
April 2010 - Revised December 2010 and June 2011 Report LIDS - 2833

A version appears in Journal of Control Theory and Applications, 2011

Approximate Policy Iteration: A Survey and Some

New Methods

Dimitri P. Bertsekas †

Abstract

We consider the classical policy iteration method of dynamic programming (DP), where approximations

and simulation are used to deal with the curse of dimensionality. We survey a number of issues: convergence

and rate of convergence of approximate policy evaluation methods, singularity and susceptibility to simulation

noise of policy evaluation, exploration issues, constrained and enhanced policy iteration, policy oscillation

and chattering, and optimistic and distributed policy iteration.

Our discussion of policy evaluation is couched in general terms, and aims to unify the available methods

in the light of recent research developments, and to compare the two main policy evaluation approaches:

projected equations and temporal differences (TD), and aggregation. In the context of these approaches,

we survey two different types of simulation-based algorithms: matrix inversion methods such as LSTD, and

iterative methods such as LSPE and TD(λ), and their scaled variants. We discuss a recent method, based on

regression and regularization, which rectifies the unreliability of LSTD for nearly singular projected Bellman

equations. An iterative version of this method belongs to the LSPE class of methods, and provides the

connecting link between LSTD and LSPE.

Our discussion of policy improvement focuses on the role of policy oscillation and its effect on perfor-

mance guarantees. We illustrate that policy evaluation when done by the projected equation/TD approach

may lead to policy oscillation, but when done by aggregation it does not. This implies better error bounds

and more regular performance for aggregation, at the expense of some loss of generality in cost function rep-

resentation capability. Hard aggregation provides the connecting link between projected equation/TD-based

and aggregation-based policy evaluation, and is characterized by favorable error bounds.

1. INTRODUCTION

In this paper we aim to survey and place in broad context a number of issues relating to approximate

policy iteration methods for finite-state, discrete-time, stochastic dynamic programming (DP) problems.

† The author is with the Dept. of Electr. Engineering and Comp. Science, M.I.T., Cambridge, Mass., 02139. His

research was supported by NSF Grant ECCS-0801549, by the LANL Information Science and Technology Institute,

and by the Air Force Grant FA9550-10-1-0412. Many thanks are due to Huizhen (Janey) Yu for extensive helpful

discussions and suggestions.

1

Introduction

These methods are one of the major approaches for approximate DP, a field that has attracted substantial

research interest, and has a wide range of applications, because of its potential to address large and complex

problems that may not be treatable in other ways. Among recent works in the extensive related literature, we

mention textbooks and research monographs: Bertsekas and Tsitsiklis [BeT96], Sutton and Barto [SuB98],

Gosavi [Gos03], Cao [Cao07], Chang, Fu, Hu, and Marcus [CFH07], Meyn [Mey07], Powell [Pow07], Borkar

[Bor08], Busoniu, Babuska, De Schutter, and Ernst [BBD10], and the author’s text in preparation [Ber10a];

edited volumes and special issues: White and Sofge [WhS92], Si, Barto, Powell, and Wunsch [SBP04],

Lewis, Lendaris, and Liu [LLL08], and the 2007-2009 Proceedings of the IEEE Symposium on Approximate

Dynamic Programming and Reinforcement Learning; and surveys: Barto, Bradtke, and Singh [BBS95],

Borkar [Bor09], Lewis and Vrabie [LeV09], and Szepesvari [Sze09].

For an overview of policy iteration methods, let us focus on the α-discounted n-state Markovian Decision

Problem (MDP) with states 1, . . . , n, controls u ∈ U(i) at state i, transition probabilities pij(u), and cost

g(i, u, j) for transition from i to j under control u. A (stationary) policy µ is a function from states i to

admissible controls u ∈ U(i), and Jµ(i) is the cost starting from state i and using policy µ. It is well-known

(see e.g., Bertsekas [Ber07] or Puterman [Put94]) that the costs Jµ(i), i = 1, . . . , n, are the unique solution

of Bellman’s equation

Jµ(i) =

n∑

j=1

pij
(
µ(i)

)(
g(i, µ(i), j) + αJµ(j)

)
, i = 1, . . . , n.

Equivalently, the vector Jµ ∈ <n, which has components Jµ(i),† is the unique fixed point of the mapping

Tµ : <n 7→ <n, which maps J ∈ <n to the vector TµJ ∈ <n that has components

(TµJ)(i) =

n∑

j=1

pij
(
µ(i)

)(
g(i, µ(i), j) + αJ(j)

)
, i = 1, . . . , n. (1.1)

Similarly, the optimal costs starting from i = 1, . . . , n, are denoted J∗(i), and are the unique solution of

Bellman’s equation

J∗(i) = min
u∈U(i)

n∑

j=1

pij(u)
(
g(i, u, j) + αJ∗(j)

)
, i = 1, . . . , n.

Equivalently, the optimal cost vector J∗ ∈ <n, which has components J∗(i), is the unique fixed point of the

mapping T : <n 7→ <n defined by

(TJ)(i) = min
u∈U(i)

n∑

j=1

pij(u)
(
g(i, u, j) + αJ(j)

)
, i = 1, . . . , n. (1.2)

An important property is that T is a sup-norm contraction, so the iteration Jk+1 = TJk converges to J∗

from any starting point J0 - this is known as value iteration.

Policy iteration is a major alternative to value iteration. It produces a sequence of policies and asso-

ciated cost functions through iterations that have two phases: policy evaluation (where the cost function of

a policy is evaluated), and policy improvement (where a new policy is generated). In the exact form of the

algorithm, the current policy µ is improved by finding µ̄ that satisfies Tµ̄Jµ = TJµ (i.e., by minimizing in

† In our notation, <n is the n-dimensional Euclidean space, all vectors in <n are viewed as column vectors, and

a prime denotes transposition. The identity matrix is denoted by I.

2

Introduction

the right-hand side of Eq. (1.2) with Jµ in place of J). The improved policy µ̄ is evaluated by solving the

linear system of equations Jµ̄ = Tµ̄Jµ̄, and (Jµ̄, µ̄) becomes the new cost vector-policy pair, which is used to

start a new iteration.

In a variant of the method, the improved policy µ̄ is evaluated by applying Tµ̄ a finite number of

times to an approximate evaluation of the preceding policy µ, which we denote by J̃µ. This is known as

“optimistic” or “modified” policy iteration, and its motivation is that in problems with a large number

of states, the linear system Jµ̄ = Tµ̄Jµ̄ cannot be practically solved directly by matrix inversion, so it is

best solved iteratively by value iteration, that is, by repeated application of Tµ̄ to some initial vector (most

conveniently the vector J̃µ). If the number m of applications of Tµ̄ is very large, the exact form of policy

iteration is essentially obtained, but practice has shown that it is most efficient to use a moderate value of m.

In this case, the algorithm looks like a hybrid of value and policy iteration, involving a sequence of alternate

applications of T and Tµ, with µ changing over time.

It is well-known that the exact form of policy iteration converges to an optimal cost-policy pair for any

initial conditions (in a finite number of iterations when the number of policies is finite, as in the discounted

MDP). The convergence of optimistic policy iteration is more fragile, and requires that the initial pair

(J̃µ0 , µ0) satisfy Tµ0 J̃µ0 ≤ J̃µ0 , particularly when implemented in totally asynchronous form (irregularly,

one state at a time); see Williams and Baird [WiB93], [BeT96], Section 2.2.3, or [Ber07], Section 1.3.3.†
Since simulation-based policy iteration algorithms are typically asynchronous, this restriction has motivated

algorithmic modifications with guaranteed asynchronous convergence from arbitrary initial conditions, which

will be partly discussed in Section 3.8.

Policy Iteration Methods with Cost Function Approximation

In policy iteration methods with cost function approximation, we evaluate µ by approximating Jµ with a

vector Φrµ from the subspace S spanned by the columns of an n×s matrix Φ, which may be viewed as basis

functions:‡
S = {Φr | r ∈ <s}.

We generate an “improved” policy µ̄ using the formula Tµ̄(Φrµ) = T (Φrµ), i.e.,

µ̄(i) ∈ arg min
u∈U(i)

n∑

j=1

pij(u)
(
g(i, u, j) + αφ(j)′rµ

)
, i = 1, . . . , n, (1.3)

† Convergence of optimistic policy iteration with some form of synchronous or regular order of state updates

(including Gauss-Seidel variants) is obtained for a variety of DP models involving contraction mappings, without the

condition Tµ0 J̃µ0 ≤ J̃µ0 , as first shown by Rothblum [Rot79]. However, this is not so under totally asynchronous

implementations.

‡ We focus on linear/subspace cost function approximation in this paper. Naturally, the choice of the matrix Φ is

critical for effective policy evaluation. The ith row of Φ consists of s numbers, which may be viewed as features that

characterize state i, and are weighted with the corresponding s components of rµ to provide an approximation of the

cost starting from i under the given policy. Features, when well-crafted, can capture the dominant nonlinearities of

the cost vector, and their linear combination can work well as an approximation architecture. In this paper, we do

not discuss the selection of Φ, but we note the possibility of its optimal choice within some restricted class by using

gradient and random search algorithms (see Menache, Mannor, and Shimkin [MMS06], Yu and Bertsekas [YuB09],

Busoniu et. al. [BES10], and Di Castro and Mannor [DiM10] for recent work on this subject). Note that some of

the methods discussed in this paper can be adapted so that they can use “sampled” features, that is, features whose

values are corrupted by stochastic noise (see Bertsekas and Yu [BeY09], Section 6).

3

Introduction

where φ(j)′ is the row of Φ that corresponds to state j [the method terminates with µ if Tµ(Φrµ) = T (Φrµ)].

We then repeat with µ replaced by µ̄.

In this paper, for generality and notational simplicity, we consider MDP where for each policy µ, the

mapping Tµ : <n 7→ <n has the form

TµJ = gµ +AµJ, (1.4)

for given n × n matrix Aµ with nonnegative components aij
(
µ(i)

)
, and vector gµ ∈ <n with components

gµ(i). The α-discounted n-state MDP is the special case where Aµ = αPµ, with Pµ being the matrix

of transition probabilities pij
(
µ(i)

)
corresponding to µ, and gµ the vector with ith component gµ(i) =∑n

j=1 pij
(
µ(i)

)
g
(
i, µ(i), j

)
, the expected one-stage cost at state i under control µ(i). In policy iteration with

cost function approximation, we compute approximations Φrµ to Jµ using some policy evaluation method,

and we use them to compute new policies based on (approximate) policy improvement, in analogy with Eq.

(1.3).

In Section 2, we focus just on the approximate evaluation of a single fixed policy µ, so for notational

simplicity we drop the subscript µ from Eq. (1.4). We thus focus on approximations of the form Φr for the

fixed point of the linear mapping

TJ = g +AJ, (1.5)

where A is an n× n matrix with nonnegative components aij , and g ∈ <n. Several algorithmic approaches

have been proposed for this purpose. The most popular are:

(a) Projected equation approach: Here the approximation Φr is obtained by solving the projected equation

Φr = ΠT (Φr), (1.6)

where Π denotes projection onto the subspace S. The projection is with respect to a weighted Euclidean

norm ‖ · ‖ξ, where ξ = (ξ1, . . . , ξn) is a probability distribution with positive components (i.e., ‖J‖2ξ =∑n
i=1 ξix

2
i , where ξi > 0 for all i). The distribution vector ξ is sometimes (but by no means always)

the steady-state probability vector of a Markov chain associated with the MDP.

(b) Aggregation approach: Here the approximation Φr is obtained by solving an equation of the form

r = DT (Φr), (1.7)

where D is a matrix whose rows are probability distributions. Contrary to the projected equation

approach where Φ is arbitrary, an important restriction is that Φ must also be a matrix whose rows are

probability distributions. The components of D and Φ are known as the disaggregation and aggregation

probabilities. The vector r can be viewed as a cost vector of an aggregate problem that has s states

and is defined by D and Φ (see Section 4 for details and interpretation).

There are also optimistic versions of these two approaches, where the corresponding equation (1.6)

or (1.7) is solved approximately, with a finite number of iterations of some iterative method. Generally,

the projected equation approach is associated with temporal difference (TD) methods, which originated in

reinforcement learning with the works of Samuel [Sam59], [Sam67] on a checkers-playing program. The papers

by Barto, Sutton, and Anderson [BSA83], and Sutton [Sut88] proposed the TD(λ) method, which motivated a

lot of research in simulation-based DP, particularly following an early success with the backgammon playing

program of Tesauro [Tes92]. The original papers did not make the connection of TD methods with the

projected equation. Indeed for quite a long time it was not clear which mathematical problem TD(λ) was

4

Introduction

aiming to solve! The mathematical convergence and other properties of TD(λ), and its connections with the

projected equation were clarified in the mid 90s through the works of several authors, including Gurvits, Lin,

and Hanson [GLH94], Jaakkola, Jordan, and Singh [JJS94], Pineda [Pin97], Tsitsiklis and Van Roy [TsV97],

[TsV99a]. More recent works have focused on the use of least squares-based TD methods, such as the LSTD

(Least Squares Temporal Differences) method (Bradtke and Barto [BrB96]), and the LSPE (Least Squares

Policy Evaluation) method (Bertsekas and Ioffe [BeI96]), which will be discussed later.

Note that the projected equation framework has a long history in the context of Galerkin methods for

the approximate solution of high-dimensional or infinite-dimensional linear equations (partial differential,

integral, inverse problems, etc; see e.g., [Kra72], [Fle84]). In fact much of the policy evaluation theory

discussed in this paper applies to general projected equations arising in contexts beyond DP (see [BeY07],

[BeY09], [Ber09a], [YuB10], [Yu10a,b]). However, the use of the Monte Carlo simulation and Monte Carlo

integration ideas that are central in approximate DP is an important characteristic that differentiates the

methods of the present paper from the Galerkin methodology, as currently practiced in the numerical analysis

field.

The aggregation approach also has a long history in scientific computation and operations research. It

was introduced in the simulation-based approximate DP context, mostly in the form of value iteration; see

Singh, Jaakkola, and Jordan [SJJ94], [SJJ95], Gordon [Gor95], Tsitsiklis and Van Roy [TsV96], and Van Roy

[Van06]. Currently the aggregation approach seems to be less popular, but as we will argue in this paper, it

has some interesting advantages over the projected equation approach, even though there are restrictions in

its applicability (see also the discussion in [Ber10a]).

Let us discuss briefly some alternative policy iteration approaches. In one of them, evaluation is based

on the minimization of the (squared) Bellman equation error, as expressed by

min
r∈<s

‖Φr − T (Φr)‖2, (1.8)

where T is the mapping of Eq. (1.5). The summation over all the states in the squared norm above is usually

approximated by a summation over a smaller “representative” set of states, often obtained in part through

simulation. The optimality conditions for this minimization can be shown to be equivalent to the projected

equation Φr = ΠT̂ (Φr), where T̂ is the mapping

T̂ J = TJ +A′(J − TJ),

which has the same fixed points as T , provided I − A′ is an invertible matrix (see [Ber10a], Section 6.8.4).

Thus the Bellman equation error approach is a special case of the projected equation approach, although it

leads to different simulation-based implementations. Sometimes it gives a better approximation error and

sometimes worse. It has some interesting characteristics; see e.g., the discussion in [BeT96], Sections 6.10 and

6.11. However, it is less efficient when implemented by simulation (it requires the simultaneous generation

of two state trajectories instead of one), and it is more susceptible to simulation noise, and for this reason it

is not as popular as the projected equation approach at present. We do not consider this approach in this

paper, referring to the literature for further discussion (e.g., [BeT96], Sections 6.10, 6.11, [Ber10a], Section

6.8.4, and Scherrer [Sch10]).

Among other approximate policy iteration methods, let us note the ones proposed recently by Thiery

and Scherrer [ThS10], which are simulation-based implementations of λ-policy iteration (see also [Ber10a],

Section 6.3.9). This latter algorithm combines elements of value and policy iteration, and was proposed by

Bertsekas and Ioffe [BeI96] in conjunction with the LSPE method (see also [BeT96], Section 2.3.1). The

5

Projected Equation Methods for Policy Evaluation

implementations of [ThS10] and [Ber10a] (Section 6.3.9) combine elements of several of the ideas that we will

discuss in Sections 2 and 3, including solution of linear systems by simulation (Section 2.3), a λ parameter

to control the bias-variance tradeoff (Section 2.3), convenience of exploration (Section 3.2), and optimistic

operation (Section 3.3).

Contrary to approximate policy evaluation, which is an extensively researched and reasonably well

understood subject, policy improvement with cost function approximation may exhibit complex behavior

that is hard to analyze and can have seriously adverse impact on practical performance. An important

question relates to the issue of inadequate exploration, i.e., the potential bias of the simulation through

underrepresentation of states that are unlikely to occur under the policy being simulated. Another important

question is whether the policy iteration process is seriously hampered by oscillations between poor policies,

roughly similar to the attraction of gradient methods to poor local minima. As we will discuss later, there has

been little apparent concern in the approximate DP/reinforcement learning literature about this possibility,

even though it has been documented with several simple examples, and may be responsible for the poor

performance of approximate policy iteration recently demonstrated in case studies involving the game of

tetris (see the discussion of Section 3.5).

Let us also note that approximate policy iteration methods are based on the idea of “approximation

in value space” and hence also on the hypothesis that a more accurate cost-to-go approximation will yield

a better one-step or multistep lookahead policy through the policy improvement equation (1.3). This is

a reasonable but by no means self-evident hypothesis, and may in fact not even be true in a given prob-

lem. Competitor methods are based on the idea of “approximation in policy space” and use simulation in

conjunction with a gradient or random search method to approximate directly an optimal policy with a

policy of a given parametric form. These methods do not aim at good cost function approximation through

which a well-performing policy may hopefully be obtained. Rather they aim directly at finding a policy with

good performance. The circumstances under which one type of method may yield a policy with superior

performance over the other are unclear at present.

In this survey paper, we first address various computational issues of policy evaluation, including

convergence and rate of convergence, and sensitivity to simulation noise in the case where Φ is (nearly) rank-

deficient (Section 2). We then discuss additional issues of policy improvement, arising when policy evaluation

is embedded within policy iteration, such as exploration, limited sampling/optimistic policy iteration, policy

oscillation, and error bounds (Section 3). For policy evaluation, we first focus on the projected equation

approach, since this is the one that is better known, and has the most complex and multifaceted behavior.

We return to policy evaluation using the aggregation approach in Section 4. However, we take special care

to introduce sufficient generality and abstraction into our presentation of Sections 2-3, so that a coherent

and unified view of the commonalities and differences of the two approaches emerges.

Since we cover a lot of ground, to keep the size of the paper reasonable, we adopt a somewhat abstract

and research-oriented style of exposition. We give proofs of some results, we refer to the published literature

for others, and we speculate on a few other results that are plausible but not yet rigorously established.

2. PROJECTED EQUATION METHODS FOR POLICY EVALUATION

In this section, we discuss general aspects of policy evaluation using the projected equation

Φr = ΠT (Φr) = Π(g +AΦr),

6

Projected Equation Methods for Policy Evaluation

[cf. Eqs. (1.5)-(1.6)] and we give the forms of the two basic methods: matrix inversion and iterative. While

these methods apply to general Galerkin approximation, we focus primarily on TD-like, simulation-based

algorithms that were developed in approximate DP. For frameworks that are based on a more general

viewpoint, we refer to our work on the solution of linear systems of equations [BeY07], [YuB10], [BeY09],

variational inequalities [Ber09a], and least squares and inverse problems [WPB09], [PWB09]. One of the

advantages of using a general matrix A in the definition of T is that it allows simultaneous application

of our results to all types of Bellman equations (e.g., discounted, stochastic shortest path, average cost,

semi-Markov, single-step, multistep, etc.).

We recall the basic characterization of the projection: ΠT (J) is the unique vector Y ∈ S such that

Y − TJ is orthogonal to all vectors of S in the scaled geometry of the inner product < x1, x2 >= x′1Ξx2,

where Ξ is the diagonal matrix with the components of the probability distribution vector ξ = (ξ1, . . . , ξn)

on the diagonal. Since the projected equation is to find J ∈ S such that TJ projects onto J , its solutions are

characterized by the orthogonality principle: J is a solution if and only if J ∈ S and J−TJ is orthogonal to

all the columns of Φ which span the subspace S, i.e., Φ′Ξ(J −TJ) = 0. Thus, a vector J solves the projected

equation J = ΠT (J) if and only if it is of the form Φr and

0 = Φ′Ξ(J − TJ) = Φ′Ξ
(
Φr − T (Φr)

)
= Φ′Ξ

(
Φr − (g +AΦr)

)
.

It follows that solving the projected equation is equivalent to solving the linear system Cr = d, where†

C = Φ′Ξ(I −A)Φ, d = Φ′Ξg. (2.1)

In this paper when referring to the projected equation, we make no distinction between the two equivalent

forms Cr = d and J = ΠT (J). The set of solutions of J = ΠT (J) is obtained from the set of solutions of

Cr = d by multiplication with Φ. Note that if Φ does not have rank s, C will not be invertible, and Cr = d

will not have a unique solution even if J = ΠT (J) has a unique solution (equivalently, I −ΠA is invertible).

Moreover, solutions of J = ΠT (J) depend only on the projection norm and the subspace S, and not on the

matrix Φ, which provides just an algebraic representation of S. Thus if J = ΠT (J) has a unique solution J̃ ,

we have Φr∗ = J̃ for every matrix Φ whose range space is S and solution r∗ of the corresponding equation

Cr = d.

2.1 Contraction Properties of the Projected Equation

The projected equation Cr = d may in principle be solved by matrix inversion, r∗ = C−1d. This does not

require any contraction properties for the operators T or ΠT ; invertibility of C is the only requirement.

The equation may also be solved by one of several possible iterative methods [an important example is

the fixed point iteration Φrk+1 = ΠT (Φrk)]. For some of these methods ΠT must be a contraction in

order to guarantee convergence. However, even if T is a contraction with respect to some norm, ΠT need

not be a contraction, unless Π is nonexpansive with respect to that norm, and this is a major source of

complications for iterative methods. The following proposition provides a condition, which guarantees that

ΠT is a contraction.

† This line of development of the projected equation can be generalized to the case where Π is the operator that

projects on a convex strict subset of S. In this case, the projected equation is equivalent to a variational inequality

(in place of Cr = d), thereby leading to a broad extension of the overall approximation approach; see [Ber09a] and

the discussion in Section 3.4.

