of vehicle to one side of
a straight line between waypoints).

• The only data for learning came from actual driving.

• 3 layer neural net for regression.

• Action: steering discretized into 5 angle choices.

8.1 Challenges when using Fitted Q-Iteration

Unfortunately, while in the tabular case (maintaining a value for each state-
action pair) the Q-function function converges 7 as the number of iterations 7 Under suitable assumptions discussed

earlier.of value-iteration (or policy iteration) increases to •, this does not generically
hold under function approximation. The value function might converge, di-
verge, oscillate, or behave chaotically. Perhaps worse, meaningful bounds on
the resulting performance of a policy learned using value function approxi-
mation can be either hard to obtain or vacuous.

Fitted Q-iteration and Fitted Value Iteration (a similar algorithm as fitted
Q-iteration but approximates the value function), especially the infinite
horizon version, is prone to bootstrapping issues in the sense that sometimes
it does not converge. Since these methods rely on approximating the value
function inductively, errors in approximation are propagated, and, even
worse, amplified as the algorithm encourages actions that lead to states with
sub-optimal values.

The key reason behind this is the minimization operation performed
when generating the target value used for the action value function. The
minimization operation pushes the desired policy to visit states where the
value function approximation is less than the true value of that state. This
typically happens in areas of state spaces which are relatively bad and have
very few training samples. From a learning theory perspective, this can be
viewed as a violation of the i.i.d assumption on training and test samples.

The following examples from [3] [Boyan and Moore, 1995] demonstrate
this problem 8. 8 All figures from Boyan et. al

Example: 2D gridworld

Figure 8.1.1 shows the 2D grid world example, which has a linear true value
function J⇤.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.70.3532&rep=rep1&type=pdf
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Continuous Gridworld
J*(x,y)1
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Figure 8.1.1: The continuous
gridworld domain.

Figure 8.1.2 shows that VI with converges to the true value function.
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Figure 8.1.2: Training with
discrete value iteration.

However, figure 8.1.3 shows that Fitted Value Iteration with quadratic
regression fails to converge. The quadratic function, in trying to both be
flat in the middle of state space and bend down toward 0 at the goal corner,
must compensate by underestimating the values at the corner opposite
the goal. These underestimates then enlarge on each iteration, as the one-
step lookaheads indicate that points can lower their expected cost-to-go by
stepping farther away from the goal.
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Figure 8.1.3: Training with
quadratic regression. The value
function diverges. Fitted Value
Iteration with quadratic regres-
sion underestimates the values
at the corner opposite the goal,
and these underestimates am-
plify at each iteration.

Example: car on hill

Figure 8.1.4 shows the car-on-hill example.
Figure 8.1.5 shows that a two layer MLP can also diverge to underestimate

the costs.
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Car-on-the-Hill J*(pos,vel)
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Figure 8.1.4: The car-on-the hill
domain.
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Figure 8.1.5: Training with
neural network.
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8.2 Approximate Policy Iteration

In the previous section we looked at how approximating the action-value
function could lead to more efficient algorithms. The key idea in this section
will be to approximate a policy from a batch of offline data and improve it
by iterating over the data samples. As we will see, the process of evaluating
a policy will be more stable compared with fitted value iteration as the
min operation will no longer be used in the training loop. As with policy
iteration, there are two fundamental steps involved in approximate policy
iteration process - policy evaluation and policy improvement.

Policy Evaluation

Algorithm Evaluate({xi, ai, ci, x0i}n
i=1)

Qp(x, a, T) 0, 8x 2 X, a 2 A

forall t 2 [T � 1, T � 2, . . . , 0] do
D+  ∆
forall i 2 1, . . . , n do

input {xi, ai}
target ci + gQp(x0i , p(x0i , t + 1), t + 1)

D+  D+ [ {input, target}
end
Qp(·, ·, t) Learn(D+)

end
return Qp(·, ·, 0 : T � 1)

Algorithm 12: Approximate policy evaluation with finite horizon

In Algorithm 12, the stability of the function approximation comes from that
fact that we are interested in approximating Qp and not Q⇤. This kind of
stability often turns out to be critical, and many practical RL implentations
favor a policy iteration variant. 9 9 Similar to fitted Q-iteration, there is

also an infinite horizon version of the
above algorithm.Algorithm Evaluate({xi, ai, ci, x0i}n

i=1, p)
Qp(x, a) 0, 8x 2 X, a 2 A

while not converged do
D+  ∆
forall i 2 1, . . . , n do

input {xi, ai}
target ci + gQp(x0i , p(x0i))
D+  D+ [ {input, target}

end
Qp  Update(Qp , D+)

end
return Qp

Algorithm 13: Approximate policy evaluation with infinite horizon
Function approximation induces very significant problems in computing

good policies or value functions. Lets take a closer look at the problems that
result.
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Function Approximation Divergence

We consider now the more stable variant– function approximation of the
policy evaluation step alone– rather than the more complex (non-linear)
value iteration variant. 10 Even here, Tsitsiklis and Van Roy [6] demonstrate 10 Below we’ll discuss that the more

difficult to manage problems come from
the changing the policy.

that without care, function approximation will behave poorly.
Consider the MDP in Figure 8.2.1 has two states S1 and S2. The following

details the setup:

Figure 8.2.1: Two state MDP

1. The reward for being at any state (hence the true value function) is given
by {0, 0}

2. Consider a discount factor g = 0.9

3. The feature {x} is simple the numerical value of the state {1, 2}

4. The value function is approximated with linear function: V(s) wT x

The graphical view of the value function approximation is shown in
Figure 8.2.2. Since the reward is always 0, we know the true value function is
{0, 0}. This corresponds to w = 0. We will now examine if the approximation
converges to this value.