7

Projected Equation Methods for Policy Evaluation

Proposition 2.1: Let ξ = (ξ1, . . . , ξn) be the steady-state probability vector of an irreducible transi-

tion probability matrix Q. Then T and ΠT are contraction mappings with respect to ‖ · ‖ξ if aij ≤ qij
for all (i, j), and there exists an index ī such that aīj < qīj for all j = 1, . . . , n.

The proof of the proposition is given in [BeY09], and is based on the inequality

‖QJ‖ξ ≤ ‖J‖ξ, ∀ J ∈ <n,

which holds for any irreducible transition matrix Q with invariant distribution ξ (see e.g., [BeT96], Lemma

6.4, or [Ber07], Lemma 6.3.1). In a discounted MDP case where A = αP and P is irreducible, by taking

Q = P , the inequality implies that T is a contraction with respect to ‖ · ‖ξ of modulus α, which together

with the nonexpansiveness of Π with respect to ‖·‖ξ, implies that the same is true for ΠT . The more general

condition aīj < qīj , j = 1, . . . , n, is satisfied in discounted MDP where Q is a somewhat modified version of

P to allow for exploration (see [Ber10a]), and in a stochastic shortest path MDP, where A is a substochastic

matrix corresponding to a proper policy (one for which the termination state is reached with probability 1

from any starting state); see [Ber07], [Ber10a]. There are also other related conditions that guarantee that

ΠT is a contraction, and apply among others to average cost MDP (see [YuB06], [BeY09], or [Ber10a]).

If ΠT is a contraction, then the projected equation J = ΠT (J) has a unique solution Φr, which implies

that if Φ has rank s, then Cr = d has a unique solution so C is invertible. This and other properties are

collected in the following proposition.

Proposition 2.2: Let ΠT be a contraction with respect to ‖ · ‖ξ and let Φ have rank s. Then:

(a) C is invertible and positive definite in the sense that

r′Cr > 0, ∀ r 6= 0.

(b) C has eigenvalues with positive real parts.

(c) The unique solution r∗ of the projected equation Cr = d and any solution J∗ of the original

equation J = TJ satisfy

‖J∗ − Φr∗‖ξ ≤
1√

1− α2
‖J∗ −ΠJ∗‖ξ, (2.2)

where α is the modulus of contraction of ΠT .

The results of the proposition are well known in the theory of TD methods, and have been given in

various forms by Tsitsiklis and Van Roy [TsV97], [TsV99a]. Proofs can also be found in [Ber10a]. The error

bound of Eq. (2.2) is quite conservative (usually in MDP α is very close to 1). There are sharper error

bounds, due to Yu and Bertsekas [YuB10] (see also Scherrer [Sch10]), which depend on the finer structure

of A, Ξ, and the subspace S (not just on the contraction modulus of ΠT), and also apply to the case where

ΠT is not a contraction.

8

Projected Equation Methods for Policy Evaluation

2.2 Deterministic Iterative Methods for Projected Equations

We will now discuss iterative methods as alternatives to matrix inversion for solving the projected equation

Cr = d. We first discuss deterministic methods that do not use simulation. These methods are not prac-

tical when the number of states is large, since they require high-dimensional matrix-vector computations.

However, we will subsequently use Monte-Carlo integration ideas to construct simulation-based versions that

require low-dimensional calculations only.

We focus on iterative methods of the form

rk+1 = rk − γG(Crk − d), (2.3)

where G is a scaling matrix and γ is a positive stepsize.† This iteration is convergent if I − γGC is a

contraction with respect to some norm (equivalently has all its eigenvalues strictly within the unit circle),

but (under certain conditions) may also converge even if I − γGC is just nonexpansive with respect to some

norm, which may happen if C is singular. Some interesting special choices of γ and G are given in the

following three propositions. The last two apply to cases where C is singular.

Proposition 2.3: If ΠT is a contraction with respect to ‖ · ‖ξ and Φ has rank s, the iteration

rk+1 = rk − (Φ′ΞΦ)−1(Crk − d) (2.4)

is equivalent to the fixed point iteration Jk+1 = ΠT (Jk), and converges to the unique solution of the

projected equation Cr = d.

Proof: We use the projection formula Π = Φ(Φ′ΞΦ)−1Φ′Ξ, which is valid when Φ has rank s, together

with the definition (2.1) of C and d, to write the iteration (2.4) as Jk+1 = ΠT (Jk), where Jk = Φrk, so

convergence follows from the contraction property of ΠT . Q.E.D.

† Iterative methods that involve incremental changes along directions of the form Gf(r) are common and funda-

mental for solving a system of equations f(r) = 0. They arise prominently in cases where f(r) is the gradient of a

cost function, or the case where the equation f(r) = 0 can be viewed as a monotone variational inequality [cf. Prop.

2.2(a); see [BeT89], Section 3.5.3]. The iterative methods (2.3) with G being positive definite symmetric, coincides

with the class of projection methods for monotone variational inequalities; see [Ber09a], which adopts a variational

inequality view for the projected equation in a more general context that allows projection on a convex subset of the

subspace S. The paper [Ber09a] also interprets the scaling matrix G in terms of “feature scaling” (a representation

of the subspace S in a different coordinate system). See also Yao and Liu [YaL08] for some algorithms related to

(2.3), but developed from a different viewpoint.

9

Projected Equation Methods for Policy Evaluation

Proposition 2.4: If ΠT is a contraction with respect to ‖ · ‖ξ and G is positive definite symmetric,

there exists γ̄ > 0 such that for all γ ∈ (0, γ̄], the iteration

rk+1 = rk − γG(Crk − d)

converges to some solution of the projected equation.

Proof: We prove the result for the case where Φ has rank s. The proof for the general case is more com-

plicated, and is based on the monotonicity property of the mapping I −T (a consequence of the contraction

property of ΠT) and the theory of projection methods for monotone variational inequalities (see [BeG82],

[Ber09a]).

If G is symmetric and positive definite, the matrix G1/2 exists and is symmetric and positive definite.

Let M = G1/2CG1/2, and note that since C is positive definite, M is also positive definite, so from Prop.

2.2(b) it follows that its eigenvalues have positive real parts. The eigenvalues of M and GC are equal (with

eigenvectors that are multiples of G1/2 or G−1/2 of each other), so the eigenvalues of GC have positive real

parts. It follows that the eigenvalues of I−γGC lie strictly within the unit circle for sufficiently small γ > 0.

Q.E.D.

Proposition 2.5: The iteration rk+1 = rk −G(Crk − d), where

G = (C ′Σ−1C + βI)−1C ′Σ−1,

Σ is a positive definite symmetric matrix, and β is a positive scalar, converges to some solution of the

projected equation, assuming at least one solution exists.

Proof: This follows from standard convergence results about the proximal point algorithm.† We give a

proof for the easier case where C is invertible, so the projected equation has the unique solution r∗ = C−1d.

Assuming C is invertible, the matrix C ′Σ−1C is positive definite, so its eigenvalues λ1, . . . , λs are positive.

† One may write the iteration as

rk+1 = arg min
r∈<s

[
(Cr − d)′Σ−1(Cr − d) + β‖r − rk‖2

]

which is the proximal point algorithm applied to the problem of minimizing the cost function (Cr− d)′Σ−1(Cr− d).

Then Prop. 2.5 follows from the results of Martinet [Mar70] and Rockafellar [Roc76]; see also [Ber09b], Prop. 6.5.1.

An additional result is that {rk} will converge to a minimizing point of (Cr − d)′Σ−1(Cr − d) even if the projected

equation Cr = d has no solution.

10

Projected Equation Methods for Policy Evaluation

Let UΛU ′ be the singular value decomposition of C ′Σ−1C, where Λ = diag{λ1, . . . , λs} and U is a unitary

matrix (UU ′ = I; see [TrB97], [Str09]). We also have C ′Σ−1C + βI = U(Λ + βI)U ′, so

GC =
(
U(Λ + βI)U ′

)−1
UΛU ′ = U(Λ + βI)−1ΛU ′.

It follows that the eigenvalues of GC are λi/(λi + β), i = 1, . . . , s, and lie in the interval (0, 1), so the

eigenvalues of I −GC also lie in the interval (0, 1). Q.E.D.

Generally, the algorithms of the preceding three propositions converge linearly, at a rate that depends

strongly on the choices of γ and G. However, we will argue later that when implemented by simulation, they

all converge at the same asymptotic rate, which is dictated by the slow convergence rate of the simulation.

Note that the algorithms converge under different conditions and offer alternative advantages. In particular,

the algorithm of Prop. 2.5 is the most generally applicable, as it does not require that ΠT is a contraction

or that C is invertible, and moreover does not require a stepsize choice. At the other extreme, the simplest

algorithm is

rk+1 = rk − γ(Crk − d), (2.5)

the special case of Prop. 2.4 that corresponds to G = I. However, this algorithm requires that ΠT be a

contraction and a choice of stepsize from within a range that is usually unknown a priori. The iteration

(2.4) of Prop. 2.3 may be viewed as intermediate between the preceding two in terms of applicability and

overhead per iteration.

2.3 Iterative Methods Using Simulation-Based Approximations

Unfortunately, for problems of very high dimension n, it is difficult to calculate C and d explicitly, because

of the high-dimensional inner products involved in their definition [cf. Eq. (2.1)]. An alternative that has a

long history in approximate DP (see the textbook references in Section 1), is to calculate simulation-based

estimates Ĉ and d̂ of C and d, respectively, based on a number of samples, and obtain an approximate

solution

r̂ = Ĉ−1d̂

by matrix inversion, assuming the inverse exists (this is the LSTD method, first proposed by Bradtke and

Barto [BrB96], and followed up by Boyan [Boy02], and Nedić and Bertsekas [NeB03]).†
An alternative to LSTD is to solve by iteration a simulation-based approximation to the projected

equation Cr = d: we approximate the deterministic iteration

rk+1 = rk − γG(Crk − d)

[cf. Eq. (2.3)] with

rk+1 = rk − γĜ(Ĉrk − d̂), (2.6)

where Ĉ and d̂ are simulation-based estimates of C and d, γ is a positive stepsize, and Ĝ is an s× s matrix,

which may also be obtained by simulation. Assuming that I − γĜĈ is a contraction, this iteration will

† Estimating C and d by simulation is motivated by the advantage that Monte-Carlo summation (or integration)

holds in similar circumstances: using sampling to estimate sums of a very large number of terms (or complicated

integrals, respectively), with computational complexity that depends on the “variance” of the terms added, and not

on the number of terms.

11

Projected Equation Methods for Policy Evaluation

yield a solution to the system Ĉr = d̂, which will serve as a simulation-based approximation to a solution

of the projected equation Cr = d. Chronologically, the first method of this type is LSPE [BeI96], where

γ = 1 and Ĝ is an approximation to (Φ′ΞΦ)−1 [cf. Eq. (2.4)]. The general method (2.6) may be viewed as a

scaled version of LSPE, obtained by multiplying the LSPE direction with a suitable scaling matrix and by

introducing a stepsize γ (see [Ber09a]).

Like LSTD, the iteration (2.6) may be viewed as a batch simulation approach: we first simulate to

obtain Ĉ, d̂, and Ĝ, and then solve the system Ĉr = d̂ by the iterative method (2.6) rather than direct

matrix inversion. An alternative is to iteratively update r as simulation samples are collected and used to

form ever improving approximations to C and d. In particular, one or more iterations of the form (2.6) may

be performed between collections of additional batches of simulation samples, to improve the accuracy of Ĉ

and d̂. In the most extreme type of such an algorithm, the iteration (2.6) is used after a single new sample

is collected. In this case, we approximate the iteration (2.3) by

rk+1 = rk − γGk(Ckrk − dk), (2.7)

where Gk, Ck, and dk are simulation-based approximations, which are updated after a single new simulation

sample is collected. For the purposes of further discussion, we will focus on this type of algorithm, with the

understanding that there are related versions that use forms of batch simulation between iterations of the

form (2.7) and have similar properties.

The convergence properties of iteration (2.7) under the condition

Ck → C, dk → d, Gk → G,

can be for the most part inferred from the results of Props. 2.3-2.5. In particular, if ΠT is a contraction and

Φ has rank s, the proof of Prop. 2.3 carries through when Gk converges to (Φ′ΞΦ)−1. Similarly, if ΠT is a

contraction, C is invertible, and Gk converges to a positive definite symmetric matrix, the proof of Prop. 2.4

carries through. Also if C is invertible and

Gk = (C ′kΣ−1
k Ck + βI)−1C ′kΣ−1

k ,

where Ck → C, and Σk → Σ for a symmetric positive definite matrix Σ, the proof of Prop. 2.5 carries

through (a formal convergence analysis for the case where C is singular is not available at present, even

though the deterministic version of the iteration is convergent as per Prop. 2.5).

We now discuss a simulation mechanism for estimating C and d, proposed in [BeY09]. It is similar to

methods used traditionally in TD methods for policy evaluation, which are based on sampling the Markov

chain corresponding to the policy. However, our simulation mechanism may use two Markov chains, and is

well suited for sampling with enhanced exploration (see the discussion in Section 3.2). We write C and d as

expected values with respect to ξ:

C =

n∑

i=1

ξiφ(i)


φ(i)−

n∑

j=1

aijφ(j)



′

, d =

n∑

i=1

ξiφ(i)g(i), (2.8)

where ξi, g(i), and aij are the components of ξ, g, and A, respectively, and φ(i) denotes the column of Φ′

that corresponds to state i [φ(i)′ is the ith row of Φ]. We generate a sequence of indices {i0, i1, . . .}, and

a sequence of transitions
{

(i0, j0), (i1, j1), . . .
}

. We use any probabilistic mechanism for this, subject to the

following two requirements (cf. Fig. 2.1):

12

Projected Equation Methods for Policy Evaluation

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy Case (j, v)

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant − f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u,w) | there exists x ∈ X

Original System States Aggregate States
Aggregation Probabilities
Disaggregation Probabilities

F (x) H(y) y h(y)

sup
z∈Z

inf
x∈X

φ(x, z) ≤ sup
z∈Z

inf
x∈X

φ̂(x, z) = q∗ = p̃(0) ≤ p(0) = w∗ = inf
x∈X

sup
z∈Z

φ(x, z)

Shapley-Folkman Theorem: Let S = S1 + · · · + Sm with Si ⊂ �n,
i = 1, . . . ,m
If s ∈ conv(S) then s = s1 + · · · + sm where
si ∈ conv(Si) for all i = 1, . . . ,m,
si ∈ Si for at least m − n − 1 indices i.

1

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy Case (j, v)

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant − f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u,w) | there exists x ∈ X

Original System States Aggregate States
Aggregation Probabilities
Disaggregation Probabilities

F (x) H(y) y h(y)

sup
z∈Z

inf
x∈X

φ(x, z) ≤ sup
z∈Z

inf
x∈X

φ̂(x, z) = q∗ = p̃(0) ≤ p(0) = w∗ = inf
x∈X

sup
z∈Z

φ(x, z)

Shapley-Folkman Theorem: Let S = S1 + · · · + Sm with Si ⊂ �n,
i = 1, . . . ,m
If s ∈ conv(S) then s = s1 + · · · + sm where
si ∈ conv(Si) for all i = 1, . . . ,m,
si ∈ Si for at least m − n − 1 indices i.

1

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy Case (j, v)

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant − f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u, w) | there exists x ∈ X

Original System States Aggregate States
Aggregation Probabilities
Disaggregation Probabilities

F (x) H(y) y h(y)

sup
z∈Z

inf
x∈X

φ(x, z) ≤ sup
z∈Z

inf
x∈X

φ̂(x, z) = q∗ = p̃(0) ≤ p(0) = w∗ = inf
x∈X

sup
z∈Z

φ(x, z)

Shapley-Folkman Theorem: Let S = S1 + · · · + Sm with Si ⊂ �n,
i = 1, . . . ,m
If s ∈ conv(S) then s = s1 + · · · + sm where
si ∈ conv(Si) for all i = 1, . . . ,m,
si ∈ Si for at least m − n − 1 indices i.

1

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy Case (j, v)

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant − f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u,w) | there exists x ∈ X

Original System States Aggregate States
Aggregation Probabilities
Disaggregation Probabilities

F (x) H(y) y h(y)

sup
z∈Z

inf
x∈X

φ(x, z) ≤ sup
z∈Z

inf
x∈X

φ̂(x, z) = q∗ = p̃(0) ≤ p(0) = w∗ = inf
x∈X

sup
z∈Z

φ(x, z)

Shapley-Folkman Theorem: Let S = S1 + · · · + Sm with Si ⊂ �n,
i = 1, . . . ,m
If s ∈ conv(S) then s = s1 + · · · + sm where
si ∈ conv(Si) for all i = 1, . . . ,m,
si ∈ Si for at least m − n − 1 indices i.

1

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy Case (j, v)

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant − f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u, w) | there exists x ∈ X

Original System States Aggregate States
Aggregation Probabilities
Disaggregation Probabilities

F (x) H(y) y h(y)

sup
z∈Z

inf
x∈X

φ(x, z) ≤ sup
z∈Z

inf
x∈X

φ̂(x, z) = q∗ = p̃(0) ≤ p(0) = w∗ = inf
x∈X

sup
z∈Z

φ(x, z)

Shapley-Folkman Theorem: Let S = S1 + · · · + Sm with Si ⊂ �n,
i = 1, . . . ,m
If s ∈ conv(S) then s = s1 + · · · + sm where
si ∈ conv(Si) for all i = 1, . . . ,m,
si ∈ Si for at least m − n − 1 indices i.

1

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy Case (j, v)

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant − f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u, w) | there exists x ∈ X

Original System States Aggregate States
Aggregation Probabilities
Disaggregation Probabilities

F (x) H(y) y h(y)

sup
z∈Z

inf
x∈X

φ(x, z) ≤ sup
z∈Z

inf
x∈X

φ̂(x, z) = q∗ = p̃(0) ≤ p(0) = w∗ = inf
x∈X

sup
z∈Z

φ(x, z)

Shapley-Folkman Theorem: Let S = S1 + · · · + Sm with Si ⊂ �n,
i = 1, . . . ,m
If s ∈ conv(S) then s = s1 + · · · + sm where
si ∈ conv(Si) for all i = 1, . . . ,m,
si ∈ Si for at least m − n − 1 indices i.

1

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy Case (j, v)

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant − f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u,w) | there exists x ∈ X

Original System States Aggregate States
Aggregation Probabilities
Disaggregation Probabilities

F (x) H(y) y h(y)

sup
z∈Z

inf
x∈X

φ(x, z) ≤ sup
z∈Z

inf
x∈X

φ̂(x, z) = q∗ = p̃(0) ≤ p(0) = w∗ = inf
x∈X

sup
z∈Z

φ(x, z)

Shapley-Folkman Theorem: Let S = S1 + · · · + Sm with Si ⊂ �n,
i = 1, . . . ,m
If s ∈ conv(S) then s = s1 + · · · + sm where
si ∈ conv(Si) for all i = 1, . . . ,m,
si ∈ Si for at least m − n − 1 indices i.

1

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy Case (j, v)

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant − f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u, w) | there exists x ∈ X

Original System States Aggregate States
Aggregation Probabilities
Disaggregation Probabilities

F (x) H(y) y h(y)

sup
z∈Z

inf
x∈X

φ(x, z) ≤ sup
z∈Z

inf
x∈X

φ̂(x, z) = q∗ = p̃(0) ≤ p(0) = w∗ = inf
x∈X

sup
z∈Z

φ(x, z)

Shapley-Folkman Theorem: Let S = S1 + · · · + Sm with Si ⊂ �n,
i = 1, . . . ,m
If s ∈ conv(S) then s = s1 + · · · + sm where
si ∈ conv(Si) for all i = 1, . . . ,m,
si ∈ Si for at least m − n − 1 indices i.

1

......

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy Case (j, v)

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant − f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u,w) | there exists x ∈ X

Original System States Aggregate States
Aggregation Probabilities
Disaggregation Probabilities
Row Sampling According to ξ

F (x) H(y) y h(y)

sup
z∈Z

inf
x∈X

φ(x, z) ≤ sup
z∈Z

inf
x∈X

φ̂(x, z) = q∗ = p̃(0) ≤ p(0) = w∗ = inf
x∈X

sup
z∈Z

φ(x, z)

Shapley-Folkman Theorem: Let S = S1 + · · · + Sm with Si ⊂ �n,
i = 1, . . . ,m
If s ∈ conv(S) then s = s1 + · · · + sm where
si ∈ conv(Si) for all i = 1, . . . ,m,

1

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy Case (j, v)

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant − f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u,w) | there exists x ∈ X

Original System States Aggregate States
Aggregation Probabilities
Disaggregation Probabilities
Row Sampling According to ξ (May Use Markov Chain Q)

F (x) H(y) y h(y)

sup
z∈Z

inf
x∈X

φ(x, z) ≤ sup
z∈Z

inf
x∈X

φ̂(x, z) = q∗ = p̃(0) ≤ p(0) = w∗ = inf
x∈X

sup
z∈Z

φ(x, z)

Shapley-Folkman Theorem: Let S = S1 + · · · + Sm with Si ⊂ �n,
i = 1, . . . ,m
If s ∈ conv(S) then s = s1 + · · · + sm where
si ∈ conv(Si) for all i = 1, . . . ,m,

1

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy Case (j, v)

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant − f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u, w) | there exists x ∈ X

Original System States Aggregate States
Aggregation Probabilities
Disaggregation Probabilities Column Sampling According to Markov

Chain
Row Sampling According to ξ (May Use Markov Chain Q)

F (x) H(y) y h(y)

sup
z∈Z

inf
x∈X

φ(x, z) ≤ sup
z∈Z

inf
x∈X

φ̂(x, z) = q∗ = p̃(0) ≤ p(0) = w∗ = inf
x∈X

sup
z∈Z

φ(x, z)

Shapley-Folkman Theorem: Let S = S1 + · · · + Sm with Si ⊂ �n,
i = 1, . . . ,m
If s ∈ conv(S) then s = s1 + · · · + sm where

1

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy Case (j, v)

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant − f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u,w) | there exists x ∈ X

Original System States Aggregate States
Aggregation Probabilities
Disaggregation Probabilities Column Sampling According to Markov

Chain
Row Sampling According to ξ (May Use Markov Chain Q)

F (x) H(y) y h(y)

sup
z∈Z

inf
x∈X

φ(x, z) ≤ sup
z∈Z

inf
x∈X

φ̂(x, z) = q∗ = p̃(0) ≤ p(0) = w∗ = inf
x∈X

sup
z∈Z

φ(x, z)

Shapley-Folkman Theorem: Let S = S1 + · · · + Sm with Si ⊂ �n,
i = 1, . . . ,m
If s ∈ conv(S) then s = s1 + · · · + sm where

1

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy Case (j, v)

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant − f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u,w) | there exists x ∈ X

Original System States Aggregate States
Aggregation Probabilities
Disaggregation Probabilities Column Sampling According to
Markov Chain
Row Sampling According to ξ (May Use Markov Chain Q)

F (x) H(y) y h(y)

sup
z∈Z

inf
x∈X

φ(x, z) ≤ sup
z∈Z

inf
x∈X

φ̂(x, z) = q∗ = p̃(0) ≤ p(0) = w∗ = inf
x∈X

sup
z∈Z

φ(x, z)

Shapley-Folkman Theorem: Let S = S1 + · · · + Sm with Si ⊂ �n,
i = 1, . . . ,m
If s ∈ conv(S) then s = s1 + · · · + sm where

1

x̃0 x̃k i < k h(x) Hk(x) Hk+1(x) L

Slope: x̃i, i < k Slope: x̃k P

C Slope λ0 Slope λ1 Slope λ2 f(x) f�(λ) λ F (x) F �(λ)

Slopes λ̃ ∈ Λ Break points λ̃ ∈ Λ Points xλ̃ ∈ X

New slope λ̃i

New break point x̃i

Outer linearization F of f

Inner linearization F � of conjugate f�

Slope λ∗ Slope y −f�
1 (λ) f�

2 (−y) f�
1 (y) + f�

2 (−y) q(y)

Primal description: Values f(x) Dual description: Crossing points f�(y)

w∗ = min
x

�
f1(x) + f2(x)

�
= max

y

�
f�
1 (y) + f�

2 (−y)
�

= q∗

fx(d) d

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u, w) | there exists x ∈ X

Outer Linearization of f

F (x) H(y) y h(y)

sup
z∈Z

inf
x∈X

φ(x, z) ≤ sup
z∈Z

inf
x∈X

φ̂(x, z) = q∗ = p̃(0) ≤ p(0) = w∗ = inf
x∈X

sup
z∈Z

φ(x, z)

Shapley-Folkman Theorem: Let S = S1 + · · · + Sm with Si ⊂ �n, i = 1, . . . ,m

If s ∈ conv(S) then s = s1 + · · · + sm where

si ∈ conv(Si) for all i = 1, . . . ,m,

si ∈ Si for at least m − n − 1 indices i.

The sum of a large number of convex sets is almost convex

Nonconvexity of the sum is caused by a small number (n + 1) of sets

f̃(x) = (čl)f(x)

q∗ = (čl)p(0) ≤ p(0) = w∗

1

Figure 2.1. The Markov chain-based simulation methodology consists of (a) generating a sequence of indices

{i0, i1, . . .} according to the distribution ξ (a suitable Markov chain Q may be used for this, but this is not a

requirement), and (b) generating a sequence of transitions {(i0, j0), (i1, j1), . . .} using a Markov chain L. It is

possible that jk = ik+1, but this is not necessary. Moreover, even when A is related to the transition probability

matrix of a Markov chain of an underlying MDP, Q and L need not be equal to that matrix.

(1) Row sampling: The sequence {i0, i1, . . .} is generated according to the distribution ξ, which defines

the projection norm ‖ · ‖ξ, in the sense that with probability 1,

lim
k→∞

∑k
t=0 δ(it = i)

k + 1
= ξi, i = 1, . . . , n, (2.9)

where δ(·) denotes the indicator function [δ(E) = 1 if the event E has occurred and δ(E) = 0 otherwise].

Row sampling requires that each state i is generated with a relative frequency ξi specified by the

projection norm ‖ · ‖ξ. We will discuss later (Section 3.2) how one may design row sampling schemes

corresponding to values ξi that adequately address the issue of exploration.

(2) Column sampling: The sequence
{

(i0, j0), (i1, j1), . . .
}

is generated according to a certain stochastic

matrix L with transition probabilities `ij in the sense that with probability 1,

lim
k→∞

∑k
t=0 δ(it = i, jt = j)
∑k
t=0 δ(it = i)

= `ij , i, j = 1, . . . , n. (2.10)

We require that

`ij > 0 if aij > 0, (2.11)

so transitions (i, j) with aij > 0 are generated with positive relative frequency. Other than this

requirement, `ij need not be related to aij . For example, in an α-discounted problem, the column

sampling probabilities need not be equal to the transition probabilities of the policy under evaluation.

This turns out to be important because it allows exploration enhancement through the choice of the

column sampling probabilities `ij (see the subsequent discussion of λ-methods).

At time k, we approximate C and d with

Ck =
1

k + 1

k∑

t=0

φ(it)

(
φ(it)−

aitjt
`itjt

φ(jt)

)′
, dk =

1

k + 1

k∑

t=0

φ(it)g(it). (2.12)

To show that this is a valid approximation, we count the number of times an index occurs and after collecting

terms, we write Eq. (2.12) as

Ck =

n∑

i=1

ξ̂i,kφ(i)


φ(i)−

n∑

j=1

ˆ̀
ij,k

aij
`ij
φ(j)



′

, dk =

n∑

i=1

ξ̂i,kφ(i)g(i), (2.13)

13

Projected Equation Methods for Policy Evaluation

where

ξ̂i,k =

∑k
t=0 δ(it = i)

k + 1
, ˆ̀

ij,k =

∑k
t=0 δ(it = i, jt = j)
∑k
t=0 δ(it = i)

.

In view of the assumption

ξ̂i,k → ξi, ˆ̀
ij,k → `ij , i, j = 1, . . . , n,

[cf. Eqs. (2.9) and (2.10)], by comparing Eqs. (2.8) and (2.13), we see that Ck → C and dk → d.†
In the iterative method

rk+1 = rk − γGk(Ckrk − dk),

[cf. Eq. (2.7)], in addition to Ck, dk, one may simultaneously obtain Gk with the preceding simulation

mechanism. In particular, one may choose γ = 1 and

Gk =

(
1

k + 1

k∑

t=0

φ(it)φ(it)′

)−1

, (2.17)

which is a simulation-based approximation to (Φ′ΞΦ)−1 [cf. the iteration (2.4) of Prop. 2.3]. This is the

LSPE method first proposed by Bertsekas and Ioffe [BeI96], and followed up by Nedić and Bertsekas [NeB03],

Bertsekas, Borkar, and Nedić [BBN04], and Yu and Bertsekas [YuB06] (the method was also described in

[BeI96] and [BeT96] as an implementation of the λ-policy iteration method, and was used to address a

challenging tetris application; the name LSPE was introduced in [NeB03]).

The LSTD and LSPE methods were preceded and motivated by the TD(0) method, which for an

α-discounted problem has the form

rk+1 = rk − γkφ(ik)qk,k, (2.18)

where qk,k is the TD given by Eq. (2.15), and γk is a diminishing stepsize that diminishes at an appropriate

rate, such as γk = O(1/k). Thus, in view of Eq. (2.14), TD(0) has a similar form to the simple iteration (2.5),

but differs in two important ways: first, the stepsize γk is diminishing, and second, Ck and dk are single-

sample estimates of C and d (only the last simulation sample is used rather than all of the k samples). TD(0)

may be viewed as a stochastic approximation/Robbins-Monro scheme for solving the projected equation

† In the discounted case where A = αP , the approximate projected equation Ckr = dk can be written as

Ckr − dk =

k∑

t=0

φ(it)qk,t = 0, (2.14)

where

qk,t = φ(it)
′rk − αφ(it+1)′rk − g(it). (2.15)

The scalar qk,t is the so-called temporal difference, associated with rk and transition (it, it+1). It may be viewed as

a sample of a residual term arising in the projected Bellman’s equation. More specifically, we have

Crk − d = Φ′Ξ(Φrk − αPΦrk − g). (2.16)

The three terms in the definition (2.15) of the temporal difference qk,t can be viewed as samples [associated with

the transition (it, it+1)] of the corresponding three terms in the expression Ξ(Φrk − αPΦrk − g) in Eq. (2.16). For

the purposes of this paper, temporal differences and the form of the approximate projected equation (2.14) play no

substantive role, and they will not be used in any way.

14

Projected Equation Methods for Policy Evaluation

Cr = d, and in this sense it is fundamentally different than the LSTD and LSTE methods, which are

Monte-Carlo versions of matrix inversion and iterative deterministic methods, which use simulation-based

estimates in place of the hard-to-compute quantities C and d. Thus TD(0) requires an entirely different

type of mathematical convergence analysis than LSTD and LSPE (see e.g., [TsV97]). Let us also note a

scaled form of TD(0), which uses a positive definite symmetric scaling matrix G in Eq. (2.18), and has been

proposed and analyzed by Choi and Van Roy [ChV06]. Similar to TD(0), their method uses single-sample

estimates of C and d in the algorithm of Prop. 2.4.

Note that there is a lot of flexibility for row and column sampling to satisfy Eqs. (2.9)-(2.10). For

example, to satisfy Eq. (2.9), the indices it do not need to be sampled independently according to ξ. Instead,

it may be convenient to introduce an irreducible Markov chain with transition matrix Q, states 1, . . . , n, and

ξ as its steady-state probability vector, and to start at some state i0 and generate the sequence {i0, i1, . . .} as

a single infinitely long trajectory of the chain. For the transition sequence, we may optionally let jk = ik+1

for all k, in which case L would be identical to Q, but in general this is not essential. In the MDP literature

the most common choice is Q = L = P , where P is the transition matrix of the associated Markov chain.

However, in the context of policy iteration it soon became clear that it is important to do row sampling

using a different Markov chain, one that generates by simulation all states with sufficient frequency (see the

discussion of exploration in Section 3.2).

Note also that multiple simulated sequences can be used to form the simulation estimates (2.12) of C

and d. For example, in the Markov chain-based sampling schemes, we can generate multiple infinitely long

trajectories of the chain, starting at several different states. This will work even if the chain has multiple

recurrent classes, as long as there are no transient states and at least one trajectory is started from within

each recurrent class. Again ξ will be a steady-state probability vector of the chain, and need not be known

explicitly. Note also that using multiple trajectories may be interesting even if there is a single recurrent

class, for at least two reasons:

(a) The generation of trajectories may be parallelized among multiple processors, resulting in significant

speedup.

(b) The empirical frequencies of occurrence of the states may approach the steady-state probabilities more

quickly; this is particularly so for large and “stiff” Markov chains.

We finally note that there are several variants of the Markov chain-based simulation method outlined

above (see [BeY07] or more details). For example, if instead of g(it) we obtain the sample g(it, jt), the vector

dk in Eq. (2.12) should be

dk =
1

k + 1

k∑

t=0

φ(it)g(it, jt).

As another example, zero mean noise with appropriate independence properties may be added to aij and

g(i). In this case, the estimates of C and d are given by

Ck =
1

k + 1

k∑

t=0

φ(it)


φ(it)−

n∑

j=1

(
aitj + ζt(j)

)
φ(j)



′

, dk =
1

k + 1

k∑

t=0

φ(it)
(
g(it) + θt

)
, (2.19)

where for each j, ζt(j) is a sequence of random variables such that, with probability 1,

lim
k→∞

∑k
t=0 δ(it = i)ζt(j)∑k
t=0 δ(it = i)

= 0, ∀ i, j = 1, . . . , n, (2.20)

15

Projected Equation Methods for Policy Evaluation

and θt is a sequence of random variables such that, with probability 1,

lim
k→∞

∑k
t=0 δ(it = i)θt∑k
t=0 δ(it = i)

= 0, ∀ i = 1, . . . , n. (2.21)

This variant can be used in situations where the components aij and g(i) represent the expected values of ran-

dom variables whose samples can be conveniently simulated with additive “noises” ζt(j) and θt, respectively,

such that Eqs. (2.20) and (2.21) hold with probability 1.

λ-Versions of Simulation Methods

We will now briefly discuss “λ-versions” of the LSTD, LSPE, and TD algorithms, which use a parameter

λ ∈ [0, 1)† and aim to solve the geometrically weighted multistep version of Bellman’s equation J = T (λ)J ,

where T is defined by

T (λ) = (1− λ)

∞∑

t=0

λtT t+1. (2.22)

The best known example is TD(λ) for α-discounted problems [Sut88]. The motivation for using λ > 0 is

that the error ‖J∗ − Φr∗‖∞ corresponding to the solution r∗λ of the projected equation

Φr = ΠT (λ)(Φr)

tends to decrease as λ increases, and indeed an improved error bound similar to the one of Prop. 2.2(c) can

be shown for λ > 0 (see e.g., [Ber07], Prop. 6.3.5). However, the number of samples needed to approximate

well the projected equation tends to increase; this is the well-known bias-variance tradeoff, and we refer to

textbook sources, such as [BeT96], [SuB98], and [Ber07] for a discussion. In this survey, we mostly focus on

λ = 0, but our algorithms and qualitative conclusions generally apply to λ ∈ [0, 1) [for further discussion, see

[BeY09], where extensions of LSTD(λ), LSPE(λ), and TD(λ) beyond the MDP context are also provided].

Let us note that the projected equation Φr = ΠT (λ)(Φr) can be written as a linear equation of the form

C(λ)r = d(λ), where similar to Eq. (2.1), C(λ) and d(λ) are defined by

C(λ) = Φ′Ξ(I −A(λ))Φ, d(λ) = Φ′Ξg(λ),

with

A(λ) = (1− λ)

∞∑

t=0

λtAt+1, g(λ) =

∞∑

t=0

λtAtg.

Similar to the case λ = 0, there are simulation procedures that produce approximations C
(λ)
k and d

(λ)
k

to C(λ) and d(λ), respectively, thereby leading to corresponding matrix inversion and iterative methods.

However, for these procedures to be algorithmically convenient, some restrictions must be observed. In

particular, it is essential that row and column sampling are generated by a common process, so that

jk = ik+1, k = 0, 1, . . .

where each transition (ik, ik+1) is generated using the matrix L [which we recall may be unrelated to the

matrix A of the system J = g+AJ , other than `ij > 0 if aij > 0, cf. Eq. (2.11)]. In this case, approximations

† It is also possible to let λ = 1 with appropriate changes in various formulas that follow, but for simplicity we

will not consider this possibility here.

16

Projected Equation Methods for Policy Evaluation

C
(λ)
k and d

(λ)
k to C(λ) and d(λ), respectively, are obtained from the following recursive algorithm, first given

by Bertsekas and Yu [BeY09]:‡

C
(λ)
k =

(
1− 1

k + 1

)
C

(λ)
k−1 +

1

k + 1
zk

(
φ(ik)− aikik+1

`ikik+1

φ(ik+1)

)′
, (2.23)

d
(λ)
k =

(
1− 1

k + 1

)
d

(λ)
k−1 +

1

k + 1
zkg(ik), (2.24)

where zk is generated by

zk = λ
aik−1ik

`ik−1ik

zk−1 + φ(ik). (2.25)

An analysis of the convergence C
(λ)
k → C(λ) and d

(λ)
k → d(λ) has been given in several sources under

different assumptions:

(a) In Nedić and Bertsekas [NeB03] for the case of policy evaluation in an α-discounted problem, where

A/α is the transition probability matrix P and row and column sampling are done according to that

matrix (Q = L = P). This is the case where there is no exploration (cf. the subsequent discussion in

Section 3.2).

(b) In Bertsekas and Yu [BeY09], assuming that λmax(i,j)(aij/`ij) < 1 (where we adopt the convention

0/0 = 0), in which case the vectors zk of Eq. (2.25) are generated by a contractive process and remain

bounded. This covers the common case in MDP where L =
(
1 − ε)P + εP̄ where ε > 0 is a small

constant, P is a transition matrix corresponding to the policy under evaluation, and P̄ is a transition

probability matrix that induces exploration. The essential restriction here is that λ should be no more

than (1− ε).

(c) In Yu [Yu10a,b], for all λ ∈ [0, 1] and λ
∑n
j=1 aij < 1 for all i, in which case the vectors zk typically

become unbounded as k increases when λmax(i,j)(aij/`ij) > 1. Mathematically, this is the most

challenging analysis, and involves interesting stochastic phenomena.

Much of what will be said later for projected equation methods where λ = 0 also applies to methods with

λ > 0.

We finally mention a potential drawback of the row and column sampling methods: they generally

require explicit knowledge of the ratios aij/`ij . Sometimes, in “model-free” applications of approximate DP,

the matrix A is not explicitly known, and can only be computed through simulation, so in this case row and

column sampling may not apply, at least in the general form given here. We will discuss this issue further

in Section 3.8, in the context of Q-learning.

2.4 Simulation by Importance Sampling

We have seen that a core issue in approximate policy evaluation using the projected equation is to estimate

the matrix C by sampling (also to estimate d, but this is similar and simpler). We may thus consider general

‡ If g(ik) is replaced by a simulation sample g(ik, ik+1) the formula for updating d
(λ)
k should be

d
(λ)
k =

(
1− 1

k + 1

)
d

(λ)
k−1 +

1

k + 1
zk
aikik+1

`ikik+1

g(ik, ik+1).

17

Projected Equation Methods for Policy Evaluation

sampling methods for estimating matrices of the form

Z = DHΦ

for an s× n matrix D, an n× n matrix H, and an n× s matrix Φ (in our case D = Φ′Ξ and H = I −A, or

H = I and H = A). When n is very large and s is relatively small, we may estimate each of the components

of Z separately. Denoting by d`i, hij , and φjq the components of D, H, and Φ, respectively, the (`, q)-th

component of Z is

z`q =

n∑

i=1

n∑

j=1

d`ihijφjq, (2.26)

so it is a sum of a very large number of terms that can be estimated by simulation using Monte Carlo

integration techniques aimed at variance reduction, such as importance sampling.

In particular, we generate samples (i0, j0), . . . , (ik, jk) according to some sampling distribution {ζij |
i, j = 1, . . . , n}, and we estimate z`q by

ẑ`q =
1

k + 1

k∑

t=0

d`ithitjtφjtq
ζitjt

.

According to the principles of importance sampling (see e.g., Liu [Liu01], Rubinstein and Kroese [RuK08]),

for fixed `, q, the distribution ζij should approximate in form the generic term d`ihijφjq of the sum, i.e.,

ζij ≈
d`ihijφjq

N
,

where N is a normalization constant [we assume here that d`ihijφjq is nonnegative for all (i, j) – otherwise

the sum (2.26) should be split into the two sums corresponding to the positive and the negative terms].

A key issue here is the design of the distribution ζij , which by necessity should exploit the spe-

cial/sparsity structure of the matrices D, B, and Φ, to localize the distribution in a relatively small portion

of the set of pairs (i, j). When a suitable importance sampling distribution can be obtained, the variance

of the estimates ẑ`q and the attendant number of samples for a given accuracy can be dramatically reduced

(by several orders of magnitude). We do not pursue this topic further, but refer to the papers [WPB09] and

[PWB09] for sampling distribution design techniques that have been used successfully in some very large

problems within a related least squares estimation context.

2.5 Convergence Rate Issues

Let us now discuss the choice of γ and Gk in the iterative method

rk+1 = rk − γGk(Ckrk − dk), (2.27)

from the convergence rate point of view. It can be easily verified with simple examples that in the deter-

ministic case where Gk ≡ G, Ck ≡ C, and dk ≡ d, the values of γ and G affect significantly the convergence

rate of the deterministic iteration (2.3). This is evident when I − γGC is a contraction, since then the

convergence rate is linear and is determined by the spectral radius of I − γGC. Surprisingly, however, when

Gk, Ck, and dk are generated by the preceding simulation schemes, the asymptotic convergence rate of the

simulation-based iteration (2.27) does not depend on the choices of γ and G. Indeed it can be proved that

the iteration (2.27) converges at the same asymptotic rate, for all choices of γ and G, as long as I − γGC

18

Projected Equation Methods for Policy Evaluation

is a contraction (although the short-term convergence rate may be significantly affected by the choices of γ

and G).

The reason is that the deterministic iteration has a linear convergence rate (since it involves the

contraction I−γGC), which is fast relative to the slow convergence rate of the simulation-generated Gk, Ck,

and dk. Thus the simulation-based iteration (2.27) operates on two time scales (see, e.g., Borkar [Bor08],

Ch. 6): the slow time scale at which Gk, Ck, and dk change, and the fast time scale at which rk adapts

to changes in Gk, Ck, and dk. As a result, essentially, there is convergence in the fast time scale before

there is appreciable change in the slow time scale. Roughly speaking, rk “sees Gk, Ck, and dk as effectively

constant,” so that for large k, rk is essentially equal to the corresponding limit of iteration (2.27) with Gk,

Ck, and dk held fixed. When Ck is invertible, this limit is C−1
k dk. It follows that the sequence rk generated

by the scaled LSPE iteration (2.27) “tracks” the sequence C−1
k dk generated by the LSTD iteration in the

sense that

‖rk − C−1
k dk‖ << ‖rk − r∗‖, for large k,

independent of the choice of γ and the scaling matrix G that is approximated by Gk (see also [Ber09a]

for further discussion). Results of this type were conjectured for the LSPE method in [BBN04] and were

formally proved in [YuB06] for discounted and average cost problems, and for the special choice (2.17) of Gk.

The proof for more general cases where C is invertible should be similar, but has not yet been documented.

2.6 Regression-Based Methods for Projected Equations

An important concern in LSTD is to ensure that the simulation-induced error

ek = Φ(C−1
k dk − C−1d)

is not excessively large. Then the low-dimensional error C−1
k dk − C−1d is typically also large (the reverse

is not true: C−1
k dk − C−1d may be large without ek being large). In the lookup table representation case

(Φ = I) a large error ek may be traced directly to the simulation error in evaluating C and d, combined with

near singularity of Ξ(I −A). In the compact representation case (Φ 6= I), the effect of near singularity of C

on the high-dimensional error ek is more complex, but is also primarily due to the same causes.† In what

follows we consider approaches to reduce the low-dimensional error C−1
k dk − C−1d with the understanding

that they will also be effective in reducing the high-dimensional error ek, when the latter is very large.

Example 2.1

To get a rough sense of the potential effect of the simulation error in LSTD, consider the approximate inversion

of a small nonzero number c, which is estimated with simulation error ε. The absolute and relative errors are

E =
1

c+ ε
− 1

c
, Er =

E

1/c
.

† Near-singularity of C, causing large low-dimensional errors C−1
k dk−C−1d, may be due either to the columns of

Φ being nearly linearly dependent or to the matrix Ξ(I−A) being nearly singular [cf. the formula C = Φ′Ξ(I−A)Φ].