Lets start with w = 1. One round of value iteration yields the following
target values for the function approximator

Vp(s) = r(s, p(s)) + gV(s0)

V(s1) 0 + gw ⇤ 2 = 1.8

V(s2) 0 + gw ⇤ 2 = 1.8

If a least squares approach is used to fit to this data, we’d arrive at
w = 1.2. Repeated iteration eventually results in the function approxima-
tor blowing up exponentially in iterations.

Some Remedies for Divergence

If the training data is weighted by how much time one visits that state, then
divergence problem can be arrested for linear function approximators. In our
example, if we spend t = 1 time-steps in S1, then we spend g

1�g = 9 time-
steps at S2. If this is used as a weight in the weighted least squares fitting,
then after the first iteration w = 0.92, i.e, it proceeds towards the correct
value 0. This on-policy weighting, where the loss is weighed by the time spent
in each state can be demonstrated to ensure convergence. Unfortunately, the
same result does not hold for a more general class of function approximators.
[6] An entire literature has grown up around attempts to maintain the advan-
tages of approximating the dynamic programming iterations while ensuring
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convergence in more general settings. Rich Sutton and Andy Barto’s book 11 11 R. S. Sutton and A. G. Barto. Rein-
forcement Learning: An Introduction. MIT
Press, 1998

extensively covers these efforts.
Another approach is a method of “Averagers” [4]. Its a class of function

approximators of the form V(x) = Âi bi J(yi) (0  b  1, Âi bi  1). This was
essentially putting a grid over the state space and converting the problem
to a MDP on the grid. There exists exact solution to Value iteration on the
grid. The value function anywhere else is computed by interpolating value
function from the grid.

The upside to the approach is since the function approximator does not
extrapolate, the divergence problem does not occur. The downside is a rela-
tively weak class of function approximators.

Figure 8.2.2: Approximate
Value Function Iteration

Policy Improvement

This is the second step in the Approximate Policy Iteration process. We select
a policy by simply acting greedily with respect to the estimated Q-function

p0(x, t) = arg
a

min Qp(x, a, t) (8.2.1)

The Core Problem of Approximate Dynamic Programming

T-1T-2T-3

Approximated Q
True Q

Upper half of state
is BAD

Lower half of state
is GOOD

Figure 8.2.3: Value function
overestimation in value itera-
tion

We discussed before the problem of value function approximation over-
estimating how good it thinks a state is and this error amplifying as it pro-
ceeds backwards in time. Figure 8.2.3 shows an illustration of this effect.
Because the upper half of the state space (which is bad) is overestimated by
the function approximator, policies switch to direct towards that state. Error
in overestimation of the value function has a cascading effect as we iterate
backwards in time.
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However, until now, our focus has been on boostrapping and approximat-
ing the value function either of a given, or optimal, policy. Can we use the
core idea of dynamic programming without bootstrapping values? A quote
from Richard Bellman sheds light on this issue

“An optimal policy has the property that whatever the initial decision
may be, the remaining decisions constitute an optimal policy .... [for
the resulting state]”

This idea is related to the monotonic improvement of policy iteration. If
we cache the policies and re-estimate the value function at every iteration
backwards in time, we avoid the overestimation problem discussed above as
we get unbiased estimates of the costs that will occur in the future.

Policy Search by Dynamic Programming

As is standard in dynamic programming, we proceed backwards (over a
finite horizon) from T � 1. At iteration T � t, instead of memoizing (ap-
proximately) a value function in the future and bootstrapping from that, we
memoize just the policies in the future and rollout the result all the way to
T � 1. A new policy is learned via estimating an action-value function at
T � t. 12 for a single time step given the rollouts. A new policy is installed at 12 Or, often powerfully, simply optimiz-

ing the policy directlythe time-step T � t. Effectively, instead of approximating Qt we approximate
p⇤,t. Let’s walk through how this works below.
Time T� 1:

We approximate p̃⇤,T�1(x) = arg
a

min c(x, a) either analytically or via

sampled states and actions from a (for now fixed) distribution d(s, a, T � 1).
This becomes the optimal policy at T � 1.
Time T� 2:

For an input pair {xi, a}, the target value is ci + gc(x0, p⇤,T�1) + . . . . So an
error in approximation of p does not bootstrap, it shows up as the policy is
always evaluated. 13 13 While described here as a regression

problem, it is equally possible to di-
rectly learn classifiers that minimize a
weighted 0/1 loss.8.3 Related Reading
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