However, near-linear dependence of the columns of Φ will not affect the high-dimensional error ek. The reason is

that ek depends only on the subspace S and not its representation in terms of the matrix Φ. In particular, if we

replace Φ with a matrix ΦB where B is an s × s invertible scaling matrix, the subspace S will be unaffected and it

can be verified that the errors ek will also be unaffected. On the other hand, near singularity of the matrix I − A
may affect significantly ek. Large variations in the size of the diagonal components of Ξ may also affect significantly

ek, although this dependence is complicated by the fact that Ξ appears not only in the formula C = Φ′Ξ(I − A)Φ

but also in the formula d = Φ′Ξg.

19

Projected Equation Methods for Policy Evaluation

By a first order Taylor series expansion around ε = 0, we obtain for small ε

E ≈
∂
(
1/(c+ ε)

)

∂ε

∣∣∣
ε=0

ε = − ε

c2
, Er ≈ −

ε

c
.

Thus for the estimate 1
c+ε

to be reliable, we must have |ε| << |c|. If N independent samples are used to

estimate c, the variance of ε is proportional to 1/N , so for a small relative error, N must be much larger than

1/c2. Thus as c approaches 0, the amount of sampling required for reliable simulation-based inversion increases

very fast. This is similar to the roundoff error-related difficulties of nearly singular matrix inversion.

To counter the potential dificulties associated with a near-singular matrix C, we may estimate r∗ by

a form of regularized regression, which works even if the projected equation is singular. In this approach,

suggested by Wang, Polydorides, and Bertsekas [WPB09], instead of solving the system Ckr = dk, we use

regression based on an associated linear model that properly encodes the effect of the simulation noise. We

will see, however, that this method comes at a price: it introduces a bias of the estimate of r towards some

fixed vector/prior guess r̄. To reduce or eliminate this bias it is necessary to adopt an iterative regularization

approach: start with some r̄, obtain an estimate r̂k, replace r̄ by r̂k, and repeat for any number of times.

This gives rise to an iterative method, which turns out to be a special case of the method (2.27).

Given simulation-based estimates Ck and dk to C and d, respectively, let us write the projected form

of Bellman’s equation d = Cr as

dk = Ckr + ek, (2.28)

where ek is the vector

ek = (C − Ck)r + dk − d,
which we view as “simulation noise.” We then estimate the solution r∗ = C−1d based on Eq. (2.28) by using

regression. In particular, we choose r by solving the least squares problem:

min
r

[
(dk − Ckr)′Σ−1(dk − Ckr) + β‖r − r̄‖2

]
, (2.29)

where r̄ is an a priori estimate of r∗, Σ is some positive definite symmetric matrix, and β is a positive scalar.

By setting to 0 the gradient of the least squares objective in Eq. (2.29), we can find the solution in closed

form:

r̂k = (C ′kΣ−1Ck + βI)−1(C ′kΣ−1dk + βr̄). (2.30)

A suitable choice of r̄ may be some heuristic guess based on intuition about the problem, or it may be the

parameter vector corresponding to the estimated cost vector Φr̄ of a similar policy (for example a preceding

policy in an approximate policy iteration context). One may try to choose Σ in special ways to enhance the

quality of the estimate of r∗, but we will not consider this issue here, and the subsequent analysis in this

section does not depend on the choice of Σ, as long as it is positive definite and symmetric.

The quadratic β‖r − r̄‖2 in Eq. (2.29) is a regularization term, and has the effect of “biasing” the

estimate r̂k towards the a priori guess r̄. The proper size of β is not clear (a large size reduces the effect of

near singularity of Ck, and the effect of the simulation errors Ck−C and dk−d, but may cause a large “bias”).

However, this is typically not a major difficulty in practice, because trial-and-error experimentation with

different values of β involves low-dimensional linear algebra calculations once Ck and dk become available.

To eliminate the bias of r̂k towards r̄, one possibility is to adopt an iterative regularization approach:

start with some r̄, obtain r̂k, replace r̄ by r̂k, and repeat for any number of times. This turns LSTD to the

iterative method,

rk+1 = (C ′kΣ−1
k Ck + βI)−1(C ′kΣ−1

k dk + βrk),

20

Policy Iteration Issues

where Σk are positive definite symmetric matrices that converge to a positive definite matrix Σ, and β is a

positive scalar [cf. Eq. (2.30)]. Equivalently, this method can be written as

rk+1 = rk −Gk(Ckrk − dk), (2.31)

where

Gk = (C ′kΣ−1
k Ck + βI)−1C ′kΣ−1

k , (2.32)

and can be recognized as a simulation-based version of the special case of the class of LSPE-type methods

(2.27), whose convergence properties have been discussed in Prop. 2.5.

The salient feature of the method (2.31)-(2.32) is that, based on Prop. 2.5 and experimental evidence,

it can be expected to converge to a solution of the projected equation Cr = d even if the mapping ΠT is not

a contraction, as long as C is invertible. We will see in the next section that this generality is particularly

important in the context of policy iteration where the simulation is done by using exploration-enhanced

Markov chains. Furthermore, the iteration is well-suited for problems where C is nearly singular.

We also note an alternative and somewhat simpler regularization approach, whereby we approximate

the equation Ckr = dk by

(Ck + βI)r̂ = dk + βr̄, (2.33)

where β is a positive scalar and r̄ is some guess of the solution r∗ = C−1d. This suggests an iteration of the

form rk+1 = rk −Gk(Ckrk − dk) where the scaling matrix Gk is Gk = (Ck + βI)−1, i.e.,

rk+1 = rk − (Ck + βI)−1(Ckrk − dk). (2.34)

The convergence of this iteration to r∗ can be proved, assuming that C is positive definite, based on the

fact Ck → C and standard convergence results for the proximal point algorithm ([Mar70], [Roc76]). Note

that by contrast with the iteration (2.31)-(2.32), the positive definiteness of C is essential for invertibility of

Ck + βI and for convergence of Eq. (2.34). We refer to [Ber09a] for more details on this method.

3. POLICY ITERATION ISSUES

We will now discuss various issues that arise within a policy iteration context: the effects of inadequate

exploration, of inexact policy evaluation, and of policy oscillation. For concreteness, we focus on the α-

discounted MDP given in the introduction, where the cost vector Jµ of a policy µ is the unique fixed point

of the mapping Tµ of Eq. (1.1), and the optimal cost vector J∗ is the unique fixed point of the mapping T

of Eq. (1.2).

We consider a form of policy iteration where we compute simulation-based approximations Φrµ to the

cost vectors Jµ of stationary policies µ with some policy evaluation method. We use Φrµ to compute new

policies based on (approximate) policy improvement using the formula Tµ̄(Φrµ) = T (Φrµ), i.e.,

µ̄(i) ∈ arg min
u∈U(i)

n∑

j=1

pij(u)
(
g(i, u, j) + αφ(j)′rµ

)
, i = 1, . . . , n, (3.1)

where φ(j)′ is the row of Φ that corresponds to state j. The method terminates with µ if Tµ(Φrµ) = T (Φrµ).

We then repeat with µ replaced by µ̄.

21

Policy Iteration Issues

The theoretical basis for the preceding method was given in Prop. 6.2 of Bertsekas and Tsitsiklis

[BeT96], where it was shown that if the policy evaluation is accurate to within δ (in the sup-norm sense

‖Φrµ − Jµ‖∞ ≤ δ), then the method will yield a sequence of policies {µk} such that

lim sup
k→∞

‖Jµk − J∗‖∞ ≤
2αδ

(1− α)2
. (3.2)

An alternative bound based on a Euclidean norm is given by Munos [Mun03]. Experimental evidence

indicates that the bound (3.2), while tight in theory ([BeT96], Example 6.4), is usually conservative in

practice. Furthermore, often just a few policy evaluations are needed before the bound is attained. Some

insight about the looseness of the bound (3.2) may be obtained by noting that we may add any multiple of

the unit vector to Φrµ, thereby making δ arbitrarily large, without affecting the policy improvement process

and hence also the generated sequence {µk}.
When the policy sequence {µk} terminates with some µ̄, the much sharper bound

‖Jµ̄ − J∗‖∞ ≤
2αδ

1− α (3.3)

holds. To show this, let J̄ be the cost vector Φrµ̄ obtained by policy evaluation of µ̄, and note that it satisfies

‖J̄−Jµ̄‖∞ ≤ δ (by our assumption on the accuracy of policy evaluation) and T J̄ = Tµ̄J̄ (since µk terminates

at µ̄). We write

TJµ̄ ≥ T (J̄ − δe) = T J̄ − αδe = Tµ̄J̄ − αδe ≥ Tµ̄(Jµ̄ − δe)− αδe = Tµ̄Jµ̄ − 2αδe = Jµ̄ − 2αδe,

where e is the unit vector, from which by applying T to both sides, we obtain

T 2Jµ̄ ≥ TJµ̄ − 2α2δe ≥ Jµ̄ − 2αδ(1 + α)e,

and by similar continued application of T to both sides,

J∗ = lim
m→∞

TmJµ̄ ≥ Jµ̄ −
2αδ

1− αe,

thereby showing the error bound (3.3).

An important fact, to be shown later, is that when the aggregation approach is used for policy eval-

uation, the policy sequence {µk} terminates with some µ̄, while this is generally not true for the projected

equation approach.

3.1 The Issue of Policy Computations

We first note briefly an important practical issue: the computation of the improved policy via the minimiza-

tion of Eq. (3.1) may present a serious difficulty when the expected value in Eq. (3.1) is hard to compute,

and/or when the number of controls is large (or infinite in an extended version of the method where the

control constraint set is infinite). Moreover, this issue arises generically when an approximate cost function

is translated to an on-line implementation of a corresponding policy.

A number of devices have been proposed to address this difficulty, such as various forms of Q-learning,

model simplifications (such as post-decision states), and various forms of approximate minimization in Eq.

(3.1) (such as adaptive sampling). We refer to the literature, and particularly the books [CFH07], [Pow07],

and [Ber10a] for an explanation of these terms and further discussion. Note that in some cases, the choice of

the approximation architecture may be specially designed to exploit special problem structure and facilitate

the minimization.

22

Policy Iteration Issues

3.2 The Issue of Exploration

We next discuss an important generic difficulty with simulation-based policy iteration: to evaluate a policy

µ, we need to generate cost samples using that policy, but this biases the simulation by underrepresenting

states that are unlikely to occur under µ. As a result, the cost-to-go estimates of these underrepresented

states may be highly inaccurate, causing potentially serious errors in the calculation of the improved control

policy µ̄ via the policy improvement Eq. (3.1). A related issue is the presence of transient states in the

Markov chain used for simulation (in which case the components of ξ corresponding to transient states are

0), or multiple recurrent classes (in which case states from some recurrent classes may never be generated

during the simulation).

The difficulty just described is known as inadequate exploration of the system’s dynamics because of

the use of a fixed policy. It is a particularly acute difficulty when the system is deterministic, or more

generally when the randomness embodied in the transition probabilities is “relatively small.” One possibility

for guaranteeing adequate exploration of the state space is to frequently restart the simulation and to

ensure that the initial states employed form a rich and representative subset. There are also other related

possibilities. For example, an approach called iterative resampling , is to enrich the sampled set of states in

evaluating the current policy µ as follows: derive an initial cost evaluation of µ, simulate the next policy µ̄

obtained on the basis of this initial evaluation to obtain a set of representative states S̄ visited by µ̄, and

repeat the evaluation of µ using additional trajectories initiated from S̄.

One of the most frequently used approaches is to artificially introduce some extra randomization in the

simulation, by occasionally modifying the state sequence generated by the policy µ. In a common scheme of

this type we do row sampling according to an irreducible transition probability matrix

Q = (I −B)P +BP̄ , (3.4)

where P is the transition matrix corresponding to µ, B is a diagonal matrix with diagonal components

βi ∈ [0, 1], and P̄ is another transition matrix. Thus, at state i, the next state is generated with probability

1 − βi according to transition probabilities pij corresponding to µ, and with probability βi according to

transition probabilities p̄ij whose purpose is to enhance exploration.†
Column sampling can be done using L = P , in which case the policy evaluation phase finds a solution

to the projected equation Φr = ΠT (Φr), but with an important difference: the projection is with respect to

the norm ‖·‖ξ where ξ is the steady-state distribution of Q rather than P . As a result of this norm mismatch,

ΠT may not be a contraction, and a policy evaluation method that does not rely on contractions is needed.†
LSTD is one such method, and the regression-based scaled LSPE method (2.31)-(2.32) is another.

† In the literature, e.g., [SuB98], the policy being evaluated is sometimes called the target policy to distinguish

from the matrix P̄ that may correspond to a policy used for exploration, which is called behavior policy . Also, methods

that use a behavior policy are called off-policy methods, while methods that do not are called on-policy methods. Note,

however, that P̄ need not correspond to an admissible policy, and indeed there may not exist a suitable admissible

policy that can induce sufficient exploration. For example in many queueing applications the transition matrices

corresponding to all policies (including randomized ones) are very sparse and cannot induce adequate exploration.

† Proposition 2.2(a) applies only for small values of the probabilities βi along the diagonal of B. It also applies

only for λ sufficiently close to 1, in the case of the λ-methods of Section 2.3. The reason is that the operator T (λ) of

Eq. (2.22) [and hence also ΠT (λ)] can be shown to be a contraction of modulus arbitrarily close to 0 if λ is sufficiently

close to 1 (see e.g., [Ber07], Prop. 6.3.3, or [Ber10]).

23

Policy Iteration Issues

There is a further restriction when a λ-method is used in conjunction with simulation. As discussed in

Section 2.3, one must then choose the same Markov chain for row and column sampling (Q = L) in order

to use the algorithm (2.23)-(2.25) for computing simulation-based C
(λ)
k ≈ C(λ) and d

(λ)
k ≈ d(λ). Still in this

case both LSTD and the regression-based scaled LSPE method (2.31)-(2.32) may be used, even if ΠT (λ) is

not known to be a contraction (we refer to [BeY09] and [Yu10ab] for an analysis and discussion). It is then

necessary, however, to know explicitly the ratios aij/`ij = αpij/qij that appear in the algorithm (2.23)-

(2.25). In practical applications reported in the literature, this difficulty has been bypassed by disregarding

the ratios pij/qij from the formulas (2.23)-(2.25) (i.e., replacing aij/`ij with just α).

We mention that there are also some other possibilities for exploration enhancement for which we refer

to [BeY09] and [Ber10a]. Moreover, the TD(0) method has been modified to address the exploration-related

convergence difficulties (Sutton, Szepesvari, and Maei [SSM08], Maei et. al. [MSB08], Sutton et. al. [SMP09]).

We finally note that exploration becomes an even more acute difficulty in the context of policy iteration for

computing Q-factors, as we will discuss in Section 3.8.

3.3 Limited Sampling/Optimistic Versions

In the LSTD and LSPE methods discussed so far, the underlying assumption is that each policy is evaluated

with a very large number of samples, so that accurate approximations of C and d are obtained. There are

also optimistic versions, where the policy µ is replaced by an “improved” policy µ̄ after only a limited number

of simulation samples have been processed. The motivation for such versions is potentially faster progress

towards better policies, and less susceptibility to exploration difficulties (one may argue that mixing samples

from several past policies may have a beneficial exploration effect). While experimental evidence lends some

support to this speculation, solid evidence for the validity of optimistic methods is currently lacking, at least

for the case of projected equation-based policy evaluation, when the chattering phenomenon may occur, as

will be explained shortly. The validity of optimistic policy iteration is better established in the case of a

lookup table representation (where Φ = I; see [BeT96], Section 5.4) and the related case of aggregation-based

policy evaluation (see Section 4). However, even in that case, the convergence properties of optimistic policy

iteration are fragile and depend on the implementation details, as discussed in [BeT96], Section 5.4; see also

Williams and Baird [WiB93] who provide remarkable counterexamples to the convergence of a version of

asynchronous optimistic policy iteration where costs and policies are updated one at a time (these examples

do not involve cost function approximation or simulation).

A natural form of optimistic LSTD is r̂k+1 = C−1
k dk, where Ck and dk are obtained by averaging

samples collected using the controls corresponding to the (approximately) improved policy. By this we mean

that Ck and dk are time averages of the matrices and vectors

φ(it)
(
φ(it)− αφ(it+1)

)′
, φ(it)g(it, it+1),

corresponding to simulated transitions (it, it+1) that are generated using the policy µk+1 whose controls are

given by

µk+1(i) ∈ arg min
u∈U(i)

n∑

j=1

pij(u)
(
g(i, u, j) + αφ(j)′r̂k

)
.

Unfortunately, this method requires the collection of many samples between policy updates, as it is susceptible

to simulation noise in Ck and dk, particularly when Ck is nearly singular. The optimistic version of the

(scaled) LSPE method

rk+1 = rk − γGk(Ckrk − dk)

24

Policy Iteration Issues

is based on similar ideas, but seems less susceptible to simulation noise because of its iterative nature. Note

that because the theoretical convergence guarantees of LSPE apply only to the nonoptimistic version, it may

be essential to experiment with various values of the stepsize γ.

To improve the reliability of the optimistic LSTD method it seems necessary to turn it into an iterative

method, which then brings it very close to LSPE. In particular, an iterative version of the regression-based

LSTD method (2.30) is given by Eq. (2.31), and is the special case of LSPE, corresponding to the special

choice of the scaling matrix Gk of Eq. (2.32). This method, as well as other related versions of LSPE are less

susceptible to the high level of simulation noise associated with limited number of samples between policy

updates in optimistic policy iteration.

3.4 Policy Oscillation and Chattering

Projected equation-based variants of policy iteration methods are popular in practice, and have been tested

extensively, dating to the early nineties (see e.g., the books [BeT96], [SuB08], and the references quoted

there; for a sample of more recent experimental studies, see Lagoudakis and Parr [LaP03], Jung and Polani

[JuP07], Busoniu et al. [BED09], and Thiery and Scherrer [ThS10]). However, the associated convergence

behavior is complex, and involves potentially damaging oscillations, which despite their initial description

long ago [Ber96], are still not well understood at present.

To get a sense of this behavior, we introduce the so called greedy partition, discussed in Section 6.4 of

[BeT96]. This is a partition of the space <s of parameter vectors r into subsets Rµ, each subset corresponding

to a stationary policy µ, and defined by

Rµ =
{
r | Tµ(Φr) = T (Φr)

}
(3.5)

or equivalently

Rµ =



r

∣∣∣∣∣ µ(i) ∈ arg min
u∈U(i)

n∑

j=1

pij(u)
(
g(i, u, j) + αφ(j)′r

)
, i = 1, . . . , n



 .

Thus, Rµ is the set of parameter vectors r for which µ is “greedy” with respect to Φr. Note that the greedy

partition depends only on Φ, and is independent of the particular method used for policy evaluation (i.e.,

whether a projection/TD or different method is used).

For simplicity, let us assume that we use a policy evaluation method that for each given µ produces

a unique parameter vector rµ. Nonoptimistic policy iteration starts with a parameter vector r0, which

specifies µ0 as a greedy policy with respect to Φr0, and generates rµ0 by using the given policy evaluation

method. It then finds a policy µ1 that is greedy with respect to Φrµ0 , i.e., a µ1 such that rµ0 ∈ Rµ1 . It

then repeats the process with µ1 replacing µ0. If some policy µk satisfying rµk ∈ Rµk is encountered, the

method keeps generating that policy. This is the necessary and sufficient condition for policy convergence

in the nonoptimistic policy iteration method. Of course, the mere fact that a policy iteration method is

guaranteed to converge is not in itself a guarantee of good performance when cost function approximation

is used, beyond the fact that a better error bound holds in this case [Eq. (3.3) versus Eq. (3.2)].

In the case of a lookup table representation where the parameter vectors rµ are equal to the cost-to-

go vector Jµ, the condition rµk ∈ Rµk is equivalent to rµk = Trµk , and is satisfied if and only if µk is

optimal. When there is function approximation, however, this condition need not be satisfied for any policy.

25

Policy Iteration Issues

rµk rµk+1 rµk+2 rµk+3

Rµk Rµk+1 Rµk+2 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ∼ |A|

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant − f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u, w) | there exists x ∈ X

Original System States Aggregate States
Aggregation Probabilities
Disaggregation Probabilities Column Sampling According to
Markov Chain
Row Sampling According to ξ (May Use Markov Chain Q)

F (x) H(y) y h(y)

sup
z∈Z

inf
x∈X

φ(x, z) ≤ sup
z∈Z

inf
x∈X

φ̂(x, z) = q∗ = p̃(0) ≤ p(0) = w∗ = inf
x∈X

sup
z∈Z

φ(x, z)

1

rµk rµk+1 rµk+2 rµk+3

Rµk Rµk+1 Rµk+2 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ∼ |A|

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant − f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u, w) | there exists x ∈ X

Original System States Aggregate States
Aggregation Probabilities
Disaggregation Probabilities Column Sampling According to
Markov Chain
Row Sampling According to ξ (May Use Markov Chain Q)

F (x) H(y) y h(y)

sup
z∈Z

inf
x∈X

φ(x, z) ≤ sup
z∈Z

inf
x∈X

φ̂(x, z) = q∗ = p̃(0) ≤ p(0) = w∗ = inf
x∈X

sup
z∈Z

φ(x, z)

1

rµk rµk+1 rµk+2 rµk+3

Rµk Rµk+1 Rµk+2 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ∼ |A|

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant − f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u, w) | there exists x ∈ X

Original System States Aggregate States
Aggregation Probabilities
Disaggregation Probabilities Column Sampling According to
Markov Chain
Row Sampling According to ξ (May Use Markov Chain Q)

F (x) H(y) y h(y)

sup
z∈Z

inf
x∈X

φ(x, z) ≤ sup
z∈Z

inf
x∈X

φ̂(x, z) = q∗ = p̃(0) ≤ p(0) = w∗ = inf
x∈X

sup
z∈Z

φ(x, z)

1

rµk rµk+1 rµk+2 rµk+3

Rµk Rµk+1 Rµk+2 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ∼ |A|

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant − f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u, w) | there exists x ∈ X

Original System States Aggregate States
Aggregation Probabilities
Disaggregation Probabilities Column Sampling According to
Markov Chain
Row Sampling According to ξ (May Use Markov Chain Q)

F (x) H(y) y h(y)

sup
z∈Z

inf
x∈X

φ(x, z) ≤ sup
z∈Z

inf
x∈X

φ̂(x, z) = q∗ = p̃(0) ≤ p(0) = w∗ = inf
x∈X

sup
z∈Z

φ(x, z)

1

rµk rµk+1 rµk+2 rµk+3

Rµk Rµk+1 Rµk+2 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ∼ |A|

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant − f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u,w) | there exists x ∈ X

Original System States Aggregate States
Aggregation Probabilities
Disaggregation Probabilities Column Sampling According to
Markov Chain
Row Sampling According to ξ (May Use Markov Chain Q)

F (x) H(y) y h(y)

sup
z∈Z

inf
x∈X

φ(x, z) ≤ sup
z∈Z

inf
x∈X

φ̂(x, z) = q∗ = p̃(0) ≤ p(0) = w∗ = inf
x∈X

sup
z∈Z

φ(x, z)

1

rµk rµk+1 rµk+2 rµk+3

Rµk Rµk+1 Rµk+2 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ∼ |A|

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant − f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u, w) | there exists x ∈ X

Original System States Aggregate States
Aggregation Probabilities
Disaggregation Probabilities Column Sampling According to
Markov Chain
Row Sampling According to ξ (May Use Markov Chain Q)

F (x) H(y) y h(y)

sup
z∈Z

inf
x∈X

φ(x, z) ≤ sup
z∈Z

inf
x∈X

φ̂(x, z) = q∗ = p̃(0) ≤ p(0) = w∗ = inf
x∈X

sup
z∈Z

φ(x, z)

1

rµk rµk+1 rµk+2 rµk+3

Rµk Rµk+1 Rµk+2 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ∼ |A|

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant − f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u, w) | there exists x ∈ X

Original System States Aggregate States
Aggregation Probabilities
Disaggregation Probabilities Column Sampling According to
Markov Chain
Row Sampling According to ξ (May Use Markov Chain Q)

F (x) H(y) y h(y)

sup
z∈Z

inf
x∈X

φ(x, z) ≤ sup
z∈Z

inf
x∈X

φ̂(x, z) = q∗ = p̃(0) ≤ p(0) = w∗ = inf
x∈X

sup
z∈Z

φ(x, z)

1

rµk rµk+1 rµk+2 rµk+3

Rµk Rµk+1 Rµk+2 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ∼ |A|

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant − f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u,w) | there exists x ∈ X

Original System States Aggregate States
Aggregation Probabilities
Disaggregation Probabilities Column Sampling According to
Markov Chain
Row Sampling According to ξ (May Use Markov Chain Q)

F (x) H(y) y h(y)

sup
z∈Z

inf
x∈X

φ(x, z) ≤ sup
z∈Z

inf
x∈X

φ̂(x, z) = q∗ = p̃(0) ≤ p(0) = w∗ = inf
x∈X

sup
z∈Z

φ(x, z)

1

Figure 3.1. Greedy partition and cycle of policies generated by nonoptimistic policy iteration. In particular, µ

yields µ̄ by policy improvement if and only if rµ ∈ Rµ̄. In this figure, the method cycles between four policies

and the corresponding four parameters rµk , rµk+1 , rµk+2 , rµk+3 .

Since there is a finite number of possible vectors rµ, one generated from another in a deterministic way, the

algorithm ends up repeating some cycle of policies µk, µk+1, . . . , µk+m with

rµk ∈ Rµk+1 , rµk+1 ∈ Rµk+2 , . . . , rµk+m−1 ∈ Rµk+m , rµk+m ∈ Rµk ; (3.6)

(see Fig. 3.1). Furthermore, there may be several different cycles, and the method may end up converging

to any one of them. The actual cycle obtained depends on the initial policy µ0. This is similar to gradient

methods applied to minimization of functions with multiple local minima, where the limit of convergence

depends on the starting point.

In the case of optimistic policy iteration, the trajectory of the method is less predictable and depends

on the fine details of the iterative policy evaluation method, such as the frequency of the policy updates and

the stepsize used. Generally, given the current policy µ, optimistic policy iteration will move towards the

corresponding “target” parameter rµ, for as long as µ continues to be greedy with respect to the current

cost-to-go approximation Φr, that is, for as long as the current parameter vector r belongs to the set

Rµ. Once, however, the parameter r crosses into another set, say Rµ̄, the policy µ̄ becomes greedy, and

r changes course and starts moving towards the new “target” rµ̄. Thus, the “targets” rµ of the method,

and the corresponding policies µ and sets Rµ may keep changing, similar to nonoptimistic policy iteration.

Simultaneously, the parameter vector r will move near the boundaries that separate the regions Rµ that

the method visits, following reduced versions of the cycles that nonoptimistic policy iteration may follow.

Furthermore, as Fig. 3.1 suggests, if diminishing parameter changes are made between policy updates (such as

for example when a diminishing stepsize is used by the policy evaluation method) and the method eventually

cycles between several policies, the parameter vectors will tend to converge to the common boundary of the

regions Rµ corresponding to these policies. This is the so-called chattering phenomenon for optimistic policy

iteration, whereby there is simultaneously oscillation in policy space and convergence in parameter space.

The following is a simple example of policy oscillations and chattering. Other examples are given in Section

6.4.2 of [BeT96] (Examples 6.9 and 6.10).

Example 3.1: (Policy Oscillation and Chattering)

Consider a discounted problem with two states, 1 and 2, illustrated in Fig. 3.2(a). There is a choice of control

only at state 1, and there are two policies, denoted µ∗ and µ. The optimal policy µ∗, when at state 1, stays

at 1 with probability p > 0 and incurs a cost c < 0, while when at state 2, returns to state 1 with 0 cost. The

26

Policy Iteration Issues

other policy is µ and cycles between the two states with 0 cost. We consider linear approximation with a single

feature φ(i)′ = i for each of the states i = 1, 2, i.e.,

Φ =

(
1

2

)
, J̃ = Φr =

(
r

2r

)
.

Cost =0 Cost = c < 0 Prob. = 1 − p Prob. = 1 Prob. = p
k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ∼ |A|

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant − f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u,w) | there exists x ∈ X

Original System States Aggregate States
Aggregation Probabilities
Disaggregation Probabilities Column Sampling According to
Markov Chain
Row Sampling According to ξ (May Use Markov Chain Q)

F (x) H(y) y h(y)

1

Cost =0 Cost = c < 0 Prob. = 1 − p Prob. = 1 Prob. = p
k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ∼ |A|

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant − f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u,w) | there exists x ∈ X

Original System States Aggregate States
Aggregation Probabilities
Disaggregation Probabilities Column Sampling According to
Markov Chain
Row Sampling According to ξ (May Use Markov Chain Q)

F (x) H(y) y h(y)

1

Cost =0 Cost = c < 0 Prob. = 1 − p Prob. = 1 Prob. = p
k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ∼ |A|

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant − f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u,w) | there exists x ∈ X

Original System States Aggregate States
Aggregation Probabilities
Disaggregation Probabilities Column Sampling According to
Markov Chain
Row Sampling According to ξ (May Use Markov Chain Q)

F (x) H(y) y h(y)

1

Cost =0 Cost = c < 0 Prob. = 1 − p Prob. = 1 Prob. = p
k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ∼ |A|

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant − f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u,w) | there exists x ∈ X

Original System States Aggregate States
Aggregation Probabilities
Disaggregation Probabilities Column Sampling According to
Markov Chain
Row Sampling According to ξ (May Use Markov Chain Q)

F (x) H(y) y h(y)

1

Cost =0 Cost = c < 0 Prob. = 1 − p Prob. = 1 Prob. = p
k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ∼ |A|

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant − f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u, w) | there exists x ∈ X

Original System States Aggregate States
Aggregation Probabilities
Disaggregation Probabilities Column Sampling According to
Markov Chain
Row Sampling According to ξ (May Use Markov Chain Q)

F (x) H(y) y h(y)

1

Cost =0 Cost = c < 0 Prob. = 1 − p Prob. = 1 Prob. = p
k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ∼ |A|

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant − f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u,w) | there exists x ∈ X

Original System States Aggregate States
Aggregation Probabilities
Disaggregation Probabilities Column Sampling According to
Markov Chain
Row Sampling According to ξ (May Use Markov Chain Q)

F (x) H(y) y h(y)

1

Cost =0 Cost = c < 0 Prob. = 1 − p Prob. = 1 Prob. = p
k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ∼ |A|

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant − f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u,w) | there exists x ∈ X

Original System States Aggregate States
Aggregation Probabilities
Disaggregation Probabilities Column Sampling According to
Markov Chain
Row Sampling According to ξ (May Use Markov Chain Q)

F (x) H(y) y h(y)

1

Cost =0 Cost = c < 0 Prob. = 1 − p Prob. = 1 Prob. = p
k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ∼ |A|

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant − f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u,w) | there exists x ∈ X

Original System States Aggregate States
Aggregation Probabilities
Disaggregation Probabilities Column Sampling According to
Markov Chain
Row Sampling According to ξ (May Use Markov Chain Q)

F (x) H(y) y h(y)

1

Cost =0 Cost = c < 0 Prob. = 1 − p Prob. = 1 Prob. = p
k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ∼ |A|

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant − f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u,w) | there exists x ∈ X

Original System States Aggregate States
Aggregation Probabilities
Disaggregation Probabilities Column Sampling According to
Markov Chain
Row Sampling According to ξ (May Use Markov Chain Q)

F (x) H(y) y h(y)

1

Cost =0 Cost = c < 0 Prob. = 1 − p Prob. = 1 Prob. = p
k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ∼ |A|

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant − f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u,w) | there exists x ∈ X

Original System States Aggregate States
Aggregation Probabilities
Disaggregation Probabilities Column Sampling According to
Markov Chain
Row Sampling According to ξ (May Use Markov Chain Q)

F (x) H(y) y h(y)

1

Cost =0 Cost = c < 0 Prob. = 1 − p Prob. = 1 Prob. = p

Policy µ Policy µ∗ (a) (b) rµ = 0 Rµ Rµ∗

rµ∗ ≈ c

1 − α
,

c

α
rµ = 0

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ∼ |A|

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant − f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u,w) | there exists x ∈ X

Original System States Aggregate States
Aggregation Probabilities

1

Cost =0 Cost = c < 0 Prob. = 1 − p Prob. = 1 Prob. = p

Policy µ Policy µ∗ (a) (b) rµ = 0 Rµ Rµ∗

rµ∗ ≈ c

1 − α
,

c

α
rµ = 0

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ∼ |A|

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant − f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u,w) | there exists x ∈ X

Original System States Aggregate States
Aggregation Probabilities

1

Cost =0 Cost = c < 0 Prob. = 1 − p Prob. = 1 Prob. = p

Policy µ Policy µ∗ (a) (b) rµ = 0 Rµ Rµ∗

rµ∗ ≈ c

1 − α
,

c

α
rµ = 0

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ∼ |A|

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant − f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u,w) | there exists x ∈ X

Original System States Aggregate States
Aggregation Probabilities

1

Cost =0 Cost = c < 0 Prob. = 1 − p Prob. = 1 Prob. = p

Policy µ Policy µ∗ (a) (b) rµ = 0 Rµ Rµ∗

rµ∗ ≈ c

1 − α
,

c

α
rµ = 0

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ∼ |A|

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant − f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u,w) | there exists x ∈ X

Original System States Aggregate States
Aggregation Probabilities

1

Cost =0 Cost = c < 0 Prob. = 1 − p Prob. = 1 Prob. = p

Policy µ Policy µ∗ (a) (b) rµ = 0 Rµ Rµ∗

rµ∗ ≈ c

1 − α
,

c

α
rµ = 0

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ∼ |A|

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant − f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u, w) | there exists x ∈ X

Original System States Aggregate States
Aggregation Probabilities

1

Cost =0 Cost = c < 0 Prob. = 1 − p Prob. = 1 Prob. = p

Policy µ Policy µ∗ (a) (b) rµ = 0 Rµ Rµ∗

rµ∗ ≈ c

1 − α
,

c

α
rµ = 0

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ∼ |A|

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant − f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u,w) | there exists x ∈ X

Original System States Aggregate States
Aggregation Probabilities

1

Cost =0 Cost = c < 0 Prob. = 1 − p Prob. = 1 Prob. = p

Policy µ Policy µ∗ (a) (b) rµ = 0 Rµ Rµ∗

rµ∗ ≈ c

1 − α
,

c

α
rµ = 0

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ∼ |A|

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant − f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u,w) | there exists x ∈ X

Original System States Aggregate States
Aggregation Probabilities

1

Cost =0 Cost = c < 0 Prob. = 1 − p Prob. = 1 Prob. = p

Policy µ Policy µ∗ (a) (b) rµ = 0 Rµ Rµ∗

rµ∗ ≈ c

1 − α
,

c

α
rµ = 0

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ∼ |A|

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant − f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u,w) | there exists x ∈ X

Original System States Aggregate States
Aggregation Probabilities

1

Cost =0 Cost = c < 0 Prob. = 1 − p Prob. = 1 Prob. = p

Policy µ Policy µ∗ (a) (b) rµ = 0 Rµ Rµ∗

rµ∗ ≈ c

1 − α
,

c

α
rµ = 0

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ∼ |A|

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant − f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u,w) | there exists x ∈ X

Original System States Aggregate States
Aggregation Probabilities

1

Cost =0 Cost = c < 0 Prob. = 1 − p Prob. = 1 Prob. = p

Policy µ Policy µ∗ (a) (b) rµ = 0 Rµ Rµ∗

rµ∗ ≈ c

1 − α
,

c

α
rµ = 0

1 2

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ∼ |A|

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant − f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u, w) | there exists x ∈ X

1

Cost =0 Cost = c < 0 Prob. = 1 − p Prob. = 1 Prob. = p

Policy µ Policy µ∗ (a) (b) rµ = 0 Rµ Rµ∗

rµ∗ ≈ c

1 − α
,

c

α
rµ = 0

1 2

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ∼ |A|

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant − f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u, w) | there exists x ∈ X

1

Cost =0 Cost = c < 0 Prob. = 1 − p Prob. = 1 Prob. = p

Policy µ Policy µ∗ (a) (b) rµ = 0 Rµ Rµ∗

rµ∗ ≈ c

1 − α
,

c

α
rµ = 0

1 2

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ∼ |A|

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant − f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u, w) | there exists x ∈ X

1

Cost =0 Cost = c < 0 Prob. = 1 − p Prob. = 1 Prob. = p

Policy µ Policy µ∗ (a) (b) rµ = 0 Rµ Rµ∗

rµ∗ ≈ c

1 − α
,

c

α
rµ = 0

1 2

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ∼ |A|

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant − f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u, w) | there exists x ∈ X

1

Figure 3.2. The problem of Example 3.1. (a) Costs and transition probabilities for the policies µ and

µ∗. (b) The greedy partition and the solutions of the projected equations corresponding to µ and µ∗.

Nonoptimistic policy iteration oscillates between rµ and rµ∗ .

We first derive the greedy partition using Eq. (3.5):

Rµ∗ =
{
r | p

(
c+ α(1 · r)

)
+ (1− p)α(2 · r) ≤ α(2 · r)

}
= {r | c ≤ αr}, Rµ = {r | c ≥ αr}.

We next calculate the points rµ and rµ∗ that solve the projected equations

Cµrµ = dµ, Cµ∗rµ∗ = dµ∗ ,

which correspond to µ and µ∗, respectively. We have

Cµ = Φ′Ξµ(1− αPµ)Φ = (1 2)

(
1 0

0 1

)(
1 −α
−a 1

)(
1

2

)
= 5− 9α,

dµ = Φ′Ξµgµ = (1 2)

(
1 0

0 1

)(
0

0

)
= 0,

so

rµ = 0.

Similarly, with some calculation,

Cµ∗ = Φ′Ξµ∗(1− αPµ∗)Φ = (1 2)

(
1

2−p 0

0 1−p
2−p

)(
1− αp −α(1− p)
−a 1

)(
1

2

)
=

5− 4p− α(4− 3p)

2− p ,

dµ∗ = Φ′Ξµ∗gµ∗ = (1 2)

(
1

2−p 0

0 1−p
2−p

)(
c

0

)
=

c

2− p ,

27

Policy Iteration Issues

so

rµ∗ =
c

5− 4p− α(4− 3p)
.

We now note that since c < 0, rµ = 0 ∈ Rµ∗ , while for p ≈ 1 and α > 1−α, we have rµ∗ ≈ c
1−α ∈ Rµ; cf.

Fig. 3.2(b). In this case, policy iteration cycles between µ and µ∗. Its optimistic version uses some algorithm

that moves the current value r towards rµ∗ if r ∈ Rµ∗ , and towards rµ if r ∈ Rµ. Thus optimistic policy

iteration starting from a point in Rµ moves towards rµ∗ and once it crosses the boundary point c/α of the

greedy partition, it reverses course and moves towards rµ. If the method makes small incremental changes

in r before checking whether to change the current policy, it will incur a small oscillation around c/α. If the

incremental changes in r are diminishing, the method will converge to c/α. Yet c/α does not correspond to

any one of the two policies and has no meaning as a desirable parameter value.

Notice that it is hard to predict when an oscillation will occur and what kind of oscillation it will be.

For example if c > 0, we have rµ = 0 ∈ Rµ, while for p ≈ 1 and α > 1 − α, we have rµ∗ ≈ c
1−α ∈ Rµ∗ . Then,

approximate and optimistic policy iteration converge to µ (or µ∗) if started with r in Rµ (or Rµ∗ , respectively).

When chattering occurs, the limit of optimistic policy iteration tends to be on a common boundary

of several subsets of the greedy partition and may not meaningfully represent a cost approximation of any

of the corresponding policies, as illustrated by the preceding example. Thus, the limit to which the method

converges cannot always be used to construct an approximation of the cost-to-go of any policy or the optimal

cost-to-go. As a result, at the end of optimistic policy iteration and in contrast with the nonoptimistic

version, one must go back and perform a screening process; that is, evaluate by simulation the many policies

generated by the method starting from the initial conditions of interest and select the most promising one.

This is a disadvantage of optimistic policy iteration that may nullify whatever practical rate of convergence

advantages the method may have over its nonoptimistic counterpart.

An additional insight is that the choice of the iterative policy evaluation method (e.g., LSTD, LSPE,

or TD for various values of λ) makes a difference in rate of convergence, but does not seem crucial for the

quality of the final policy obtained (as long as the methods converge). The choice of method affects the

targets rµ somewhat, but leaves the greedy partition unchanged. As a result, different methods “fish in the

same waters” and tend to yield similar ultimate cycles of policies. Generally, there is no guarantee that any

of the policies involved in oscillation is particularly good; the policy iteration process may be just cycling in

a “bad” part of the greedy partition. Moreover, it is hard to know how far from the optimum the oscillation

is occurring, similar to the case of local minima in gradient-based optimization.

The full ramifications of policy oscillation in practice are not fully understood at present, but it is

clear that they give serious reason for concern. An interesting case in point is the game of tetris, which has

been used as a testbed for approximate DP methods [Van95], [TsV96], [BeI96], [Kak02], [FaV06], [SzL06],

[DFM09].† Using policy iteration with policy evaluation based on the projected equation and a set of 22

features, an average score of a few thousands was achieved (originally the LSPE method was used [BeI96];

similar results were obtained with the LSTD method [LaP03]). Using the same features and a random search

method (the cross-entropy method [BKM05], [RuK08]) in the space of weight vectors r, an average score

† Local attraction-type phenomena may be causing similar difficulties in other related approximate DP method-

ologies: policy iteration with function approximation using the Bellman error method, policy gradient methods, and

approximate linear programming (the tetris problem, using the same 22 features, has been addressed by approximate

linear programming [FaV06], [DFM09], and with a policy gradient method [Kak02], also with an achieved average

score of a few thousands, roughly comparable to the ones obtained using policy iteration). These connections are

interesting subjects for investigation.

28

Policy Iteration Issues

of 600,000-900,000 was achieved [SzL06], [ThS09]. The causes of this notable failure of approximate policy

iteration have not been clarified yet. It is an open question whether it is due to the inherent difficulty of the

tetris problem, or whether it can be attributed to inherent pathologies of approximate policy iteration, such

as oscillations/chattering between relatively poor policies, or weaknesses of the cost function approximation

philosophy.†

3.5 Constrained Policy Iteration

It is natural in approximate DP to try to exploit whatever prior information is available about J∗, such as

for example bounds on J∗(i) for some or all of the states i. If it is known that J∗ belongs to a subset of

<n, we may try to find an approximation Φr that belongs to that subset. This leads to projected equations

of the form Φr = ΠT (Φr), where Π is the operator that projects a vector onto a closed convex subset Ŝ of

the subspace S = {Φr | r ∈ <s}, a form of nonlinear approximation. Corresponding analogs of LSTD and

LSPE-type methods for such projected equations involve the solution of linear variational inequalities rather

than linear systems of equations, and are described in [Ber09a]. In particular, it is shown in [Ber09a] that r̂

solves the equation Φr̂ = ΠT (Φr̂) if and only if it solves the variational inequality

(Cr̂ − d)′(r − r̂) ≥ 0, ∀ r ∈ R̂, (3.7)

where R̂ = {r | Φr ∈ Ŝ} [cf. Eq. (2.1)]. This is a generalization of the equation Cr = d, which corresponds

to the case R̂ = <s. Thus one may carry out simulation-based policy evaluation by replacing C and d with

simulation-based estimates in the preceding variational inequality. A potential difficulty here is that even if

the set Ŝ is simple, the set R̂ may be complicated (e.g., it may be specified by a large number of inequalities),

in which case one may consider approximating R̂ with a more convenient set.

There is a simpler alternative to solving the variational inequality (3.7) in the practically common case

where upper and/or lower bounds of J∗ are available. In this alternative, which stems from the work of

Bertsekas and Yu [BeY10a], we introduce the bounds directly into the approximation architecture, and use a

corresponding nonlinear iterative policy evaluation algorithm. As an example, suppose that we have access

to the components of a vector J̄ with J̄(i) ≥ J∗(i) for all i (for example, the cost vector of a known policy).

† For a given policy µ, the policy evaluation methods based on the projected equation estimate the cost function

of µ by Φrµ, yet the next policy µ̄ obtained by policy improvement is determined by the Q-factor differences Q̃µ(i, u)−
Q̃µ
(
i, µ(i)

)
, where

Q̃µ(i, u) =

n∑

j=1

pij(u)
(
g(i, u, j) + αφ(j)′rµ

)
, i = 1, . . . , n, u ∈ U(i),

is the corresponding approximation of the Q-factor Qµ(i, u) of µ [cf. Eq. (3.1)]. Thus adding a constant to all

components of Φrµ does not affect µ̄. This has led to proposals of policy evaluation methods that aim to estimate

directly Q-factor differences or cost function differences (see Werbos [Wer92a], [Wer92b], Baird, Harmon, and Klopf

[Bai93], [HBK94], and Bertsekas [Ber97]). There is no solid theory regarding the merits of these methods over

methods based on cost or Q-factor approximation, but it is clear that there are circumstances where they may offer

an advantage (see the discussion of [BeT96], Sections 6.6.2 and 6.11). The problem is that policy evaluation based

on least squares criteria tends to capture the large scale behavior of the function being approximated, and may thus

be less sensitive to the fine scale variations in Qµ(i, u). As a result, the dependence of Qµ on u may be lost, when

using instead the approximation Q̃µ.

29

Policy Iteration Issues

Then policy iteration with cost function approximation can be modified to incorporate this knowledge as

follows. Given a policy µ, we evaluate it by finding an approximation Φrµ to the solution J̃µ of the equation

J̃µ(i) =

n∑

j=1

pij
(
µ(i)

)(
g(i, µ(i), j) + αmin

{
J̄(j), J̃µ(j)

})
, i = 1, . . . , n, (3.8)

followed by the policy improvement operation [cf. Eq. (3.1)]

µ̄(i) ∈ arg min
u∈U(i)

n∑

j=1

pij(u)
(
g(i, u, j) + αmin

{
J̄(j), φ(j)′rµ

})
, i = 1, . . . , n, (3.9)

where φ(j)′ is the row of Φ that corresponds to state j.

Note that Eq. (3.8) has a unique solution since its right-hand side represents a sup-norm contraction

mapping. Indeed this is Bellman’s equation for the Q-factor of an optimal stopping problem involving a

stopping cost J̄(i) at state i, a problem that has received a lot of attention in the approximate DP literature

because of its favorable structure (see [BeT96], Section 6.8, or [Ber07], Section 6.4.2). In particular, Eq. (3.8)

can be solved approximately, with approximation of J̃µ by Φrµ, using variants of the TD(0) and LSPE(0)

methods (see Tsitsiklis and Van Roy [TsV99b], Choi and Van Roy [ChV06], Yu and Bertsekas [YuB07]).

One form of the LSPE(0) method of [YuB07] generates a long trajectory (i0, i1, . . . , im) using the policy µ̄

of Eq. (3.9), and determines the weight vector rµ̄ as the limit of the iteration

rk+1 = arg min
r∈<s

m−1∑

t=0

(
φ(it)′r − g(it, µ(it), it+1)− αmin

{
J̄(it+1), φ(it+1)′rk

})2

, r0 = rµ, (3.10)

i.e., rµ̄ = limk→∞ rk (for this it is necessary that the length of the simulation trajectory is sufficiently

large). This is the analog of the batch simulation approach of Eq. (2.6): first a batch of simulation data

is generated, and then the corresponding Bellman equation (3.8) is solved approximately via the iteration

(3.10) [an LSTD/matrix inversion approach is not possible because Eq. (3.8) is nonlinear]. The method

(3.10) involves substantial overhead because it involves the entire simulation trajectory at each iteration.

There are also alternative methods given by [YuB07], which are more iterative in character (iterate on r as

new simulation data is generated), and also require less overhead per iteration; see also [Ber07], [Ber10a] for

details.†
Under the assumption J̄(i) ≥ J∗(i) for all i, and a lookup table representation (Φ = I), it can be

shown that the method (3.8)-(3.9) yields J∗ in a finite number of iterations, just like the standard (exact)

policy iteration method. The proof is based on the monotonicity and sup-norm contraction properties of the

mappings T̄µ and T̄ given by

(T̄µJ)(i) =

n∑

j=1

pij
(
µ(i)

)(
g(i, µ(i), j) + αmin

{
J̄(j), J(j)

})
, i = 1, . . . , n, (3.11)

† An algorithm similar to (3.8)-(3.10) is also possible if we know instead a lower bounding vector to J∗, or both

upper and lower bounding vectors: the terms min
{
J̄(j), J̃µ(j)

}
and min

{
J̄(j), φ(j)′rµ

}
in Eqs. (3.8)-(3.9) should

be replaced by the respective projections of J̃µ(j) or φ(j)′rµ on the corresponding interval of upper and/or lower

bounds. In this case a generalization of the optimal stopping algorithm of [YuB07], given in [BeY09], Section 7.3,

may be used for policy evaluation. Note that this algorithm provides a means for approximating the cost Jµ(j) of

a policy µ with a simple nonlinear architecture fj
(
φ(j)′r

)
, where fj denotes projection onto the interval of upper

and lower bounds to J∗(j). This approach may make sense regardless of whether true upper and/or lower bounds of

J∗(j) are known.

30

Policy Iteration Issues

(T̄ J)(i) = min
u∈U(i)

n∑

j=1

pij(u)
(
g(i, u, j) + αmin

{
J̄(j), J(j)

})
, i = 1, . . . , n, (3.12)

[cf. Eqs. (3.8) and (3.9)], and the fact that J∗ is the unique fixed point of F (which rests on the hypothesis

J̄ ≥ J∗); see the subsequent Prop. 3.1.

When a compact feature-based representation is used (Φ 6= I), the constrained policy iteration method

(3.8)-(3.9) is still vulnerable to oscillation and chattering, regardless of which variant of Eq. (3.10) is used.

The magnitude of the oscillations can be estimated with an error bound similar to Eq. (3.2). However, the

method may produce substantially different results than its unconstrained counterpart, because it operates

with a different greedy partition, so the policies involved in an oscillation may be different in the two methods.

3.6 Conditions for Policy Convergence

The preceding analysis has indicated that it is desirable to avoid policy oscillation in policy iteration methods.

Moreover, as mentioned earlier, when policies converge there is a more favorable error bound associated with

the method [cf. Eq. (3.3) versus Eq. (3.2)]. It is therefore interesting to investigate conditions under which

we have convergence of policies. From the mathematical point of view, it turns out that policy oscillation

is caused by the lack of monotonicity of the projection operator (J ≤ J ′ does not imply that ΠJ ≤ ΠJ ′).

Generally, monotonicity is an essential property for the convergence of policy iteration-type methods (see

the proof of the following proposition). Changing the sampling policy at each iteration may also create

problems as it changes the projection norm, and interferes with convergence proofs of policy iteration. By

contrast aggregation involves a monotone operator, and monotonicity is the key property for convergence of

policy iteration. With this in mind, we will replace Π with a constant operator W that has a monotonicity

property. We develop convergence conditions for an abstract approximate policy iteration algorithm that

applied to general (beyond discounted) DP problems. This leads to conceptual and notational simplification

as well as a more broadly applicable algorithm and analysis.

To this end, consider any (possibly nonlinear) mapping Hµ : <n 7→ <n, parametrized by the policy µ,

and the mapping H : <n 7→ <n, defined by

HJ = min
µ∈M

HµJ, (3.13)

whereM is a finite subset of policies, and the minimization above is done separately for each component of

HµJ ; i.e.,

(HJ)(i) = min
µ∈M

(HµJ)(i), ∀ i = 1, . . . , n.

Abstract mappings of this type and their relation to DP have been studied in Denardo [Den67], Bertsekas

[Ber77], and Bertsekas and Shreve [BeS78]. A special case is the discounted DP case, where Hµ = Tµ and

H = T . Another special case is a mapping Hµ that is similar to Tµ but arises in discounted semi-Markov

problems. A special case of a nonlinear mapping Hµ arises in constrained policy iteration, cf. the mapping

T̄µ of Eq. (3.11). Nonlinear mappings Hµ also arise in the context of minimax DP problems and sequential

games; see Shapley [Sha53], and [Den67], [Ber77], [BeS78].

We will construct a policy iteration method that aims to find an approximation to a fixed point of H,

and evaluates a policy µ ∈M with a solution J̃µ of the following fixed point equation in the vector J :

(WHµ)(J) = J, (3.14)

31

Policy Iteration Issues

where W : <n 7→ <n is a mapping (possibly nonlinear, but independent of µ). Policy evaluation by solving

the projected equation corresponds to W = Π. Rather than specify properties of Hµ under which H

has a unique fixed point (as in [Den67], [Ber77], and [BeS78]), it is simpler for our purposes to introduce

corresponding assumptions on the mappings W and WHµ. In particular, we assume the following:

(a) For each J , the minimum in Eq. (3.13) is attained, in the sense that there exists µ̄ ∈ M such that

HJ = Hµ̄J .

(b) For each µ ∈M, the mappings W and WHµ are monotone in the sense that

WJ ≤WJ̄, (WHµ)(J) ≤ (WHµ)(J̄), ∀ J, J̄ ∈ <n with J ≤ J̄ . (3.15)

(c) For each µ, the solution J̃µ of Eq. (3.14) is unique, and for all J such that (WHµ)(J) ≤ J , we have

J̃µ = lim
k→∞

(WHµ)k(J).

Based on condition (a), we introduce a policy improvement operation that is similar to the case where

Hµ = Tµ: the “improved” policy µ̄ satisfies Hµ̄J̃µ = HJ̃µ. Note that condition (c) is satisfied if WHµ is a

contraction on S, while condition (b) is satisfied if W is a matrix with nonnegative components and Hµ is

monotone for all µ. These conditions also hold for the constrained policy iteration method (3.8)-(3.9), where

Hµ is the nonlinear mapping T̄µ of Eq. (3.11).

Proposition 3.1: Let conditions (a)-(c) hold. Consider the approximate policy iteration method

that uses the fixed point J̃µ of the mapping WHµ for evaluation of the policy µ [cf. Eq. (3.14)],

and the equation Hµ̄J̃µ = HJ̃µ for policy improvement. Assume that the method is initiated with

some policy in M, and it is operated so that it terminates when a policy µ̄ is obtained such that

Hµ̄J̃ µ̄ = HJ̃ µ̄. Then the method terminates in a finite number of iterations, and the vector J̃ µ̄

obtained upon termination is a fixed point of WH.

Proof: Similar to the standard proof of convergence of (exact) policy iteration, we use the policy improve-

ment equation Hµ̄J̃µ = HJ̃µ, the monotonicity of W , and the policy evaluation Eq. (3.14) to write

(WHµ̄)(J̃µ) = (WH)(J̃µ) ≤ (WHµ)(J̃µ) = J̃µ.

By iterating with the monotone mapping WHµ̄ and by using condition (c), we obtain

J̃ µ̄ = lim
k→∞

(WHµ̄)k(J̃µ) ≤ J̃µ.

There are finitely many policies, so we must have J̃ µ̄ = J̃µ after a finite number of iterations, which using

the policy improvement equation Hµ̄J̃µ = HJ̃µ, implies that Hµ̄J̃ µ̄ = HJ̃ µ̄. Thus the algorithm terminates

with µ̄, and since J̃ µ̄ = (WHµ̄)(J̃ µ̄), it follows that J̃ µ̄ is a fixed point of WH. Q.E.D.

Note the mechanism by which the preceding policy iteration method avoids the oscillations described

in Section 3.5. Again the policy improvement step yields µ̄ from µ if and only if J̃µ ∈ Rµ̄, where Rµ̄ = {J |

32

Policy Iteration Issues

Hµ̄J = HJ} is the corresponding set of the greedy partition (which is independent of the method used for

policy evaluation). However, the monotonicity inherent in the policy evaluation step guarantees that

J̃ µ̄ ≤ J̃µ, ∀ µ, µ̄ ∈M such that J̃µ ∈ Rµ̄,

so a policy oscillation is impossible. Note also that the preceding proof applies to the more general case where

for policy improvement we use any policy µ̄ such that Hµ̄J̃µ ≤ J̃µ, with strict inequality Hµ̄J̃µ 6= J̃µ when

HJ̃µ 6= J̃µ. This allows for approximate minimization over candidate policies in the policy improvement

step.

An important special case where Prop. 3.1 applies and policies converge is when Hµ = Tµ, H = T , W

is linear of the form W = ΦD, where Φ and D are n × s and s × n matrices, respectively, whose rows are

probability distributions, and the policy evaluation uses the linear feature-based approximation J̃µ = Φrµ.

This is the case of policy evaluation by aggregation [cf. Eq. (1.7)], which will be discussed in the next section.

Then it can be seen that W and WTµ are monotone, and that WTµ is a sup-norm contraction (since W is

nonexpansive with respect to the sup norm), so that conditions (a)-(c) are satisfied. The same is true in the

more general case W = ΦD, where the matrix W has nonnegative components, and its row sums are less

than or equal to 1, i.e.,

s∑

m=1

ΦimDmj ≥ 0, ∀ i, j = 1, . . . , n,

s∑

m=1

Φim

n∑

j=1

Dmj ≤ 1, ∀ i = 1, . . . , n.

If Φ and D have nonnegative components, the first of these relations is automatically satisfied, while the

second is equivalent to the set of n linear inequalities

φ(i)′ζ ≤ 1, ∀ i = 1, . . . , n, (3.16)

where φ(i)′ is the ith row of Φ, and ζ ∈ <s is the column vector of row sums of D, i.e., the one that has

components†

ζ(m) =

n∑

j=1

Dmj , ∀ m = 1, . . . , s.

Even in this more general case, the policy evaluation Eq. (3.14) can be solved by using simulation and low

order calculations (see [Ber10a], Section 6.8).

Given a “good” choice of Φ ≥ 0, an interesting question is how to construct effective algorithms for

parametric optimization of a nonnegative matrix D, subject to the constraints (3.16). This is similar to the

basis function optimization issue mentioned in the introduction. Finally, let us note that a special case

when Eq. (3.16) may be easily satisfied arises when through a reordering of indexes, the matrix D can be

partitioned in the form D = (∆ 0), where ∆ is a positive definite diagonal matrix with diagonal elements

δm, m = 1, . . . , s, satisfying
s∑

m=1

Φimδm ≤ 1, ∀ i = 1, . . . , n.

An example of such a structure arises in coarse grid discretization/aggregation schemes (see Section 4).

† A column of Φ that has both positive and negative components may be replaced with the two columns that

contain its positive and the opposite of its negative components. This will create a new nonnegative matrix Φ with

as many as twice the number of columns, and will also enlarge the approximation subspace S (leading to no worse

approximation). Then the matrix D may be optimized subject to D ≥ 0 and the constraints (3.16), with respect to

some performance criterion.

33

Policy Iteration Issues

3.7 The Case of Hard Aggregation

If the mapping Hµ is monotone in the sense that HµJ ≤ HµJ̄ for all J, J̄ ∈ <n with J ≤ J̄ (as it typically

is in DP models), then the monotonicity assumption (3.15) is satisfied if W is a projection matrix Π (the

same for all µ), which satisfies ΠJ ≥ 0 for all J with J ≥ 0 (or equivalently Π<n+ = S ∩ <n+, where <n+ is

the nonnegative orthant). This is so if and only if all the components of Π are nonnegative. A special case

where this is true is when Φ has nonnegative components, and has linearly independent columns that are

orthogonal with respect to the inner product < x1, x2 >= x′1Ξx2. This follows from the projection formula

Π = Φ(Φ′ΞΦ)−1Φ′Ξ and the fact that Φ′ΞΦ is positive definite and diagonal. An interesting special case is

when policy evaluation is done by hard aggregation, one of the methods from the class to be discussed in the

next section. Here the state space {1, . . . , n} is partitioned in s nonempty subsets I1, . . . , Is and:

(1) The `th column of Φ has components that are 1 or 0 depending on whether they correspond to an

index in I` or not.

(2) The `th row of D is a probability distribution (d`1, . . . , d`n) whose components are positive depending

on whether they correspond to an index in I` or not, i.e.,
∑n
j=1 d`j = 1, d`j > 0 if j ∈ I`, and d`j = 0

if j /∈ I`.

With these definitions of Φ and D, it can be verified that ΦD is given by the projection formula

ΦD = Φ(Φ′ΞΦ)−1Φ′Ξ,

where Ξ is the diagonal matrix with the nonzero components of D along the diagonal. In fact Π, the

projection on S with respect to ‖ · ‖ξ, can be written in the explicit form

(ΠJ)(i) =
∑

j∈I`

d`jJ(j), ∀ i ∈ I`, ` = 1, . . . , s.

Thus, assuming that D (and hence Π) is held constant, policies converge and the more favorable error bound

(3.3) holds.†

3.8 Q-Factor Approximations, Exploration, and Optimistic Policy Iteration

The policy iteration methods with cost function approximation discussed so far rely on the calculation of

the approximation Φr to the cost function of the current policy µ, which is then used for policy improve-

ment using the minimization (3.1). Carrying out this minimization requires knowledge of the transition

probabilities pij(u) and calculation of the associated expected values for all controls u ∈ U(i) (otherwise a

time-consuming simulation of these expected values is needed). An interesting “model-free” alternative is to

perform approximate policy evaluation by computing approximate Q-factors

Q̃(i, u, r) ≈ (FµQ)(i, u), ∀ (i, u), (3.17)

† Van Roy [Van06] has established especially favorable error bounds for a hard aggregation-based approximate

DP method. However, the policy iteration method considered in [Van06] is not the same as the one considered

here, because the corresponding matrix Π is not constant and policy convergence is not guaranteed. It is not clear

whether it is practically advantageous to select Π in the manner suggested by Van Roy [Van06], compared to keeping

it constant as in the standard hard aggregation scheme of the next section.

34

Policy Iteration Issues

where FµQ is the Q-learning mapping given by

(FµQ)(i, u) =

n∑

j=1

pij(u)
(
g(i, u, j) + αQ

(
j, µ(j)

))
, ∀ (i, u), (3.18)

and to use the minimization

µ̄(i) ∈ arg min
u∈U(i)

Q̃(i, u, r), ∀ i, (3.19)

for policy improvement. Here, r is an adjustable parameter vector and Q̃(i, u, r) is a parametric architecture,

possibly of the linear form

Q̃(i, u, r) =

s∑

k=1

rkφk(i, u),

where φk(i, u) are basis functions that depend on both state and control.

An important point is that given the current policy µ, we can construct Q-factor approximations for

that policy using any method for constructing cost vector approximations. The way to do this is to apply

the latter method to the Markov chain whose states are the pairs (i, u), and the probability of transition

from (i, u) to (j, v) is

p(i,u)(j,v) = pij(u)δ
(
v = µ(j)

)
, (3.20)

where as earlier δ(·) denotes the indicator function: δ
(
v = µ(j)

)
= 1 if v = µ(j) and is equal to 0 other-

wise. This is the probabilistic mechanism by which state-control pairs evolve under the stationary policy

µ. However, a major concern here is that the state-control pairs (i, u) with u 6= µ(i) are never generated

in this Markov chain, so they are not represented in the cost samples used to construct the approximation

Q̃(i, u, r). This creates an acute difficulty due to diminished exploration, which must be addressed in any

simulation-based implementation.

To address the issue of exploration in evaluating (exactly or approximately) the Q-factors of a given

policy, we may use the LSTD(λ) approach in conjunction with the algorithm (2.23)-(2.25) of Section 2.3. We

recall that in this algorithm, row and column sampling is done by generating a sequence of state-control pairs{
(i0, u0), (i1, u1) . . .

}
. The Q-factor approximation is Φr̂, where r̂ is the solution of the system C

(λ)
k r = d

(λ)
k ,

with C
(λ)
k and d

(λ)
k generated recursively by

C
(λ)
k =

(
1− 1

k + 1

)
C

(λ)
k−1 +

1

k + 1
zk

(
φ(ik, uk)− α

p(ik,uk)(ik+1,uk+1)

`(ik,uk)(ik+1,uk+1)
φ(ik+1, uk+1)

)′
, (3.21)

d
(λ)
k =

(
1− 1

k + 1

)
d

(λ)
k−1 +

1

k + 1
zkα

p(ik,uk)(ik+1,uk+1)

`(ik,uk)(ik+1,uk+1)
g(ik, uk, ik+1), (3.22)

where zk is generated by

zk = λα
p(ik−1,uk−1)(ik,uk)

`(ik−1,uk−1)(ik,uk)
zk−1 + φ(ik, uk). (3.23)

Here φ(i, u)′ is the row of Φ corresponding to (i, u), p(i,u)(j,v) are the transition probabilities between state-

control pairs given by Eq. (3.20), and `(i,u)(j,v) are the corresponding transition probabilities governing row

and column sampling. A particularly interesting choice is

`(i,u)(j,v) = pij(u)ν(v | j), (3.24)

35

Policy Iteration Issues

where ν is a randomized policy that effects exploration by mapping a state j to control v with probability

ν(v | j). Then from Eqs. (3.20) and (3.24), we see that the ratios in algorithm (3.21)-(3.23) simplify:

p(i,u)(j,v)

`(i,u)(j,v)
=
δ
(
v = µ(j)

)

ν(v | j) ,

(again we adopt the convention 0/0 = 0), so knowledge of pij(u) is not needed, and the algorithm maintains

its model-free character.

Recently, an alternative approach to Q-learning with exploration enhancement has been proposed,

which is new even in the context of exact DP (Bertsekas and Yu [BeY10a]). It is based on replacing the

Q-learning mapping Fµ of Eq. (3.18) with the mapping

(FJ,νQ)(i, u) =

n∑

j=1

pij(u)


g(i, u, j) + α

∑

v∈U(j)

ν(v | j) min
{
J(j), Q(j, v)

}

 , ∀ (i, u), (3.25)

which depends on a vector J ∈ <n, with components denoted J(i), and on a randomized policy ν, which for

each state j defines a probability distribution

{
ν(v | j) | v ∈ U(j)

}

over the feasible controls at j, and may depend on the “current policy” µ. Thus solving a linear equation

(the traditional policy evaluation method) is replaced by solving an optimal stopping problem: finding a fixed

point of the mapping (3.25) [a similarity with the constrained policy iteration (3.8)-(3.9) described earlier].

The exploration-enhanced policy iteration algorithm is similar to the ordinary version (3.17)-(3.19),

except that it is based on the mapping FJ,ν in place of Fµ. Its policy evaluation phase is

Q̃(i, u, r) ≈ (FJ,νQ)(i, u), (3.26)

and its policy improvement phase is Eq. (3.19). At the end of an iteration, the vector J is set to

J(i) = min
u∈U(i)

(FJ,νQ̃)(i, u), ∀ i. (3.27)

The policy ν may be chosen arbitrarily at each iteration. It may encode aspects of the “current policy” µ,

but may also allow for arbitrary and easily controllable amount of exploration. For extreme choices of ν and

a lookup table representation, the algorithm yields as special cases the classical Q-learning/value iteration

and policy iteration methods. Together with linear Q-factor approximation, the algorithm may be combined

with the TD(0)-like method of Tsitsiklis and Van Roy [TsV99b], which can be used to solve the associated

stopping problems with low overhead per iteration, thereby resolving the issue of exploration.

The enhanced policy iteration algorithm also has some interesting properties in the context of ex-

act/lookup table policy iteration: it admits asynchronous and stochastic iterative implementations, which can

be attractive alternatives to standard methods of asynchronous/optimistic policy iteration and Q-learning.

Its advantage is more robust convergence properties (it is not susceptible to the fragility of asynchronous pol-

icy iteration demonstrated by Williams and Baird [WiB93], and of optimistic policy iteration with lookup ta-

ble representation discussed by Bertsekas and Tsitsiklis [BeT96], Section 5.4); see Bertsekas and Yu [BeY10a],

[BeY10b] for further elaboration. An important fact regarding these properties is that for every randomized

policy ν, the mapping underlying the algorithm (3.26)-(3.27),

(Q, J) 7→ (FJ,νQ, M FJ,νQ) , (3.28)

36

Policy Evaluation by Aggregation

where

(M FJ,νQ)(i) = min
u∈U(i)

(FJ,νQ)(i, u), ∀ i,

is a sup-norm contraction of modulus α, and its unique fixed point is the optimal Q-factor and cost vector

pair (Q∗, J∗).

The contraction property just described, and other similar properties, form the basis for a variety of

asynchronous stochastic Q-learning algorithms, which update Q-factors and relate to policy iteration with

an optimistic character (a limited number of samples used to update Q for fixed J and ν, between updates of

J). These algorithms may naturally involve enhanced exploration through the use of policies ν, which may

relate but need not be identical to the policies under evaluation. We refer to Bertsekas and Yu [BeY10a] for

a detailed discussion, convergence analysis, and also error bounds (in the case where Q-factors are compactly

represented through a set of basis functions).

The contraction property of the mapping (3.28) may also be used to construct deterministic asyn-

chronous policy iteration algorithms with an optimistic character, which update costs (rather than Q-factors);

see [BeY10a], [BeY10b]. In these algorithms we use deterministic policies µk in place of ν, and for each state

i there is a set of times T (i) at which we do a “policy evaluation” iteration at i, given by

V k+1(i) =

n∑

j=1

pij
(
µk(i)

)(
g
(
i, µk(i), j

)
+ αmin

{
Jk(j), V k(j)

})
,

and we leave Jk(i), µk(i) unchanged. There is also an infinite set of times T̄ (i) [disjoint from T (i)] at which

we do a “policy improvement” at i, given by

Jk+1(i) = V k+1(i) = min
u∈U(i)

n∑

j=1

pij(u)
(
g(i, u, j) + αmin

{
Jk(j), V k(j)

})
,

while setting µk+1(i) to a u that attains the minimum above. Based on the sup-norm contraction property

of mapping (3.28), it can be shown that this algorithm satisfies limk→∞ Jk(i) = limk→∞ V k(i) = J∗(i) for

all i, with arbitrary initial conditions (J0, V 0, µ0), thus overcoming the convergence difficulties demonstrated

by Williams and Baird [WiB93] for the natural version of asynchronous policy iteration.

4. POLICY EVALUATION BY AGGREGATION

In this section we consider policy iteration with aggregation-based approximate policy evaluation. The aggre-

gation approach resembles the projected equation approach because it also constructs cost approximations

of the form Φr. However, there are some differences, the most important of which is that in aggregation

methods there are restrictions in the form of Φ, so there is less freedom in choosing the approximation sub-

space. Moreover from a mathematical point of view, in the aggregation approach there are no projections

with respect to Euclidean norms, the simulations can be done more flexibly, and the underlying contractions

are with respect to the sup-norm rather than a Euclidean norm.

From a conceptual point of view, the most important difference from the projected equation approach

is that aggregation is based on problem approximation (rather than Bellman equation approximation): the

original problem is approximated with a related “aggregate” problem, which is then solved exactly to yield a

cost-to-go approximation for the original problem. As a result, policy iteration with the aggregation approach

is not afflicted by some of the pathologies that emanate from compact feature-based representations of cost

37

Policy Evaluation by Aggregation

functions, such as policy oscillations and chattering. The sequence of generated policies converges (to an

optimal policy of the aggregate problem) with monotonic cost improvement (for the aggregate problem),

and a more favorable error bound can be derived than for the projected equation case.

To construct an aggregation framework for the discounted MDP of the preceding section, we introduce

a finite set A of aggregate states, and we introduce two sets of probabilities, which relate the original system

states with the aggregate states:

(1) For each aggregate state x and original system state i, we specify the disaggregation probability dxi [we

have
∑n
i=1 dxi = 1 for each x ∈ A]. Roughly, dxi may be interpreted as the “degree to which x is

represented by i.”

(2) For each aggregate state y and original system state j, we specify the aggregation probability φjy

(we have
∑
y∈A φjy = 1 for each j = 1, . . . , n). Roughly, φjy may be interpreted as the “degree of

membership of j in the aggregate state y.” The vectors {φjy | j = 1, . . . , n} may also be viewed as

basis functions that will be used to provide a cost approximation for the original problem.

We mention a few examples, and we refer to [Ber07], Vol. I, Section 6.3, and to [Ber10a] for further

discussion and examples.

(a) In hard and soft aggregation, we group the original system states into subsets, and we view each subset

as an aggregate state. In hard aggregation each state belongs to one and only one subset, and the

aggregation probabilities are

φjy = 1 if system state j belongs to aggregate state/subset y.

The disaggregation probabilities could be

dxi = 1/nx if system state i belongs to aggregate state/subset x,

where nx is the number of states of x (this implicitly assumes that all states that belong to aggregate

state/subset y are “equally representative”). In soft aggregation, we allow the aggregate states/subsets

to overlap, with the aggregation probabilities φjy quantifying the “degree of membership” of j in the

aggregate state/subset y.

(b) In various discretization schemes, each original system state j is associated with a convex combination

of aggregate states:

j ∼
∑

y∈A
φjyy,

for some nonnegative weights φjx, whose sum is 1, and which are viewed as aggregation probabilities

(this makes geometrical sense if both the original and the aggregate states are associated with points

in a Euclidean space).

(c) In coarse grid schemes, a subset of representative states is chosen, each being an aggregate state. Thus,

each aggregate state x is associated with a unique original state ix, and we may use the disaggregation

probabilities dxi = 1 for i = ix and dxi = 0 for i 6= ix. The aggregation probabilities are chosen as in

the preceding case (b).

The aggregation approach approximates the cost vector of a policy with Φr, where r ∈ <s is a

weight vector to be determined, and Φ is the matrix whose jth row consists of the aggregation proba-

bilities φj1, . . . , φjs. Thus aggregation involves an approximation architecture similar to the one of projected

38

Policy Evaluation by Aggregation

equation methods: it uses as features the aggregation probabilities. There is a reciprocal possibility: starting

from a set of s features for each state, we may construct a feature-based hard aggregation scheme by grouping

together states with “similar features.” In particular, we may use a more or less regular partition of the

feature space, which induces a possibly irregular partition of the original state space into aggregate states

(all states whose features fall in the same set of the feature partition form an aggregate state). This is a

general approach for passing from a feature-based approximation of the cost vector to an aggregation-based

approximation (an interesting special case is when one of the features is a vector that approximates the cost

vector of some known suboptimal policy). Unfortunately, in the resulting aggregation scheme the number of

aggregate states may become very large.

The aggregation and disaggregation probabilities specify a dynamical system involving both aggregate

and original system states. In this system:

(i) From aggregate state x, we generate original system state i according to dxi.

(ii) We generate transitions from original system state i to original system state j according to pij(u), with

cost g(i, u, j).

(iii) From original system state j, we generate aggregate state y according to φjy.

pij(u)

dxi φjy

ji

x y

Original
System States

Aggregate States

p̂xy(u) =

n∑

i=1

dxi

n∑

j=1

pij(u)φjy

Disaggregation
Probabilities

Aggregation
Probabilities

Figure 4.1. Illustration of the transition mechanism of a dynamical system involving both aggregate and original

system states.

Let us now introduce the vectors J̃0, J̃1, and R∗ where:

R∗(x) is the optimal cost-to-go from aggregate state x.

J̃0(i) is the optimal cost-to-go from original system state i that has just been generated from an

aggregate state (left side of Fig. 4.1).

J̃1(j) is the optimal cost-to-go from original system state j that has just been generated from an

original system state (right side of Fig. 4.1).

Note that because of the intermediate transitions to aggregate states, J̃0 and J̃1 are different.

39

Policy Evaluation by Aggregation

These three vectors satisfy the following three Bellman’s equations:

R∗(x) =

n∑

i=1

dxiJ̃0(i), x ∈ A,

J̃0(i) = min
u∈U(i)

n∑

j=1

pij(u)
(
g(i, u, j) + αJ̃1(j)

)
, i = 1, . . . , n,

J̃1(j) =
∑

y∈A
φjyR∗(y), j = 1, . . . , n.

By combining these equations, we obtain an equation for R∗:

R∗(x) = (FR∗)(x), x ∈ A,

where F is the mapping defined by

(FR)(x) =

n∑

i=1

dxi min
u∈U(i)

n∑

j=1

pij(u)


g(i, u, j) + α

∑

y∈A
φjyR(y)


 , x ∈ A. (4.1)

It can be seen that F is a sup-norm contraction mapping and has R∗ as its unique fixed point. This follows

from standard contraction arguments and the fact that dxi, pij(u), and φjy are all transition probabilities.†
Once R∗ is found, the optimal-cost-to-go of the original problem may be approximated by J̃1 = ΦR∗,

and a suboptimal policy may be found through the minimization defining J̃0. Again, the optimal cost

function approximation J̃1 is a linear combination of the columns of Φ, which may be viewed as basis

functions.

4.1 Aggregation-Based Policy Iteration

A policy iteration algorithm to find R∗ may be constructed, using aggregation for policy evaluation. It starts

with a stationary policy µ0 for the original problem, and given µk, it finds Rµk satisfying Rµk = FµkRµk ,

where Fµ is the mapping defined by

(FµR)(x) =

n∑

i=1

dxi

n∑

j=1

pij
(
µ(i)

)

g
(
i, µ(i), j

)
+ α

∑

y∈A
φjyRµ(y)


 , x ∈ A, (4.2)

(this is the policy evaluation step). It then generates µk+1 by

µk+1(i) ∈ arg min
u∈U(i)

n∑

j=1

pij(u)


g(i, u, j) + α

∑

y∈A
φjyRµk(y)


 , ∀ i, (4.3)

† A quick proof is to observe that F is the composition F = DTΦ, where T is the usual DP mapping, and D and

Φ are the matrices with rows the disaggregation and aggregation distributions, respectively. Since T is a contraction

with respect to the sup-norm ‖ · ‖∞, and D and Φ are sup-norm nonexpansive in the sense

‖Dx‖∞ ≤ ‖x‖∞, ∀ x ∈ <n, ‖Φy‖∞ ≤ ‖y‖∞, ∀ y ∈ <s,

it follows that F is a sup-norm contraction.

40

Policy Evaluation by Aggregation

(this is the policy improvement step). Using the analysis of Section 3.6 and Prop. 3.1 (with W equal to the

monotone mapping ΦD), it can be shown that this policy iteration algorithm terminates finitely to some

policy corresponding to the unique fixed point of F . The key fact here is that F and Fµ are not only sup-

norm contractions, but also have the monotonicity property of DP mappings, which is used in an essential

way in the convergence proof of ordinary policy iteration.

We may implement the preceding policy iteration method by simulation, using either a matrix inversion

or an iterative approach. For a given policy µ, the aggregate version of Bellman’s equation, R = FµR, is

linear of the form [cf. Eq. (4.2)]

R = DTµ(ΦR),

where Tµ is the DP mapping associated with µ. We can thus write this equation as

ER = f,

where

E = I − αDPΦ, f = Dg, (4.4)

in analogy with the corresponding matrix and vector for the projected equation.

We may use low-dimensional simulation to approximate E and f based on a given number of samples,

similar to Section 2 [cf. Eq. (2.12)]. In particular, a sample sequence
{

(i0, j0), (i1, j1), . . .
}

is obtained by

first generating a sequence of states {i0, i1, . . .} by sampling according to a distribution {ξi | i = 1, . . . , n}
(with ξi > 0 for all i), and then by generating for each t the column index jt using sampling according to

the distribution {pitj | j = 1, . . . , n}. Given the first k + 1 samples, we form the matrix Êk and vector f̂k

given by

Êk = I − α

k + 1

k∑

t=0

1

ξit
d(it)φ(jt)′, f̂k =

1

k + 1

k∑

t=0

1

ξit
d(it)g

(
it, µ(it), jt

)
, (4.5)

where d(i) is the ith column of D and φ(j)′ is the jth row of Φ. The convergence Êk → E and f̂k → f

follows from the expressions

E = I − α
n∑

i=1

n∑

j=1

pij
(
µ(i)

)
d(i)φ(j)′, f =

n∑

i=1

n∑

j=1

pij
(
µ(i)

)
d(i)g

(
i, µ(i), j

)
,

the relation

lim
k→∞

k∑

t=0

δ(it = i, jt = j)

k + 1
= ξi pij ,

and law of large numbers arguments (cf. Section 2).

It is important to note that the sampling probabilities ξi are restricted to be positive, but are otherwise

arbitrary and need not depend on the current policy. Moreover, their choice does not affect the obtained

approximate solution of the equation ER = f . Because of this possibility, the problem of exploration is less

acute in the context of policy iteration when aggregation is used for policy evaluation. This is in contrast

with the projected equation approach, where the choice of ξi affects the projection norm and the solution of

the projected equation, as well as the contraction properties of the mapping ΠT .

Note also that instead of using the probabilities ξi to sample original system states, we may alternatively

sample the aggregate states x according to a distribution {ζx | x ∈ A}, generate a sequence of aggregate

41

Policy Evaluation by Aggregation

states {x0, x1, . . .}, and then generate a state sequence {i0, i1, . . .} using the disaggregation probabilities. In

this case ξi =
∑
x∈A ζxdxi and Eqs. (4.5) should be modified as follows:

Êk = I − α

k + 1

k∑

t=0

m

dxtit
d(it)φ(jt)′, f̂k =

1

k + 1

k∑

t=0

m

dxtit
d(it)g

(
it, µ(it), jt

)
,

where m is the number of aggregate states.

The corresponding LSTD-type method generates R̂k = Ê−1
k f̂k, and approximates the cost vector of µ

with the vector ΦR̂k:

J̃µ = ΦR̂k.

There is also a regression-based version that is suitable for the case where Êk is nearly singular (cf. Section

2), as well as an iterative regression-based version of LSTD, which may be viewed as a special case of the

(scaled) LSPE-type method (2.31)-(2.32). The latter method takes the form

R̂k+1 = (Ê′kΣ−1
k Êk + βI)−1(Ê′kΣ−1

k f̂k + βR̂k), (4.6)

where β > 0 and Σk is a positive definite symmetric matrix. Note that contrary to the projected equation

case, for a discount factor α ≈ 1, Êk will always be nearly singular [since DPΦ is a transition probability

matrix, cf. Eq. (4.4)]. However, the iteration (4.6) is valid even if Êk is singular.

As noted earlier, the nonoptimistic version of the aggregation-based policy iteration method does not

exhibit the oscillatory behavior of the one based on the projected equation approach (cf. Section 3.6).

The generated policies converge since by aggregation, we are essentially solving exactly the DP problem

associated with the aggregate system of Fig. 4.1. The convergence of policies in turn implies that the error

bound (3.2) holds. This suggests a more regular behavior and an advantage in terms of approximation quality

of aggregation-based approximate policy iteration relative to its projected equation-based counterpart.

A related property holds for optimistic policy iteration methods. They behave similar to optimistic

policy iteration for the DP problem associated with the aggregate system of Fig. 4.1, and they do not exhibit

the chattering phenomenon described in Section 3.5.

The preceding arguments indicate that the aggregation approach holds an advantage over the projected

equation approach in terms of regularity of behavior, error guarantees, and exploration-related difficulties.

Note, however, that the basis functions in the aggregation approach are restricted by the requirement that

the rows of Φ must be probability distributions. For example in the case of a single basis function (s = 1),

there is only one possible choice for Φ in the aggregation context, namely the matrix whose single column is

the unit vector. In practice, this means that the number of columns of Φ may have to be much larger than

in the projected equation approach.

4.2 Multistep Aggregation

The aggregation methodology of this section can be generalized by considering a multistep aggregation-

based dynamical system. This system, illustrated in Fig. 4.2, is specified by disaggregation and aggregation

probabilities as before, but involves k > 1 transitions between original system states in between transitions

from and to aggregate states.

We introduce vectors J̃0, J̃1, . . . , J̃k, and R∗ where:

R∗(x) is the optimal cost-to-go from aggregate state x.

42

Policy Evaluation by Aggregation

φjydxi

Original System States

Aggregate States

Disaggregation
Probabilities

Aggregation
Probabilities

pij(u) pij(u) pij(u)

i

x y

j1 j2 jk

k Stages

Figure 4.2. The transition mechanism for multistep aggregation. It is based on a dynamical system involving

aggregate states, and k transitions between original system states in between transitions from and to aggregate

states.

J̃0(i) is the optimal cost-to-go from original system state i that has just been generated from an

aggregate state (left side of Fig. 4.2).

J̃1(j1) is the optimal cost-to-go from original system state j that has just been generated from an

original system state i.

J̃m(jm), m = 2, . . . , k, is the optimal cost-to-go from original system state jm that has just been

generated from an original system state jm−1.

These vectors satisfy the following set of Bellman equations:

R∗(x) =

n∑

i=1

dxiJ̃0(i), x ∈ A,

J̃0(i) = min
u∈U(i)

n∑

j1=1

pij1(u)
(
g(i, u, j1) + αJ̃1(j1)

)
, i = 1, . . . , n, (4.7)

J̃m(jm) = min
u∈U(jm)

n∑

jm+1=1

pjmjm+1(u)
(
g(jm, u, jm+1) + αJ̃m+1(jm+1)

)
, jm = 1, . . . , n, m = 1, . . . , k − 1,

(4.8)

J̃k(jk) =
∑

y∈A
φjkyR

∗(y), jk = 1, . . . , n. (4.9)

By combining these equations, we obtain an equation for R∗:

R∗(x) = (FR∗)(x), x ∈ A,

where F is the mapping defined by

FR = DT k(ΦR),

where T is the usual DP mapping of the problem. As earlier, it can be seen that F is a sup-norm contraction,

but its contraction modulus is αk rather than α.

There is a similar mapping corresponding to a fixed policy and it can be used to implement a policy

iteration algorithm, which evaluates a policy through calculation of a corresponding vector R and then

43

Policy Evaluation by Aggregation

improves it. However, there is a major difference from the single-step aggregation case: a policy involves a

set of k control functions {µ0, . . . , µk−1}, and while a known policy can be easily simulated, its improvement

involves multistep lookahead using the minimizations of Eqs. (4.7)-(4.9), and may be costly. Thus multistep

aggregation is a useful idea only for problems where the cost of this multistep lookahead minimization (from

a single given starting state) is not prohibitive. By contrast, policy improvement using projected equation-

based multistep policy evaluation methods such as TD(λ), does not have this limitation. On the other hand,

note that from the theoretical point of view, a multistep scheme provides a means of better approximation

of the true optimal cost vector J∗, independent of the use of a large number of aggregate states. This

can be seen from Eqs. (4.7)-(4.9), which based on classical value iteration convergence results, show that

J̃0(i)→ J∗(i) as k →∞, regardless of the choice of aggregate states.

4.3 Distributed Asynchronous Aggregation

We now consider the distributed solution of discounted DP problems using aggregation. We envision a

network of s processors/agents, with each processor updating asynchronously a local policy and a local

cost function, defined on a subset of the state space. Aggregate estimates of the computed values are

communicated asynchronously between processors, and are used to perform local cost updates and possibly

local policy updates. In extreme cases, the aggregate estimates available to the agents may be greatly

outdated, or otherwise may carry marginally useful information, thereby approaching a multi-agent system

model where each agent makes decisions based solely on local information.

In a synchronous value iteration method, each processor a = 1, . . . , s, maintains/updates a (local) cost

Ja(i) for every state i in a subset of states Ia, and also an aggregate cost

Ra =
∑

i∈Ia
daiJa(i),

where {dai | i ∈ Ia} is a probability distribution. We assume that the subsets Ia, a = 1, . . . , s, form a

partition of the state space (as in hard aggregation, cf. Section 3.7), and we generically denote by J and

R the vectors with components Ja(i), i ∈ Ia, and Ra, a = 1, . . . , s, respectively. Note that J is an n-

dimensional vector, the Cartesian product J = Πa=1,...,sJa. For state i, J(i) is the ith component of the

vector Ja corresponding to the processor a for which i ∈ Ia.

We first discuss a value iteration algorithm, which involves updating both R and J according to

Rta =
∑

i∈Ia
daiJ ta(i), ∀ a = 1, . . . , s, (4.10)

J t+1
a (i) = min

u∈U(i)
Ha(i, u, J t, Rt), ∀ i ∈ Ia, a = 1, . . . , s, (4.11)

where the mapping Ha is defined for all a = 1, . . . , s, i ∈ Ia, u ∈ U(i), and J ∈ <n, R ∈ <s, by

Ha(i, u, J,R) =

n∑

j=1

pij(u)g(i, u, j) + α
∑

j∈Ia
pij(u)J(j) + α

∑

j /∈Ia
pij(u)Ra(j), (4.12)

and where for each original system state j, we denote by a(j) the subset to which j belongs [i.e., j ∈ Ia(j)].

Thus the iteration (4.11) is the same as ordinary value iteration, except that the aggregate costs Ra(j) are

used for the states j /∈ Ia, whose costs are updated by other processors. It is possible to show that the

44

Policy Evaluation by Aggregation

iteration (4.10)-(4.11) involves a sup-norm contraction mapping of modulus α, so it converges to the unique

solution of the following system of equations in (J,R)

Ra =
∑

i∈Ia
daiJa(i), ∀ a = 1, . . . , s, Ja(i) = min

u∈U(i)
Ha(i, u, J,R), ∀ i ∈ Ia. (4.13)

(The contraction property follows from the fact that {dai | i ∈ Ia} is a probability distribution.)

In the algorithm (4.10)-(4.11), all processors a must be updating their aggregate costs Ra and local

costs Ja(i) synchronously, and communicate the aggregate costs to the other processors before a new iteration

may begin. In a more practical asynchronous version of the method, the aggregate costs Ra may be outdated

because of communication “delays” between processors. In this case, the iteration (4.10)-(4.11) is modified

to take the form

J t+1
a (i) = min

u∈U(i)
Ha

(
i, u, J t, R

τa1(t)
1 , . . . , R

τas(t)
s

)
, ∀ i ∈ Ia, a = 1, . . . , s, (4.14)

with 0 ≤ τaa′(t) ≤ t for a, a′ = 1, . . . , s, and

Rτa =
∑

i∈Ia
daiJτa (i), ∀ a = 1, . . . , s.

The differences t−τaa′(t), a, a′ = 1, . . . , s, in Eq. (4.14) may be viewed as “delays” between the current time k

and the times τaa′(t) when the corresponding aggregate costs were computed by other processors. Moreover,

the iteration (4.14) may be executed only at a subset Ta of times for each processor a, whereas for the other

times t /∈ Ta the vector Ja remains unchanged, i.e., J t+1
a (i) = J ta(i) for all i ∈ Ia. The convergence of this

algorithm to the unique solution of Eq. (4.13) can be shown using the theory of asynchronous distributed DP

developed in Bertsekas [Ber82], and has been discussed recently in the paper by Bertsekas and Yu [BeY10b].

An asynchronous policy iteration method involving aggregation operates similarly, except that each

processor a performs a policy evaluation iteration at a subset of times t ∈ Ta, a policy improvement iteration

at a subset of times t ∈ T̄a ⊂ Ta, and no update at the remaining times. The local policy improvement

iteration is

µt+1
a (i) =

{
arg minu∈U(i)Ha

(
i, u, J t, R

τa1(t)
1 , . . . , R

τam(t)
m

)
if t ∈ T̄a,

µta(i) if t /∈ T̄a,
∀ i ∈ Ia. (4.15)

The local policy evaluation is iterative/optimistic according to

J t+1
a (i) =

{
Ha

(
i, µta(i), J t, R

τa1(t)
1 , . . . , R

τas(t)
s

)
if t ∈ Ta,

J ta(i) if t /∈ Ta,
∀ i ∈ Ia. (4.16)

Unfortunately, this algorithm can fail even under favorable circumstances, as shown by Williams and Baird

[WiB93]: a lookup table representation (one processor for each state), only one processor updating at a

time, and a deterministic system. An alternative and almost as simple algorithm was proposed recently in

[BeY10b], which was shown to converge to the optimum under the most general conditions. In this algorithm,

the iteration (4.16) is replaced by

J t+1
a (i) =

{
min

{
V ta (i), Ha

(
i, µta(i), J t, R

τa1(t)
1 , . . . , R

τas(t)
s

)}
if t ∈ Ta,

J ta(x) if t /∈ Ta,
∀ i ∈ Ia. (4.17)

where V ta (i) is the value of the minimum computed during the latest policy improvement iteration (4.15):

V t+1
a (i) =

{
minu∈U(i)Ha

(
i, u, J t, R

τa1(t)
1 , . . . , R

τas(t)
s

)
if t ∈ T̄a,

V ta (i) if t /∈ T̄a,
∀ i ∈ Ia. (4.18)

Other related algorithms, similarly convergent to the unique solution of Eq. (4.13), have also been discussed

in [BeY10b].
45

References

5. CONCLUSIONS

We have surveyed some aspects of policy iteration methods with cost function approximation. From an

analytical point of view, this is a subject with a rich theory and interesting algorithmic issues. From

a practical point of view, this is a methodology that can address very large and difficult problems, and

yet present major technical difficulties (such as exploration deficiencies and nearly singular equations) and

exhibit unpredictable behaviors (such as policy oscillations and chattering), which are not fully understood

at present and may seriously challenge practitioners.

We have contrasted two policy evaluation approaches: projected equation and aggregation. It appears

that aggregation-based methods have more regular behavior, offer better error bound guarantees, and have

less exploration-related difficulties than projected equation-based methods. On the other hand, aggregation

methods are restricted in the choice of basis functions that they can use, and this can be a significant

limitation for many problems.

6. REFERENCES

[BBD10] Busoniu, L., Babuska, R., De Schutter, B., and Ernst, D., 2010. Reinforcement Learning and Dynamic

Programming Using Function Approximators, CRC Press, N. Y.

[BBN04] Bertsekas, D. P., Borkar, V. S., and Nedić, A., 2004. “Improved Temporal Difference Methods with Linear

Function Approximation,” in Learning and Approximate Dynamic Programming, by J. Si, A. Barto, W. Powell, and

D. Wunsch (Eds.), IEEE Press, N. Y.

[BBS95] Barto, A. G., Bradtke, S. J., and Singh, S. P., 1995. “Real-Time Learning and Control Using Asynchronous

Dynamic Programming,” Artificial Intelligence, Vol. 72, pp. 81-138.

[BES10] Busoniu, L., Ernst, D., De Schutter, B., and Babuska, R., 2010. “Cross-Entropy Optimization of Control

Policies with Adaptive Basis Functions,” IEEE Trans. on Systems, Man, and Cybernetics - Part B: Cybernetics, Vol.

PP, pp. 1-14.

[BKM05] de Boer, P. T., Kroese, D. P., Mannor, S., and Rubinstein, R. Y. 2005. “A Tutorial on the Cross-Entropy

Method,” Annals of Operations Research, Vol. 134, pp. 19-67.

[BSA83] Barto, A. G., Sutton, R. S., and Anderson, C. W., 1983. “Neuronlike Elements that Can Solve Difficult

Learning Control Problems,” IEEE Trans. on Systems, Man, and Cybernetics, Vol. 13, pp. 835-846.

[Bai93] Baird, L. C., 1993. “Advantage Updating,” Report WL-TR-93-1146, Wright Patterson AFB, OH.

[BeG82] Bertsekas, D. P., and Gafni, E., 1982. “Projection Methods for Variational Inequalities with Applications to

the Traffic Assignment Problem,” Math. Progr. Studies, Vol. 17, pp. 139-159.

[BeI96] Bertsekas, D. P., and Ioffe, S., 1996. “Temporal Differences-Based Policy Iteration and Applications in Neuro-

Dynamic Programming,” Lab. for Info. and Decision Systems Report LIDS-P-2349, MIT.

[BeS78] Bertsekas, D. P., and Shreve, S. E., 1978. Stochastic Optimal Control: The Discrete Time Case, Academic

Press, N. Y.; may be downloaded from

http://web.mit.edu/dimitrib/www/home.html

[BeT96] Bertsekas, D. P., and Tsitsiklis, J. N., 1996. Neuro-Dynamic Programming, Athena Scientific, Belmont, MA.

[BeY07] Bertsekas, D. P., and Yu, H., 2007. “Solution of Large Systems of Equations Using Approximate Dynamic

Programming Methods,” Lab. for Information and Decision Systems Report LIDS-P-2754, MIT.

[BeY09] Bertsekas, D. P., and Yu, H., 2009. “Projected Equation Methods for Approximate Solution of Large Linear

Systems,” Journal of Computational and Applied Mathematics, Vol. 227, pp. 27-50.

46

References

[BeY10a] Bertsekas, D. P., and Yu, H., 2010. “Q-Learning and Enhanced Policy Iteration in Discounted Dynamic

Programming,” Lab. for Information and Decision Systems Report LIDS-P-2831, MIT.

[BeY10b] Bertsekas, D. P., and Yu, H., 2010. “Asynchronous Distributed Policy Iteration in Dynamic Programming,”

Proc. of Allerton Conf. on Information Sciences and Systems.

[Ber77] Bertsekas, D. P., 1977. “Monotone Mappings with Application in Dynamic Programming,” SIAM J. on

Control and Optimization, Vol. 15, pp. 438-464.

[Ber82] Bertsekas, D. P., 1982. “Distributed Dynamic Programming,” IEEE Transactions on Aut. Control, Vol.

AC-27, pp. 610-616.

[Ber96] Bertsekas, D. P., 1996. Lecture at NSF Workshop on Reinforcement Learning, Hilltop House, Harper’s Ferry,

N.Y.

[Ber07] Bertsekas, D. P., 2007. Dynamic Programming and Optimal Control, 3rd Edition, Vol. II, Athena Scientific,

Belmont, MA.

[Ber09a] Bertsekas, D. P., 2009. “Projected Equations, Variational Inequalities, and Temporal Difference Methods,”

Lab. for Information and Decision Systems Report LIDS-P-2808, MIT; IEEE Trans. on Aut. Control, to appear in

2011.

[Ber09b] Bertsekas, D. P., 2009. Convex Optimization Theory, Athena Scientific, Belmont, MA; on-line Chapter 6 at

http://web.mit.edu/dimitrib/www/convexdualitychapter.pdf.

[Ber10a] Bertsekas, D. P., 2010. Approximate Dynamic Programming, on-line at

http://web.mit.edu/dimitrib/www/dpchapter.html.

[Ber10b] Bertsekas, D. P., 2010. “Pathologies of Temporal Difference Methods in Approximate Dynamic Program-

ming,” Proc. 2010 IEEE Conference on Decision and Control.

[Bor08] Borkar, V. S., 2008. Stochastic Approximation: A Dynamical Systems Viewpoint, Cambridge Univ. Press.

[Bor09] Borkar, V. S., 2009. “Reinforcement Learning: A Bridge Between Numerical Methods and Monte Carlo,”

World Scientific Review, Vol. 9, Chapter 4.

[Boy02] Boyan, J. A., 2002. “Technical Update: Least-Squares Temporal Difference Learning,” Machine Learning,

Vol. 49, pp. 1-15.

[BrB96] Bradtke, S. J., and Barto, A. G., 1996. “Linear Least-Squares Algorithms for Temporal Difference Learning,”

Machine Learning, Vol. 22, pp. 33-57.

[CFH07] Chang, H. S., Fu, M. C., Hu, J., Marcus, S. I., 2007. Simulation-Based Algorithms for Markov Decision

Processes, Springer, N. Y.

[CPS92] Cottle, R. W., Pang, J-S., and Stone, R. E., 1992. The Linear Complementarity Problem, Academic Press,

N. Y.; republished by SIAM in 2009.

[Cao07] Cao, X. R., 2007. Stochastic Learning and Optimization: A Sensitivity-Based Approach, Springer, N. Y.

[ChV06] Choi, D. S., and Van Roy, B., 2006. “A Generalized Kalman Filter for Fixed Point Approximation and

Efficient Temporal-Difference Learning, Discrete Event Dynamic Systems: Theory and Applications, Vol. 16, pp.

207-239.

[DFM09] Desai, V. V., Farias, V. F., and Moallemi, C. C., 2009. “Approximate Dynamic Programming via a Smoothed

Approximate Linear Program, Advances in Neural Information Processing Systems 22, MIT Press, Cambridge, MA.

[Den67] Denardo, E. V., 1967. “Contraction Mappings in the Theory Underlying Dynamic Programming,” SIAM

Review, Vol. 9, pp. 165-177.

[DiM10] Di Castro, D., Mannor, S., 2010. “Adaptive Bases for Reinforcement Learning,”

http://arxiv.org/abs/1005.0125.

[FaV06] Farias, V. F., and Van Roy, B., 2006. “Tetris: A Study of Randomized Constraint Sampling, in Probabilistic

47

References

and Randomized Methods for Design Under Uncertainty, Springer-Verlag.

[Fle84] Fletcher, C. A. J., 1984. Computational Galerkin Methods, Springer-Verlag, N. Y.

[GLH94] Gurvits, L., Lin, L. J., and Hanson, S. J., 1994. “Incremental Learning of Evaluation Functions for Absorbing

Markov Chains: New Methods and Theorems,” Preprint.

[Gos03] Gosavi, A., 2003. Simulation-Based Optimization Parametric Optimization Techniques and Reinforcement

Learning, Springer-Verlag, N. Y.

[HBK94] Harmon, M. E., Baird, L. C., and Klopf, A. H., 1994. “Advantage Updating Applied to a Differential Game,”

unpublished report, presented at the 1994 Neural Information Processing Systems Conference, Denver, CO.

[JJS94] Jaakkola, T., Jordan, M. I., and Singh, S. P., 1994. “On the Convergence of Stochastic Iterative Dynamic

Programming Algorithms,” Neural Computation, Vol. 6, pp. 1185-1201.

[Kak02] Kakade, S., 2002. “A Natural Policy Gradient,” in Advances in Neural Information Processing Systems, Vol.

14, MIT Press, Cambridge, MA.

[Kon02] Konda, V. R., 2002. Actor-Critic Algorithms, Ph.D. Thesis, Dept. of EECS, M.I.T., Cambridge, MA.

[Kra72] Krasnoselskii, M. A., et. al, 1972. Approximate Solution of Operator Equations, Translated by D. Louvish,

Wolters-Noordhoff Pub., Groningen.

[LLL08] Lewis, F. L., Lendaris, G. G., and Liu, D., 2008. Special Issue on Adaptive Dynamic Programming and

Reinforcement Learning in Feedback Control, IEEE Transactions on Systems, Man, and Cybernetics, Part B, Vol.

38.

[LaP03] Lagoudakis, M. G., and Parr, R., 2003. “Least-Squares Policy Iteration,” J. of Machine Learning Research,

Vol. 4, pp. 1107-1149.

[LeV09] Lewis, F. L., and Vrabie, D., 2009. “Reinforcement Learning and Adaptive Dynamic Programming for

Feedback Control,” IEEE Circuits and Systems Magazine, 3rd Q. Issue.

[MMS06] Menache, I., Mannor, S., and Shimkin, N., 2005. “Basis Function Adaptation in Temporal Difference

Reinforcement Learning,” Ann. Oper. Res., Vol. 134, pp. 215-238.

[MSB08] Maei, H. R., Szepesvari, C., Bhatnagar, S., Silver, D., Precup, D., and Sutton, R. S., 2009. “Convergent

Temporal-Difference Learning with Arbitrary Smooth Function Approximation,” Proc. NIPS 22.

[Mar70] Martinet, B., 1970. “Regularisation d’ Inequations Variationnelles par Approximations Successives,” Rev.

Francaise Inf. Rech. Oper., pp. 154-159.

[Mey07] Meyn, S., 2007. Control Techniques for Complex Networks, Cambridge University Press, N. Y.

[Mun03] Munos, R.. 2003. “Error Bounds for Approximate Policy Iteration,” Proc. 20th ICML, Washington DC, pp.

560567.

[NeB03] Nedić, A., and Bertsekas, D. P., 2003. “Least Squares Policy Evaluation Algorithms with Linear Function

Approximation,” Discrete Event Dynamic Systems: Theory and Applications, Vol. 13, pp. 79-110.

[Pin97] Pineda, F., 1997. “Mean-Field Analysis for Batched TD(λ),” Neural Computation, pp. 1403-1419.

[Pow07] Powell, W. B., 2007. Approximate Dynamic Programming: Solving the Curses of Dimensionality, Wiley, N.

Y.

[Put94] Puterman, M. L., 1994. Markov Decision Processes: Discrete Stochastic Dynamic Programming, J. Wiley,

N. Y.

[Roc76] Rockafellar, R. T., 1976. “Monotone Operators and the Proximal Point Algorithm,” SIAM J. on Control and

Optimization, Vol. 14, pp. 877-898.

[Rot79] Rothblum, U. G., 1979. “Iterated Successive Approximation for Sequential Decision Processes,” in Stochastic

Control and Optimization, by J. W. B. van Overhagen and H. C. Tijms (eds), Vrije University, Amsterdam.

[RuK08] Rubinstein, R. Y., and Kroese, D. P., 2008. Simulation and the Monte Carlo Method, 2nd Edition, J. Wiley,

48

References

N. Y.

[SBP04] Si, J., Barto, A., Powell, W., and Wunsch, D., (Eds.), 2004. Learning and Approximate Dynamic Program-

ming, IEEE Press, N. Y.

[SJJ94] Singh, S. P., Jaakkola, T., and Jordan, M. I., 1994. “Learning without State-Estimation in Partially Observ-

able Markovian Decision Processes,” Proceedings of the Eleventh Machine Learning Conference, pp. 284-292.

[SJJ95] Singh, S. P., Jaakkola, T., and Jordan, M. I., 1995. “Reinforcement Learning with Soft State Aggregation,”

in Advances in Neural Information Processing Systems 7, MIT Press, Cambridge, MA.

[SMP09] Sutton, R. S., Maei, H. R., Precup, D., Bhatnagar, S., Silver, D., Szepesvari, C., and Wiewiora, E., 2009.

“Fast Gradient-Descent Methods for Temporal-Difference Learning with Linear Function Approximation,” Proc. of

ICML.

[SSM08] Sutton, R. S., Szepesvari, C., and Maei, H. R., 2008. “A Convergent O(n) Algorithm for Off-Policy Temporal-

Difference Learning with Linear Function Approximation,” Proc. of NIPS 21.

[Sam59] Samuel, A. L., 1959. “Some Studies in Machine Learning Using the Game of Checkers,” IBM Journal of

Research and Development, pp. 210-229.

[Sam67] Samuel, A. L., 1967. “Some Studies in Machine Learning Using the Game of Checkers. II – Recent Progress,”

IBM Journal of Research and Development, pp. 601-617.

[Sch10] Scherrer, B., 2010. “Should One compute the Temporal Difference Fixed Point or Minimize the Bellman

Residual? The Unified Oblique Projection View,” Proc. of 2010 ICML, Haifa, Israel.

[Sha53] Shapley, L. S., 1953. “Stochastic Games,” Proc. Nat. Acad. Sci. U.S.A., Vol. 39.

[SuB98] Sutton, R. S., and Barto, A. G., 1998. Reinforcement Learning, MIT Press, Cambridge, MA.

[Sut88] Sutton, R. S., 1988. “Learning to Predict by the Methods of Temporal Differences,” Machine Learning, Vol.

3, pp. 9-44.

[SzL06] Szita, I., and Lorinz, A., 2006. “Learning Tetris Using the Noisy Cross-Entropy Method,” Neural Computa-

tion, Vol. 18, pp. 2936-2941.

[Sze09] Szepesvari, C., 2009. “Reinforcement Learning Algorithms for MDPs,” Dept. of Computing Science Report

TR09-13, University of Alberta, Ca.

[Tes92] Tesauro, G. J., 1992. “Practical Issues in Temporal Difference Learning,” Machine Learning, Vol. 8, pp.

257-277.

[ThS09] Thiery, C., and Scherrer, B., 2009. “Improvements on Learning Tetris with Cross-Entropy,” International

Computer Games Association Journal, Vol. 32, pp. 23-33.

[ThS10] Thiery, C., and Scherrer, B., 2010. “Least-Squares Policy Iteration: Bias-Variance Trade-off in Control

Problems,” Proc. of 2010 ICML, Haifa, Israel.

[TsV96] Tsitsiklis, J. N., and Van Roy, B., 1996. “Feature-Based Methods for Large-Scale Dynamic Programming,”

Machine Learning, Vol. 22, pp. 59-94.

[TsV97] Tsitsiklis, J. N., and Van Roy, B., 1997. “An Analysis of Temporal-Difference Learning with Function

Approximation,” IEEE Transactions on Automatic Control, Vol. 42, pp. 674-690.

[TsV99a] Tsitsiklis, J. N., and Van Roy, B., 1999. “Average Cost Temporal-Difference Learning,” Automatica, Vol.

35, pp. 1799-1808.

[TsV99b] Tsitsiklis, J. N., and Van Roy, B., 1999. “Optimal Stopping of Markov Processes: Hilbert Space Theory,

Approximation Algorithms, and an Application to Pricing Financial Derivatives,” IEEE Transactions on Automatic

Control, Vol. 44, pp. 1840-1851.

[Van95] Van Roy, B., 1995. “Feature-Based Methods for Large Scale Dynamic Programming,” Lab. for Info. and

Decision Systems Report LIDS-TH-2289, Massachusetts Institute of Technology, Cambridge, MA.

49

References

[Van06] Van Roy, B., 2006. “Performance Loss Bounds for Approximate Value Iteration with State Aggregation,”

Mathematics of Operations Research, Vol. 31, pp. 234-244.

[WPB09] Wang, M., Polydorides, N., and Bertsekas, D. P., 2009. “Approximate Simulation-Based Solution of Large-

Scale Least Squares Problems,” Lab. for Information and Decision Systems Report LIDS-P-2819, MIT.

[Wer92a] Werbös, P. J, 1992. “Approximate Dynamic Programming for Real-Time Control and Neural Modeling,”

D. A. White, D. A. Sofge, (eds.), Handbook of Intelligent Control, Van Nostrand, N. Y.

[Wer92b] Werbös, P. J, 1992. “Neurocontrol and Supervised Learning: an Overview and Valuation,” D. A. White, D.

A. Sofge, (eds.), Handbook of Intelligent Control, Van Nostrand, N. Y.

[WhS92] White, D., and Sofge, D., 1992. Handbook of Intelligent Control, Van Nostrand Reinhold, N.Y.

[WiB93] Williams, R. J., and Baird, L. C., 1993. “Analysis of Some Incremental Variants of Policy Iteration: First

Steps Toward Understanding Actor-Critic Learning Systems,” Report NU-CCS-93-11, College of Computer Science,

Northeastern University, Boston, MA.

[YaL08] Yao, H., and Liu, Z.-Q., 2008. “Preconditioned Temporal Difference Learning,” Proc. of the 25th ICML,

Helsinki, Finland.

[YuB06] Yu, H., and Bertsekas, D. P., 2006. “Convergence Results for Some Temporal Difference Methods Based on

Least Squares,” Lab. for Information and Decision Systems Report 2697, MIT; IEEE Trans. on Aut. Control, Vol.

54, 2009, pp. 1515-153.

[YuB07] Yu, H., and Bertsekas, D. P., 2007. “A Least Squares Q-Learning Algorithm for Optimal Stopping Problems,”

Lab. for Information and Decision Systems Report 2731, MIT; also in Proc. European Control Conference 2007, Kos,

Greece.

[YuB09] Yu, H., and Bertsekas, D. P., 2009. “Basis Function Adaptation Methods for Cost Approximation in MDP,”

Proceedings of 2009 IEEE Symposium on Approximate Dynamic Programming and Reinforcement Learning (ADPRL

2009), Nashville, Tenn.

[YuB10] Yu, H., and Bertsekas, D. P., 2010. “Error Bounds for Approximations from Projected Linear Equations,”

Mathematics of Operations Research, Vol. 35, 2010, pp. 306-329; a shorter version appears in Proc. of European

Workshop on Reinforcement Learning (EWRL’08), July 2008, Lille, France.

[Yu10a] Yu, H., 2010. “Least Squares Temporal Difference Methods: An Analysis Under General Conditions,” Tech-

nical report C-2010-39, Dept. Computer Science, Univ. of Helsinki.

[Yu10b] Yu, H., 2010. “Convergence of Least Squares Temporal Difference Methods Under General Conditions,” Proc.

of the 27th ICML, Haifa, Israel.

50

